JP2006335289A - Electricity feeding method and device to electric drive vehicle - Google Patents

Electricity feeding method and device to electric drive vehicle Download PDF

Info

Publication number
JP2006335289A
JP2006335289A JP2005164572A JP2005164572A JP2006335289A JP 2006335289 A JP2006335289 A JP 2006335289A JP 2005164572 A JP2005164572 A JP 2005164572A JP 2005164572 A JP2005164572 A JP 2005164572A JP 2006335289 A JP2006335289 A JP 2006335289A
Authority
JP
Japan
Prior art keywords
vehicle
power
power supply
track
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005164572A
Other languages
Japanese (ja)
Inventor
Takeshi Mizuma
毅 水間
Nobuo Fujii
信男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Traffic Safety and Environment Laboratory
Original Assignee
National Traffic Safety and Environment Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Traffic Safety and Environment Laboratory filed Critical National Traffic Safety and Environment Laboratory
Priority to JP2005164572A priority Critical patent/JP2006335289A/en
Publication of JP2006335289A publication Critical patent/JP2006335289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for feeding electricity to a train with no-contact at low cost. <P>SOLUTION: The electricity feeding device is provided with a transformer/linear motor device 3 having transformer function and linear motor function; an operation control inverter 4; and a battery 5 for performing charging in a power feedable section and performing traveling by linear motor function or motor driving and feeding electricity onto a vehicle in a power non-feedable section. At stopping, electricity feeding onto the vehicle and charging of indoor power source are performed by power feeding from a track side. At traveling, in the section where power feeding from the track is possible, traveling by the linear motor function, electricity feeding onto the vehicle and charging of indoor power source are performed. In the section where power feeding from the track is impossible and a secondary conduction plate to the track side is laid, traveling by the linear motor function and electricity feeding onto the vehicle are performed by power feeding from the on-vehicle power source and in the section where the secondary conduction plate is not laid, traveling by motor driving and electricity feeding onto the vehicle are performed by power feeding from the on-vehicle power source. Accordingly, a mounting battery amount to the vehicle can be reduced and a ground facility can be simplified. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気で駆動される電気駆動車において、トロリ線を使用せず、非接触で電気駆動車に給電する方法、及び、この方法を実施する装置に関するものである。   The present invention relates to a method for supplying power to an electric drive vehicle in a non-contact manner without using a trolley wire in an electric drive vehicle driven by electricity, and an apparatus for carrying out this method.

以下、鉄道車両について説明する。
現在では、環境にやさしいとされている電気式鉄道車両(以下、電車と略す。)が一般的であるが、電車への給電は、トロリ線からパンタグラフを用いて接触給電する方式が一般的である。また、熱エネルギの有効活用の観点から、鉄道車両には回生ブレーキが採用されている。
特開平7−322407号公報 特開2000−83302号公報
Hereinafter, the railway vehicle will be described.
At present, electric railway vehicles (hereinafter abbreviated as trains), which are considered to be environmentally friendly, are generally used. However, power supply to trains is generally performed by contact power supply using a pantograph from a trolley wire. is there. Also, from the viewpoint of effective use of thermal energy, regenerative braking is adopted for railway vehicles.
JP-A-7-322407 JP 2000-83302 A

また、地上の全区間に電力供給コイルを配置して非接触で給電し、リニアモータを駆動する方式もある。
特開2002−238109号公報
There is also a system in which a power supply coil is arranged in all sections on the ground, power is supplied in a non-contact manner, and a linear motor is driven.
JP 2002-238109 A

しかしながら、トロリ線からパンタグラフを用いて接触給電する方式では、保守や都市の美観の点で問題がある。また、回生ブレーキを採用している電車では、制動による回生電力の処理が難しく、更なる省エネルギ化が難しい。   However, the method of contact power feeding using a pantograph from the trolley wire has problems in terms of maintenance and city aesthetics. Further, in a train that employs a regenerative brake, it is difficult to process regenerative power by braking, and it is difficult to further save energy.

また、地上の全区間に電力供給コイルを配置する方式は、保守や都市の美観の点では優れるものの、設備費が嵩むという問題がある。   Moreover, although the system which arrange | positions a power supply coil to all the sections on the ground is excellent in the point of maintenance and the aesthetics of a city, there exists a problem that an installation cost increases.

なお、高周波による誘導集電方式も考えられるが、この方式は効率や力率が悪く、現在の技術では電車のように比較的大きな電力供給を必要とするものには不向きである。また、バッテリ駆動や車両内で発電する方式も考えられるが、多量のバッテリや発電装置が必要になるので、重量や容積が嵩み、実現は難しい。   An induction current collection method using high frequency is also conceivable, but this method has poor efficiency and power factor, and is not suitable for a current technology that requires a relatively large power supply such as a train. In addition, although a battery drive system or a method of generating power in the vehicle is conceivable, a large amount of battery or power generation device is required, which increases the weight and volume and is difficult to realize.

本発明が解決しようとする問題点は、従来の電車への給電方式では、保守や美観、設備費の点で問題があり、また、更なる省エネルギ化が難しいという点である。   The problem to be solved by the present invention is that the conventional power supply system for trains has problems in terms of maintenance, aesthetics, and facility costs, and further energy saving is difficult.

そこで、本発明の電車への給電方法は、
トロリ線を使用せず、しかも、地上の全区間に電力供給コイルを配置することなく、非接触で電車に電気を供給するために、
軌道からの電力供給が可能な区間での停車時は、軌道側から電力を供給されて、変圧器機能により車上への給電と、車内電源の充電を行う一方、
走行時は、
軌道からの電力供給が可能な区間では、リニアモータ機能による走行に加えて、車上への給電と、車内電源の充電を、
また、軌道からの電力供給が不可能であるが軌道側に二次導体板が敷設されている区間では、車上電源からの電力供給により、リニアモータ機能による走行と車上への給電を、
また、軌道からの電力供給が不可能でかつ軌道側に二次導体板が敷設されていない区間では、車上電源からの電力供給により、モータ駆動による走行と車上への給電を行うことを最も主要な特徴としている。
Therefore, the method for supplying power to the train of the present invention is as follows.
To supply electricity to the train in a non-contact manner without using a trolley wire and without arranging a power supply coil in all sections on the ground,
When stopping in a section where power can be supplied from the track, power is supplied from the track side, and power is supplied to the vehicle and the in-vehicle power supply is charged by the transformer function.
When traveling,
In sections where electric power can be supplied from the track, in addition to running with the linear motor function, power supply to the vehicle and charging of the in-vehicle power supply
In addition, in the section where the power supply from the track is impossible but the secondary conductor plate is laid on the track side, the power supply from the on-board power supply allows the running by the linear motor function and the power supply to the on-vehicle,
In sections where power supply from the track is not possible and no secondary conductor plate is laid on the track side, running by motor drive and power supply to the vehicle should be performed by supplying power from the on-board power source. The most important feature.

前記本発明の給電方法は、
非接触で車両に電気を供給するための非接触給電・充電用の変圧器機能と、電車の加減速推進用リニアモータ機能を併せもつ変圧器兼リニアモータ装置と、
この変圧器兼リニアモータ装置の運転制御を行うべく、電気駆動車に設置されたインバータと、
このインバータによって制御され、軌道からの電力供給が可能な区間では充電を、また、軌道からの電力供給が不可能な区間では、リニアモータ機能或いはモータ駆動による走行と車上への給電を行うべく、電気駆動車に設置された直流電源を備えた本発明の給電装置を使用することによって実施できる。
The power feeding method according to the present invention includes:
A transformer / linear motor device having both a non-contact power supply and charging transformer function for supplying electricity to the vehicle in a non-contact manner, and a linear motor function for train acceleration / deceleration propulsion,
In order to control the operation of this transformer and linear motor device, an inverter installed in an electrically driven vehicle,
In order to supply power to the vehicle and to drive in the section that is controlled by this inverter and can be supplied with power from the track, and in the section where power supply from the track is not possible, use linear motor function or motor drive. It can be implemented by using the power feeding device of the present invention provided with a DC power source installed in an electrically driven vehicle.

本発明では、美観を損なうトロリ線を設けず、しかも、地上の全区間に電力供給コイルを配置することなく、非接触で電車に電気を供給することができるという利点がある。すなわち、電力供給コイルの敷設区間は電力供給コイルを介して電力を供給できるので、全区間をバッテリ駆動する場合と比べて車両に搭載するバッテリの量を少なくできて車重を軽くでき、バッテリの交換・保守などの手間や費用を軽減できる。また、地上設備を簡略化でき、道路の融通性を損なうことが避けられるようになる。   In the present invention, there is an advantage that electricity can be supplied to the train in a non-contact manner without providing a trolley wire that impairs aesthetics and without arranging a power supply coil in all sections on the ground. That is, since the laying section of the power supply coil can supply power via the power supply coil, the amount of battery mounted on the vehicle can be reduced and the vehicle weight can be reduced compared to the case where the entire section is battery-driven. Reduces labor and costs for replacement and maintenance. In addition, ground facilities can be simplified, and the loss of road flexibility can be avoided.

以下、本発明を実施するための最良の形態を、図1〜図4を用いて説明する。
本発明の電車への給電装置は、非接触で車両に電気を供給するための非接触給電・充電用の変圧器機能と、電車の加減速推進用リニアモータ機能を併せもつ装置であり、車両側設備1と軌道側設備2とで構成されている。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.
The power supply device for a train of the present invention is a device that has both a non-contact power supply / charging transformer function for supplying electricity to a vehicle in a non-contact manner and a linear motor function for train acceleration / deceleration propulsion. It comprises a side equipment 1 and a track side equipment 2.

そして、その基本構成は、図1に示すように、変圧器兼リニアモータ装置3(以下、リニア変圧器3或いはリニアモータ装置3とも言う。)と、その車両側巻線3aに接続する制御用インバータ4と、その直流電源部としてのバッテリ或いはカパシタ(以下、単にバッテリという。)5からなる。また、軌道側巻線3bは商用電源7に接続され、その運転制御は車両側巻線3aに接続する前記インバータ4で行う。   As shown in FIG. 1, the basic configuration is a control and linear motor device 3 (hereinafter also referred to as a linear transformer 3 or a linear motor device 3) and a vehicle-side winding 3a. It comprises an inverter 4 and a battery or capacitor (hereinafter simply referred to as a battery) 5 as its DC power source. The track-side winding 3b is connected to a commercial power source 7, and its operation control is performed by the inverter 4 connected to the vehicle-side winding 3a.

このような構成の本発明では、軌道側に電力線コイル(軌道側巻線3b)を敷設した区間では、図2(b)に示すように、軌道側から電力P1を供給されて駆動するリニアモータ装置3によって走行する。   In the present invention having such a configuration, in the section where the power line coil (track side winding 3b) is laid on the track side, as shown in FIG. 2B, the linear motor is driven by being supplied with power P1 from the track side. Travel by the device 3.

この場合の走行に必要な動力Pmは、推力をFx、走行速度をv(=(1−s)vs。但し、sは誘導機において定義される滑り値、vsは移動磁界の速度である。)とした場合、v・Fx=(1−s)P1で求められる。従って、余剰な電力P2(=P1−Pm=s・P1)は、車上に給電され、車内電力の供給とバッテリ5の充電に充てられる。   The power Pm required for traveling in this case is Fx for thrust, v (= (1-s) vs. traveling speed, where s is a slip value defined in the induction machine, and vs is the speed of the moving magnetic field. ), V · Fx = (1-s) P1. Therefore, surplus power P2 (= P1-Pm = s · P1) is supplied to the vehicle and used for supplying in-vehicle power and charging the battery 5.

一方、軌道側に電力線コイル(軌道側巻線3b)は敷設していないが、二次導体板9を敷設している区間では、前記バッテリ5から電力を供給されて駆動するリニアモータ装置3によって非接触で(図2(c))走行する。   On the other hand, although the power line coil (track side winding 3b) is not laid on the track side, in the section where the secondary conductor plate 9 is laid, the linear motor device 3 is driven by being supplied with power from the battery 5. Travel without contact (FIG. 2 (c)).

また、軌道側に電力線コイルも二次導体板も敷設されておらず、通常の道路或いはレール10が敷設された区間では、バッテリ5によって駆動される車輪駆動用モータ6による車輪Wでの摩擦力駆動(図2(d))で走行する。この摩擦力駆動の際、図1のように、別途専用のインバータ8を設けてモータ6を駆動しても良い。   In addition, the power line coil and the secondary conductor plate are not laid on the track side, and the frictional force at the wheel W by the wheel driving motor 6 driven by the battery 5 in a section where the normal road or rail 10 is laid. It travels by driving (FIG. 2 (d)). When driving the frictional force, a motor 6 may be driven by providing a separate dedicated inverter 8 as shown in FIG.

なお、駅などのように軌道側に電力線コイルが敷設された場所で停車する時は、図2(a)に示すように、軌道側から供給される電力P1で、変圧器3によって、車上への給電P2(≒P1)、すなわち車内電力の供給とバッテリ5の充電を行う。   When stopping at a place where a power line coil is laid on the track side, such as at a station, as shown in FIG. 2 (a), the power P1 supplied from the track side is used by the transformer 3 to Power supply P2 (≈P1), that is, in-vehicle power supply and battery 5 charging.

このような作用を行わせる前記変圧器兼リニアモータ装置3としては、例えば以下の2つの方式の何れかを採用する。
(方式1)
通常の巻線型リニア誘導モータと同様な構造で、軌道側と車両側にそれぞれ三相巻線3a,3bを有する一次側と二次側を配置する構造とする。なお、軌道側には三相商用電源7を接続する。
For example, one of the following two systems is adopted as the transformer / linear motor device 3 that performs such an operation.
(Method 1)
The structure is the same as that of a normal wire-wound linear induction motor, with a primary side and a secondary side having three-phase windings 3a and 3b on the track side and the vehicle side, respectively. A three-phase commercial power supply 7 is connected to the track side.

そして、停車時に充電を行う変圧器運転では、移動磁界を利用し、エアギャップを介して三相商用電源7から車両側巻線3aに電力を伝達する。この場合、一般に推力が発生するので、車両が動かないような固定機構を併用する。   And in the transformer driving | operation which charges at the time of a stop, electric power is transmitted to the vehicle side coil | winding 3a from the three-phase commercial power source 7 via an air gap using a moving magnetic field. In this case, since a thrust is generally generated, a fixing mechanism that prevents the vehicle from moving is used in combination.

また、加減速運転では、軌道側巻線3bを流れる電流の周波数をf1、車両側巻線3aを流れる電流の周波数をf2とした場合、f2=sf1となるように制御し、始動加速はf2=f1から減少させて行なう。   In the acceleration / deceleration operation, when the frequency of the current flowing through the track side winding 3b is f1, and the frequency of the current flowing through the vehicle side winding 3a is f2, the control is performed so that f2 = sf1, and the starting acceleration is f2. = Decrease from f1.

なお、この加減速時に生じるs・P1の電力も、前記したように、本発明では車上のバッテリ5への充電や車内電力の供給用に利用する。   In addition, as described above, the electric power of s · P1 generated at the time of acceleration / deceleration is also used for charging the battery 5 on the vehicle and supplying electric power in the vehicle as described above.

(方式2)
図3及び図4に示すように、軌道側巻線3bは単相巻線、車両側巻線3aは単相と二相との切り換えが可能な巻線構成にする。そして、その切り換えはスイッチ等を使用せずに巻線電流制御用に接続するインバータ4で行なう。
(Method 2)
As shown in FIGS. 3 and 4, the track-side winding 3b has a single-phase winding, and the vehicle-side winding 3a has a winding configuration capable of switching between single-phase and two-phase. The switching is performed by the inverter 4 connected for winding current control without using a switch or the like.

なお、軌道側巻線3bは安価な集中巻の単相巻線とし、商用電源から供給する。また、前記インバータ4は、図3(e)及び図4(e)に示すように、単相インバータを2台結合した形式とする。   The track-side winding 3b is an inexpensive concentrated winding single-phase winding and is supplied from a commercial power source. Further, the inverter 4 has a form in which two single-phase inverters are coupled as shown in FIGS. 3 (e) and 4 (e).

そして、停車時に充電を行う変圧器運転では、インバータ4により、図3に示すように、二次側の車両側巻線3aを単相巻線に切り換え、交番磁界による変圧器動作をさせて推力を発生させずに車両側に電力を供給する。   In the transformer operation for charging when the vehicle is stopped, the inverter 4 switches the secondary vehicle-side winding 3a to a single-phase winding as shown in FIG. Electric power is supplied to the vehicle without generating any problems.

また、加減速運転では、インバータ4により、図4に示すように、車両側巻線3aを二相巻線に切り換え、a相とb層にそれぞれ90度宛位相がずれた4相電流(図4(d))を流すことにより、移動磁界による推力を発生させる。なお、車両側巻線3aを流れる電流の周波数の制御法は、前記方式1の加減速運転と同様に行なう。   In addition, in the acceleration / deceleration operation, the inverter 4 switches the vehicle-side winding 3a to a two-phase winding as shown in FIG. 4, and a four-phase current (phase shown in FIG. 4 (d)) is applied to generate a thrust by the moving magnetic field. The method for controlling the frequency of the current flowing through the vehicle-side winding 3a is performed in the same manner as the acceleration / deceleration operation of the method 1.

以上が本発明の電車への給電方法である。
このような本発明によれば、電車の駆動電源は、軌道側巻線3bの敷設区間では誘導給電方式で、それ以外の区間では車上のバッテリ5から供給する方式になるため、全て非接触の架線レス化が実現できる。
The above is the electric power feeding method for the train of the present invention.
According to the present invention, the train drive power is supplied by the inductive power supply method in the section where the track-side winding 3b is laid, and is supplied from the battery 5 on the vehicle in the other sections. Can be eliminated.

すなわち、本発明は、地上一次型リニアモータと車上一次型リニアモータ、または回転型モータと組み合わせるハイブリット駆動方式であるため、軌道設備2の経済性を向上できると共に、道路の融通性を極力損なわず、また、安全で美観を損ねない給電が実現できる。   That is, the present invention is a hybrid drive system that is combined with a ground primary type linear motor and an on-vehicle primary type linear motor, or a rotary type motor, so that the economics of the track facility 2 can be improved and the flexibility of the road is lost as much as possible. In addition, power supply that is safe and does not impair the beauty can be realized.

また、本発明では、軌道側巻線3bの敷設区間では、軌道側から供給される電力でリニアモータ装置3の加速運転を行うので、運転時における電力消費の大きな割合を占める加速時にバッテリ5から電力を供給する必要がなくなる。従って、電車に積載すべき蓄熱エネルギを大幅に軽減できる。また、急な坂道では、軌道側巻線3bを敷設しておくことで、車上の電源を消耗させずに、急勾配の走行が可能になる。   Further, in the present invention, in the laying section of the track side winding 3b, the linear motor device 3 is accelerated by the electric power supplied from the track side. Therefore, from the battery 5 during acceleration, which accounts for a large proportion of power consumption during operation. There is no need to supply power. Therefore, the heat storage energy to be loaded on the train can be greatly reduced. On steep slopes, the track-side winding 3b is laid, so that it is possible to travel on a steep slope without consuming power on the vehicle.

さらに、駅等での停車中に非接触で安全に車内電力の給電やバッテリの充電が行なえるので、充電のために特別な場所や施設を設ける必要がない。また、加速区間においても本発明ではバッテリ5を放電(消費)せず、逆に給電・充電が行なえる。   Furthermore, since it is possible to safely supply electric power and charge the battery in a contactless manner while stopping at a station or the like, there is no need to provide a special place or facility for charging. Further, in the present invention, the battery 5 is not discharged (consumed) in the acceleration section, and power supply / charging can be performed conversely.

また、リニアモータ装置3による駆動区間では、リニアモータ装置3を走行案内設備として利用でき、またバッテリ5を消費しない自動運転が可能であることから、ITS(Intelligent Transport Systems)に適応しやすくなる。   Moreover, in the drive section by the linear motor device 3, the linear motor device 3 can be used as a travel guide facility, and automatic operation without consuming the battery 5 is possible, so that it is easy to adapt to ITS (Intelligent Transport Systems).

このような本発明では、効率を重視する場合は、軌道側巻線3bの電流を供給する区間を最小限にし、車両の移動に応じて、区間を切り換えて電流を供給すればよい。   In the present invention, when importance is attached to the efficiency, the section for supplying the current of the track side winding 3b may be minimized, and the section may be switched to supply the current according to the movement of the vehicle.

以上、本発明の実施の形態について説明したが、本発明はこれらの例示に限定されるものではなく、特許請求の範囲に示された技術的思想の範疇において適宜変更可能なことは言うまでもない。   The embodiments of the present invention have been described above, but the present invention is not limited to these exemplifications, and it goes without saying that the embodiments can be appropriately changed within the scope of the technical idea shown in the claims.

以上の本発明は、電車に限らず、バスなどの車両にも適用できる。この場合、扁平なリニアモータと小径の車輪を使用することで、人に安全でやさしい低床バスの実現が容易になる。   The present invention described above can be applied not only to trains but also to vehicles such as buses. In this case, the use of a flat linear motor and small-diameter wheels facilitates the realization of a low-floor bus that is safe and friendly to humans.

本発明の電車への給電装置の基本構成を示した概略図である。It is the schematic which showed the basic composition of the electric power feeder to the train of this invention. 本発明の動作原理を説明する概略図で、(a)は停車時、(b)は軌道からの電力供給によるリニアモータ駆動での走行時、(c)は車上電源によるリニアモータ駆動での走行時、(d)は車上電源によるモータ駆動での走行時を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram for explaining the operation principle of the present invention. (D) is a figure which shows the time of driving | running | working by the motor drive by an on-vehicle power source at the time of driving | running | working. 変圧器兼リニアモータ装置の第2の方式で、単相変圧器動作をさせる場合の説明図であり、(a)は軌道側巻線、(b)は軌道側巻線の位相関係、(c)は車両側巻線、(d)は車両側巻線の位相関係、(e)はインバータ回路を示した図である。It is explanatory drawing in the case of making a single phase transformer operation | movement by the 2nd system of a transformer and a linear motor apparatus, (a) is a track side winding, (b) is a phase relationship of a track side winding, (c ) Is a vehicle side winding, (d) is a phase relationship of the vehicle side winding, and (e) is a diagram showing an inverter circuit. 図3と同様のリニアモータ動作をさせる場合の説明図である。It is explanatory drawing in the case of performing the linear motor operation | movement similar to FIG.

符号の説明Explanation of symbols

1 車両側設備
2 軌道側設備
3 変圧器兼リニアモータ装置
3a 車両側巻線
3b 軌道側巻線
4 インバータ
5 バッテリ
6 モータ
7 商用電源
9 二次導体板
DESCRIPTION OF SYMBOLS 1 Vehicle side equipment 2 Track side equipment 3 Transformer and linear motor apparatus 3a Vehicle side winding 3b Track side winding 4 Inverter 5 Battery 6 Motor 7 Commercial power supply 9 Secondary conductor plate

Claims (2)

非接触で電気駆動車に電気を供給するための給電方法であって、
軌道からの電力供給が可能な区間での停車時は、軌道側から電力を供給されて、変圧器機能により車上への給電と、車内電源の充電を行う一方、
走行時は、
軌道からの電力供給が可能な区間では、リニアモータ機能による走行に加えて、車上への給電と、車内電源の充電を、
また、軌道からの電力供給が不可能であるが軌道側に二次導体板が敷設されている区間では、車上電源からの電力供給により、リニアモータ機能による走行と車上への給電を、
また、軌道からの電力供給が不可能でかつ軌道側に二次導体板が敷設されていない区間では、車上電源からの電力供給により、モータ駆動による走行と車上への給電を行うことを特徴とする電気駆動車への給電方法。
A power supply method for supplying electricity to an electric drive vehicle without contact,
When stopping in a section where power can be supplied from the track, power is supplied from the track side, and power is supplied to the vehicle and the in-vehicle power supply is charged by the transformer function.
When traveling,
In sections where electric power can be supplied from the track, in addition to running with the linear motor function, power supply to the vehicle and charging of the in-vehicle power supply
In addition, in the section where the power supply from the track is impossible but the secondary conductor plate is laid on the track side, the power supply from the on-board power supply allows the running by the linear motor function and the power supply to the on-vehicle,
In sections where power supply from the track is not possible and no secondary conductor plate is laid on the track side, running by motor drive and power supply to the vehicle should be performed by supplying power from the on-board power source. A method for supplying power to an electrically driven vehicle.
請求項1に記載の電気駆動車への給電方法を実施する為の装置であって、
非接触で車両に電気を供給するための非接触給電・充電用の変圧器機能と、電車の加減速推進用リニアモータ機能を併せもつ変圧器兼リニアモータ装置と、
この変圧器兼リニアモータ装置の運転制御を行うべく、電気駆動車に設置されたインバータと、
このインバータによって制御され、軌道からの電力供給が可能な区間では充電を、また、軌道からの電力供給が不可能な区間では、リニアモータ機能或いはモータ駆動による走行と車上への給電を行うべく、電気駆動車に設置された直流電源を備えたことを特徴とする電気駆動車への給電装置。
An apparatus for carrying out the method for supplying power to the electrically driven vehicle according to claim 1,
A transformer / linear motor device having both a non-contact power supply and charging transformer function for supplying electricity to the vehicle in a non-contact manner, and a linear motor function for train acceleration / deceleration propulsion,
In order to control the operation of this transformer and linear motor device, an inverter installed in an electrically driven vehicle,
In order to supply power to the vehicle and to drive in the section that is controlled by this inverter and can be supplied with power from the track, and in the section where power supply from the track is not possible, use linear motor function or motor drive. A power supply device for an electric drive vehicle, comprising a DC power supply installed in the electric drive vehicle.
JP2005164572A 2005-06-03 2005-06-03 Electricity feeding method and device to electric drive vehicle Pending JP2006335289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164572A JP2006335289A (en) 2005-06-03 2005-06-03 Electricity feeding method and device to electric drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164572A JP2006335289A (en) 2005-06-03 2005-06-03 Electricity feeding method and device to electric drive vehicle

Publications (1)

Publication Number Publication Date
JP2006335289A true JP2006335289A (en) 2006-12-14

Family

ID=37556194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164572A Pending JP2006335289A (en) 2005-06-03 2005-06-03 Electricity feeding method and device to electric drive vehicle

Country Status (1)

Country Link
JP (1) JP2006335289A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130033337A (en) * 2011-09-26 2013-04-03 한국과학기술원 Power supply apparatus for wireless charging type electric vehicle
JP2018079932A (en) * 2009-08-07 2018-05-24 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Roadway powered electric vehicle system
WO2020003713A1 (en) * 2018-06-26 2020-01-02 株式会社デンソー In-motion contactless power supply system and contactless power supply device
JP2020005489A (en) * 2018-06-26 2020-01-09 株式会社デンソー Traveling non-contact power supply system and non-contact power supply device
US20210391757A1 (en) * 2019-02-28 2021-12-16 Denso Corporation Dynamic wireless power transfer system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971620A (en) * 1972-09-29 1974-07-11
JPS6295905A (en) * 1985-10-21 1987-05-02 Nippon Koku Kk Auxiliary thrust device for magnetic levitation
JPH02273003A (en) * 1989-04-14 1990-11-07 Fuji Electric Co Ltd Non-contact current collector of magnetic levitation car
JPH03222601A (en) * 1990-01-26 1991-10-01 Toshiba Corp Engine generator controller for levitation railway
JPH06296304A (en) * 1993-04-06 1994-10-21 Murata Mach Ltd Linear conveying truck
JPH0759207A (en) * 1993-08-13 1995-03-03 Murata Mach Ltd Auxiliary power unit for linear carrying truck
JP2004040881A (en) * 2002-07-02 2004-02-05 Railway Technical Res Inst Power feeding system to vehicle in stop station section of superconducting magnetically levitated railway

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971620A (en) * 1972-09-29 1974-07-11
JPS6295905A (en) * 1985-10-21 1987-05-02 Nippon Koku Kk Auxiliary thrust device for magnetic levitation
JPH02273003A (en) * 1989-04-14 1990-11-07 Fuji Electric Co Ltd Non-contact current collector of magnetic levitation car
JPH03222601A (en) * 1990-01-26 1991-10-01 Toshiba Corp Engine generator controller for levitation railway
JPH06296304A (en) * 1993-04-06 1994-10-21 Murata Mach Ltd Linear conveying truck
JPH0759207A (en) * 1993-08-13 1995-03-03 Murata Mach Ltd Auxiliary power unit for linear carrying truck
JP2004040881A (en) * 2002-07-02 2004-02-05 Railway Technical Res Inst Power feeding system to vehicle in stop station section of superconducting magnetically levitated railway

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079932A (en) * 2009-08-07 2018-05-24 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Roadway powered electric vehicle system
KR20130033337A (en) * 2011-09-26 2013-04-03 한국과학기술원 Power supply apparatus for wireless charging type electric vehicle
KR102106356B1 (en) 2011-09-26 2020-05-06 한국과학기술원 Power supply apparatus for wireless charging type electric vehicle
WO2020003713A1 (en) * 2018-06-26 2020-01-02 株式会社デンソー In-motion contactless power supply system and contactless power supply device
JP2020005489A (en) * 2018-06-26 2020-01-09 株式会社デンソー Traveling non-contact power supply system and non-contact power supply device
JP7275648B2 (en) 2018-06-26 2023-05-18 株式会社デンソー In-motion wireless power supply system
US20210391757A1 (en) * 2019-02-28 2021-12-16 Denso Corporation Dynamic wireless power transfer system

Similar Documents

Publication Publication Date Title
US9108645B2 (en) Driving system for railroad vehicle
JP3234203B2 (en) Power system for electric towing vehicle
JP4841441B2 (en) Battery charger for railway vehicles
KR101237552B1 (en) Railway system installing power supply facility on railroads between stations
JP2002238107A (en) System for supplying power to electrically propelled vehicle
CN113302079B (en) Electric multi-mode drive system, method of operating the same, and track and vehicle using the same
JP2007523589A (en) Special low voltage electric energy supply system for electric tow vehicle with onboard energy storage
Prasad et al. Electrical components of maglev systems: Emerging trends
JP2014027790A (en) Driving system, and railway vehicle mounted with the same
JP2006335289A (en) Electricity feeding method and device to electric drive vehicle
Al-Ezee et al. Aspects of catenary free operation of DC traction systems
JP3768982B2 (en) Intermittent power supply type electric vehicle system and electric vehicle
KR100981305B1 (en) Regeneration energy storage system of electric railway vehicles
KR101082001B1 (en) Control method of hybrid eletric railway car
KR20090107157A (en) Hybrid linear propulsion system for train
JP4156426B2 (en) Energy transmission / reception control system, railway vehicle drive system, and railway vehicle
JP2012178898A (en) Drive system for railway vehicle, railway vehicle, and train organization including the railway vehicle
JP2015053837A (en) Electric power supply system and method for railway vehicle during power outage
RU2726820C1 (en) Transporting device operating on cable working and method of its operation
KR101525559B1 (en) Linear propulsion and wireless power transfer system using 3-phase coreless ground coil
JP5190883B2 (en) Overhead voltage compensation vehicle
KR101230535B1 (en) Railway vehicles for adapting space maintaining apparatus of parallel linear induction motor
KR101313624B1 (en) DC linear propulsion system for a railway
KR101403697B1 (en) Wheel-on-rail system equipped with a rotary and linear motor propulsion
JP2005051891A (en) Feeding apparatus, composition of train, and tracked rolling stock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727