WO2011099193A1 - Vehicle system, method of controlling vehicle system, and transportation system - Google Patents

Vehicle system, method of controlling vehicle system, and transportation system Download PDF

Info

Publication number
WO2011099193A1
WO2011099193A1 PCT/JP2010/066316 JP2010066316W WO2011099193A1 WO 2011099193 A1 WO2011099193 A1 WO 2011099193A1 JP 2010066316 W JP2010066316 W JP 2010066316W WO 2011099193 A1 WO2011099193 A1 WO 2011099193A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
switch
storage battery
overhead line
current collector
Prior art date
Application number
PCT/JP2010/066316
Other languages
French (fr)
Japanese (ja)
Inventor
克明 森田
雅也 三竹
郁夫 河原
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2011099193A1 publication Critical patent/WO2011099193A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • B61C3/02Electric locomotives or railcars with electric accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • B60L9/28Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present invention relates to a vehicle system that is mounted on a vehicle that has a current collector for obtaining electric power from an overhead line power source and a storage battery, and travels on a route including an overhead line section and an overhead line-less section.
  • the present invention also relates to a vehicle system control method.
  • the present invention also relates to a traffic system having a vehicle equipped with a vehicle system and an overhead power source.
  • Patent Document 1 A vehicle system mounted on a vehicle that has been developed has been developed (see, for example, Patent Document 1).
  • the vehicle system described in Patent Document 1 includes a DC / DC converter (Direct Current to Direct Current Converter) and a regenerative power recovery circuit.
  • the regenerative power refers to power generated by regenerative braking.
  • Regenerative braking refers to braking the vehicle by rotating the motor with the kinetic energy of the vehicle and converting the kinetic energy of the vehicle into electrical energy.
  • the DC / DC converter supplies electric power obtained by adding electric power supplied from the storage battery to electric power supplied from the overhead power supply via the current collector to the motor via the inverter.
  • the regenerative power recovery circuit supplies regenerative power generated in the motor by regenerative braking only to the storage battery without supplying it to the current collector.
  • the DC / DC converter corresponding to a large current is large. For this reason, when a vehicle system using a DC / DC converter is employed, there may be a case where sufficient vehicle space cannot be secured. Therefore, a vehicle system that does not use a DC / DC converter is desired. As a vehicle system that does not use a DC / DC converter, the following vehicle system can be considered.
  • FIG. 8 is a schematic block diagram showing a configuration of a conventional vehicle system.
  • the conventional vehicle system shown in FIG. 8 closes the switch 906 and opens the switch 907 when the vehicle is traveling in the overhead line section.
  • the vehicle system supplies the electric power obtained by the current collector 901 when the vehicle is traveling in the overhead line section to the motor 903 via the VVVF (Variable Voltage Variable Frequency) inverter 904, and at the same time, the SIV (Static Inverter) ) Via 905 and supplied to auxiliary equipment such as room lighting.
  • the vehicle system opens the switch 906 and closes the switch 907 when the vehicle is traveling in an overhead line-less section.
  • the vehicle system supplies power from the storage battery 902 to the motor 903 and the auxiliary machine when the vehicle is traveling in the overhead line-less section.
  • the conventional vehicle system shown in FIG. 8 connects the current collector 901 to another circuit constituting the vehicle system and disconnects the storage battery 902 from the circuit when the vehicle is traveling in the overhead line section.
  • the vehicle system connects the storage battery 902 to the above circuit and disconnects the current collector 901 from the above circuit when the vehicle is traveling in an overhead line-less section.
  • the vehicle system shown in FIG. 8 disconnects the storage battery 902 from the circuit when the vehicle is traveling in the overhead line section. Therefore, there is a problem that when the vehicle is traveling in the overhead line section, the regenerative power generated in the load circuit having the motor 903 cannot be supplied to the storage battery and reused. Therefore, the present invention provides a vehicle system that supplies power from a load circuit to a storage battery when the vehicle is traveling in an overhead line section without using a DC / DC converter.
  • the present invention is a vehicle system mounted on a vehicle and capable of supplying power from an overhead power supply, and includes the following.
  • a parallel circuit including a load circuit and a storage battery connected in parallel.
  • a current collector connected in series to the parallel circuit, provided so as to be electrically connectable to the overhead line power supply, and taking in power from the overhead line power supply.
  • a first switch provided between the current collector and the parallel circuit;
  • a second switch provided between the storage battery and the load circuit and between the current collector and the storage battery.
  • a rectifier connected in parallel with the second switch.
  • the rectifier is provided in parallel with the second switch between the storage battery and the load circuit, allows current to flow from the current collector and the load circuit to the storage battery, and the current collector and the storage battery. The current flowing from the current to the load circuit is regulated.
  • the vehicle system of the present invention may include a control unit that controls opening and closing of the switch.
  • the controller closes the first switch and opens the second switch when the current collector is in contact with the overhead power supply (when electrically connected).
  • the control unit opens the first switch and closes the second switch when the current collector and the overhead line power supply are not in contact (when not electrically connected).
  • the vehicle system of the present invention may include a third switch provided in series with the rectifier.
  • the controller may open the third switch when the charge rate of the storage battery exceeds a predetermined charge rate.
  • the vehicle system of the present invention may include a current position acquisition unit and a route information database.
  • the current position acquisition unit acquires current position information of the vehicle.
  • a section included in a route on which the vehicle travels is an overhead section in which the current collector is electrically connected to the overhead power supply (which can take in power from the overhead power supply), Alternatively, it indicates whether the current collector is in an overhead line-less section in which the current collector is not electrically connected to the overhead power source (power cannot be taken from the overhead power source).
  • the control unit refers to the current position information acquired by the current position acquisition unit and the route information database.
  • the said control part is based on the said current position information and the reference result of the said route information database, the said vehicle is located in the said overhead line area (the said current position information is in an overhead line area), and the said overhead line area and the said The second switch is closed when it is determined that the vehicle is located in the rearward direction of the vehicle by a predetermined distance from the boundary position with the overhead line-less section.
  • the control unit opens the first switch when it is determined from the reference result that the vehicle is located in the overhead line section and located in front of the traveling direction by a predetermined distance from the boundary position. .
  • the control unit determines that the vehicle is located in the overhead line-less section (the current position information is in the overhead line-less section) and is in the traveling direction by a predetermined distance from the boundary position.
  • the first switch is closed.
  • the control unit opens the second switch when it is determined from the reference result that the vehicle is located in the overhead line-less section and is located in front of the traveling direction by a predetermined distance from the boundary position.
  • the control unit may refer to the voltage and capacity of the storage battery and the voltage of the overhead power supply.
  • the control unit when the voltage of the storage battery is greater than a predetermined threshold value or higher than the voltage of the overhead line power supply, or when the capacity of the storage battery is smaller than a predetermined threshold value, the control unit, the current position information and the route information database Refer to The vehicle is positioned in the overhead line section (the current position information is in the overhead line section), and the vehicle travels in a traveling direction by a predetermined distance from a boundary position between the overhead line section and the overhead line-less section.
  • the first switch When it is determined that the second switch is located rearward, the first switch is opened without closing the second switch (in an open state).
  • the controller closes the second switch when it is determined that the vehicle is located in the overhead line section and located in front of the traveling direction by a predetermined distance from the boundary position. Further, the control unit determines that the vehicle is positioned in the overhead line-less section (the current position information is in the overhead line-less section) and is positioned behind the boundary position by a predetermined distance from the boundary position. Then, the second switch is opened without closing the first switch (in an open state). The controller closes the first switch when it is determined that the vehicle is positioned in the overhead line-less section and is positioned in front of the traveling direction by a predetermined distance from the boundary position.
  • the load circuit may include a motor that drives the vehicle when power is supplied, and regenerative power may be generated by the motor when the vehicle performs regenerative braking.
  • the allowable charging voltage value of the storage battery is equal to or higher than the voltage of the overhead power supply when the vehicle performs regenerative braking and the load circuit generates regenerative power.
  • the allowable discharge voltage value of the storage battery is equal to or less than the voltage of the overhead power supply when the load circuit does not generate regenerative power.
  • the first switch when the current collector and the overhead power supply are electrically connected, the first switch is closed and the second switch is opened, thereby The detour bypasses the detour that electrically connects the current collector and the load circuit and the storage battery, and the current collector, the load circuit, and the storage battery are electrically connected via the rectifier State.
  • the first switch when the current collector and the overhead line power supply are not electrically connected, the first switch is opened and the second switch is closed, whereby the current collector and the storage battery are electrically connected. The connection is released, and the bypass circuit is opened to electrically connect the storage battery and the load circuit via the second switch.
  • a traffic system includes a vehicle equipped with the vehicle system described above, and an overhead power supply that supplies electric power to the vehicle.
  • the vehicle system control method, and the traffic system of the present invention current flows from the load circuit to the storage battery even when the vehicle is traveling in the overhead line section. Therefore, even when the vehicle is located in the overhead line section, it is possible to charge the storage battery by supplying power from the load circuit.
  • 1 is a schematic block diagram showing a configuration of a vehicle system according to a first embodiment of the present invention. It is a graph which shows the relationship between the SOC operation width of a storage battery, and a voltage. It is a schematic block diagram which shows a vehicle system when the vehicle is drive
  • FIG. 1 is a schematic block diagram showing the configuration of the vehicle system according to the first embodiment of the present invention.
  • the vehicle system includes a current collecting circuit 1, a power storage circuit 2, a load circuit 3, and a control circuit (control unit) 4.
  • the current collecting circuit 1 is connected in series to a power storage circuit 2 and a load circuit 3 connected in parallel.
  • the current collector circuit 1 includes a current collector 11 and a switch 12.
  • the current collector 11 of the current collector circuit 1 is connected in series to the switch 12 and is provided so as to be electrically connectable to the overhead wire power source by contacting the overhead wire power source in the overhead wire section.
  • the current collector 11 is supplied with electric power from the overhead power supply by being electrically connected to the overhead power supply.
  • the switch 12 of the current collector circuit 1 is connected in series with the current collector 11.
  • the switch 12 is connected in series to the storage circuit 2 and the load circuit 3 connected in parallel. When the switch 12 is closed, the power supplied from the overhead power supply to the current collector 11 is supplied to the power storage circuit 2 and the load circuit 3.
  • the storage circuit 2 includes a storage battery 21, a switch 22, and a rectifier 23.
  • the storage battery 21 of the storage circuit 2 is connected in series to a parallel circuit composed of a switch 22 and a rectifier 23 connected in parallel.
  • the storage battery 21 supplies power to the load circuit 3 via the switch 22. Further, the storage battery 21 is charged with electric power supplied from the current collector circuit 1 and the load circuit 3 via the rectifier 23.
  • the switch 22 of the storage circuit 2 is connected in parallel with the rectifier 23.
  • a parallel circuit composed of the switch 22 and the rectifier 23 is connected in series to the storage battery 21, and is connected in series to the current collector circuit 1 and the load circuit 3. When the switch 22 is closed, the storage battery 21 supplies power to the load circuit 3.
  • the rectifier 23 of the power storage circuit 2 allows (allows) the current flowing from the current collecting circuit 1 and the load circuit 3 to the storage battery 21 and blocks (regulates) the current flowing from the storage battery 21 to the current collecting circuit 1 and the load circuit 3. .
  • the load circuit 3 includes a motor 31, a VVVF inverter 32, and a SIV 33.
  • the motor 31 of the load circuit 3 is connected to the VVVF inverter 32.
  • the motor 31 is driven by the electric power supplied from the VVVF inverter 32 to drive the vehicle.
  • the motor 31 supplies the electric power generated by the regenerative braking of the vehicle to the power storage circuit 2 via the VVVF inverter 32.
  • the VVVF inverter 32 of the load circuit 3 is connected in parallel with the SIV 33.
  • the VVVF inverter 32 is connected in series with the current collector circuit 1 and the power storage circuit 2.
  • the VVVF inverter 32 converts electric power supplied from the current collecting circuit 1 or the power storage circuit 2 into an alternating current, and drives the motor 31 to change speed.
  • the SIV 33 of the load circuit 3 converts the power supplied from the current collecting circuit 1 or the power storage circuit 2 into an alternating current and supplies the power to auxiliary equipment such as room lighting.
  • the control circuit 4 controls the opening and closing of switches such as the switch 12 and the switch 22. Specifically, the control circuit 4 determines whether or not the current collector 11 of the current collector circuit 1 is in contact (electrically connected) with the overhead wire power source. When the control circuit 4 determines that the current collector 11 is in contact with the overhead power supply, the control circuit 4 closes the switch 12 of the current collector circuit 1 and opens the switch 22 of the power storage circuit 2. On the other hand, when the control circuit 4 determines that the current collector 11 is not in contact with the overhead power supply, the control circuit 4 opens the switch 12 of the current collector circuit 1 and closes the switch 22 of the power storage circuit 2.
  • the vehicle system has the following configuration.
  • a parallel circuit including a storage circuit 2 and a load circuit 3 connected in parallel.
  • a switch 12 provided between the parallel circuit and the current collector 11.
  • a switch 22 provided at a position between the storage battery 21 and the motor 31 and between the current collector 11 and the storage battery 21.
  • a rectifier 23 is provided between the storage battery 21 and the motor 31 in parallel with the switch 22 and allows current to flow from the current collector 11 and the motor 31 to the storage battery 21 and regulates current flowing from the storage battery 21 to the current collector 11 and the motor 31. .
  • the vehicle system can supply regenerative electric power generated in the motor of the load circuit by regenerative braking when the vehicle is traveling in the overhead line section without using a DC / DC converter to the storage battery.
  • FIG. 2 is a graph showing the relationship between the operating width of SOC (State of Charge) of the storage battery and the voltage.
  • SOC represents the amount of electricity charged with respect to the battery capacity of the storage battery as a ratio (charging rate).
  • the SOC operation width is the SOC range during storage battery operation.
  • the horizontal axis in FIG. 2 indicates the SOC of the storage battery 21, and the vertical axis indicates the open circuit voltage of the storage battery 21.
  • the allowable discharge voltage is the minimum value of the discharge voltage that prevents deterioration of the storage battery 21. When the voltage of the storage battery 21 falls below the allowable discharge voltage, it is determined that the overdischarge prevention circuit (not shown) of the storage battery 21 is in an overdischarge state.
  • the overdischarge prevention circuit of the storage battery 21 stops the discharge of the storage battery by the interlock in order to prevent the deterioration of the storage battery 21 due to overdischarge.
  • the allowable charging voltage is the maximum value of the charging voltage that prevents the storage battery 21 from being deteriorated.
  • the overcharge prevention circuit of the storage battery 21 is determined to be in an overcharged state. Thereby, in order to prevent the deterioration of the storage battery 21 due to overcharge, the overcharge prevention circuit of the storage battery 21 stops the charging of the storage battery 21 by the interlock.
  • the relationship between the allowable charging voltage and the allowable discharging voltage and the SOC varies depending on the characteristics of the storage battery 21 and the number of cells of the storage battery 21 connected in series. Further, the allowable discharge voltage and the allowable charging voltage are determined by the characteristics of the storage battery 21.
  • the open circuit voltage is always equal to or higher than the allowable discharge voltage and lower than the allowable charge voltage.
  • the storage battery 21 of the storage circuit 2 a storage battery suitable for the SOC operating width in which the open circuit voltage is equal to or higher than the allowable discharge voltage and equal to or lower than the allowable charge voltage is used.
  • the operating range of the SOC be about 40% or more and about 60% or less.
  • the open circuit voltage of the storage battery 21 when the SOC is the lower limit value of the operating width is equal to the voltage of the overhead line power supply (normal overhead line voltage) when the motor 31 of the load circuit 3 is not generating regenerative power.
  • the open circuit voltage of the storage battery 21 when the SOC is the upper limit value of the operation width is equal to the voltage of the overhead line power supply (regenerative overhead line voltage) when the motor 31 generates regenerative power. This prevents regenerative braking of the vehicle by the motor 31 of the load circuit 3 and prevents the charging voltage of the storage battery 21 of the storage circuit 2 from exceeding the allowable charging voltage when the motor 31 generates regenerative power. it can. Moreover, it can prevent that the open circuit voltage of the storage battery 21 falls below an allowable discharge voltage.
  • FIG. 1 shows a state of the vehicle system when the vehicle is traveling in the overhead line section.
  • the control circuit 4 closes the switch 12 of the current collecting circuit 1 and opens the switch 22 of the power storage circuit 2.
  • the bypass circuit that bypasses the rectifier 23 and electrically connects the load circuit 1 (current collector 11) and the load circuit 3 to the storage battery 21 is blocked.
  • the load circuit 1 (current collector 11), the load circuit 3, and the storage battery 21 are electrically connected via the rectifier 23. That is, the storage battery 21 of the storage circuit 2, the current collector circuit 1, and the load circuit 3 are connected via the switch 22 and the rectifier 23.
  • the switch 22 of the storage circuit 2 is open, and the rectifier 23 regulates the current flowing from the storage battery 21 to the current collecting circuit 1 and the load circuit 3. Therefore, the electric power stored in the storage battery 21 is not supplied to the current collector circuit 1 and the load circuit 3.
  • the power supplied from the overhead power supply to the current collector 11 of the current collector circuit 1 is supplied to the load circuit 3 via the switch 12. That is, when the vehicle is traveling in the overhead line section, the motor 31 of the load circuit 3 is driven by the electric power supplied from the overhead line power supply via the current collector 11. Further, the rectifier 23 of the storage circuit 2 allows a current to flow from the current collection circuit 1 and the load circuit 3 to the storage battery 21. Therefore, when the output voltage of the current collector circuit 1 exceeds the open circuit voltage of the storage battery 21, the power supplied from the overhead power supply to the current collector 11 is supplied to the storage battery 21. As described above, the open circuit voltage of the storage battery 21 is equal to the normal overhead line voltage when the SOC is the lower limit value of the operation width. Therefore, when the motor 31 does not generate regenerative power, the open circuit voltage of the storage battery 21 is the same as or higher than the output voltage of the current collector circuit 1.
  • the output voltage of the current collector circuit 1 may be higher than the open circuit voltage of the storage battery 21.
  • the electric power supplied from the overhead line power supply via the current collector 11 is obtained by the regenerative braking of the vehicle (the host vehicle) on which the above-described vehicle system is mounted or other vehicles, so that the output voltage of the current collector 11 is When it becomes higher than the open circuit voltage, it is supplied to the storage battery 21.
  • the vehicle system can supply the regenerative electric power generated in the motor 31 of the load circuit 3 by regenerative braking to the storage battery 21 when the host vehicle is traveling in the overhead line section, and can charge the storage battery 21.
  • FIG. 3 is a schematic block diagram illustrating the vehicle system when the vehicle is traveling in an overhead line-less section.
  • the control circuit 4 opens the switch 12 of the current collecting circuit 1 and closes the switch 22 of the power storage circuit 2.
  • the electrical connection between the current collector 11 of the current collector circuit 1 and the storage battery 21 of the power storage circuit 2 is released.
  • a bypass circuit that bypasses the rectifier 23 and electrically connects the storage battery 21 of the storage circuit 2 and the load circuit 3 is opened, and the storage battery 21 and the load circuit 3 are electrically connected via the switch 22. . That is, the storage battery 21 of the storage circuit 2, the current collector circuit 1, and the load circuit 3 are connected via the switch 22 and the rectifier 23.
  • the vehicle system of this embodiment includes the rectifier 23 described above.
  • the rectifier 23 is provided in parallel with the switch 22 provided between the storage battery 21 and the motor 31, and allows a current to flow from the current collector 11 and the motor 31 to the storage battery 21, and from the storage battery 21 to the current collector 11 and the motor 31. Regulate the flowing current. Thereby, a current flows from the motor 31 to the storage battery 21 even when the host vehicle is traveling in the overhead line section. For this reason, the regenerative electric power which generate
  • FIG. 4 is a schematic block diagram showing the configuration of the vehicle system according to the second embodiment.
  • the vehicle system according to the second embodiment includes a power storage circuit 102 and a control circuit 104 instead of the power storage circuit 2 and the control circuit 4 of the first embodiment, and further includes a braking circuit 51 and a mechanical brake 52.
  • Other circuits have the same configuration as that of the first embodiment.
  • the power storage circuit 102 includes the power storage circuit 2 according to the first embodiment and further includes a switch 24 and an ammeter 25.
  • the switch 24 is connected to the rectifier 23 in series.
  • the ammeter 25 measures the current value between the rectifier 23 and the storage battery 21.
  • the control circuit 104 has an allowable charging current value in which the current value measured by the ammeter 25 is the maximum current that can be input to the storage battery 21. Has a function of opening the switch 24.
  • the braking circuit 51 determines whether or not the current collector 11 of the current collecting circuit 1 is in contact with the overhead line power source and the current value measured by the ammeter 25 is the allowable charging current value of the storage battery 21. It is determined whether or not the vehicle is exceeded, and the vehicle is braked based on the determination. Specifically, when the braking circuit 51 determines that the current collector 11 is not in contact with the overhead line power source and determines that the current value of the ammeter 25 exceeds the allowable charging current value of the storage battery 21, The brake 52 is used for braking.
  • the mechanical brake 52 is a mechanical brake that uses air pressure or hydraulic pressure, and does not generate regenerative power due to braking.
  • the vehicle system switches the switch when the regenerative current exceeding the allowable charging current value of the storage battery 21 is generated from the motor 31 of the load circuit 3 when the host vehicle is traveling in the overhead line section. Open 24. This prevents the regenerative current from flowing into the storage battery 21 and supplies the regenerative current to the overhead power supply. For this reason, the overcharge of the storage battery 21 can be prevented. Further, when a regenerative current exceeding the allowable charging current value of the storage battery 21 is generated from the motor 31 of the load circuit 3 while the vehicle is traveling in an overhead line-less section, the braking circuit 51 performs braking by the mechanical brake 52. Do. Thereby, generation
  • the power storage circuit 102 includes the rectifier 23 and the switch 24, and controls the supply of power to the storage battery 21 using these.
  • the vehicle system is not limited to this.
  • an electronic switch such as a thyristor is provided instead of the rectifier 23 and the switch 24, and the control circuit 4 controls the thyristor, thereby controlling the supply of power to the storage battery 21. You may do it.
  • the vehicle system is not limited to this, and includes, for example, a voltmeter that measures the open circuit voltage of the storage battery 21 instead of the ammeter 25, and the voltage value measured by the voltmeter exceeds the allowable charging voltage value of the storage battery 21.
  • supply of power to the storage battery 21 may be suppressed.
  • the control circuit 104 may refer to the SOC of the storage battery 21 and open the switch 24 when the SOC of the storage battery 21 exceeds a predetermined value (charge rate).
  • the vehicle system includes the mechanical brake 52 and the braking by the mechanical brake 52 is performed when the current value measured by the ammeter 25 exceeds the allowable charging current value of the storage battery 21 .
  • the vehicle system is not limited to this.
  • the vehicle system may include a regenerative resistor that replaces the mechanical brake 52 and consumes electric power generated by the regenerative brake by converting it into heat energy.
  • the braking circuit 51 may be configured to apply regenerative braking by consuming electric power with a regenerative resistor when it is determined that the current value exceeds the allowable charging current value of the storage battery 21.
  • FIG. 5 is a schematic block diagram showing the configuration of the vehicle system according to the third embodiment.
  • the vehicle system according to the third embodiment includes a control circuit 204 instead of the control circuit 104 of the second embodiment, and further includes a position information acquisition circuit (current position acquisition unit) 61 and a route information database 62.
  • the position information acquisition circuit 61 acquires the current position information of the host vehicle based on data obtained from a signal system, a wheel rotation sensor, or the like.
  • the route information database 62 holds information indicating whether each section included in the route on which the vehicle travels is an overhead line section or an overhead line-less section.
  • the control circuit 204 refers to the current position information output from the position information acquisition circuit 61 and the information held in the route information database 62. Based on these pieces of information, the control circuit 204 calculates the position of the boundary between the overhead line section and the overhead line-less section, the position of the host vehicle, and the distance and positional relationship between the host vehicle and the boundary. Based on the calculation result, the opening / closing of the switch 12 of the current collecting circuit 1 and the switch 22 of the power storage circuit 2 is controlled.
  • FIG. 6 is a first timing chart showing the control timing of the switch by the vehicle system according to the third embodiment.
  • the control circuit 204 refers to the current position information acquired by the position information acquisition circuit 61 and the route information database 62. As a result of referring to the current position information and the route information database 62, the control circuit 204 determines that the vehicle is located in the overhead line section (the current position information is in the overhead line section), and the boundary position between the overhead line section and the overhead line-less section. When it is determined that the vehicle is located behind the vehicle in the traveling direction by a predetermined distance (for example, 10 meters), the switch 22 is closed. That is, the control circuit 204 closes the switch 22 and turns it on before the vehicle moves from the overhead line section to the overhead line-less section.
  • a predetermined distance for example, 10 meters
  • the control circuit 204 determines that the vehicle is located in the overhead line section and that the vehicle travels a predetermined distance from the boundary position between the overhead line section and the overhead line-less section.
  • the switch 12 is opened. That is, the control circuit 204 opens the switch 12 and turns it off after the vehicle moves from the overhead line section to the overhead line-less section. That is, when the vehicle moves from the overhead line section to the overhead line-less section, both the switch 12 and the switch 22 are closed (ON).
  • the control circuit 204 has the vehicle positioned in the overhead line-less section (the current position information is in the overhead line-less section), and the overhead line section and the overhead line-less section.
  • the switch 12 is closed when it is determined that the vehicle is positioned a predetermined distance behind the boundary position in the rearward direction of the vehicle. That is, the control circuit 204 closes the switch 12 and turns it on before the vehicle moves from the overhead line-less section to the overhead section.
  • the control circuit 204 refers to the current position information and the route information database 62.
  • the vehicle is located in the overhead line-less section, and the traveling direction of the vehicle is a predetermined distance from the boundary position between the overhead line section and the overhead line-less section.
  • the switch 22 is opened. That is, the control circuit 204 opens the switch 22 and turns it off after the vehicle moves from the overhead line-less section to the overhead line section. That is, when the vehicle moves from the overhead line-less section to the overhead line section, both the switch 12 and the switch 22 are closed (ON).
  • the vehicle system prevents the power supplied from the current collector 11 or the storage battery 21 from being interrupted. Therefore, the load circuit 3 can be stably operated. In particular, since the power supply to the auxiliary machine connected to the SIV 33 is stably performed, it is possible to prevent the indoor lighting from being temporarily turned off. Thereby, a passenger's anxiety can be eliminated.
  • FIG. 7 is a second timing chart showing the switch control timing by the vehicle system according to the third embodiment.
  • the control circuit 204 is provided so that the open circuit voltage and capacity of the storage battery 21 and the voltage of the overhead power supply can be referred to.
  • the control circuit 204 refers to the current position information and the route information database 62 when the open circuit voltage of the storage battery 21 is greater than the voltage of the overhead power supply by a predetermined threshold or more, or when the capacity of the storage battery 21 is smaller than the predetermined threshold. .
  • the control circuit 204 calculates the position of the boundary between the overhead line section and the overhead line-less section, the position of the host vehicle, and the distance and the positional relationship between the host vehicle and the boundary. And based on the said calculation result, opening and closing of a switch is controlled at the timing shown in FIG.
  • the control circuit 204 refers to the current position information and the route information database 62, and as a result, the vehicle is located in the overhead line section, and the traveling direction of the vehicle is a predetermined distance from the boundary position between the overhead line section and the overhead line-less section.
  • the switch 12 is opened without closing the switch 22 (in an open state). That is, the control circuit 204 opens the switch 12 and turns it off before the vehicle moves from the overhead line section to the overhead line-less section.
  • the control circuit 204 determines that the vehicle is located in the overhead line section and that the vehicle travels a predetermined distance from the boundary position between the overhead line section and the overhead line-less section.
  • the switch 22 is closed. That is, the control circuit 204 closes the switch 22 and turns it on after the vehicle has moved from the overhead line section to the overhead line-less section. That is, when the vehicle moves from the overhead line section to the overhead line-less section, both the switch 12 and the switch 22 are in an open state (OFF).
  • the control circuit 204 determines that the vehicle is in the overhead line-less section and that the vehicle travels a predetermined distance from the boundary position between the overhead line section and the overhead line-less section.
  • the switch 22 is opened without closing the switch 12 (in an open state). That is, the control circuit 204 opens the switch 22 and turns it off before the vehicle moves from the overhead line-less section to the overhead line section.
  • the control circuit 204 determines that the vehicle is in the overhead line-less section and that the vehicle travels a predetermined distance from the boundary position between the overhead line section and the overhead line-less section.
  • the switch 12 is closed. That is, the control circuit 204 closes the switch 12 and turns it on after the vehicle moves from the overhead line-less section to the overhead line section. That is, when the vehicle moves from the overhead line-less section to the overhead line section, both the switch 12 and the switch 22 are in an open state (OFF).
  • control circuit 204 may refer to the SOC of the storage battery 21 and open the switch 24 when the SOC of the storage battery 21 exceeds a predetermined value (charge rate).
  • the above vehicle system has a computer system inside.
  • the operation of the control circuit 4 described above is stored in a computer-readable recording medium in the form of a program, and the above processing is performed by the computer reading and executing this program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the above-described functions. Furthermore, what can implement
  • the traffic system of this embodiment includes a vehicle (not shown) on which any of the vehicle systems described in the first to third embodiments described above is mounted, and an overhead wire shown in FIG. 1, FIG. 4, or FIG. With power supply.
  • the vehicle system may have a plurality of vehicles or one vehicle.
  • power may be supplied to the overhead line power supply by a DC feeding system.
  • the above transportation system includes, for example, a transformer provided in a substation, a rectifier that converts an alternating current output from the transformer into a direct current, a storage battery that stores power, and a charge / discharge of the storage battery. You may include the storage battery control apparatus to control.
  • the vehicle system When the vehicle system has a plurality of vehicles, it becomes possible to supply regenerative electric power generated by a certain vehicle to other vehicles via an overhead line power supply.
  • the DC / DC converter since the DC / DC converter is not used in the vehicle system mounted on each vehicle, a sufficient space for the vehicle can be secured.
  • the power (regenerative power) generated in the motor included in the load circuit can be supplied to the storage battery of the vehicle system mounted on each vehicle.
  • the above transportation system includes a new transportation system in addition to the railway.
  • the new transportation system may include a vehicle having a vehicle body, rubber tires, an electric motor, and guide wheels. Further, the new transportation system may include an overhead wire power source and a guide rail for supplying electric power to the traveling road on which the rubber tire rolls and the electric motor.
  • An aspect of the present invention is a vehicle system mounted on a vehicle and capable of supplying power from an overhead power source.
  • the vehicle system includes a parallel circuit, a current collector, a first switch, a second switch, and a rectifier. According to this vehicle system, electric power can be supplied from the load circuit to the storage battery when the vehicle is traveling in the overhead line section without using the DC / DC converter.

Abstract

Disclosed is a vehicle system that is mounted on a vehicle, that can have power supplied thereto from an overhead-line power supply, and that is provided with the following. A parallel circuit comprising a load circuit (3) and a storage battery (21) connected in parallel. A current collector (11) that is connected in series with the parallel circuit, and that is installed so as to be electrically connectable to an overhead-line power supply. A first switch (12) installed between the current collector (11) and the parallel circuit. A second switch (22) installed between the storage battery (21) and a motor (31), and also between the current collector (11) and the storage battery (21). A rectifier (23) that is connected in parallel with the second switch (22), installed between the storage battery (21) and the load circuit (3), and that allows currents flowing from the current collector (11) and the load circuit (3) towards the storage battery (21), and restricts currents flowing from the storage battery (21) towards the current collector (11) and the load circuit (3).

Description

車両システム、車両システムの制御方法及び交通システムVehicle system, vehicle system control method, and traffic system
 本発明は、架線電源から電力を得る集電器と蓄電池とを有し、架線区間と架線レス区間とを含む路線を走行する車両に搭載される車両システムに関する。また、本発明は、車両システムの制御方法に関する。また、本発明は、車両システムを搭載した車両と架線電源とを有する交通システムに関する。
 本願は、2010年2月10日に、日本に出願された特願2010-027821号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a vehicle system that is mounted on a vehicle that has a current collector for obtaining electric power from an overhead line power source and a storage battery, and travels on a route including an overhead line section and an overhead line-less section. The present invention also relates to a vehicle system control method. The present invention also relates to a traffic system having a vehicle equipped with a vehicle system and an overhead power source.
This application claims priority on February 10, 2010 based on Japanese Patent Application No. 2010-027821 filed in Japan, the contents of which are incorporated herein by reference.
 従来、架線電源から電力を得る集電器と蓄電池とを有し、架線区間(架線電源から電力が得られる区間)と架線レス区間(架線電源から電力が得られない区間)とを含む路線を走行する車両に搭載される車両システムが開発されている(例えば、特許文献1参照)。
 特許文献1に記載の車両システムは、DC/DCコンバータ(Direct Current to Direct Current Converter)と回生電力回収回路とを備える。ここで、回生電力とは、回生制動により発生する電力をいう。回生制動とは、モータを車両の運動エネルギーによって回転させ、車両の運動エネルギーを電気エネルギーに変換することで車両の制動を行うことである。上記の車両システムは、DC/DCコンバータが、架線電源から集電器を介して供給される電力に蓄電池から供給される電力を加えた電力を、インバータを介してモータに供給する。また、回生電力回収回路は、回生制動によりモータに発生した回生電力を集電器に供給せずに蓄電池にのみ供給する。
Conventionally, it has current collectors and storage batteries that obtain power from overhead power sources, and runs on routes that include overhead wire sections (sections where power can be obtained from overhead power sources) and overhead line-less sections (sections where power cannot be obtained from overhead power sources) A vehicle system mounted on a vehicle that has been developed has been developed (see, for example, Patent Document 1).
The vehicle system described in Patent Document 1 includes a DC / DC converter (Direct Current to Direct Current Converter) and a regenerative power recovery circuit. Here, the regenerative power refers to power generated by regenerative braking. Regenerative braking refers to braking the vehicle by rotating the motor with the kinetic energy of the vehicle and converting the kinetic energy of the vehicle into electrical energy. In the above vehicle system, the DC / DC converter supplies electric power obtained by adding electric power supplied from the storage battery to electric power supplied from the overhead power supply via the current collector to the motor via the inverter. The regenerative power recovery circuit supplies regenerative power generated in the motor by regenerative braking only to the storage battery without supplying it to the current collector.
 しかし、大電流に対応したDC/DCコンバータは大型である。そのため、DC/DCコンバータを用いた車両システムを採用すると、車両のスペースが十分に確保できない場合がある。そのため、DC/DCコンバータを用いない車両システムが望まれる。
 DC/DCコンバータを用いない車両システムとしては、以下に示す車両システムが考えられる。
However, the DC / DC converter corresponding to a large current is large. For this reason, when a vehicle system using a DC / DC converter is employed, there may be a case where sufficient vehicle space cannot be secured. Therefore, a vehicle system that does not use a DC / DC converter is desired.
As a vehicle system that does not use a DC / DC converter, the following vehicle system can be considered.
 図8は、従来の車両システムの構成を示す概略ブロック図である。
 図8に示す従来の車両システムは、車両が架線区間を走行しているときに、スイッチ906を閉じ、スイッチ907を開く。これにより、車両システムは、車両が架線区間を走行しているときに集電器901によって得た電力を、VVVF(Varable Voltage Valiable Frequency)インバータ904を介してモータ903に供給するとともに、SIV(Static Inverter)905を介して室内照明などの補機に供給する。
 また、車両システムは、車両が架線レス区間を走行しているときに、スイッチ906を開き、スイッチ907を閉じる。これにより、車両システムは、車両が架線レス区間を走行しているときに蓄電池902からモータ903及び補機に電力を供給する。
 つまり、図8に示す従来の車両システムは、車両が架線区間を走行しているときに集電器901を車両システムを構成するその他の回路に接続し、蓄電池902をその回路から切り離す。また、当該車両システムは、車両が架線レス区間を走行しているときに、蓄電池902を上記の回路に接続し、集電器901を上記の回路から切り離す。
FIG. 8 is a schematic block diagram showing a configuration of a conventional vehicle system.
The conventional vehicle system shown in FIG. 8 closes the switch 906 and opens the switch 907 when the vehicle is traveling in the overhead line section. As a result, the vehicle system supplies the electric power obtained by the current collector 901 when the vehicle is traveling in the overhead line section to the motor 903 via the VVVF (Variable Voltage Variable Frequency) inverter 904, and at the same time, the SIV (Static Inverter) ) Via 905 and supplied to auxiliary equipment such as room lighting.
Further, the vehicle system opens the switch 906 and closes the switch 907 when the vehicle is traveling in an overhead line-less section. Thus, the vehicle system supplies power from the storage battery 902 to the motor 903 and the auxiliary machine when the vehicle is traveling in the overhead line-less section.
In other words, the conventional vehicle system shown in FIG. 8 connects the current collector 901 to another circuit constituting the vehicle system and disconnects the storage battery 902 from the circuit when the vehicle is traveling in the overhead line section. In addition, the vehicle system connects the storage battery 902 to the above circuit and disconnects the current collector 901 from the above circuit when the vehicle is traveling in an overhead line-less section.
特開2009-171772号公報JP 2009-171772 A
 このように、図8に示す車両システムは、車両が架線区間を走行しているときに蓄電池902を回路から切り離す。そのため、車両が架線区間を走行しているときに、モータ903を有する負荷回路に発生する回生電力を蓄電池に供給して再利用することができないという問題がある。
 そこで、本発明は、DC/DCコンバータを用いずに、車両が架線区間を走行しているときに負荷回路から蓄電池に電力を供給する車両システムを提供する。
Thus, the vehicle system shown in FIG. 8 disconnects the storage battery 902 from the circuit when the vehicle is traveling in the overhead line section. Therefore, there is a problem that when the vehicle is traveling in the overhead line section, the regenerative power generated in the load circuit having the motor 903 cannot be supplied to the storage battery and reused.
Therefore, the present invention provides a vehicle system that supplies power from a load circuit to a storage battery when the vehicle is traveling in an overhead line section without using a DC / DC converter.
 本発明は、車両に搭載され、架線電源から電力供給が可能な車両システムであって、以下を備える。並列に接続された負荷回路と蓄電池とを含む並列回路。前記並列回路に直列に接続され、前記架線電源と電気的に接続可能に設けられ、前記架線電源から電力を取り入れる集電器。前記集電器と前記並列回路との間に設けられた第1のスイッチ。前記蓄電池と前記負荷回路との間で、かつ前記集電器と前記蓄電池との間に設けられた第2のスイッチ。前記第2のスイッチと並列に接続された整流器。ここで、前記整流器は前記蓄電池と前記負荷回路との間に前記第2のスイッチと並列に設けられ、前記集電器及び前記負荷回路から前記蓄電池へ流れる電流を許容し、前記集電器及び前記蓄電池から前記負荷回路へ流れる電流を規制する。 The present invention is a vehicle system mounted on a vehicle and capable of supplying power from an overhead power supply, and includes the following. A parallel circuit including a load circuit and a storage battery connected in parallel. A current collector connected in series to the parallel circuit, provided so as to be electrically connectable to the overhead line power supply, and taking in power from the overhead line power supply. A first switch provided between the current collector and the parallel circuit; A second switch provided between the storage battery and the load circuit and between the current collector and the storage battery. A rectifier connected in parallel with the second switch. Here, the rectifier is provided in parallel with the second switch between the storage battery and the load circuit, allows current to flow from the current collector and the load circuit to the storage battery, and the current collector and the storage battery. The current flowing from the current to the load circuit is regulated.
 また、本発明の車両システムは、スイッチの開閉を制御する制御部を備えてもよい。前記制御部は、前記集電器と前記架線電源とが接している場合(電気的に接続されている場合)に、前記第1のスイッチを閉じて前記第2のスイッチを開く。また、前記制御部は、前記集電器と前記架線電源とが接していない場合(電気的に接続されていない場合)に、前記第1のスイッチを開いて前記第2のスイッチを閉じる。 Further, the vehicle system of the present invention may include a control unit that controls opening and closing of the switch. The controller closes the first switch and opens the second switch when the current collector is in contact with the overhead power supply (when electrically connected). In addition, the control unit opens the first switch and closes the second switch when the current collector and the overhead line power supply are not in contact (when not electrically connected).
 また、本発明の車両システムは、前記整流器に対して直列に設けられた第3のスイッチを備えてもよい。また、前記制御部は、前記蓄電池の充電率が所定の充電率を超えた場合に前記第3のスイッチを開いてもよい。 Further, the vehicle system of the present invention may include a third switch provided in series with the rectifier. The controller may open the third switch when the charge rate of the storage battery exceeds a predetermined charge rate.
 また、本発明の車両システムは、現在位置取得部と路線情報データベースとを備えてもよい。前記現在位置取得部は、前記車両の現在位置情報を取得する。前記路線情報データベースは、前記車両が走行する路線に含まれる区間が、前記集電器が前記架線電源と電気的に接続される(前記架線電源から電力を取り入れることができる)架線区間であるか、または前記集電器が前記架線電源と電気的に接続されない(前記架線電源から電力を取り入れることができない)架線レス区間であるかを示す。この場合、前記制御部は、前記現在位置取得部が取得した前記現在位置情報と前記路線情報データベースとを参照する。そして、前記制御部は、前記現在位置情報及び前記路線情報データベースの参照結果から、前記車両が前記架線区間に位置し(前記現在位置情報が、架線区間内であり)、かつ前記架線区間と前記架線レス区間との境界位置よりも所定の距離だけ前記車両の進行方向の後方に位置すると判定したとき、前記第2のスイッチを閉じる。また、前記制御部は、前記参照結果から、前記車両が架線区間に位置し、かつ前記境界位置よりも所定の距離だけ前記進行方向の前方に位置すると判定したとき、前記第1のスイッチを開く。また、前記制御部は、前記参照結果から、前記車両が前記架線レス区間に位置し(前記現在位置情報が、架線レス区間内であり)、前記境界位置よりも所定の距離だけ前記進行方向の後方に位置すると判定したとき、前記第1のスイッチを閉じる。また、前記制御部は、前記参照結果から、前記車両が架線レス区間に位置し、前記境界位置よりも所定の距離だけ前記進行方向の前方に位置すると判定したとき、前記第2のスイッチを開く。 Moreover, the vehicle system of the present invention may include a current position acquisition unit and a route information database. The current position acquisition unit acquires current position information of the vehicle. In the route information database, a section included in a route on which the vehicle travels is an overhead section in which the current collector is electrically connected to the overhead power supply (which can take in power from the overhead power supply), Alternatively, it indicates whether the current collector is in an overhead line-less section in which the current collector is not electrically connected to the overhead power source (power cannot be taken from the overhead power source). In this case, the control unit refers to the current position information acquired by the current position acquisition unit and the route information database. And the said control part is based on the said current position information and the reference result of the said route information database, the said vehicle is located in the said overhead line area (the said current position information is in an overhead line area), and the said overhead line area and the said The second switch is closed when it is determined that the vehicle is located in the rearward direction of the vehicle by a predetermined distance from the boundary position with the overhead line-less section. The control unit opens the first switch when it is determined from the reference result that the vehicle is located in the overhead line section and located in front of the traveling direction by a predetermined distance from the boundary position. . Further, based on the reference result, the control unit determines that the vehicle is located in the overhead line-less section (the current position information is in the overhead line-less section) and is in the traveling direction by a predetermined distance from the boundary position. When it is determined that it is located rearward, the first switch is closed. The control unit opens the second switch when it is determined from the reference result that the vehicle is located in the overhead line-less section and is located in front of the traveling direction by a predetermined distance from the boundary position. .
 また、本発明の車両システムが上記の現在位置取得部と上記の路線情報データベースとを備える場合に、前記制御部は前記蓄電池の電圧及び容量と前記架線電源の電圧とを参照してもよい。この場合、前記制御部は、前記蓄電池の電圧が前記架線電源の電圧よりも所定の閾値以上大きい場合、または前記蓄電池の容量が所定の閾値より小さい場合、前記現在位置情報と前記路線情報データベースとを参照する。そして、前記車両が前記架線区間に位置し(前記現在位置情報が、架線区間内であり)、かつ前記架線区間と前記架線レス区間との境界位置よりも所定の距離だけ前記車両の進行方向の後方に位置すると判定したとき、前記第2のスイッチを閉じずに(開いた状態で)前記第1のスイッチを開く。また、前記制御部は、前記車両が前記架線区間に位置し、前記境界位置よりも所定の距離だけ前記進行方向の前方に位置すると判定したとき、前記第2のスイッチを閉じる。また、前記制御部は、前記車両が前記架線レス区間に位置し(前記現在位置情報が、架線レス区間内であり)、前記境界位置よりも所定の距離だけ前記進行方向の後方に位置すると判定したとき、前記第1のスイッチを閉じずに(開いた状態で)前記第2のスイッチを開く。また、前記制御部は、前記車両が前記架線レス区間に位置し、前記境界位置よりも所定の距離だけ前記進行方向の前方に位置すると判定したとき、前記第1のスイッチを閉じる。 Further, when the vehicle system of the present invention includes the current position acquisition unit and the route information database, the control unit may refer to the voltage and capacity of the storage battery and the voltage of the overhead power supply. In this case, when the voltage of the storage battery is greater than a predetermined threshold value or higher than the voltage of the overhead line power supply, or when the capacity of the storage battery is smaller than a predetermined threshold value, the control unit, the current position information and the route information database Refer to The vehicle is positioned in the overhead line section (the current position information is in the overhead line section), and the vehicle travels in a traveling direction by a predetermined distance from a boundary position between the overhead line section and the overhead line-less section. When it is determined that the second switch is located rearward, the first switch is opened without closing the second switch (in an open state). The controller closes the second switch when it is determined that the vehicle is located in the overhead line section and located in front of the traveling direction by a predetermined distance from the boundary position. Further, the control unit determines that the vehicle is positioned in the overhead line-less section (the current position information is in the overhead line-less section) and is positioned behind the boundary position by a predetermined distance from the boundary position. Then, the second switch is opened without closing the first switch (in an open state). The controller closes the first switch when it is determined that the vehicle is positioned in the overhead line-less section and is positioned in front of the traveling direction by a predetermined distance from the boundary position.
 また、本発明において、前記負荷回路は、電力の供給時に前記車両を駆動するモータを含み、前記車両が回生制動を行うときに前記モータにより回生電力を発生させてもよい。この場合、前記蓄電池の許容充電電圧値は、前記車両が回生制動を行って前記負荷回路が回生電力を発生させたときの前記架線電源の電圧以上である。また、前記蓄電池の許容放電電圧値は、前記負荷回路が回生電力を発生させていないときの前記架線電源の電圧以下である。 In the present invention, the load circuit may include a motor that drives the vehicle when power is supplied, and regenerative power may be generated by the motor when the vehicle performs regenerative braking. In this case, the allowable charging voltage value of the storage battery is equal to or higher than the voltage of the overhead power supply when the vehicle performs regenerative braking and the load circuit generates regenerative power. In addition, the allowable discharge voltage value of the storage battery is equal to or less than the voltage of the overhead power supply when the load circuit does not generate regenerative power.
 本発明の車両システムの制御方法は、前記集電器と前記架線電源とが電気的に接続されている場合に、前記第1のスイッチを閉じて前記第2のスイッチを開くことで、前記整流器を迂回して前記集電器及び前記負荷回路と前記蓄電池とを電気的に接続する迂回路を遮断するとともに、前記集電器及び前記負荷回路と前記蓄電池とが前記整流器を介して電気的に接続された状態とする。また、前記集電器と前記架線電源とが電気的に接続されていない場合に、前記第1のスイッチを開いて前記第2のスイッチを閉じることで、前記集電器と前記蓄電池との電気的な接続を解除するとともに、前記迂回路を開通させて前記蓄電池と前記負荷回路とを前記第2のスイッチを介して電気的に接続する。 In the vehicle system control method according to the present invention, when the current collector and the overhead power supply are electrically connected, the first switch is closed and the second switch is opened, thereby The detour bypasses the detour that electrically connects the current collector and the load circuit and the storage battery, and the current collector, the load circuit, and the storage battery are electrically connected via the rectifier State. Further, when the current collector and the overhead line power supply are not electrically connected, the first switch is opened and the second switch is closed, whereby the current collector and the storage battery are electrically connected. The connection is released, and the bypass circuit is opened to electrically connect the storage battery and the load circuit via the second switch.
 本発明の交通システムは、上記の車両システムを搭載した車両と、前記車両に電力を供給する架線電源と、を備える。 A traffic system according to the present invention includes a vehicle equipped with the vehicle system described above, and an overhead power supply that supplies electric power to the vehicle.
 本発明の車両システム、車両システムの制御方法及び交通システムによれば、車両が架線区間を走行しているときにも、負荷回路から蓄電池へ電流が流れる。そのため、車両が架線区間に位置する場合でも、負荷回路から蓄電池に電力を供給して充電することができる。 According to the vehicle system, the vehicle system control method, and the traffic system of the present invention, current flows from the load circuit to the storage battery even when the vehicle is traveling in the overhead line section. Therefore, even when the vehicle is located in the overhead line section, it is possible to charge the storage battery by supplying power from the load circuit.
本発明の第1の実施形態による車両システムの構成を示す概略ブロック図である。1 is a schematic block diagram showing a configuration of a vehicle system according to a first embodiment of the present invention. 蓄電池のSOC運用幅と電圧との関係を示すグラフである。It is a graph which shows the relationship between the SOC operation width of a storage battery, and a voltage. 車両が架線レス区間を走行しているときの車両システムを示す概略ブロック図である。It is a schematic block diagram which shows a vehicle system when the vehicle is drive | working the section without an overhead wire. 第2の実施形態による車両システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the vehicle system by 2nd Embodiment. 第3の実施形態による車両システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the vehicle system by 3rd Embodiment. 第3の実施形態による車両システムによるスイッチの制御タイミングを示す第1のタイミングチャートである。It is a 1st timing chart which shows the control timing of the switch by the vehicle system by 3rd Embodiment. 第3の実施形態による車両システムによるスイッチの制御タイミングを示す第2のタイミングチャートである。It is a 2nd timing chart which shows the control timing of the switch by the vehicle system by 3rd Embodiment. 従来の車両システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the conventional vehicle system.
 (第1の実施形態)
 以下、図面を参照しながら本発明の第1の実施形態について詳しく説明する。
 図1は、本発明の第1の実施形態による車両システムの構成を示す概略ブロック図である。
 車両システムは、集電回路1、蓄電回路2、負荷回路3、制御回路(制御部)4を備える。集電回路1は、並列に接続された蓄電回路2及び負荷回路3に直列に接続される。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic block diagram showing the configuration of the vehicle system according to the first embodiment of the present invention.
The vehicle system includes a current collecting circuit 1, a power storage circuit 2, a load circuit 3, and a control circuit (control unit) 4. The current collecting circuit 1 is connected in series to a power storage circuit 2 and a load circuit 3 connected in parallel.
 集電回路1は、集電器11とスイッチ12とを備える。
 集電回路1の集電器11は、スイッチ12に直列に接続されており、架線区間において架線電源に接触することで、架線電源と電気的に接続可能に設けられている。集電器11は、架線電源に接触して電気的に接続されることで、架線電源から電力の供給を受ける。
 集電回路1のスイッチ12は、集電器11と直列に接続されている。また、スイッチ12は、並列に接続された蓄電回路2及び負荷回路3に直列に接続される。スイッチ12が閉じている場合、架線電源から集電器11に供給された電力は、蓄電回路2及び負荷回路3に供給される。
The current collector circuit 1 includes a current collector 11 and a switch 12.
The current collector 11 of the current collector circuit 1 is connected in series to the switch 12 and is provided so as to be electrically connectable to the overhead wire power source by contacting the overhead wire power source in the overhead wire section. The current collector 11 is supplied with electric power from the overhead power supply by being electrically connected to the overhead power supply.
The switch 12 of the current collector circuit 1 is connected in series with the current collector 11. The switch 12 is connected in series to the storage circuit 2 and the load circuit 3 connected in parallel. When the switch 12 is closed, the power supplied from the overhead power supply to the current collector 11 is supplied to the power storage circuit 2 and the load circuit 3.
 蓄電回路2は、蓄電池21とスイッチ22と整流器23とを備える。
 蓄電回路2の蓄電池21は、並列に接続されたスイッチ22と整流器23とからなる並列回路に直列に接続されている。蓄電池21は、スイッチ22を介して負荷回路3に電力を供給する。また、蓄電池21は、整流器23を介して集電回路1及び負荷回路3から供給される電力により充電される。
 蓄電回路2のスイッチ22は、整流器23と並列に接続されている。また、スイッチ22と整流器23とからなる並列回路は、蓄電池21に直列に接続され、集電回路1及び負荷回路3に直列に接続されている。スイッチ22が閉じている場合、蓄電池21は負荷回路3に電力を供給する。
 蓄電回路2の整流器23は、集電回路1及び負荷回路3から蓄電池21へ流れる電流を通過させ(許容し)、蓄電池21から集電回路1及び負荷回路3へ流れる電流を遮断(規制)する。
The storage circuit 2 includes a storage battery 21, a switch 22, and a rectifier 23.
The storage battery 21 of the storage circuit 2 is connected in series to a parallel circuit composed of a switch 22 and a rectifier 23 connected in parallel. The storage battery 21 supplies power to the load circuit 3 via the switch 22. Further, the storage battery 21 is charged with electric power supplied from the current collector circuit 1 and the load circuit 3 via the rectifier 23.
The switch 22 of the storage circuit 2 is connected in parallel with the rectifier 23. A parallel circuit composed of the switch 22 and the rectifier 23 is connected in series to the storage battery 21, and is connected in series to the current collector circuit 1 and the load circuit 3. When the switch 22 is closed, the storage battery 21 supplies power to the load circuit 3.
The rectifier 23 of the power storage circuit 2 allows (allows) the current flowing from the current collecting circuit 1 and the load circuit 3 to the storage battery 21 and blocks (regulates) the current flowing from the storage battery 21 to the current collecting circuit 1 and the load circuit 3. .
 負荷回路3は、モータ31とVVVFインバータ32とSIV33とを備える。
 負荷回路3のモータ31は、VVVFインバータ32に接続される。また、モータ31は、VVVFインバータ32から供給される電力により駆動し、車両を走行させる。また、モータ31は、車両の回生制動により発生した電力を、VVVFインバータ32を介して蓄電回路2に供給する。
 負荷回路3のVVVFインバータ32は、SIV33と並列に接続されている。また、VVVFインバータ32は、集電回路1及び蓄電回路2と直列に接続される。また、VVVFインバータ32は、集電回路1または蓄電回路2から供給された電力を交流電流に変換し、モータ31を変速駆動させる。
 負荷回路3のSIV33は、集電回路1または蓄電回路2から供給された電力を交流電流に変換し、室内照明などの補機に電力を供給する。
The load circuit 3 includes a motor 31, a VVVF inverter 32, and a SIV 33.
The motor 31 of the load circuit 3 is connected to the VVVF inverter 32. In addition, the motor 31 is driven by the electric power supplied from the VVVF inverter 32 to drive the vehicle. Further, the motor 31 supplies the electric power generated by the regenerative braking of the vehicle to the power storage circuit 2 via the VVVF inverter 32.
The VVVF inverter 32 of the load circuit 3 is connected in parallel with the SIV 33. The VVVF inverter 32 is connected in series with the current collector circuit 1 and the power storage circuit 2. The VVVF inverter 32 converts electric power supplied from the current collecting circuit 1 or the power storage circuit 2 into an alternating current, and drives the motor 31 to change speed.
The SIV 33 of the load circuit 3 converts the power supplied from the current collecting circuit 1 or the power storage circuit 2 into an alternating current and supplies the power to auxiliary equipment such as room lighting.
 制御回路4は、スイッチ12及びスイッチ22等のスイッチの開閉を制御する。具体的には、制御回路4は、集電回路1の集電器11が架線電源と接触(電気的に接続)しているか否かを判定する。そして制御回路4は、集電器11が架線電源と接触していると判定した場合、集電回路1のスイッチ12を閉じ、蓄電回路2のスイッチ22を開く。他方、制御回路4は、集電器11が架線電源と接触していないと判定した場合、集電回路1のスイッチ12を開き、蓄電回路2のスイッチ22を閉じる。 The control circuit 4 controls the opening and closing of switches such as the switch 12 and the switch 22. Specifically, the control circuit 4 determines whether or not the current collector 11 of the current collector circuit 1 is in contact (electrically connected) with the overhead wire power source. When the control circuit 4 determines that the current collector 11 is in contact with the overhead power supply, the control circuit 4 closes the switch 12 of the current collector circuit 1 and opens the switch 22 of the power storage circuit 2. On the other hand, when the control circuit 4 determines that the current collector 11 is not in contact with the overhead power supply, the control circuit 4 opens the switch 12 of the current collector circuit 1 and closes the switch 22 of the power storage circuit 2.
 つまり、本実施形態による車両システムは、次の構成を備える。並列に接続された蓄電回路2と負荷回路3とを含む並列回路。この並列回路と集電器11との間に設けられたスイッチ12。蓄電池21とモータ31との間であり、かつ集電器11と蓄電池21との間である位置に設けられたスイッチ22。蓄電池21とモータ31との間にスイッチ22と並列に設けられ、集電器11及びモータ31から蓄電池21へ流れる電流を許容し、蓄電池21から集電器11及びモータ31へ流れる電流を規制する整流器23。
 これにより、車両システムは、DC/DCコンバータを用いずに、車両が架線区間を走行しているときに回生制動によって負荷回路のモータに発生する回生電力を蓄電池に供給することができる。
That is, the vehicle system according to the present embodiment has the following configuration. A parallel circuit including a storage circuit 2 and a load circuit 3 connected in parallel. A switch 12 provided between the parallel circuit and the current collector 11. A switch 22 provided at a position between the storage battery 21 and the motor 31 and between the current collector 11 and the storage battery 21. A rectifier 23 is provided between the storage battery 21 and the motor 31 in parallel with the switch 22 and allows current to flow from the current collector 11 and the motor 31 to the storage battery 21 and regulates current flowing from the storage battery 21 to the current collector 11 and the motor 31. .
Thereby, the vehicle system can supply regenerative electric power generated in the motor of the load circuit by regenerative braking when the vehicle is traveling in the overhead line section without using a DC / DC converter to the storage battery.
 図2は、蓄電池のSOC(State of Charge)の運用幅と電圧との関係を示すグラフである。ここで、SOCとは、蓄電池の電池容量に対して充電している電気量を比率で表したものである(充電率)。また、SOCの運用幅とは、蓄電池の運用時のSOCの範囲である。
 図2の横軸は蓄電池21のSOCを示し、縦軸は蓄電池21の開回路電圧を示す。
 許容放電電圧は、蓄電池21の劣化を防ぐ放電電圧の最小値である。蓄電池21の電圧が許容放電電圧を下回ると、蓄電池21の過放電防止回路(図示せず)が過放電状態であると判定する。これにより、蓄電池21の過放電防止回路は、過放電による蓄電池21の劣化を防ぐため、インターロックにより蓄電池の放電を停止する。
 許容充電電圧は、蓄電池21の劣化を防ぐ充電電圧の最大値である。蓄電池21の電圧が許容充電電圧を上回ると、蓄電池21の過充電防止回路が過充電状態であると判定する。これにより、蓄電池21の過充電防止回路は、過充電による蓄電池21の劣化を防ぐため、インターロックにより蓄電池21の充電を停止する。
 なお、許容充電電圧及び許容放電電圧とSOCとの関係は、蓄電池21の特性及び蓄電池21のセルの直列に接続された数などによって異なる。また、許容放電電圧及び許容充電電圧は、蓄電池21の特性により決まる。
FIG. 2 is a graph showing the relationship between the operating width of SOC (State of Charge) of the storage battery and the voltage. Here, the SOC represents the amount of electricity charged with respect to the battery capacity of the storage battery as a ratio (charging rate). The SOC operation width is the SOC range during storage battery operation.
The horizontal axis in FIG. 2 indicates the SOC of the storage battery 21, and the vertical axis indicates the open circuit voltage of the storage battery 21.
The allowable discharge voltage is the minimum value of the discharge voltage that prevents deterioration of the storage battery 21. When the voltage of the storage battery 21 falls below the allowable discharge voltage, it is determined that the overdischarge prevention circuit (not shown) of the storage battery 21 is in an overdischarge state. Thereby, the overdischarge prevention circuit of the storage battery 21 stops the discharge of the storage battery by the interlock in order to prevent the deterioration of the storage battery 21 due to overdischarge.
The allowable charging voltage is the maximum value of the charging voltage that prevents the storage battery 21 from being deteriorated. When the voltage of the storage battery 21 exceeds the allowable charging voltage, the overcharge prevention circuit of the storage battery 21 is determined to be in an overcharged state. Thereby, in order to prevent the deterioration of the storage battery 21 due to overcharge, the overcharge prevention circuit of the storage battery 21 stops the charging of the storage battery 21 by the interlock.
The relationship between the allowable charging voltage and the allowable discharging voltage and the SOC varies depending on the characteristics of the storage battery 21 and the number of cells of the storage battery 21 connected in series. Further, the allowable discharge voltage and the allowable charging voltage are determined by the characteristics of the storage battery 21.
 蓄電池21は、SOCが運用幅の範囲内であれば、開回路電圧が常に許容放電電圧以上かつ許容充電電圧以下となる。
 本実施形態では、蓄電回路2の蓄電池21として、開回路電圧が許容放電電圧以上かつ許容充電電圧以下となるSOCの運用幅に適する蓄電池を用いる。例えば、蓄電池21がリチウムイオン二次電池であれば、SOCの運用幅が40%程度以上かつ60%程度以下であることが望ましい。また、SOCが運用幅の下限値であるときの蓄電池21の開回路電圧は、負荷回路3のモータ31が回生電力を発生させていないときの架線電源の電圧(通常架線電圧)に等しい。また、SOCが運用幅の上限値であるときの蓄電池21の開回路電圧は、モータ31が回生電力を発生させたときの架線電源の電圧(回生時架線電圧)に等しい。
 これにより、負荷回路3のモータ31による車両の回生制動が行われ、モータ31が回生電力を発生させた場合に、蓄電回路2の蓄電池21の充電電圧が許容充電電圧を上回ることを防ぐことができる。また、蓄電池21の開回路電圧が許容放電電圧を下回ることを防ぐことができる。
In the storage battery 21, if the SOC is within the operating range, the open circuit voltage is always equal to or higher than the allowable discharge voltage and lower than the allowable charge voltage.
In the present embodiment, as the storage battery 21 of the storage circuit 2, a storage battery suitable for the SOC operating width in which the open circuit voltage is equal to or higher than the allowable discharge voltage and equal to or lower than the allowable charge voltage is used. For example, if the storage battery 21 is a lithium ion secondary battery, it is desirable that the operating range of the SOC be about 40% or more and about 60% or less. Further, the open circuit voltage of the storage battery 21 when the SOC is the lower limit value of the operating width is equal to the voltage of the overhead line power supply (normal overhead line voltage) when the motor 31 of the load circuit 3 is not generating regenerative power. Further, the open circuit voltage of the storage battery 21 when the SOC is the upper limit value of the operation width is equal to the voltage of the overhead line power supply (regenerative overhead line voltage) when the motor 31 generates regenerative power.
This prevents regenerative braking of the vehicle by the motor 31 of the load circuit 3 and prevents the charging voltage of the storage battery 21 of the storage circuit 2 from exceeding the allowable charging voltage when the motor 31 generates regenerative power. it can. Moreover, it can prevent that the open circuit voltage of the storage battery 21 falls below an allowable discharge voltage.
 図1は、車両が架線区間を走行しているときの車両システムの状態を示している。
 車両が架線区間を走行しているときには、制御回路4が、集電回路1のスイッチ12を閉じ、蓄電回路2のスイッチ22を開く。これにより、整流器23を迂回して負荷回路1(集電器11)及び負荷回路3と蓄電池21とを電気的に接続する迂回路が遮断される。また、負荷回路1(集電器11)及び負荷回路3と蓄電池21とが整流器23を介して電気的に接続された状態になる。
 すなわち、蓄電回路2の蓄電池21と集電回路1及び負荷回路3とはスイッチ22及び整流器23を介して接続されている。このとき、蓄電回路2のスイッチ22が開いており、また整流器23は蓄電池21から集電回路1及び負荷回路3へ流れる電流を規制する。そのため、蓄電池21に蓄えられた電力が集電回路1及び負荷回路3に供給されることはない。
FIG. 1 shows a state of the vehicle system when the vehicle is traveling in the overhead line section.
When the vehicle is traveling in the overhead line section, the control circuit 4 closes the switch 12 of the current collecting circuit 1 and opens the switch 22 of the power storage circuit 2. As a result, the bypass circuit that bypasses the rectifier 23 and electrically connects the load circuit 1 (current collector 11) and the load circuit 3 to the storage battery 21 is blocked. Further, the load circuit 1 (current collector 11), the load circuit 3, and the storage battery 21 are electrically connected via the rectifier 23.
That is, the storage battery 21 of the storage circuit 2, the current collector circuit 1, and the load circuit 3 are connected via the switch 22 and the rectifier 23. At this time, the switch 22 of the storage circuit 2 is open, and the rectifier 23 regulates the current flowing from the storage battery 21 to the current collecting circuit 1 and the load circuit 3. Therefore, the electric power stored in the storage battery 21 is not supplied to the current collector circuit 1 and the load circuit 3.
 他方、架線電源から集電回路1の集電器11に供給された電力は、スイッチ12を介して負荷回路3に供給される。つまり、車両が架線区間を走行しているとき、負荷回路3のモータ31は、架線電源から集電器11を介して供給された電力によって駆動される。
 また、蓄電回路2の整流器23は、集電回路1及び負荷回路3から蓄電池21へ流れる電流を許容する。そのため、集電回路1の出力電圧が蓄電池21の開回路電圧を上回った場合に、架線電源から集電器11に供給された電力が蓄電池21へ供給される。上述したように、蓄電池21の開回路電圧は、SOCが運用幅の下限値であるときに、通常架線電圧と等しい。そのため、モータ31が回生電力を発生していない場合、蓄電池21の開回路電圧は、集電回路1の出力電圧と同じであるか、またはそれ以上となる。
On the other hand, the power supplied from the overhead power supply to the current collector 11 of the current collector circuit 1 is supplied to the load circuit 3 via the switch 12. That is, when the vehicle is traveling in the overhead line section, the motor 31 of the load circuit 3 is driven by the electric power supplied from the overhead line power supply via the current collector 11.
Further, the rectifier 23 of the storage circuit 2 allows a current to flow from the current collection circuit 1 and the load circuit 3 to the storage battery 21. Therefore, when the output voltage of the current collector circuit 1 exceeds the open circuit voltage of the storage battery 21, the power supplied from the overhead power supply to the current collector 11 is supplied to the storage battery 21. As described above, the open circuit voltage of the storage battery 21 is equal to the normal overhead line voltage when the SOC is the lower limit value of the operation width. Therefore, when the motor 31 does not generate regenerative power, the open circuit voltage of the storage battery 21 is the same as or higher than the output voltage of the current collector circuit 1.
 また、同一の架線電源で走行する他の車両が回生制動を行い、当該架線電源に回生電力を供給した場合、集電回路1の出力電圧は、蓄電池21の開回路電圧より高くなることがある。つまり、架線電源から集電器11を介して供給される電力は、上述の車両システムを搭載する車両(自車両)またはその他の車両が回生制動を行うことで集電器11の出力電圧が蓄電池21の開回路電圧より高くなった場合に、蓄電池21へ供給される。
 これにより、車両システムは、自車両が架線区間を走行しているときに回生制動によって負荷回路3のモータ31に発生する回生電力を蓄電池21に供給し、蓄電池21を充電することができる。
In addition, when another vehicle running with the same overhead power supply performs regenerative braking and supplies regenerative power to the overhead power supply, the output voltage of the current collector circuit 1 may be higher than the open circuit voltage of the storage battery 21. . That is, the electric power supplied from the overhead line power supply via the current collector 11 is obtained by the regenerative braking of the vehicle (the host vehicle) on which the above-described vehicle system is mounted or other vehicles, so that the output voltage of the current collector 11 is When it becomes higher than the open circuit voltage, it is supplied to the storage battery 21.
Thereby, the vehicle system can supply the regenerative electric power generated in the motor 31 of the load circuit 3 by regenerative braking to the storage battery 21 when the host vehicle is traveling in the overhead line section, and can charge the storage battery 21.
 図3は、車両が架線レス区間を走行しているときの車両システムを示す概略ブロック図である。
 自車両が架線レス区間を走行している時には、制御回路4が、集電回路1のスイッチ12を開き、蓄電回路2のスイッチ22を閉じる。これにより、集電回路1の集電器11と蓄電回路2の蓄電池21との電気的な接続が解除される。また、整流器23を迂回して蓄電回路2の蓄電池21と負荷回路3とを電気的に接続する迂回路が開通し、蓄電池21と負荷回路3とがスイッチ22を介して電気的に接続される。
 すなわち、蓄電回路2の蓄電池21と集電回路1及び負荷回路3とはスイッチ22及び整流器23を介して接続されている。このとき、蓄電回路2のスイッチ22が閉じているため、蓄電池21から負荷回路3に電力が供給される。つまり、車両が架線レス区間を走行しているとき、負荷回路3のモータ31は、蓄電池21から供給された電力によって駆動する。
 また、モータ31による回生制動を行った場合において、負荷回路3の出力電圧が蓄電池21の開回路電圧より高くなったとき、モータ31による回生電力が蓄電池21へ供給され、蓄電池21が充電される。
FIG. 3 is a schematic block diagram illustrating the vehicle system when the vehicle is traveling in an overhead line-less section.
When the host vehicle is traveling in an overhead line-less section, the control circuit 4 opens the switch 12 of the current collecting circuit 1 and closes the switch 22 of the power storage circuit 2. As a result, the electrical connection between the current collector 11 of the current collector circuit 1 and the storage battery 21 of the power storage circuit 2 is released. Further, a bypass circuit that bypasses the rectifier 23 and electrically connects the storage battery 21 of the storage circuit 2 and the load circuit 3 is opened, and the storage battery 21 and the load circuit 3 are electrically connected via the switch 22. .
That is, the storage battery 21 of the storage circuit 2, the current collector circuit 1, and the load circuit 3 are connected via the switch 22 and the rectifier 23. At this time, since the switch 22 of the power storage circuit 2 is closed, power is supplied from the storage battery 21 to the load circuit 3. That is, when the vehicle is traveling in an overhead line-less section, the motor 31 of the load circuit 3 is driven by the electric power supplied from the storage battery 21.
When regenerative braking by the motor 31 is performed, when the output voltage of the load circuit 3 becomes higher than the open circuit voltage of the storage battery 21, regenerative power by the motor 31 is supplied to the storage battery 21 and the storage battery 21 is charged. .
 このように、本実施形態の車両システムは、上述した整流器23を備えている。整流器23は、蓄電池21とモータ31との間に設けられたスイッチ22と並列に設けられ、集電器11及びモータ31から蓄電池21へ流れる電流を許容し、蓄電池21から集電器11及びモータ31へ流れる電流を規制する。これにより、自車両が架線区間を走行しているときにも、モータ31から蓄電池21へ電流が流れる。このため、回生制動によってモータ31に発生する回生電力を蓄電池21に供給し、蓄電池21を充電することができる。 Thus, the vehicle system of this embodiment includes the rectifier 23 described above. The rectifier 23 is provided in parallel with the switch 22 provided between the storage battery 21 and the motor 31, and allows a current to flow from the current collector 11 and the motor 31 to the storage battery 21, and from the storage battery 21 to the current collector 11 and the motor 31. Regulate the flowing current. Thereby, a current flows from the motor 31 to the storage battery 21 even when the host vehicle is traveling in the overhead line section. For this reason, the regenerative electric power which generate | occur | produces in the motor 31 by regenerative braking can be supplied to the storage battery 21, and the storage battery 21 can be charged.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更をすることが可能である。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to that described above, and various design changes can be made without departing from the scope of the present invention. Is possible.
 (第2の実施形態)
 図4は、第2の実施形態による車両システムの構成を示す概略ブロック図である。
 第2の実施形態による車両システムは、第1の実施形態の蓄電回路2、制御回路4に代えて蓄電回路102、制御回路104を備え、さらに制動回路51および機械ブレーキ52を備える。なお、その他の回路は、第1の実施形態と同様の構成を有している。
(Second Embodiment)
FIG. 4 is a schematic block diagram showing the configuration of the vehicle system according to the second embodiment.
The vehicle system according to the second embodiment includes a power storage circuit 102 and a control circuit 104 instead of the power storage circuit 2 and the control circuit 4 of the first embodiment, and further includes a braking circuit 51 and a mechanical brake 52. Other circuits have the same configuration as that of the first embodiment.
 蓄電回路102は、第1の実施形態による蓄電回路2に、さらにスイッチ24と電流計25とを備えたものである。
 スイッチ24は、整流器23に直列に接続されている。
 電流計25は、整流器23と蓄電池21との間の電流値を計測する。
 また、制御回路104は、第1の実施形態による車両システムの制御回路4の機能に加え、電流計25が計測する電流値が、蓄電池21へ入力可能な電流の最大値である許容充電電流値を超えたときに、スイッチ24を開く機能を有する。
The power storage circuit 102 includes the power storage circuit 2 according to the first embodiment and further includes a switch 24 and an ammeter 25.
The switch 24 is connected to the rectifier 23 in series.
The ammeter 25 measures the current value between the rectifier 23 and the storage battery 21.
In addition to the function of the control circuit 4 of the vehicle system according to the first embodiment, the control circuit 104 has an allowable charging current value in which the current value measured by the ammeter 25 is the maximum current that can be input to the storage battery 21. Has a function of opening the switch 24.
 制動回路51は、車両の制動を行う際、集電回路1の集電器11が架線電源と接触しているか否か、及び電流計25が計測する電流値が、蓄電池21の許容充電電流値を超えているか否かを判定し、当該判定に基づいて車両の制動を行う。具体的には、制動回路51は、集電器11が架線電源と接触していないと判定し、かつ電流計25の電流値が蓄電池21の許容充電電流値を超えていると判定した場合、機械ブレーキ52による制動を行う。
 機械ブレーキ52は、空気圧や油圧を利用した機械式ブレーキであって、制動による回生電力を発生しない。
When braking the vehicle, the braking circuit 51 determines whether or not the current collector 11 of the current collecting circuit 1 is in contact with the overhead line power source and the current value measured by the ammeter 25 is the allowable charging current value of the storage battery 21. It is determined whether or not the vehicle is exceeded, and the vehicle is braked based on the determination. Specifically, when the braking circuit 51 determines that the current collector 11 is not in contact with the overhead line power source and determines that the current value of the ammeter 25 exceeds the allowable charging current value of the storage battery 21, The brake 52 is used for braking.
The mechanical brake 52 is a mechanical brake that uses air pressure or hydraulic pressure, and does not generate regenerative power due to braking.
 このように、本実施形態による車両システムは、自車両が架線区間を走行しているときに、負荷回路3のモータ31から蓄電池21の許容充電電流値を超えた回生電流が発生した場合、スイッチ24を開く。これにより、回生電流の蓄電池21への流入を防ぎ、架線電源へ当該回生電流を供給する。このため、蓄電池21の過充電を防ぐことができる。
 また、車両が架線レス区間を走行しているときに、負荷回路3のモータ31から蓄電池21の許容充電電流値を超えた回生電流が発生した場合、制動回路51は、機械ブレーキ52による制動を行う。これにより、モータ31における回生電力の発生を抑止することができる。
As described above, the vehicle system according to the present embodiment switches the switch when the regenerative current exceeding the allowable charging current value of the storage battery 21 is generated from the motor 31 of the load circuit 3 when the host vehicle is traveling in the overhead line section. Open 24. This prevents the regenerative current from flowing into the storage battery 21 and supplies the regenerative current to the overhead power supply. For this reason, the overcharge of the storage battery 21 can be prevented.
Further, when a regenerative current exceeding the allowable charging current value of the storage battery 21 is generated from the motor 31 of the load circuit 3 while the vehicle is traveling in an overhead line-less section, the braking circuit 51 performs braking by the mechanical brake 52. Do. Thereby, generation | occurrence | production of the regenerative electric power in the motor 31 can be suppressed.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 例えば、本実施形態では、蓄電回路102は、整流器23とスイッチ24とを備え、これらにより蓄電池21への電力の供給を制御する場合を備えた。しかし、車両システムはこれに限られず、例えば、整流器23とスイッチ24に代えてサイリスタなどの電子スイッチを備え、制御回路4が当該サイリスタの制御を行うことで、蓄電池21への電力の供給を制御しても良い。
 また、本実施形態では、電流計25が測定する電流値が蓄電池21の許容充電電流値を超える場合に蓄電池21への電力の供給を抑止する場合を説明した。しかし、車両システムはこれに限られず、例えば、電流計25に代えて蓄電池21の開回路電圧を測定する電圧計を備え、当該電圧計が測定する電圧値が蓄電池21の許容充電電圧値を超える場合に蓄電池21への電力の供給を抑止しても良い。また、制御回路104は、蓄電池21のSOCを参照し、蓄電池21のSOCが所定の値(充電率)を超えた場合にスイッチ24を開くようにしてもよい。
As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
For example, in the present embodiment, the power storage circuit 102 includes the rectifier 23 and the switch 24, and controls the supply of power to the storage battery 21 using these. However, the vehicle system is not limited to this. For example, an electronic switch such as a thyristor is provided instead of the rectifier 23 and the switch 24, and the control circuit 4 controls the thyristor, thereby controlling the supply of power to the storage battery 21. You may do it.
Further, in the present embodiment, the case where the supply of power to the storage battery 21 is suppressed when the current value measured by the ammeter 25 exceeds the allowable charging current value of the storage battery 21 has been described. However, the vehicle system is not limited to this, and includes, for example, a voltmeter that measures the open circuit voltage of the storage battery 21 instead of the ammeter 25, and the voltage value measured by the voltmeter exceeds the allowable charging voltage value of the storage battery 21. In some cases, supply of power to the storage battery 21 may be suppressed. The control circuit 104 may refer to the SOC of the storage battery 21 and open the switch 24 when the SOC of the storage battery 21 exceeds a predetermined value (charge rate).
 また、本実施形態では、車両システムが機械ブレーキ52を備え、電流計25が測定する電流値が蓄電池21の許容充電電流値を超える場合に、機械ブレーキ52による制動を行う場合を説明した。しかし、車両システムはこれに限られない。例えば、車両システムは、機械ブレーキ52に代えて回生ブレーキによる電力を熱エネルギーに変換して消費する回生抵抗を備えてもよい。また、制動回路51は、電流値が蓄電池21の許容充電電流値を超えていると判定した場合に、回生抵抗で電力を消費させることで回生制動を作用させる構成としても良い。 In the present embodiment, the case where the vehicle system includes the mechanical brake 52 and the braking by the mechanical brake 52 is performed when the current value measured by the ammeter 25 exceeds the allowable charging current value of the storage battery 21 has been described. However, the vehicle system is not limited to this. For example, the vehicle system may include a regenerative resistor that replaces the mechanical brake 52 and consumes electric power generated by the regenerative brake by converting it into heat energy. The braking circuit 51 may be configured to apply regenerative braking by consuming electric power with a regenerative resistor when it is determined that the current value exceeds the allowable charging current value of the storage battery 21.
 (第3の実施形態)
 図5は、第3の実施形態による車両システムの構成を示す概略ブロック図である。
 第3の実施形態による車両システムは、第2の実施形態の制御回路104に代えて制御回路204を備え、さらに位置情報取得回路(現在位置取得部)61、路線情報データベース62を備える。
 位置情報取得回路61は、信号システムや車輪回転センサなどから得られるデータに基づいて自車両の現在位置情報を取得する。
 路線情報データベース62は、自車両が走行する路線に含まれる各区間が架線区間であるか、または架線レス区間であるかを示す情報を保持している。
(Third embodiment)
FIG. 5 is a schematic block diagram showing the configuration of the vehicle system according to the third embodiment.
The vehicle system according to the third embodiment includes a control circuit 204 instead of the control circuit 104 of the second embodiment, and further includes a position information acquisition circuit (current position acquisition unit) 61 and a route information database 62.
The position information acquisition circuit 61 acquires the current position information of the host vehicle based on data obtained from a signal system, a wheel rotation sensor, or the like.
The route information database 62 holds information indicating whether each section included in the route on which the vehicle travels is an overhead line section or an overhead line-less section.
 制御回路204は、位置情報取得回路61が出力する現在位置情報と、路線情報データベース62が保持する情報とを参照する。制御回路204は、これらの情報に基づいて、架線区間と架線レス区間との境界の位置、自車両の位置、並びに自車両と上記の境界との距離及び位置関係を算出する。そして、当該算出結果に基づいて、集電回路1のスイッチ12、蓄電回路2のスイッチ22の開閉を制御する。 The control circuit 204 refers to the current position information output from the position information acquisition circuit 61 and the information held in the route information database 62. Based on these pieces of information, the control circuit 204 calculates the position of the boundary between the overhead line section and the overhead line-less section, the position of the host vehicle, and the distance and positional relationship between the host vehicle and the boundary. Based on the calculation result, the opening / closing of the switch 12 of the current collecting circuit 1 and the switch 22 of the power storage circuit 2 is controlled.
 図6は、第3の実施形態による車両システムによるスイッチの制御タイミングを示す第1のタイミングチャートである。
 制御回路204は、位置情報取得回路61が取得した現在位置情報と、路線情報データベース62とを参照する。
 制御回路204は、現在位置情報と路線情報データベース62とを参照した結果、車両が架線区間に位置し(現在位置情報が架線区間内であり)、かつ架線区間と架線レス区間との境界位置よりも所定の距離(例えば10メートル)だけ車両の進行方向の後方に位置すると判定したとき、スイッチ22を閉じる。すなわち、制御回路204は、車両が架線区間から架線レス区間へ移動する前に、スイッチ22を閉じてONにする。
 また、制御回路204は、現在位置情報と路線情報データベース62とを参照した結果、車両が架線区間に位置し、かつ架線区間と架線レス区間との境界位置よりも所定の距離だけ車両の進行方向の前方に位置すると判定したとき、スイッチ12を開く。すなわち、制御回路204は、車両が架線区間から架線レス区間へ移動した後に、スイッチ12を開いてOFFにする。
 つまり、車両が架線区間から架線レス区間へ移動する時、スイッチ12及びスイッチ22はともに閉じた状態(ON)となる。
FIG. 6 is a first timing chart showing the control timing of the switch by the vehicle system according to the third embodiment.
The control circuit 204 refers to the current position information acquired by the position information acquisition circuit 61 and the route information database 62.
As a result of referring to the current position information and the route information database 62, the control circuit 204 determines that the vehicle is located in the overhead line section (the current position information is in the overhead line section), and the boundary position between the overhead line section and the overhead line-less section. When it is determined that the vehicle is located behind the vehicle in the traveling direction by a predetermined distance (for example, 10 meters), the switch 22 is closed. That is, the control circuit 204 closes the switch 22 and turns it on before the vehicle moves from the overhead line section to the overhead line-less section.
In addition, as a result of referring to the current position information and the route information database 62, the control circuit 204 determines that the vehicle is located in the overhead line section and that the vehicle travels a predetermined distance from the boundary position between the overhead line section and the overhead line-less section. When it is determined that the switch 12 is located in front of the switch 12, the switch 12 is opened. That is, the control circuit 204 opens the switch 12 and turns it off after the vehicle moves from the overhead line section to the overhead line-less section.
That is, when the vehicle moves from the overhead line section to the overhead line-less section, both the switch 12 and the switch 22 are closed (ON).
 また、制御回路204は、現在位置情報と路線情報データベース62とを参照した結果、車両が架線レス区間に位置し(現在位置情報が架線レス区間内であり)、かつ架線区間と架線レス区間との境界位置よりも所定の距離だけ車両の進行方向の後方に位置すると判定したとき、スイッチ12を閉じる。すなわち、制御回路204は、車両が架線レス区間から架線区間へ移動する前に、スイッチ12を閉じてONにする。
 また、制御回路204は、現在位置情報と路線情報データベース62とを参照した結果、車両が架線レス区間に位置し、架線区間と架線レス区間との境界位置よりも所定の距離だけ車両の進行方向の前方に位置すると判定したとき、スイッチ22を開く。すなわち、制御回路204は、車両が架線レス区間から架線区間へ移動した後に、スイッチ22を開いてOFFにする。
 つまり、車両が架線レス区間から架線区間へ移動する時、スイッチ12及びスイッチ22はともに閉じた状態(ON)となる。
In addition, as a result of referring to the current position information and the route information database 62, the control circuit 204 has the vehicle positioned in the overhead line-less section (the current position information is in the overhead line-less section), and the overhead line section and the overhead line-less section. The switch 12 is closed when it is determined that the vehicle is positioned a predetermined distance behind the boundary position in the rearward direction of the vehicle. That is, the control circuit 204 closes the switch 12 and turns it on before the vehicle moves from the overhead line-less section to the overhead section.
The control circuit 204 refers to the current position information and the route information database 62. As a result, the vehicle is located in the overhead line-less section, and the traveling direction of the vehicle is a predetermined distance from the boundary position between the overhead line section and the overhead line-less section. When it is determined that the switch 22 is located in front of the switch 22, the switch 22 is opened. That is, the control circuit 204 opens the switch 22 and turns it off after the vehicle moves from the overhead line-less section to the overhead line section.
That is, when the vehicle moves from the overhead line-less section to the overhead line section, both the switch 12 and the switch 22 are closed (ON).
 これにより、車両システムは、集電器11または蓄電池21が供給する電力が途切れることを防止する。そのため、負荷回路3を安定して動作させることができる。特に、SIV33に接続された補機への電力供給が安定して行われることにより、室内照明の一時的な消灯などを防ぐことができる。これにより、乗客の不安感を解消させることができる。 Thereby, the vehicle system prevents the power supplied from the current collector 11 or the storage battery 21 from being interrupted. Therefore, the load circuit 3 can be stably operated. In particular, since the power supply to the auxiliary machine connected to the SIV 33 is stably performed, it is possible to prevent the indoor lighting from being temporarily turned off. Thereby, a passenger's anxiety can be eliminated.
 図7は、第3の実施形態による車両システムによるスイッチの制御タイミングを示す第2のタイミングチャートである。
 ここで、制御回路204は、蓄電池21の開回路電圧及び容量と、架線電源の電圧とを参照可能に設けられている。制御回路204は、蓄電池21の開回路電圧が架線電源の電圧よりも所定の閾値以上大きい場合、または蓄電池21の容量が所定の閾値より小さい場合、現在位置情報と路線情報データベース62とを参照する。御回路204は、これらの情報に基づいて、架線区間と架線レス区間との境界の位置、自車両の位置、並びに自車両と上記の境界との距離及び位置関係を算出する。そして、当該算出結果に基づいて、図7に示すタイミングでスイッチの開閉を制御する。
FIG. 7 is a second timing chart showing the switch control timing by the vehicle system according to the third embodiment.
Here, the control circuit 204 is provided so that the open circuit voltage and capacity of the storage battery 21 and the voltage of the overhead power supply can be referred to. The control circuit 204 refers to the current position information and the route information database 62 when the open circuit voltage of the storage battery 21 is greater than the voltage of the overhead power supply by a predetermined threshold or more, or when the capacity of the storage battery 21 is smaller than the predetermined threshold. . Based on these pieces of information, the control circuit 204 calculates the position of the boundary between the overhead line section and the overhead line-less section, the position of the host vehicle, and the distance and the positional relationship between the host vehicle and the boundary. And based on the said calculation result, opening and closing of a switch is controlled at the timing shown in FIG.
 つまり、制御回路204は、現在位置情報と路線情報データベース62とを参照した結果、車両が架線区間に位置し、かつ架線区間と架線レス区間との境界位置よりも所定の距離だけ車両の進行方向の後方に位置すると判定したとき、スイッチ22を閉じずに(開いた状態で)スイッチ12を開く。すなわち、制御回路204は、車両が架線区間から架線レス区間へ移動する前に、スイッチ12を開いてOFFにする。
 また、制御回路204は、現在位置情報と路線情報データベース62とを参照した結果、車両が架線区間に位置し、かつ架線区間と架線レス区間との境界位置よりも所定の距離だけ車両の進行方向の前方に位置する判定したとき、スイッチ22を閉じる。すなわち、制御回路204は、車両が架線区間から架線レス区間へ移動した後に、スイッチ22を閉じてONにする。
 つまり、車両が架線区間から架線レス区間へ移動する時、スイッチ12及びスイッチ22はともに開いた状態(OFF)となる。
That is, the control circuit 204 refers to the current position information and the route information database 62, and as a result, the vehicle is located in the overhead line section, and the traveling direction of the vehicle is a predetermined distance from the boundary position between the overhead line section and the overhead line-less section. When it is determined that the switch 12 is positioned behind, the switch 12 is opened without closing the switch 22 (in an open state). That is, the control circuit 204 opens the switch 12 and turns it off before the vehicle moves from the overhead line section to the overhead line-less section.
In addition, as a result of referring to the current position information and the route information database 62, the control circuit 204 determines that the vehicle is located in the overhead line section and that the vehicle travels a predetermined distance from the boundary position between the overhead line section and the overhead line-less section. When it is determined that the switch 22 is located in front of the switch 22, the switch 22 is closed. That is, the control circuit 204 closes the switch 22 and turns it on after the vehicle has moved from the overhead line section to the overhead line-less section.
That is, when the vehicle moves from the overhead line section to the overhead line-less section, both the switch 12 and the switch 22 are in an open state (OFF).
 また、制御回路204は、現在位置情報と路線情報データベース62とを参照した結果、車両が架線レス区間に位置し、かつ架線区間と架線レス区間との境界位置よりも所定の距離だけ車両の進行方向の後方に位置すると判定したとき、スイッチ12を閉じずに(開いた状態で)スイッチ22を開く。すなわち、制御回路204は、車両が架線レス区間から架線区間へ移動する前に、スイッチ22を開いてOFFにする。
 また、制御回路204は、現在位置情報と路線情報データベース62とを参照した結果、車両が架線レス区間に位置し、かつ架線区間と架線レス区間との境界位置よりも所定の距離だけ車両の進行方向の前方に位置すると判定したとき、スイッチ12を閉じる。すなわち、制御回路204は、車両が架線レス区間から架線区間へ移動した後に、スイッチ12を閉じてONにする。
 つまり、車両が架線レス区間から架線区間へ移動する時、スイッチ12及びスイッチ22はともに開いた状態(OFF)となる。
In addition, as a result of referring to the current position information and the route information database 62, the control circuit 204 determines that the vehicle is in the overhead line-less section and that the vehicle travels a predetermined distance from the boundary position between the overhead line section and the overhead line-less section. When it is determined that the switch is positioned rearward in the direction, the switch 22 is opened without closing the switch 12 (in an open state). That is, the control circuit 204 opens the switch 22 and turns it off before the vehicle moves from the overhead line-less section to the overhead line section.
In addition, as a result of referring to the current position information and the route information database 62, the control circuit 204 determines that the vehicle is in the overhead line-less section and that the vehicle travels a predetermined distance from the boundary position between the overhead line section and the overhead line-less section. When it is determined that the switch is located in the front of the direction, the switch 12 is closed. That is, the control circuit 204 closes the switch 12 and turns it on after the vehicle moves from the overhead line-less section to the overhead line section.
That is, when the vehicle moves from the overhead line-less section to the overhead line section, both the switch 12 and the switch 22 are in an open state (OFF).
 これにより、車両システムは、蓄電池21と架線電源との電位差により蓄電池から架線電源に電力が突然供給されることを防ぐ。そのため、蓄電池21が許容放電電力を超えた電力を供給することによる蓄電池21の劣化を防ぐことができる。 This prevents the vehicle system from suddenly supplying power from the storage battery to the overhead line power supply due to the potential difference between the storage battery 21 and the overhead line power supply. Therefore, deterioration of the storage battery 21 due to the storage battery 21 supplying power exceeding the allowable discharge power can be prevented.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 例えば、制御回路204は、蓄電池21のSOCを参照し、蓄電池21のSOCが所定の値(充電率)を超えた場合にスイッチ24を開くようにしてもよい。
As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
For example, the control circuit 204 may refer to the SOC of the storage battery 21 and open the switch 24 when the SOC of the storage battery 21 exceeds a predetermined value (charge rate).
 上述の車両システムは内部に、コンピュータシステムを有している。そして、上述した制御回路4の動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。 The above vehicle system has a computer system inside. The operation of the control circuit 4 described above is stored in a computer-readable recording medium in the form of a program, and the above processing is performed by the computer reading and executing this program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
 また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。 Further, the program may be for realizing a part of the above-described functions. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.
 次に、本発明の交通システムの一実施形態について説明する。
 本実施形態の交通システムは、上述の第1の実施形態から第3の実施形態において説明した車両システムのいずれかを搭載した車両(図示省略)と、図1、図4又は図5に示す架線電源と、有している。車両システムは、複数の車両を有していてもよく、1つの車両を有していてもよい。上記の交通システムは、例えば、直流き電方式により架線電源へ電力が供給されてもよい。図示は省略するが、上記の交通システムは、例えば、変電所に備えられたトランス、当該トランスから出力された交流電流を直流電流へ変換する整流器、電力を蓄積する蓄電池、及び蓄電池の充放電を制御する蓄電池制御装置を含んでもよい。車両システムが複数の車両を有する場合には、ある車両が発生させた回生電力を架線電源を介して他の車両に供給することが可能になる。
 本実施形態の交通システムによれば、各車両が搭載する車両システムにおいてDC/DCコンバータを用いていないため、車両のためのスペースを十分に確保することができる。また、各車両が架線区間を走行しているときに、負荷回路に含まれるモータにおいて発生する電力(回生電力)を各車両が搭載する車両システムの蓄電池に供給することができる。
 なお、上記の交通システムは、鉄道の他、新交通システムを含む。新交通システムは、車体とゴムタイヤと電動機と案内輪とを有する車両を有してもよい。また、新交通システムは、ゴムタイヤが転動する走行路と電動機とに電力を供給する架線電源と案内軌条とを含んでもよい。
Next, an embodiment of the traffic system of the present invention will be described.
The traffic system of this embodiment includes a vehicle (not shown) on which any of the vehicle systems described in the first to third embodiments described above is mounted, and an overhead wire shown in FIG. 1, FIG. 4, or FIG. With power supply. The vehicle system may have a plurality of vehicles or one vehicle. In the above traffic system, for example, power may be supplied to the overhead line power supply by a DC feeding system. Although illustration is omitted, the above transportation system includes, for example, a transformer provided in a substation, a rectifier that converts an alternating current output from the transformer into a direct current, a storage battery that stores power, and a charge / discharge of the storage battery. You may include the storage battery control apparatus to control. When the vehicle system has a plurality of vehicles, it becomes possible to supply regenerative electric power generated by a certain vehicle to other vehicles via an overhead line power supply.
According to the traffic system of this embodiment, since the DC / DC converter is not used in the vehicle system mounted on each vehicle, a sufficient space for the vehicle can be secured. Moreover, when each vehicle is traveling in the overhead line section, the power (regenerative power) generated in the motor included in the load circuit can be supplied to the storage battery of the vehicle system mounted on each vehicle.
Note that the above transportation system includes a new transportation system in addition to the railway. The new transportation system may include a vehicle having a vehicle body, rubber tires, an electric motor, and guide wheels. Further, the new transportation system may include an overhead wire power source and a guide rail for supplying electric power to the traveling road on which the rubber tire rolls and the electric motor.
 本発明の態様は、車両に搭載され、架線電源から電力供給が可能な車両システムである。この車両システムは、並列回路と、集電器と、第1のスイッチと、第2のスイッチと、整流器と、を含む。この車両システムによれば、DC/DCコンバータを用いず、車両が架線区間を走行しているときに負荷回路から蓄電池に電力を供給することができる。 An aspect of the present invention is a vehicle system mounted on a vehicle and capable of supplying power from an overhead power source. The vehicle system includes a parallel circuit, a current collector, a first switch, a second switch, and a rectifier. According to this vehicle system, electric power can be supplied from the load circuit to the storage battery when the vehicle is traveling in the overhead line section without using the DC / DC converter.
 1…集電回路 2、102…蓄電回路 3…負荷回路 4、104、204…制御回路(制御部) 11…集電器 12…スイッチ 21…蓄電池 22…スイッチ 23…整流器 24…スイッチ 25…電流計 31…モータ 32…VVVFインバータ 33…SIV 51…制動回路 52…機械ブレーキ 61…位置情報取得回路(現在位置取得部) 62…路線情報データベース DESCRIPTION OF SYMBOLS 1 ... Current collection circuit 2, 102 ... Power storage circuit 3 ... Load circuit 4, 104, 204 ... Control circuit (control part) 11 ... Current collector 12 ... Switch 21 ... Storage battery 22 ... Switch 23 ... Rectifier 24 ... Switch 25 ... Ammeter 31 ... motor 32 ... VVVF inverter 33 ... SIV 51 ... braking circuit 52 ... mechanical brake 61 ... position information acquisition circuit (current position acquisition unit) 62 ... route information database

Claims (8)

  1.  車両に搭載され、架線電源から電力供給が可能な車両システムであって、
     並列に接続された負荷回路と蓄電池とを含む並列回路と、
     前記並列回路に直列に接続され、前記架線電源と電気的に接続可能に設けられた集電器と、
     前記集電器と前記並列回路との間に設けられた第1のスイッチと、
     前記蓄電池と前記負荷回路との間で、かつ前記集電器と前記蓄電池との間に設けられた第2のスイッチと、
     前記第2のスイッチと並列に接続され、前記蓄電池と前記負荷回路との間に設けられ、前記集電器及び前記負荷回路から前記蓄電池へ流れる電流を許容し、前記蓄電池から前記集電器及び前記負荷回路へ流れる電流を規制する整流器と、
     を備える。
    A vehicle system mounted on a vehicle and capable of supplying power from an overhead power source,
    A parallel circuit including a load circuit and a storage battery connected in parallel;
    A current collector connected in series to the parallel circuit and provided so as to be electrically connectable to the overhead power supply;
    A first switch provided between the current collector and the parallel circuit;
    A second switch provided between the storage battery and the load circuit and between the current collector and the storage battery;
    Connected in parallel with the second switch, provided between the storage battery and the load circuit, allowing current to flow from the current collector and the load circuit to the storage battery, and from the storage battery to the current collector and the load A rectifier that regulates the current flowing into the circuit;
    Is provided.
  2.  スイッチの開閉を制御する制御部を備え、
     前記制御部は、前記集電器と前記架線電源とが電気的に接続されている場合に、前記第1のスイッチを閉じて前記第2のスイッチを開き、前記集電器と前記架線電源とが電気的に接続されていない場合に、前記第1のスイッチを開いて前記第2のスイッチを閉じる請求項1に記載の車両システム。
    It has a control unit that controls the opening and closing of the switch,
    When the current collector and the overhead line power supply are electrically connected, the control unit closes the first switch and opens the second switch, and the current collector and the overhead line power supply are electrically connected to each other. The vehicle system according to claim 1, wherein the first switch is opened and the second switch is closed when the first switch is not connected.
  3.  前記整流器に対して直列に設けられた第3のスイッチを備え、
     前記制御部は、前記蓄電池の充電率が所定の充電率を超えた場合に前記第3のスイッチを開く請求項2に記載の車両システム。
    A third switch provided in series with the rectifier;
    The vehicle system according to claim 2, wherein the control unit opens the third switch when a charging rate of the storage battery exceeds a predetermined charging rate.
  4.  前記車両の現在位置情報を取得する現在位置取得部と、
     前記車両が走行する路線に含まれる区間が、前記集電器が前記架線電源と電気的に接続される架線区間であるか、または前記集電器が前記架線電源と電気的に接続されない架線レス区間であるかを示す路線情報データベースと、
     を備え、
     前記制御部は、前記現在位置情報と前記路線情報データベースとを参照し、前記車両が前記架線区間に位置し、かつ前記架線区間と前記架線レス区間との境界位置よりも所定の距離だけ前記車両の進行方向の後方に位置すると判定したとき、前記第2のスイッチを閉じ、前記車両が前記架線区間に位置し、かつ前記境界位置よりも所定の距離だけ前記進行方向の前方に位置すると判定したとき、前記第1のスイッチを開き、前記車両が前記架線レス区間に位置し、かつ前記境界位置よりも所定の距離だけ前記進行方向の後方に位置すると判定したとき、前記第1のスイッチを閉じ、前記車両が架線レス区間に位置し、かつ前記境界位置よりも所定の距離だけ前記進行方向の前方に位置すると判定したとき、前記第2のスイッチを開く請求項1から請求項3の何れか1項に記載の車両システム。
    A current position acquisition unit for acquiring current position information of the vehicle;
    The section included in the route on which the vehicle travels is an overhead line section in which the current collector is electrically connected to the overhead power supply, or a section in which there is no overhead line in which the current collector is not electrically connected to the overhead power supply A route information database showing whether there is,
    With
    The control unit refers to the current position information and the route information database, the vehicle is located in the overhead line section, and the vehicle is a predetermined distance from a boundary position between the overhead line section and the overhead line-less section. When it is determined that the vehicle is located behind the traveling direction, the second switch is closed, and it is determined that the vehicle is located in the overhead line section and located in front of the traveling direction by a predetermined distance from the boundary position. The first switch is opened, and when it is determined that the vehicle is located in the overhead line-less section and is located a predetermined distance behind the boundary position, the first switch is closed. The second switch is opened when it is determined that the vehicle is located in an overhead line-less section and located in front of the traveling direction by a predetermined distance from the boundary position. The vehicle system according to any one of al claim 3.
  5.  前記車両の現在位置情報を取得する現在位置取得部と、
     前記車両が走行する路線に含まれる区間が、前記集電器が前記架線電源と電気的に接続される架線区間であるか、または前記集電器が前記架線電源と電気的に接続されない架線レス区間であるかを示す路線情報データベースと、
     を備え、
     前記制御部は、前記蓄電池の電圧及び容量と前記架線電源の電圧とを参照し、前記蓄電池の電圧が前記架線電源の電圧よりも所定の閾値以上大きい場合、または前記蓄電池の容量が所定の閾値より小さい場合、前記現在位置情報と前記路線情報データベースとを参照し、前記車両が前記架線区間に位置し、かつ前記架線区間と前記架線レス区間との境界位置よりも所定の距離だけ前記車両の進行方向の後方に位置すると判定したとき、前記第2のスイッチを開いた状態で前記第1のスイッチを開き、前記車両が前記架線区間に位置し、かつ前記境界位置よりも所定の距離だけ前記進行方向の前方に位置すると判定したとき、前記第2のスイッチを閉じ、前記車両が前記架線レス区間に位置し、かつ前記境界位置よりも所定の距離だけ前記進行方向の後方に位置すると判定したとき、前記第1のスイッチを開いた状態で前記第2のスイッチを開き、前記車両が前記架線レス区間に位置し、かつ前記境界位置よりも所定の距離だけ前記進行方向の前方に位置すると判定したとき、前記第1のスイッチを閉じる請求項1から請求項3の何れか1項に記載の車両システム。
    A current position acquisition unit for acquiring current position information of the vehicle;
    The section included in the route on which the vehicle travels is an overhead line section in which the current collector is electrically connected to the overhead power supply, or a section in which there is no overhead line in which the current collector is not electrically connected to the overhead power supply A route information database showing whether there is,
    With
    The control unit refers to the voltage and capacity of the storage battery and the voltage of the overhead line power supply, and when the voltage of the storage battery is larger than the voltage of the overhead line power supply by a predetermined threshold value or when the capacity of the storage battery is a predetermined threshold value If it is smaller, the current position information and the route information database are referred to, the vehicle is located in the overhead line section, and the vehicle is located at a predetermined distance from the boundary position between the overhead line section and the overhead line-less section. When it is determined that the vehicle is located rearward in the traveling direction, the first switch is opened with the second switch opened, the vehicle is located in the overhead line section, and the vehicle is located at a predetermined distance from the boundary position. When it is determined that the vehicle is positioned ahead in the traveling direction, the second switch is closed, the vehicle is positioned in the overhead line-less section, and the traveling is performed by a predetermined distance from the boundary position. The second switch is opened with the first switch opened, the vehicle is located in the overhead line-less section, and the vehicle is located at a predetermined distance from the boundary position. The vehicle system according to any one of claims 1 to 3, wherein the first switch is closed when it is determined that the first switch is positioned forward in the traveling direction.
  6.  前記負荷回路は、電力の供給時に前記車両を駆動するモータを含み、前記車両が回生制動を行うときに前記モータにより回生電力を発生させ、
     前記蓄電池の許容充電電圧値は、前記負荷回路が回生電力を発生させたときの前記架線電源の電圧以上であり、前記蓄電池の許容放電電圧値は、前記負荷回路が回生電力を発生させていないときの前記架線電源の電圧以下である請求項1から請求項5の何れか1項に記載の車両システム。
    The load circuit includes a motor that drives the vehicle when power is supplied, and generates regenerative power by the motor when the vehicle performs regenerative braking,
    The allowable charging voltage value of the storage battery is equal to or higher than the voltage of the overhead power supply when the load circuit generates regenerative power, and the allowable discharge voltage value of the storage battery does not cause the load circuit to generate regenerative power. The vehicle system according to any one of claims 1 to 5, which is equal to or lower than a voltage of the overhead power supply.
  7.  前記集電器と前記架線電源とが電気的に接続されている場合に、前記第1のスイッチを閉じて前記第2のスイッチを開くことで、前記整流器を迂回して前記集電器及び前記負荷回路と前記蓄電池とを電気的に接続する迂回路を遮断するとともに、前記集電器及び前記負荷回路と前記蓄電池とが前記整流器を介して電気的に接続された状態とし、
     前記集電器と前記架線電源とが電気的に接続されていない場合に、前記第1のスイッチを開いて前記第2のスイッチを閉じることで、前記集電器と前記蓄電池との電気的な接続を解除するとともに、前記迂回路を開通させて前記蓄電池と前記負荷回路とを前記第2のスイッチを介して電気的に接続する
     請求項1に記載の車両システムの制御方法。
    When the current collector and the overhead line power supply are electrically connected, the current collector and the load circuit bypass the rectifier by closing the first switch and opening the second switch. And disconnecting the detour that electrically connects the storage battery and the current collector and the load circuit and the storage battery are electrically connected via the rectifier,
    When the current collector and the overhead line power supply are not electrically connected, by opening the first switch and closing the second switch, the electrical connection between the current collector and the storage battery can be established. The vehicle system control method according to claim 1, wherein the vehicle system is released and the bypass circuit is opened to electrically connect the storage battery and the load circuit via the second switch.
  8.  請求項1に記載の車両システムを搭載した車両と、前記車両に電力を供給する架線電源と、を備えた交通システム。 A traffic system comprising: a vehicle on which the vehicle system according to claim 1 is mounted; and an overhead power supply that supplies electric power to the vehicle.
PCT/JP2010/066316 2010-02-10 2010-09-21 Vehicle system, method of controlling vehicle system, and transportation system WO2011099193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-027821 2010-02-10
JP2010027821A JP2011166962A (en) 2010-02-10 2010-02-10 Vehicle system

Publications (1)

Publication Number Publication Date
WO2011099193A1 true WO2011099193A1 (en) 2011-08-18

Family

ID=44367488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066316 WO2011099193A1 (en) 2010-02-10 2010-09-21 Vehicle system, method of controlling vehicle system, and transportation system

Country Status (2)

Country Link
JP (1) JP2011166962A (en)
WO (1) WO2011099193A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042945A (en) * 2012-12-24 2013-04-17 唐山轨道客车有限责任公司 Maglev train power system
JP2013211964A (en) * 2012-03-30 2013-10-10 Hitachi Ltd Driving apparatus of railway vehicle
WO2014206081A1 (en) * 2013-06-24 2014-12-31 长春轨道客车股份有限公司 Traction system for motor train unit powered by energy storage device
EP3587210A1 (en) * 2018-06-29 2020-01-01 ALSTOM Transport Technologies Vehicle, in particular a railway vehicle, with two electric power supply sources
SE2050121A1 (en) * 2020-02-06 2021-08-07 Scania Cv Ab A method for propelling and manufacturing of a vehicle comprising a power train with an electric motor and a vehicle comprising a power train with an electric motor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175803A (en) * 2011-02-22 2012-09-10 Hitachi Ltd Railway system equipped with power storage means
JP2015177638A (en) * 2014-03-14 2015-10-05 株式会社東芝 Storage battery device and control method
CN107539162A (en) * 2017-09-13 2018-01-05 中车株洲电力机车有限公司 A kind of medium-and low-speed maglev train traction system
WO2021149193A1 (en) * 2020-01-22 2021-07-29 三菱電機株式会社 Railroad vehicle system
RU2764313C1 (en) * 2021-09-25 2022-01-17 Общество с ограниченной ответственностью "СТМ-ЭНЕРГОРЕШЕНИЯ" Device for regenerative braking of traction electric motors of railway transport

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295718A (en) * 1999-04-02 2000-10-20 Nippon Yusoki Co Ltd Battery floating charge system using running control equipment
JP2005176528A (en) * 2003-12-12 2005-06-30 Toshiba Corp Electric vehicle control device
JP2006054958A (en) * 2004-08-11 2006-02-23 Mitsubishi Heavy Ind Ltd Electric vehicle, overhead wireless transportation system, and control method therefor
JP2009284690A (en) * 2008-05-23 2009-12-03 Kawasaki Heavy Ind Ltd Battery driven vehicle
JP2010130772A (en) * 2008-11-27 2010-06-10 Toshiba Corp Rail vehicle drive system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295718A (en) * 1999-04-02 2000-10-20 Nippon Yusoki Co Ltd Battery floating charge system using running control equipment
JP2005176528A (en) * 2003-12-12 2005-06-30 Toshiba Corp Electric vehicle control device
JP2006054958A (en) * 2004-08-11 2006-02-23 Mitsubishi Heavy Ind Ltd Electric vehicle, overhead wireless transportation system, and control method therefor
JP2009284690A (en) * 2008-05-23 2009-12-03 Kawasaki Heavy Ind Ltd Battery driven vehicle
JP2010130772A (en) * 2008-11-27 2010-06-10 Toshiba Corp Rail vehicle drive system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211964A (en) * 2012-03-30 2013-10-10 Hitachi Ltd Driving apparatus of railway vehicle
CN103042945A (en) * 2012-12-24 2013-04-17 唐山轨道客车有限责任公司 Maglev train power system
CN103042945B (en) * 2012-12-24 2015-11-25 唐山轨道客车有限责任公司 Maglev train power system
WO2014206081A1 (en) * 2013-06-24 2014-12-31 长春轨道客车股份有限公司 Traction system for motor train unit powered by energy storage device
EP3587210A1 (en) * 2018-06-29 2020-01-01 ALSTOM Transport Technologies Vehicle, in particular a railway vehicle, with two electric power supply sources
FR3083197A1 (en) * 2018-06-29 2020-01-03 Alstom Transport Technologies VEHICLE, PARTICULARLY RAILWAY, WITH TWO SOURCES OF ELECTRICAL SUPPLY
SE2050121A1 (en) * 2020-02-06 2021-08-07 Scania Cv Ab A method for propelling and manufacturing of a vehicle comprising a power train with an electric motor and a vehicle comprising a power train with an electric motor
WO2021158161A1 (en) * 2020-02-06 2021-08-12 Scania Cv Ab A method for propelling and manufacturing of a vehicle comprising a power train with an electric motor and a vehicle comprising a power train with an electric motor
SE543966C2 (en) * 2020-02-06 2021-10-12 Scania Cv Ab A method for propelling and manufacturing of a vehicle comprising a power train with an electric motor and a vehicle comprising a power train with an electric motor

Also Published As

Publication number Publication date
JP2011166962A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
WO2011099193A1 (en) Vehicle system, method of controlling vehicle system, and transportation system
CN104411535B (en) System and method for operating a hybrid vehicle system
EP2810813B1 (en) Propulsion control device of electric vehicle and control method thereof
EP2875982B1 (en) Device and method for controlling propulsion of electric vehicle
CN102470762B (en) Electric-vehicle propulsion power-conversion device
EP3118080A1 (en) Tramcar motive power system and control method thereof
JPWO2013145191A1 (en) Railway vehicle system and non-powered vehicle
JP2013099247A (en) Apparatus and method for rapidly charging electric vehicle
JP4417949B2 (en) Railway vehicle drive system
CN104334392B (en) Control apparatus for electric railcar
JP2007159236A (en) Vehicle power supply device and vehicle
JP6055258B2 (en) Railway vehicle
JP5281372B2 (en) Electric railway vehicle drive system
JP6016738B2 (en) Terrestrial storage battery control device and control method therefor, railroad storage battery control system
JP2008054387A (en) Controller of electric vehicle
JP2010119176A (en) On-vehicle power supply apparatus
CN103534128A (en) Device and method for managing the electric braking of a vehicle
JP7081958B2 (en) Vehicle power system
JP2017189062A (en) Railway vehicle
JP4801959B2 (en) Energy control method and apparatus for hybrid train
JP2008118761A (en) Hybrid energy storage device of electric vehicle and electric vehicle
JP7040419B2 (en) server
CN103534129B (en) For equipment and the method for the electric braking of management vehicle
KR101419604B1 (en) Engine control method of range extender electric vehicle
Szenasy Energy management and hybrid energy storage in metro railcar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845785

Country of ref document: EP

Kind code of ref document: A1