JP5491169B2 - 電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法 - Google Patents

電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法 Download PDF

Info

Publication number
JP5491169B2
JP5491169B2 JP2009299141A JP2009299141A JP5491169B2 JP 5491169 B2 JP5491169 B2 JP 5491169B2 JP 2009299141 A JP2009299141 A JP 2009299141A JP 2009299141 A JP2009299141 A JP 2009299141A JP 5491169 B2 JP5491169 B2 JP 5491169B2
Authority
JP
Japan
Prior art keywords
lithium ion
power supply
secondary battery
supply system
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009299141A
Other languages
English (en)
Other versions
JP2011139614A (ja
Inventor
敏男 津端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2009299141A priority Critical patent/JP5491169B2/ja
Publication of JP2011139614A publication Critical patent/JP2011139614A/ja
Application granted granted Critical
Publication of JP5491169B2 publication Critical patent/JP5491169B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、充放電の繰り返しが可能な二次電池を有する電源供給システムに係り、特に、ノートパソコンや、デジタルカメラ、ビデオカメラ、携帯ゲーム機、携帯電話等の携帯機器に好適に用い得る電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法に関する。
この種の電源供給システムに用いられる電源モジュール(電源装置)としては、その最小構成要素となるセル(単電池)としてリチウムイオン二次電池を備えるものが多くの携帯機器に使用されている。図8に示すように、この種の電源モジュール101では、セル102の端子電圧を監視回路106が監視している(例えば特許文献1参照)。なお、この種の電源モジュール101は、通常、「定電流/定電圧充電方式(CCCV)」により充電されている。この充電方式は、まず、定電流充電により充電を開始し、所定電圧に達したら定電圧充電に切り換えて満充電電圧まで充電を行なうものである。
ここで、リチウムイオン二次電池においては、瞬間的な高エネルギー要求に応答する上では、応答時間がキャパシタと比較して遅いため、必ずしも適しているとはいえない。そこで、従来から、この種の電源モジュールに対し、瞬間的な高エネルギー要求の応答性の向上を目的として、電池にキャパシタを並列接続する提案がなされている(例えば特許文献2ないし3参照)。
例えば、特許文献2に記載の技術は、車両用の電源装置において、キャパシタを並列接続したリチウムイオン二次電池を有する電源モジュールに、該二次電池への入出力電流が充放電制限電流以下になるように制限する電流制御手段を設けることにより、過充電による二次電池の劣化を防止しつつ、満充電付近までの充電を可能としている。
また、例えば特許文献3に記載の技術は、二次電池に限定されない電源装置として、この電源装置にキャパシタを並列接続することにより、瞬間的高エネルギー要求の応答性を向上させている。
特開2004−120849号公報 特開2009−44808号公報(図1) 特開2002−330548号公報(図2,図3)
このような用途に用いられるキャパシタとしては、前述の特許文献2に記載の電気二重層キャパシタ、特許文献3に記載のコンデンサ、ウルトラコンデンサ、及びスーパーコンデンサ以外に、リチウムイオンキャパシタが考えられる。リチウムイオンキャパシタは、活性炭からなる正極、リチウムイオンを吸蔵・脱離する活物質からなる負極、及びリチウム塩電解質を含む非水系電解液を有するキャパシタであり、活性炭からなる正極及び負極、並びにアンモニウム塩電解質を含む非水系電解液を有する電気二重層キャパシタに比較して最大動作電圧が高いため、出力特性にすぐれる。
しかしながら、リチウムイオンキャパシタは最大動作電圧が約4Vであり、満充電電圧とする所定電圧をその最大動作電圧を超えた値にすると、その寿命が著しく低減することが知られている。そのため、最大動作電圧が約4.2Vであるリチウムイオン二次電池をセルにもつ電源モジュールや電源供給システムにおいて、1個のリチウムイオン二次電池に対して1個のリチウムイオンキャパシタを単に並列接続したのでは、瞬間的高エネルギー要求には応答できるものの、約4V以上の領域でリチウムイオンキャパシタの劣化が著しくなる。すなわち、リチウムイオン二次電池1個に対してリチウムイオンキャパシタ1個を使用する場合には、リチウムイオン二次電池の4V以上の領域を使用しないか、リチウムイオンキャパシタの劣化が早期に進行してしまうことを承知の上で4.0〜4.2Vの領域まで使用するかの2者択一を迫られるという問題を解決することができない。
つまり、リチウムイオン二次電池をセルにもつ電源モジュールは、図8に例示したような、監視回路106を備えており、この監視回路106は、先述した定電流充電を停止する所定電圧、及び満充電電圧とする所定電圧(または所定電流、所定時間)を監視する充電機能に加えて、過充電とする所定電圧を監視する過充電保護機能をも有する。そして、この監視回路106の過充電保護機能は、過充電によるモジュールの発熱・破裂などを防ぐために、過充電検出電圧以上のときに充電電流を遮断して充電を停止するように構成されている。
一般に、このような監視回路の監視下にある電源モジュールに対し、これとは別個にリチウムイオンキャパシタを並列接続する場合、監視回路の監視範囲は、電源モジュールを構成するリチウムイオン二次電池のセルに限られ、従来とはなんら変るものではない。そのため、リチウムイオン二次電池の最大動作電圧においては劣化の程度の高いリチウムイオンキャパシタの早期劣化を抑制する上では不十分なのである。
そこで、例えば、リチウムイオン二次電池からなるセルに対し、リチウムイオンキャパシタを並列接続し、キャパシタを含めた各セルの端子電圧を監視回路で監視することも考えられる。しかし、この場合には、リチウムイオンキャパシタの早期劣化の防止を優先して、監視回路で最大動作電圧として設定する上限電圧を下げてしまえば、リチウムイオンキャパシタの早期劣化を防止可能とはなるものの、リチウムイオン二次電池の最大動作電圧の近傍領域を有効には使用できなくなる。そのため、この方策では、電源容量の向上という課題に対しては未だ検討の余地が残される。特に、携帯機器における電源容量の向上は重要な課題である。
そこで、本発明は、このような問題点に着目してなされたものであって、瞬間的高エネルギー要求に応答可能であり、リチウムイオンキャパシタの早期劣化を防止しつつも、電源容量を最大限に使用し得る電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法を提供することを目的としている。
上記課題を解決するために、本発明のうち第一の態様は、充放電の繰り返しが可能な二次電池を有する電源供給システムであって、
前記二次電池としてリチウムイオン二次電池を含む電源モジュールと、
前記電源モジュールが接続される機器本体側に接続されたリチウムイオンキャパシタを含む補助モジュールと、
を備え、
前記電源モジュールは、
前記リチウムイオン二次電池と、
前記リチウムイオン二次電池の端子電圧を個別に監視する監視回路と、
前記リチウムイオン二次電池の正側ラインに接続された正極端子と、
前記リチウムイオン二次電池の負側ラインに接続された負極端子と、
前記リチウムイオン二次電池の負側ラインに直列接続され、該リチウムイオン二次電池が過充電または過放電になったときに回路を遮断するための第1のスイッチング素子と、
を備え、
前記正極端子及び前記負極端子間に前記機器本体が接続され、
前記補助モジュールは、
前記リチウムイオン二次電池に並列接続される前記リチウムイオンキャパシタと、
前記リチウムイオンキャパシタの接続を開閉する第2のスイッチング素子と、
前記正極端子及び前記負極端子間に供給される電圧である前記リチウムイオン二次電池の端子電圧を監視し、監視している電源ラインの電圧に基づいて前記第2のスイッチング素子を開閉可能な保護回路と
を備え、
前記保護回路は、前記リチウムイオンキャパシタの満充電電圧を、前記リチウムイオン二次電池の最大動作電圧よりも低い値に設定された上限電圧に制御するように前記スイッチング素子を開閉することを特徴とする。
ここで、「最大動作電圧」とは、本質的には材料によって定まる値であるが、安全性とサイクル特性を評価した上で電池メーカーが仕様として設定する値である。例えば、正極にコバルト酸リチウムを使用した一般的なリチウムイオン二次電池の場合は、4.2Vに設定されることが多い。
第一の態様に係る電源供給システムによれば、リチウムイオン二次電池に並列接続されるリチウムイオンキャパシタを備えるので、瞬間的高エネルギー要求に応答可能である。また、後述するように、放電末期側でのシステムの本体側で制御する下限電圧に余裕代を見込むことで、不測のIRドロップによる回路切断を防止することができる。したがって、電源供給システムの有効な使用可能領域を低電圧側に広げることができる。そのため、システムの本体側での電源供給システムの使い勝手が格段に向上する。
そして、第一の態様に係る電源供給システムによれば、リチウムイオンキャパシタの接続を開閉する第2のスイッチング素子と、この第2のスイッチング素子を開閉可能な保護回路とを備え、この保護回路が、電源ラインに供給されるリチウムイオン二次電池の電圧に基づいて、リチウムイオンキャパシタの満充電電圧を、リチウムイオン二次電池の最大動作電圧よりも低い値に設定されたリチウムイオンキャパシタの最大動作電圧に制御するように前記第2のスイッチング素子を開閉するので、リチウムイオンキャパシタのみを回路から切り離し、その上限電圧を越えてリチウムイオン二次電池の最大動作電圧までの領域での使用を回避することができる。一方、前記リチウムイオン二次電池については、リチウムイオン二次電池の電圧を監視する監視回路が過充電・過放電等を検出しない限り、前記第2のスイッチング素子の開閉によらず回路との接続が維持されるから、その最大動作電圧までの領域を継続して使用できる。したがって、リチウムイオンキャパシタの早期劣化を防止しつつも、電源容量を最大限に使用することができる。
なお、リチウムイオンキャパシタの最大動作電圧とリチウムイオン二次電池の最大動作電圧の間の領域においては、リチウムイオンキャパシタはスイッチング素子によって回路から切り離されているが、この領域においてはリチウムイオン二次電池の内部抵抗が比較的低いために、リチウムイオン二次電池のみでも瞬間的高エネルギー要求に応答可能である。また、応答によってリチウムイオン二次電池から供給される電源ラインの電圧がリチウムイオンキャパシタの最大動作電圧以下になった場合には、第2のスイッチング素子が閉じることによって、直ちにリチウムイオンキャパシタが並列に接続されるため、瞬間的な高エネルギー要求に応答可能となる。
また、第一の態様に係る電源供給システムにおいて、前記リチウムイオン二次電池が、遷移金属とリチウムとの複合酸化物を正極活物質とする正極と、リチウムイオンを吸蔵放出可能な材料を負極活物質とする負極と、リチウムイオンを含む電解質を有機溶媒に溶解させた非水系電解液とを有し、前記リチウムイオンキャパシタが、活性炭を正極活物質とする正極と、活性炭の表面に炭素質材料を被着させた複合多孔質炭素材料を負極活物質とする負極と、リチウムイオンを含む電解質を有機溶媒に溶解させた非水系電解液とを有するものであることは好ましい。
さらに、第一の態様に係る電源供給システムにおいて、前記リチウムイオンキャパシタの負極活物質である複合多孔質炭素材料は、下記の条件(1)および(2)を満たすことが好ましい。
(1) BJH法で算出されたメソ孔量(直径が2nm以上50nm以下である細孔の量)Vm1(cc/g)が、0.01≦Vm1<0.10である。
(2) MP法で算出されたマイクロ孔量(直径が2nm未満である細孔の量)Vm2(cc/g)が、0.01≦Vm2<0.30である。
なおさらに、第一の態様に係る電源供給システムにおいて、前記リチウムイオンキャパシタの正極活物質である活性炭は、下記の条件(3)〜(5)を満たすことが好ましい。
(3) BJH法で算出されたメソ孔量V1(cc/g)が、0.3≦V1<0.8である。
(4) MP法で算出されたマイクロ孔量V2(cc/g)が、0.5≦V2<1.0である。
(5) BET法で測定された比表面積が1500m2/g以上3000m2/g以下である。
このような構成であれば、上述したリチウムイオンキャパシタの満充電電圧の上限電圧(4.0V)等の条件を一層安定して繰り返し充放電可能なリチウムイオンキャパシタとすることができる。
さらに、上記課題を解決するために、本発明のうち第二の態様は、充放電の繰り返しが可能な二次電池を有する電源供給システムを備える携帯可能な携帯機器であって、前記電源供給システムとして、第一の態様に係る電源供給システムを備えていることを特徴とする携帯機器である。
第二の態様に係る携帯機器によれば、携帯機器が、第一の態様に係る電源供給システムを備えているので、瞬間的高エネルギー要求に応答可能であり、リチウムイオンキャパシタの早期劣化を防止しつつも、電源容量を最大限に使用することができる。
さらに、上記課題を解決するために、本発明のうち第の態様は、第一の態様に係る電源供給システムに適用する電源供給システムの充電方法であって、
リチウムイオン二次電池を含む前記電源供給システムにおいて、該リチウムイオン二次電池に対する定電流充電を開始するとともに、リチウムイオンキャパシタの接続を開閉する第2のスイッチング素子をON状態にして該リチウムイオンキャパシタに対して定電流充電を開始する充電開始ステップと、
前記リチウムイオン二次電池の端子電圧及び前記リチウムイオンキャパシタの端子電圧が、該リチウムイオンキャパシタの最大動作電圧である第1の充電終了検出電圧に達したか否かを判断し、該リチウムイオンキャパシタの端子電圧が前記第1の充電終了検出電圧に達したと判断するまで該リチウムイオンキャパシタに対する定電流充電を継続する第1の定電流充電ステップと、
前記リチウムイオン二次電池の端子電圧及び前記リチウムイオンキャパシタの端子電圧が前記第1の充電終了検出電圧に達したと判断した場合に、前記第2のスイッチング素子をOFF状態として該リチウムイオンキャパシタに対する定電流充電を終了するキャパシタ充電終了ステップと、
前記キャパシタ充電終了ステップにおいて、前記リチウムイオンキャパシタに対する定電流充電を終了後、前記リチウムイオン二次電池に対する定電流充電のみを継続し、該リチウムイオン二次電池の端子電圧が、該リチウムイオン二次電池の最大動作電圧である第2の充電終了検出電圧に達したと判断するまで該リチウムイオン二次電池に対する定電流充電を継続する第2の定電流充電ステップと、
前記第2の定電流充電ステップにおいて、前記リチウムイオン二次電池の端子電圧が前記第2の充電終了検出電圧に達したと判断した場合に、前記リチウムイオン二次電池に対する定電流充電を定電圧充電に切り替えて充電を継続する定電圧充電ステップと、
前記リチウムイオン二次電池に対する充電時間が所定時間に達した場合、又は前記リチウムイオン二次電池における充電電流が所定の充電終了検出電流に達した場合に、該リチウムイオン二次電池に対する定電圧充電を終了する充電終了ステップと、
を備えることを特徴とする。
さらに、上記課題を解決するために、本発明のうち第四の態様は、第一の態様に係る電源供給システムに適用する電源供給システムに適用する電源供給システムの放電方法であって、
リチウムイオン二次電池を含む前記電源供給システムにおいて、放電制御処理が実行される放電制御処理実行ステップと、
リチウムイオンキャパシタを含む前記電源供給システムにおいて、該リチウムイオンキャパシタの端子電圧が、該リチウムイオンキャパシタの最大動作電圧である第1の充電終了検出電圧以上か否かを判断し、該リチウムイオンキャパシタの端子電圧が前記第1の充電終了検出電圧以上でないと判断するまで該リチウムイオンキャパシタの接続を開閉する第2のスイッチング素子をOFF状態にして、該リチウムイオンキャパシタを回路から切り離した状態とするキャパシタ切断ステップと、
前記キャパシタ切断ステップにおいて、前記リチウムイオンキャパシタの端子電圧が前記第1の充電終了検出電圧以上でないと判断した場合に、前記第2のスイッチング素子をON状態に切り換えて、該リチウムイオンキャパシタを接続状態として、該リチウムイオンキャパシタ及び前記リチウムイオン二次電池を並列接続状態とし、該リチウムイオンキャパシタ及び該リチウムイオン二次電池の放電を開始する放電開始ステップと、
前記リチウムイオンキャパシタの端子電圧及び前記リチウムイオン二次電池の端子電圧が所定の放電終了検出電圧に達するまで、該リチウムイオンキャパシタ及び該リチウムイオン二次電池の放電を継続する放電ステップと、
前記リチウムイオンキャパシタの端子電圧及び前記リチウムイオン二次電池の端子電圧が前記所定の放電終了検出電圧に達したと判断した場合に、該リチウムイオンキャパシタ及び該リチウムイオン二次電池の放電を終了する放電終了ステップと、
を備えることを特徴とする。
さらに、上記課題を解決するために、本発明のうち第の態様は、第一の態様に係る電源供給システムの充放電方法であって、
前記電源供給システムの充電方法は、第二の態様に係る電源供給システムの充電方法であり、
前記電源供給システムの放電方法は、第三の態様に係る電源供給システムの放電方法である、ことを特徴とする。
上述のように、本発明によれば、瞬間的高エネルギー要求に応答可能であり、リチウムイオンキャパシタの早期劣化を防止しつつも、電源容量を最大限に使用し得る電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法を提供することができる。
本発明に係る電源供給システムの一実施形態を説明する模式図である。 本発明に係る電源供給システムでの充電方法の一実施形態を説明する図であり、同図は、監視回路および保護回路にて実行される充電時の充電制御処理のフローチャートを示している。 本発明に係る電源供給システムでの放電方法の一実施形態を説明する図であり、同図は、監視回路および保護回路にて実行される放電時の放電制御処理のフローチャートを示している。 本発明に係る電源供給システムの動作を説明するグラフであり、同図は充電時のスイッチング素子のOFFと放電時のスイッチング素子のONのタイミング、および定電流充電と定電圧充電とのきりかわりのタイミングを示している。 本発明に係る電源供給システムの作用効果を説明するグラフであり、同図はリチウムイオン二次電池の放電容量と電圧、およびその内部抵抗の関係を示している。 本発明に係る電源供給システムの作用効果を説明するグラフであり、同図はリチウムイオン二次電池の内部抵抗がリチウムイオンキャパシタとの協働により低下する関係を示している。 本発明に係る電源モジュールの一実施形態を説明する模式図である。 従来の電源装置(電源モジュール)の一例を説明する模式図である。
以下、本発明の一実施形態について、図面を適宜参照しつつ詳しく説明する。
図1に、本発明に係る電源供給システムを備える携帯機器の一実施形態を示す。ここで、この電源供給システム10は、充放電の繰り返しが可能な二次電池を有するものである。また、本実施形態での携帯機器は、例えば携帯電話である。
詳しくは、同図に示すように、この電源供給システム10は、リチウムイオン二次電池を含む電源モジュール1と、この電源モジュール1が接続される負荷あるいは充電器(以下「機器本体」ともいう。)側に接続されたセル7を含む補助モジュールとから構成されている。本実施形態は、既にリチウムイオン二次電池を含む電源モジュールを使用している機器本体に補助モジュールを内蔵して使用するのに適した実施形態である。
電源モジュール1は、リチウムイオン二次電池(以下、単に「電池」ともいう)3からなるセル8と、このセル8の端子電圧を個別に監視する監視回路6とを有している。なお、図1ではセル8が1個の場合について示しているが、セル8が複数個直列接続される場合には、それぞれに監視回路6が備えられる。
セル8(電池3)には、その正側ラインに端子T1を、負側ラインには端子T2を有し、これら端子間に機器本体2が接続されるようになっている。また、セル8の負側ラインには、セル8が過充電または過放電になったときに回路を遮断するためのFET9a、FET9bが直列に接続されている。
監視回路6は、セル8(つまり、電池3からなる最小構成要素)の各端子電圧を個別に監視可能に接続され、満充電電圧が、電池3の最大動作電圧(本実施形態の例では4.2V)になるように、充電電流、または充電電流および電圧が制御される。なお、この電池3は、その最大動作電圧たる上限電圧(4.2V)〜下限電圧(3.0V)の範囲で使われ、この監視回路6が、これらを監視(過充電保護、充電検出終了、過放電保護、および必要に応じて定電流充電の停止と定電圧充電への切替)している。
詳しくは、この監視回路6は、過充電、過放電、過電流、温度保護等の検出回路を内蔵しており、これら内蔵された検出回路からの検出信号に基づいて制御信号を生成する論理回路を備えている。また、この監視回路6は、外部との接続のためにVSS端子6a、VDD端子6b、DOUT端子6c、COUT端子6d、V−(マイナス)端子6e、TEMP端子6tを有する。
VSS端子6aはGND端子であり、電池3の負側ラインに接続されている。また、VDD端子6bは電源入力端子であり、電池3の正側ラインに接続されている。DOUT端子6cは、内蔵している検出回路からの過放電あるいは過電流を検出したときに、対応する制御信号を出力するものであり、FET9aのゲートに接続されている。また、COUT端子6dは、過充電を検出したときに対応する制御信号を出力するものであり、FET9bのゲートに接続されている。
V−端子6eは、負荷あるいは充電器に接続されるべき負側ラインに抵抗Rを介して接続されており、過電流検出に使用される。また、TEMP端子6tは、温度保護回路の入力端子であり、電池3が設置される箇所の周囲温度を検出し、予め設定された温度に周囲温度が上昇すると温度検出信号を出力するようになっている。なお、図には記載されていないが、周囲温度の上昇は例えばサーミスタ等の温度検出素子で検出し監視回路6に入力される。
一方、予備モジュールのセル7は、リチウムイオンキャパシタ(以下、単に「キャパシタ」ともいう)4からなり、上記セル8の電池3に対して並列接続されるようになっている。さらに、予備モジュールは電源ライン(T1とT2)に供給される電圧を監視する保護回路5と、キャパシタ4に直列接続されたFET9とを有している。
FET9は、キャパシタ4の接続を開閉するスイッチング素子である。そして、保護回路5は、監視している電源ラインの電圧に基づいて、キャパシタ4の満充電電圧を、上記セル8の最大動作電圧(本実施形態の例では4.2V)よりも低い値に設定された上記セル7の上限電圧(本実施形態の例では4.0V)に制御するようにFET9を開閉するようになっている。
なお、図1ではセル8が1個の場合について示しているが、セル8が複数個直列接続される場合には、FET9を開閉する電圧を適宜変更すればよい。たとえばセル8が3個直列接続されている場合には、電源ライン(T1とT2)に供給される最大電圧は本実施例の形態では4.2V×3=12.6Vになるが、この場合は、4.0V×3=12.0Vを上限としてキャパシタ4の接続を開閉するスイッチング素子であるFET9を制御すればよい。
ここで、上記電池3は、遷移金属とリチウムとの複合酸化物を正極活物質とする正極と、リチウムイオンを吸蔵放出可能な材料を負極活物質とする負極と、リチウムイオンを含む電解質を有機溶媒に溶解させた非水系電解液とを有するものである。好適には正極活物質としてコバルト酸リチウム、マンガン酸リチウム、またはニッケル酸リチウム、負極活物質としてグラファイト、またはコークスが使用される。以下においては、正極活物質としてコバルト酸リチウム、負極活物質としてグラファイトを使用した電池3を代表例として説明する。なお、この電池3の最大動作電圧は、4.2Vである。
また、上記キャパシタ4は、活性炭を正極活物質とする正極と、リチウムイオンを吸蔵放出可能な材料を負極活物質とする負極と、リチウムイオンを含む電解質を有機溶媒に溶解させた非水系電解液とを有するものである。好適には、負極活物質として、グラファイト、難黒鉛化性炭素材料(ハードカーボン)、または活性炭の表面に炭素質材料を被着させた複合多孔質炭素材料が使用される。
なお、上記キャパシタ4にかえて、正極活物質と負極活物質がともに活性炭でありテトラアルキルアンモニウム塩などの四級アンモニウム塩を有機溶媒に溶解させた非水系電解液を有する電気二重層キャパシタを使用することも可能である。しかし、電気二重層キャパシタは、その最大動作電圧が2.5〜3.0Vであるため、満充電電圧を4.2〜4.3Vに設定して利用されることが多い前述のリチウムイオン二次電池と組合せて使用するためには、直列に2個必要となる。そのため、特に携帯機器用の電源システムに採用する上では、体積やコストが増加するため好ましくはない。
なお、キャパシタ4は、単数または複数枚の正極と負極とセパレータとを積層して電極を形成し、これを外側樹脂層、アルミニウム箔、及び内側樹脂層を有するラミネートフィルムでパッケージして、電解液注入後に密閉して構成される薄型外装体を使用することが好ましい。
なお、上述したキャパシタ4の負極活物質は、下記の条件(1)および(2)を満たす複合多孔質炭素材料であることがより好ましい。
(1) BJH法で算出されたメソ孔量(直径が2nm以上50nm以下である細孔の量)Vm1(cc/g)が、0.01≦Vm1<0.10である。
(2) MP法で算出されたマイクロ孔量(直径が2nm未満である細孔の量)Vm2(cc/g)が、0.01≦Vm2<0.30である。
また、上述したキャパシタ4の正極活物質は、下記の条件(3)〜(5)を満たす活性炭であることが好ましい。
(3) BJH法で算出されたメソ孔量V1(cc/g)が、0.3≦V1<0.8である。
(4) MP法で算出されたマイクロ孔量V2(cc/g)が、0.5≦V2<1.0である。
(5) BET法で測定された比表面積が1500m2/g以上3000m2/g以下である。
キャパシタ4の負極活物質ないし正極活物質が、上記(1)〜(5)を満たせば、上述した条件を備えてなる電池3およびこれに並列接続されたキャパシタ4により、上述した電池3の上限電圧(4.2V)の条件を一層安定して繰り返して充放電することができる。本実施形態の電源供給システムにおいては、これら条件(1)〜(5)を満たした電池3およびキャパシタ4を採用している。
次に、この電源供給システム10を備える携帯機器の充放電方法について図2、図3および図4を参照しつつ説明する。なお、図2は、上述した電源供給システム10を備える携帯機器での充電方法の説明図であり、同図は、保護回路5および監視回路6を含む電源供給システム10にて実行される充電制御処理のフローチャートを示している。また、図4において、上側の図が充放電曲線(横軸に時間、縦軸に電圧)であって符号V1が電池の最大動作電圧(例えば4.2V)、V2がキャパシタの最大動作電圧(例えば4.0V)、V3が電池の下限電圧(例えば3.0V)であり、下の図が印加される電流を示している。
図4に示すように、この電源供給システム10の充電方法では、定電流充電(同図の符号CC)によって充電を開始するものである。そして、キャパシタ4については、その最大動作電圧(4.0V)を超え電池3の最大電圧までの電圧領域を意図的に使わずに、最大動作電圧を満充電電圧の設定電圧としている。一方、電池3のセル8については、その監視回路6は、電池3が充電されるときに、一定電流が印加されて電池3の最大動作電圧(4.2V)まで充電を許容しており、この際には、定電圧充電(同図の符号CV)によって充電を行なうものである。
詳しくは、キャパシタの充電終了検出電圧(4.0V)未満の充電状態において、この電源供給システム1にて充電制御処理が実行されると、図2に示すように、ステップS1に移行して、定電流充電(CC)を開始する。充電初期は、充電状態が充電終了検出電圧(4.0V)未満なので、キャパシタ4の接続を開閉するFET9は、キャパシタ4を接続(ON)状態としている(ステップS1)。続くステップS2では、保護回路5が、セル7(キャパシタ4)の端子電圧を監視して、セル7の端子電圧が充電終了検出電圧(4.0V)に達したか否かを判断する。そして、充電終了検出電圧に達していれば(Yes)ステップS3に移行し、そうでなければ(No)定電流充電(CC)を継続する。ステップS3では、保護回路5が、FET9を開く(OFF)ことにより、キャパシタ4を回路から切り離して、ステップS4に移行する。
ステップS4では、セル8(電池3)についてのみ充電が継続され、その監視回路6が、電池3の充電量が次第に増加して、電池3の充電終了検出電圧(4.2V)に達したか否かを監視する。つまり、セル8が充電終了検出電圧(4.2V)に達していれば(Yes)ステップS5に移行し、そうでなければ(No)定電流充電(CC)を継続する。ステップS5では、定電流充電(CC)から定電圧充電(CV)に切り換えて充電を継続する。続くステップS6では、充電時間(t)ないし充電終了検出電流(I)に達したか否かを監視して、達したとき(t≧t1orI≦I1)には処理を終了し(Yes)、そうでなければ(No)セル8への定電圧充電(CV)を継続するようになっている。
次に、上述した電源供給システム10を備える携帯機器の放電方法について図3を参照しつつ説明する。なお、同図は、電源供給システム1を備える電源装置を用いた放電方法の説明図であり、同図は、保護回路5および監視回路6を含むシステムにて実行される充電制御処理のフローチャートを示している。
この電源供給システム1にて放電制御処理が実行されると、図3に示すように、ステップS1に移行して、セル7の保護回路5が、充電終了検出電圧(4.0V)以上の充電状態か否かを監視し、充電終了検出電圧(4.0V)以上であれば(Yes)、ステップS2に移行して保護回路5はFET9を開として、キャパシタ4を回路から切り離した状態とする(OFF)。また、充電終了検出電圧(4.0V)未満であれば(No)、ステップS3に移行して、保護回路5はFET9を閉に切り換えて、キャパシタ4を接続(ON)状態とする。これにより、セル7とセル8とが並列接続された状態となる。続くステップS4では、保護回路5および監視回路6が、充電量が次第に減少して放電終了検出電圧(3.0V)に達したか否かを監視する。つまり、セル7ないし8が放電終了検出電圧(3.0V)に達していれば(Yes)放電を終了し、そうでなければ(No)放電を継続する。
次に、この電源供給システム10の作用・効果、並びにこの電源供給システム10を備える携帯機器の作用・効果について図5〜図6を参照しつつ説明する。なお、図5に示す放電曲線(横軸に放電容量、縦軸に電圧または内部抵抗)において符号V1が電池の最大動作電圧(例えば4.2V)、V2がキャパシタの最大動作電圧(例えば4.0V)、V3がシステム側で制御する下限電圧(例えば3.3V)、V4が電池の下限電圧(例えば3V)である。
ここで、携帯電話機に採用する場合は、電源モジュール1には一のセル8を備えればよく、図1の構成のみによって電源供給システム10を構成することができる。
ところで、図6に示すように、リチウムイオン二次電池の内部抵抗cは、満充電状態V1(例えば4.2V)に近いときは小さく、放電が進み使用可能容量が少なくなってくると大きくなってくる。しかし、この内部抵抗cが大きくなることは機器を使用する上では大きな問題である。
例えば携帯電話機のGSM等の通信方式では、常時流れているベースの電流が非常に小さい値(例えば1mAや10mA)であるのに対して、ピーク時には大きい値(例えば1A)の電流を流すという通信を行なっている。しかしながら、リチウムイオン二次電池は大電流の場合には取り出せる放電量が小電流の場合に比べて低下する。
今、大電流放電のときに、モジュール(電池パック)の放電が進み内部抵抗cが図6に示すように、大きな状態C1であると、この内部抵抗C1によってIRドロップが生じ、これにより、監視回路6が検出するセル8の電圧が仕様電圧(例えば3Vであって、図5に示す下限電圧V4)を下回ってしまうことがある。そうすると、過放電による電池の劣化を防ぐために、監視回路6の過放電保護機能が放電終了と判断し、放電電流を遮断して放電を停止してしまう(図3のステップS4)。したがって、携帯電話機が突然使用できない状態になってしまう。そこで、携帯電話機の本体システム側2としては、本体システム側で制御する下限電圧V3には、電池の下限電圧V4(例えば3V)に余裕代(例えば0.3V)を見込み、図5に示す下限電圧V3(例えば3.2Vや、3.4V、3.5V等)を設定することで、このような不測のIRドロップによる回路切断を防止している。つまり、実際に使っている範囲は、機器のシステム側で制御され、実質的には、電圧V3でシステム側が切っており、放電末期部分が有効に使用されないことになる。
すなわち、本発明の電源供給システム10による第一のメリットは、セル8(電池3)に対して並列にセル7(キャパシタ4)が接続されるので、仮にピーク時に1Aが流れた場合であっても、キャパシタ4が電池3をアシストして、キャパシタ4側からも電流を供給可能な点である。これにより、図6に示すように、電池3とキャパシタ4との協働によって、大電流放電時においても内部抵抗を同図の符号C2に示すグラフとすることができる。そのため、この電源供給システム10によれば、ピーク時にもセル8のIRドロップによる電圧低下を小さく抑えることができる。これにより、携帯電話機のシステム側2で制御する下限電圧V3を放電末期側に下げる(図5で下側に移動する)ことができる。したがって、この電源供給システム10の採用により、これまで使われていなかった放電末期側領域を有効に使用できる。そのため、瞬間的高エネルギー要求に応答可能なだけでなく、使用者側からみれば、従来よりも長い使用時間を確保することが可能となるのである。
さらに、この電源供給システム10の第二のメリットとしては、キャパシタ4については、その最大動作電圧を超える放電初期領域を意図的に使わずに、4.0Vを上限電圧として設定することでキャパシタ4の早期劣化を防止しつつも、電池3の電源容量を最大限に使用し得る点である。
通常、リチウムイオンキャパシタは、繰り返し使用することによって劣化が生じる。このような繰り返し使用による劣化は、リチウムイオンキャパシタ内の電解液が分解されてガスが生じ、このガスの発生によって劣化が進行することによる。そして、キャパシタ4の放電曲線において4.2V〜4.0Vの領域での繰り返し使用は、このような劣化の程度がこれよりも電圧の低い領域での繰り返し使用と比べて顕著なのである。
つまり、この電源供給システム10によれば、キャパシタ4の保護回路5が、最大動作電圧を上限電圧(4.0V)としてセル7を管理しているので、この4.2V〜4.0Vの領域を意図的に使用しないことによって、キャパシタ4の劣化を抑制することができる。そのため、劣化の激しい領域を避けて、その寿命を延長することができる。
一方、電池3のセル8については、その監視回路6は、放電初期の4.2〜4.0Vまでの領域をも用いて充電を行なうので、電源容量を最大限に使用することができる。つまり、図5に符号Vsで示すように、満充電に対する放電初期の4.2〜4.0Vまでの領域は、4.2〜3.0Vまでの放電曲線に対して、全使用時間の約10〜20%の容量をもっているのであるが、この領域を有効に使用することが可能となる。そのため、上述した第一のメリットと相まって、全体として有効使用範囲を広げることができる。したがって、これを携帯電話に用いた場合には、実際の通話時間をより延長させられる上、キャパシタ4の早期劣化を防止しつつも、電源容量を最大限に使用することができるのである。
上述したように、この電源供給システム10によれば、リチウムイオン二次電池3(セル8)に並列接続されるリチウムイオンキャパシタ4(セル7)を備えるので、瞬間的高エネルギー要求に応答可能であり、また、放電末期側においても、不測のIRドロップによる回路切断を防止することができる。そのため、電源供給システム10の有効な使用可能領域を低電圧側に広げることができる。したがって、放電末期側でのシステム本体側2で制御する下限電圧に余裕代を見込むことが可能となり、携帯機器の1回の充電あたりの使用可能時間を長くできるため使い勝手が格段に向上する。
そして、この電源供給システム10によれば、キャパシタ4の接続を開閉するFET9と、このFET9を開閉可能な保護回路5とを備え、この保護回路5が、電池3の端子電圧に基づいて、キャパシタ4の満充電電圧を、電池3の最大動作電圧よりも低い値に設定された上限電圧に制御するようにFET9を開閉するので、キャパシタ4のみを回路から切り離し、これにより、キャパシタ4については、その最大動作電圧を超えた領域での使用を回避することができる。一方、電池3については、回路との接続が維持されるから、その最大動作電圧(4.2V)までの領域を継続して使用できる。したがって、キャパシタ4の早期劣化を防止しつつも、電源容量を最大限に使用することができる。
なお、キャパシタ4からなるセル7の上限電圧を4.0Vに設定する臨界的意義としては、上述した本実施形態の電池3の最大動作電圧の4.2Vに対して、仮に4.1Vに設定するとキャパシタ4の劣化が進行し易くなるからである。これに対し、4.0Vに設定した場合には、4.1V充電に対して、約10%充電容量が低下するものの、サイクル寿命は大幅に改善される。他方、3.9Vをキャパシタ4の上限電圧とすると、電圧が低い場合には当然に充電容量が減少するため、例えば携帯電話機に採用した場合の通話時間が短くなるからである。
以上説明したように、この電源供給システム10、およびこれを備える携帯電話によれば、瞬間的高エネルギー要求に応答可能であり、リチウムイオンキャパシタ4の早期劣化を防止しつつも、電源容量を最大限に使用することができる。なお、本発明に係る電源供給システムおよびこれを備える携帯機器は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。
例えば、上記実施形態では、電源供給モジュール1と、機器本体側2とによって電源供給システム10を構築した携帯電話機の例で説明したが、本体側の携帯機器がこれに限定されないのは勿論であり、例えば、ノートパソコン、デジタルカメラ、ビデオカメラ、携帯ゲーム機、その他の携帯可能な電子機器等の携帯機器に用いることができる。
また、例えば上記実施形態では、保護回路5は、その制御する満充電電圧が、リチウムイオンキャパシタの最大動作電圧4.0Vである例を説明したが、これに限らず、保護回路5は、電池3の最大動作電圧よりも低い値に設定された上限電圧以下に満充電電圧を制御する構成とすることができる。
さらに、上記実施形態では、電源供給システム10の充電方法および放電方法の一例を説明したが、本発明に係る電源供給システムに対する充放電方法が、これに限定されないのは勿論である。
また、上記実施形態では、キャパシタ4の負極活物質ないし正極活物質が、上記条件(1)〜(5)を満たしたものを採用した例で説明したが、これに限定されず、種々の負極活物質、正極活物質を用いたセルおよびキャパシタに対して適用可能である。しかし、上述したキャパシタ4の上限電圧(4.0V)条件を一層安定して繰り返し充放電可能なセル7を構成する上では、上記条件(1)〜(5)を満たしたものを採用することが好ましい。
また、例えば上記実施形態では、電源供給モジュール1と、機器本体側2とによって電源供給システム10を構築した例を説明したが、本発明に係る電源供給システムを機器本体側に依存せずに構成してもよい。
具体的には、図7に示すように、上記実施形態での電源供給モジュール1側のみによって、キャパシタ4、FET9および保護回路(5)を備える電源モジュール20とすることで、電源供給システム10を構築してもよい。つまり、同図に示す電池3の監視回路6は、キャパシタ4の保護回路5をも兼ねており、この監視回路6が、その監視する端子電圧に基づいて、キャパシタ4の満充電電圧を、リチウムイオン二次電池の最大動作電圧よりも低い値に設定された上限電圧に制御するようにFET9を開閉するようになっている。本実施形態は、既にリチウムイオン二次電池を有する電源モジュールを使用している機器本体において、該電源モジュールに置き換えて使用するか、または新たに電源モジュールを設計しなおす場合に適した実施形態である。
ここで、この電源モジュール20のみによって電源供給システム10を構築する場合には、電池3の底面積とキャパシタ4の底面積とをほぼ同等にしておけば、電池3のみの場合に対してわずかな厚みの増加で無駄なスペースを必要とせずにキャパシタ4の実装が可能となるので好ましい。
そして、このような構成であれば、携帯機器の本体システム側の制御回路やプログラムも変えることなく電源供給システム10を構築することができる。そのため、携帯機器のコストアップも抑制しつつ、本体システムに依存せずに、瞬間的高エネルギー要求に応答可能であり、リチウムイオンキャパシタの早期劣化を防止しつつも、電源容量を最大限に使用することができる。
本発明に係る電源供給システムおよびこれに用いられる電源モジュールは、電源装置の分野で好適に利用でき、例えば、ノートパソコン、デジタルカメラ、ビデオカメラ、携帯ゲーム機、その他の携帯可能な電子機器等の携帯機器の電源装置として特に好適に利用できる。
1 電源モジュール
2 機器本体側
3 電池(リチウムイオン二次電池)
4 キャパシタ(リチウムイオンキャパシタ)
5 保護回路
6 監視回路
7 セル
8 セル
9、9a、9b FET(スイッチング素子)
10 電源供給システム
20 電源モジュール

Claims (6)

  1. 充放電の繰り返しが可能な二次電池を有する電源供給システムであって、
    前記二次電池としてリチウムイオン二次電池を含む電源モジュールと、
    前記電源モジュールが接続される機器本体側に接続されたリチウムイオンキャパシタを含む補助モジュールと、
    を備え、
    前記電源モジュールは、
    前記リチウムイオン二次電池と、
    前記リチウムイオン二次電池の端子電圧を個別に監視する監視回路と、
    前記リチウムイオン二次電池の正側ラインに接続された正極端子と、
    前記リチウムイオン二次電池の負側ラインに接続された負極端子と、
    前記リチウムイオン二次電池の負側ラインに直列接続され、該リチウムイオン二次電池が過充電または過放電になったときに回路を遮断するための第1のスイッチング素子と、
    を備え、
    前記正極端子及び前記負極端子間に前記機器本体が接続され、
    前記補助モジュールは、
    前記リチウムイオン二次電池に並列接続される前記リチウムイオンキャパシタと、
    前記リチウムイオンキャパシタの接続を開閉する第2のスイッチング素子と、
    前記正極端子及び前記負極端子間に供給される電圧である前記リチウムイオン二次電池の端子電圧を監視し、監視している電源ラインの電圧に基づいて前記第2のスイッチング素子を開閉可能な保護回路と
    を備え、
    前記保護回路は、前記リチウムイオンキャパシタの満充電電圧を、前記リチウムイオン二次電池の最大動作電圧よりも低い値に設定された上限電圧に制御するように前記スイッチング素子を開閉する
    ことを特徴とする電源供給システム。
  2. 前記リチウムイオン二次電池は、遷移金属とリチウムとの複合酸化物を正極活物質とする正極と、リチウムイオンを吸蔵放出可能な材料を負極活物質とする負極と、リチウムイオンを含む電解質を有機溶媒に溶解させた非水系電解液とを有し、
    前記リチウムイオンキャパシタは、活性炭を正極活物質とする正極と、活性炭の表面に炭素質材料を被着させた複合多孔質炭素材料を負極活物質とする負極と、リチウムイオンを含む電解質を有機溶媒に溶解させた非水系電解液とを有することを特徴とする請求項1に記載の電源供給システム。
  3. 充放電の繰り返しが可能な二次電池を有する電源供給システムを備える携帯可能な携帯機器であって、
    前記電源供給システムとして、請求項1若しくは2に記載の電源供給システムを備えていることを特徴とする携帯機器。
  4. 請求項1に記載の電源供給システムに適用する電源供給システムの充電方法であって、
    リチウムイオン二次電池を含む前記電源供給システムにおいて、該リチウムイオン二次電池に対する定電流充電を開始するとともに、リチウムイオンキャパシタの接続を開閉する第2のスイッチング素子をON状態にして該リチウムイオンキャパシタに対して定電流充電を開始する充電開始ステップと、
    前記リチウムイオン二次電池の端子電圧及び前記リチウムイオンキャパシタの端子電圧が、該リチウムイオンキャパシタの最大動作電圧である第1の充電終了検出電圧に達したか否かを判断し、該リチウムイオンキャパシタの端子電圧が前記第1の充電終了検出電圧に達したと判断するまで該リチウムイオンキャパシタに対する定電流充電を継続する第1の定電流充電ステップと、
    前記リチウムイオン二次電池の端子電圧及び前記リチウムイオンキャパシタの端子電圧が前記第1の充電終了検出電圧に達したと判断した場合に、前記第2のスイッチング素子をOFF状態として該リチウムイオンキャパシタに対する定電流充電を終了するキャパシタ充電終了ステップと、
    前記キャパシタ充電終了ステップにおいて、前記リチウムイオンキャパシタに対する定電流充電を終了後、前記リチウムイオン二次電池に対する定電流充電のみを継続し、該リチウムイオン二次電池の端子電圧が、該リチウムイオン二次電池の最大動作電圧である第2の充電終了検出電圧に達したと判断するまで該リチウムイオン二次電池に対する定電流充電を継続する第2の定電流充電ステップと、
    前記第2の定電流充電ステップにおいて、前記リチウムイオン二次電池の端子電圧が前記第2の充電終了検出電圧に達したと判断した場合に、前記リチウムイオン二次電池に対する定電流充電を定電圧充電に切り替えて充電を継続する定電圧充電ステップと、
    前記リチウムイオン二次電池に対する充電時間が所定時間に達した場合、又は前記リチウムイオン二次電池における充電電流が所定の充電終了検出電流に達した場合に、該リチウムイオン二次電池に対する定電圧充電を終了する充電終了ステップと、
    を備えることを特徴とする電源供給システムの充電方法。
  5. 請求項1に記載の電源供給システムに適用する電源供給システムの放電方法であって、
    リチウムイオン二次電池を含む前記電源供給システムにおいて、放電制御処理が実行される放電制御処理実行ステップと、
    リチウムイオンキャパシタを含む前記電源供給システムにおいて、該リチウムイオンキャパシタの端子電圧が、該リチウムイオンキャパシタの最大動作電圧である第1の充電終了検出電圧以上か否かを判断し、該リチウムイオンキャパシタの端子電圧が前記第1の充電終了検出電圧以上でないと判断するまで該リチウムイオンキャパシタの接続を開閉する第2のスイッチング素子をOFF状態にして、該リチウムイオンキャパシタを回路から切り離した状態とするキャパシタ切断ステップと、
    前記キャパシタ切断ステップにおいて、前記リチウムイオンキャパシタの端子電圧が前記第1の充電終了検出電圧以上でないと判断した場合に、前記第2のスイッチング素子をON状態に切り換えて、該リチウムイオンキャパシタを接続状態として、該リチウムイオンキャパシタ及び前記リチウムイオン二次電池を並列接続状態とし、該リチウムイオンキャパシタ及び該リチウムイオン二次電池の放電を開始する放電開始ステップと、
    前記リチウムイオンキャパシタの端子電圧及び前記リチウムイオン二次電池の端子電圧が所定の放電終了検出電圧に達するまで、該リチウムイオンキャパシタ及び該リチウムイオン二次電池の放電を継続する放電ステップと、
    前記リチウムイオンキャパシタの端子電圧及び前記リチウムイオン二次電池の端子電圧が前記所定の放電終了検出電圧に達したと判断した場合に、該リチウムイオンキャパシタ及び該リチウムイオン二次電池の放電を終了する放電終了ステップと、
    を備えることを特徴とする電源供給システムの放電方法。
  6. 電源供給システムの充放電方法であって、
    前記電源供給システムの充電方法は、請求項4に記載の電源供給システムの充電方法であり、
    前記電源供給システムの放電方法は、請求項5に記載の電源供給システムの放電方法である、
    ことを特徴とする電源供給システムの充放電方法。
JP2009299141A 2009-12-29 2009-12-29 電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法 Active JP5491169B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009299141A JP5491169B2 (ja) 2009-12-29 2009-12-29 電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299141A JP5491169B2 (ja) 2009-12-29 2009-12-29 電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法

Publications (2)

Publication Number Publication Date
JP2011139614A JP2011139614A (ja) 2011-07-14
JP5491169B2 true JP5491169B2 (ja) 2014-05-14

Family

ID=44350455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299141A Active JP5491169B2 (ja) 2009-12-29 2009-12-29 電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法

Country Status (1)

Country Link
JP (1) JP5491169B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101942501B1 (ko) * 2016-12-30 2019-01-28 (주)링크일렉트로닉스 무선전력전송을 이용한 디지털 도어락 시스템

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331966B1 (ko) * 2011-12-29 2013-11-25 삼성전기주식회사 전기 화학 캐패시터
JP2014017286A (ja) * 2012-07-05 2014-01-30 Asahi Kasei Corp 非水系リチウム型蓄電素子
EP3654486B1 (en) * 2017-07-13 2023-03-08 Panasonic Intellectual Property Management Co., Ltd. Power generation system and electric power system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211356A (ja) * 1994-01-26 1995-08-11 Sony Corp 電動車輌用電源装置
JP2005019762A (ja) * 2003-06-27 2005-01-20 Asahi Kasei Electronics Co Ltd 非水系リチウム型蓄電素子
JP4323405B2 (ja) * 2004-09-30 2009-09-02 株式会社日立超エル・エス・アイ・システムズ 電源装置の制御用半導体装置
JP2007282347A (ja) * 2006-04-05 2007-10-25 Teijin Ltd 電源システム
JP4828473B2 (ja) * 2007-06-08 2011-11-30 富士重工業株式会社 車両用制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101942501B1 (ko) * 2016-12-30 2019-01-28 (주)링크일렉트로닉스 무선전력전송을 이용한 디지털 도어락 시스템

Also Published As

Publication number Publication date
JP2011139614A (ja) 2011-07-14

Similar Documents

Publication Publication Date Title
JP6406533B2 (ja) バッテリーシステム
KR102392376B1 (ko) 배터리 시스템
US10103412B2 (en) Universal rechargeable battery constituted by employing lithium-ion battery and control method
JP6119516B2 (ja) 組電池および電動車両
JP5281843B2 (ja) バッテリパック及びその充電方法
EP3300139B1 (en) Secondary battery which detects displacement of gas discharge part to prevent battery cell swelling, system for charging secondary battery, and method for manufacturing secondary battery
US20110181245A1 (en) Unitized charging and discharging battery management system and programmable battery management module thereof
US8232776B2 (en) Charging method for an assembled cell and an assembled cell system
US20110267007A1 (en) Discharge method for a battery pack
JP6797689B2 (ja) Dc−acインバータに対するプリチャージ及び電圧供給システム
JP2004080984A (ja) 電池内蔵用負荷平準化
JP2014515251A (ja) 内部アキュムレータを備えた低コスト急速充電器及び方法
JP2013162597A (ja) 組電池放電制御システムおよび組電池放電制御方法
WO2016111987A1 (en) Energy devices with ultra-capacitor structures and methods thereof
JP5664310B2 (ja) 直流電源装置
JP5491169B2 (ja) 電源供給システムおよび電源供給システムを備える携帯機器、ならびに電源供給システムの充電方法、電源供給システムの放電方法および電源供給システムの充放電方法
WO2014122776A1 (ja) リチウムイオン二次電池の制御装置及び制御方法
JP2010272219A (ja) リチウムイオン組電池用充電制御装置およびリチウムイオン組電池システム
JP5705046B2 (ja) 電源システム
JP2011108372A (ja) 電源装置用モジュールおよびこれを備える自動車
JP5284029B2 (ja) 組電池パック及び組電池パックの製造方法
KR102222119B1 (ko) 배터리 팩
KR20160063757A (ko) 배터리 충전방법 및 이를 이용한 배터리 팩
KR20190028201A (ko) 배터리 충방전 전압 조절 장치 및 방법
JP2013017354A (ja) バッテリーパック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5491169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350