JP5485216B2 - Planar connector - Google Patents

Planar connector Download PDF

Info

Publication number
JP5485216B2
JP5485216B2 JP2011081763A JP2011081763A JP5485216B2 JP 5485216 B2 JP5485216 B2 JP 5485216B2 JP 2011081763 A JP2011081763 A JP 2011081763A JP 2011081763 A JP2011081763 A JP 2011081763A JP 5485216 B2 JP5485216 B2 JP 5485216B2
Authority
JP
Japan
Prior art keywords
mol
polymer
connector
temperature
structural units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011081763A
Other languages
Japanese (ja)
Other versions
JP2012214652A (en
Inventor
峰生 大竹
俊明 横田
博樹 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2011081763A priority Critical patent/JP5485216B2/en
Priority to KR1020137025768A priority patent/KR101399743B1/en
Priority to PCT/JP2012/058051 priority patent/WO2012137637A1/en
Priority to SG2013071675A priority patent/SG193609A1/en
Priority to CN201280015085.XA priority patent/CN103460515B/en
Priority to TW101111292A priority patent/TWI481661B/en
Publication of JP2012214652A publication Critical patent/JP2012214652A/en
Application granted granted Critical
Publication of JP5485216B2 publication Critical patent/JP5485216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R33/00Coupling devices specially adapted for supporting apparatus and having one part acting as a holder providing support and electrical connection via a counterpart which is structurally associated with the apparatus, e.g. lamp holders; Separate parts thereof
    • H01R33/74Devices having four or more poles, e.g. holders for compact fluorescent lamps
    • H01R33/76Holders with sockets, clips, or analogous contacts adapted for axially-sliding engagement with parallely-arranged pins, blades, or analogous contacts on counterpart, e.g. electronic tube socket
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Description

本発明は、CPUソケット等の外枠内部に格子構造を有する平面状コネクターに関する。   The present invention relates to a planar connector having a lattice structure inside an outer frame such as a CPU socket.

液晶性ポリマーは、熱可塑性樹脂の中でも寸法精度、制振性、流動性に優れ、成形時のバリ発生が極めて少ない材料として知られている。従来、このような特徴を活かし、液晶性ポリマーが各種電子部品の材料として多く採用されてきた。
特に、近年のエレクトロニクス機器の高性能化に伴う、コネクターの高耐熱化(実装技術による生産性向上)、高密度化(多芯化)、小型化という時代の要請もあり、上記液晶性ポリマーの特徴を活かし、ガラス繊維で強化された液晶性ポリマー組成物がコネクターとして採用されている(非特許文献1、特許文献1)。CPUソケットに代表される外枠内部に格子構造を有する平面状コネクターにおいては、上記高耐熱化、高密度化、小型化の傾向が顕著であり、ガラス繊維で強化された液晶性ポリマー組成物が多く採用されている。
しかし、ある程度流動性の良いガラス繊維強化液晶性ポリマー組成物であっても、近年要求されている格子部のピッチ間隔が2mm以下、端子を保持する格子部の樹脂部分の幅が0.5mm以下という非常に薄肉の平面状コネクターとして使用するには性能が不十分であった。即ち、このような格子部の非常に幅が薄肉の平面状コネクターにおいては、格子部へ樹脂を充填しようとすると、流動性が十分でないために充填圧が高くなり、結果として得られる平面状コネクターのそり変形量が多くなるという問題がある。
この問題を解決するには、ガラス繊維の添加量を少なくした流動性の良好な液晶性ポリマー組成物の使用が考えられるが、このような組成物では強度不足となり、実装時のリフローにより変形するという問題が生じる。
このように、未だ性能バランスの優れた液晶性ポリマー製平面状コネクターは得られていないのが現状である。
Liquid crystalline polymers are known as materials that are excellent in dimensional accuracy, vibration damping properties, and fluidity among thermoplastic resins, and generate very little burrs during molding. Conventionally, taking advantage of such characteristics, liquid crystal polymers have been widely used as materials for various electronic components.
In particular, due to the recent high performance of electronic equipment, there are also demands of the times of higher heat resistance of connectors (improvement of productivity by mounting technology), higher density (multi-core), and miniaturization. A liquid crystalline polymer composition reinforced with glass fibers has been adopted as a connector by taking advantage of the characteristics (Non-patent Document 1, Patent Document 1). In a planar connector having a lattice structure inside an outer frame typified by a CPU socket, the tendency of high heat resistance, high density and miniaturization is remarkable, and a liquid crystalline polymer composition reinforced with glass fiber is used. Many have been adopted.
However, even with a glass fiber reinforced liquid crystal polymer composition having good fluidity to some extent, the recently required pitch interval of the lattice portion is 2 mm or less, and the width of the resin portion of the lattice portion holding the terminals is 0.5 mm or less. The performance was insufficient for use as a very thin planar connector. That is, in such a planar connector having a very thin grid portion, filling the lattice portion with resin increases the filling pressure due to insufficient fluidity, resulting in the resulting planar connector. There is a problem that the amount of warp deformation increases.
In order to solve this problem, it is conceivable to use a liquid crystalline polymer composition having good fluidity with a small amount of glass fiber added. However, such a composition is insufficient in strength and deforms due to reflow during mounting. The problem arises.
Thus, the present situation is that a planar connector made of a liquid crystalline polymer having an excellent performance balance has not yet been obtained.

そこで、本発明者らは、特許文献2にて、配合する繊維状充填剤の重量平均長さと配合量が一定の関係にある特定の複合樹脂組成物から構成される平面状コネクターを提案した。上記特許文献2によれば、薄肉の平面状コネクターについても、成形性、平面度、そり変形、耐熱性等の性能において優れたものが得られる。しかしながら、最近の平面状コネクターにおける集積率の増加等に伴う形状変化、特にコネクターピン数の増加、格子部の幅の更なる薄肉化等の要因により、上記特許文献2では対処しきれない場合があることが判明した。
そこで更に本発明者らは、特許文献3にて、特定の液晶性ポリマーに対し板状充填剤と繊維状充填剤を併用配合した特定の複合樹脂組成物から構成される平面状コネクターを提案した。
Therefore, the present inventors have proposed a planar connector composed of a specific composite resin composition in which the weight average length of the fibrous filler to be blended and the blending amount have a certain relationship in Patent Document 2. According to Patent Document 2, a thin flat connector can be obtained that is excellent in performance such as moldability, flatness, warp deformation, and heat resistance. However, due to factors such as the shape change accompanying the increase in the integration rate in the recent planar connector, especially the increase in the number of connector pins and the further reduction in the width of the lattice portion, there are cases where the above-mentioned Patent Document 2 cannot cope with it. It turned out to be.
Therefore, the present inventors have proposed a planar connector composed of a specific composite resin composition in which a specific liquid crystalline polymer is combined with a plate-like filler and a fibrous filler in Patent Document 3. .

特開平9−204951号公報JP-A-9-204951 特開2005−276758号公報JP 2005-276758 A 特開2010−3661号公報JP 2010-3661 A

「全調査 エンジニアリングプラスチックス’92−’93」、182〜194頁、1992年発行"All Research Engineering Plastics '92 -'93", pages 182-194, published in 1992

上記特許文献3によれば、薄肉の平面状コネクターについても、成形性、平面度、そり変形、耐熱性等の性能において優れたものが得られ、更に最近の平面状コネクターにおける集積率の増加等に伴う形状変化、特にコネクターピン数の増加、格子部の幅の更なる薄肉化等に対しても対処し得るものが得られる。しかしながら、特許文献3の技術では、ポリマーの製造バラツキ、成形条件等の微細な製造条件の変化によって、格子部に成形後クラック(割れ)を生じることがあり、耐クラック性において顧客の満足を得るには十分とは言えなかった。   According to the above-mentioned Patent Document 3, a thin flat connector can be obtained that is excellent in performance such as moldability, flatness, warp deformation, heat resistance, and the like, and the increase in the integration rate in the recent flat connector, etc. Therefore, it is possible to cope with the shape change accompanying the increase in the number of connector pins, particularly the increase in the width of the lattice portion. However, in the technique of Patent Document 3, cracks (cracking) may occur in the lattice portion due to minute changes in manufacturing conditions such as polymer manufacturing variations and molding conditions, and customer satisfaction is obtained in crack resistance. It was not enough.

本発明者等は上記問題点に鑑み、最近の平面状コネクターの形状で安定的に良好な性能が得られる、特に成形後に格子部に割れが生じないという耐クラック性に優れた液晶性ポリマー製平面状コネクターを提供すべく鋭意探索、検討を行ったところ、(A)特定の構造からなる全芳香族液晶性ポリマーに、(B)板状の無機充填剤及び(C)特定の繊維状充填剤を特定比率で併用配合した複合樹脂組成物を用いることにより、成形性良く、平面度、そり変形、耐熱性、耐クラック性等の性能の全てに優れた平面状コネクターが得られることを見出し、本発明を完成するに至った。
即ち本発明は、(A)必須の構成成分として下記一般式(I),(II),(III),(IV)および(V)で表される構成単位からなり、全構成単位に対して(I)の構成単位が35〜75モル%、(II)の構成単位が2〜8モル%、(III)の構成単位が4.5〜30.5モル%、(IV)の構成単位が2〜8モル%、(V)の構成単位が12.5〜32.5モル%、(II)+(IV)の構成単位が4〜10モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステル、(B)板状の無機充填剤及び(C)ガラス繊維からなり、(B)成分が組成物全体に対し15〜25重量%、(C)成分が組成物全体に対し10〜25重量%、且つ(B)成分と(C)成分の合計が組成物全体に対し30〜40重量%である複合樹脂組成物から形成され、
外枠の内部に格子構造を有し、
格子部のピッチ間隔が1.5mm以下
の構造に特徴がある平面状コネクターである。
In view of the above problems, the present inventors are able to obtain stable and good performance with the shape of recent planar connectors, and in particular, made of a liquid crystalline polymer with excellent crack resistance that cracks do not occur in the lattice part after molding. As a result of diligent search and examination to provide a planar connector, (A) a wholly aromatic liquid crystalline polymer having a specific structure is combined with (B) a plate-like inorganic filler and (C) a specific fibrous filler. It has been found that by using a composite resin composition in which an agent is used in combination at a specific ratio, a planar connector having excellent moldability and excellent performance such as flatness, warpage deformation, heat resistance and crack resistance can be obtained. The present invention has been completed.
That is, the present invention comprises (A) structural units represented by the following general formulas (I), (II), (III), (IV) and (V) as essential structural components, The structural unit of (I) is 35 to 75 mol%, the structural unit of (II) is 2 to 8 mol%, the structural unit of (III) is 4.5 to 30.5 mol%, and the structural unit of (IV) is 2 to 8 mol% %, (V) is 12.5 to 32.5 mol%, and (II) + (IV) is 4 to 10 mol%. Total aromatics exhibiting optical anisotropy upon melting It consists of polyester, (B) a plate-like inorganic filler, and (C) glass fiber. The component (B) is 15 to 25% by weight based on the whole composition, and the component (C) is 10 to 25% based on the whole composition. %, And the total of component (B) and component (C) is formed from a composite resin composition of 30 to 40% by weight based on the entire composition,
It has a lattice structure inside the outer frame,
This planar connector is characterized by a structure in which the pitch interval of the lattice part is 1.5 mm or less.

Figure 0005485216
Figure 0005485216

本発明によれば、成形性良く、平面度、そり変形、耐熱性、耐クラック性等の性能の全てに優れた平面状コネクターを提供できる。   According to the present invention, it is possible to provide a planar connector with good moldability and excellent performance such as flatness, warpage deformation, heat resistance, and crack resistance.

実施例で成形した平面状コネクターを示す図であり、(a) は平面図、(b) はA部の詳細図である。尚、図中の数値の単位はmmである。It is a figure which shows the planar connector shape | molded in the Example, (a) is a top view, (b) is a detail drawing of the A section. The unit of the numerical values in the figure is mm. 実施例で成形品の耐クラック性評価に用いた成形品を示す図であり、(a)はその平面図、(b)はその寸法を示す図である。尚、図中の数値の単位はmmである。It is a figure which shows the molded article used for the crack-proof evaluation of a molded article in the Example, (a) is the top view, (b) is a figure which shows the dimension. The unit of the numerical values in the figure is mm.

以下、本発明を詳細に説明する。先ず、本発明に用いられる(A)全芳香族液晶性ポリマーとは、(I)〜(V)の構成単位からなるものであり、上記(I)〜(V)の構成単位を具現化するには通常のエステル形成能を有する種々の化合物が使用される。以下に本発明を構成する全芳香族ポリエステルを形成するために必要な原料化合物について順を追って詳しく説明する。   Hereinafter, the present invention will be described in detail. First, the (A) wholly aromatic liquid crystalline polymer used in the present invention is composed of the structural units (I) to (V) and embodies the structural units (I) to (V). Various compounds having ordinary ester forming ability are used. Hereinafter, the raw material compounds necessary for forming the wholly aromatic polyester constituting the present invention will be described in detail step by step.

構成単位(I)は、4−ヒドロキシ安息香酸から導入される。   The structural unit (I) is introduced from 4-hydroxybenzoic acid.

構成単位(II)は、6−ヒドロキシ−2−ナフトエ酸から導入される。   The structural unit (II) is introduced from 6-hydroxy-2-naphthoic acid.

構成単位(III)は、1,4−フェニレンジカルボン酸から導入される。   The structural unit (III) is introduced from 1,4-phenylenedicarboxylic acid.

構成単位(IV)は、1,3−フェニレンジカルボン酸から導入される。   The structural unit (IV) is introduced from 1,3-phenylenedicarboxylic acid.

また、構成単位(V)は、4,4’−ジヒドロキシビフェニルから導入される。   The structural unit (V) is introduced from 4,4'-dihydroxybiphenyl.

本発明では、上記構成単位(I)〜(V)を含み、全構成単位に対して(I)の構成単位が35〜75モル%(好ましくは40〜65モル%)、(II)の構成単位が2〜8モル%(好ましくは3〜7モル%)、(III)の構成単位が4.5〜30.5モル%(好ましくは13〜26モル%)、(IV)の構成単位が2〜8モル%(好ましくは3〜7モル%)、(V)の構成単位が12.5〜32.5モル%(好ましくは15.5〜29モル%)、(II)+(IV)の構成単位が4〜10モル%(好ましくは5〜10モル%)の範囲にあることが必要である。
(I)の構成単位が35モル%未満および75モル%より多くなると、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
(II)の構成単位が2モル%未満では、充填剤の種類、配合量を考慮しても平面状コネクターを成形した際に格子部に割れが発生するため好ましくない。また、8モル%より多くなるとポリマーの耐熱性が低くなるため好ましくない。
(III)の構成単位が4.5モル%未満および30.5モル%より多くなると、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
(IV)の構成単位が2モル%未満では、充填剤の種類、配合量を考慮しても平面状コネクターを成形した際に格子部に割れが発生するため好ましくない。また、8モル%より多くなるとポリマーの耐熱性が低くなるため好ましくない。
また、(V)の構成単位が12.5モル%未満および32.5モル%より多くなると、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
また、(II)+(IV)の構成単位が4モル%未満では、ポリマーの結晶化状態を示す示差熱量測定により求められるポリマーの結晶化熱量が2.5J/g以上となり、充填剤の種類、配合量を考慮しても平面状コネクターを成形した際に格子部に割れが発生するため好ましくない。結晶化熱量の好ましい値は、2.3J/g以下であり、より好ましくは2.0J/g以下である。また、10モル%より多くなるとポリマーの耐熱性が低くなるため好ましくない。
なお、結晶化熱量とは示差熱量測定において、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+40℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を指す。
In the present invention, the structural units (I) to (V) are included, and the structural unit (I) is 35 to 75 mol% (preferably 40 to 65 mol%) and (II) based on the total structural units. The unit is 2 to 8 mol% (preferably 3 to 7 mol%), the structural unit (III) is 4.5 to 30.5 mol% (preferably 13 to 26 mol%), and the structural unit (IV) is 2 to 8 mol% % (Preferably 3 to 7 mol%), the structural unit (V) is 12.5 to 32.5 mol% (preferably 15.5 to 29 mol%), and the structural unit (II) + (IV) is 4 to 10 mol% ( Preferably it is in the range of 5 to 10 mol%.
When the constituent unit of (I) is less than 35 mol% and more than 75 mol%, the melting point becomes remarkably high, and in some cases, the polymer solidifies in the reactor during production, making it impossible to produce a polymer having a desired molecular weight. Therefore, it is not preferable.
If the structural unit of (II) is less than 2 mol%, it is not preferable because cracks are generated in the lattice portion when a planar connector is formed even if the type and blending amount of the filler are taken into consideration. Moreover, since it will become low in the heat resistance of a polymer when it exceeds 8 mol%, it is unpreferable.
When the constituent unit of (III) is less than 4.5 mol% and more than 30.5 mol%, the melting point becomes remarkably high, and in some cases the polymer solidifies in the reactor during production, making it impossible to produce a polymer with a desired molecular weight. Therefore, it is not preferable.
If the structural unit of (IV) is less than 2 mol%, it is not preferable because cracks are generated in the lattice portion when a planar connector is formed even if the type and blending amount of the filler are taken into consideration. Moreover, since it will become low in the heat resistance of a polymer when it exceeds 8 mol%, it is unpreferable.
In addition, when the constituent unit of (V) is less than 12.5 mol% and more than 32.5 mol%, the melting point becomes remarkably high, and in some cases, the polymer is solidified in the reactor at the time of production to produce a polymer having a desired molecular weight. Since it becomes impossible, it is not preferable.
In addition, when the structural unit of (II) + (IV) is less than 4 mol%, the crystallization heat amount of the polymer determined by differential calorimetry indicating the crystallization state of the polymer is 2.5 J / g or more, and the type of filler, Considering the blending amount, it is not preferable because cracks occur in the lattice portion when the planar connector is formed. A preferable value for the amount of crystallization heat is 2.3 J / g or less, and more preferably 2.0 J / g or less. On the other hand, if it exceeds 10 mol%, the heat resistance of the polymer is lowered, which is not preferable.
Note that the heat of crystallization is a differential calorimetry. After observing the endothermic peak temperature (Tm1) observed when the polymer is measured from room temperature to 20 ° C / min, the temperature is maintained at Tm1 + 40 ° C for 2 minutes. Then, the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when the temperature is measured at 20 ° C./min.

尚、本発明の全芳香族液晶性ポリマーには、本発明の目的を阻害しない範囲で少量の公知の、上記(I)〜(V)以外の他の構成単位を導入することもできる。   In addition, in the wholly aromatic liquid crystalline polymer of the present invention, a small amount of other structural units other than the above-mentioned (I) to (V) can be introduced as long as the object of the present invention is not impaired.

前述の通り、特開昭59−43021号公報(特許文献1)や特開平2−16120号公報(特許文献3)では、耐熱性および易加工性を兼ね備えた液晶ポリマーが提案されており、特開平2−16120号公報(特許文献3)の実施例には、構成単位(I)を64モル%、(II)を1モル%、(III)を15.5モル%、(IV)を2モル%、(V)を17.5モル%からなる液晶性ポリマーが提案されているが、この液晶性ポリマーは本願発明と同じ充填剤の種類、配合量の組成物としても平面状コネクターを成形した際に格子部に割れが発生するという問題点がある。   As described above, Japanese Patent Application Laid-Open No. 59-43021 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2-16120 (Patent Document 3) propose liquid crystal polymers having both heat resistance and easy processability. In Examples of Kaihei 2-16120 (Patent Document 3), the structural unit (I) is 64 mol%, (II) is 1 mol%, (III) is 15.5 mol%, and (IV) is 2 mol%. A liquid crystalline polymer comprising 17.5 mol% of (V) has been proposed, and this liquid crystalline polymer is a lattice when a planar connector is molded as a composition having the same filler type and blending amount as the present invention. There is a problem that cracks occur in the part.

これに対し、本発明では、構成単位(I)〜(V)の量、並びに構成単位(II)+(IV)の量を上記範囲に規制することにより、成形性良く、平面度、そり変形、耐熱性、耐クラック性等の性能の全てに優れた平面状コネクターを得ることができたものである。   On the other hand, in the present invention, by controlling the amount of the structural units (I) to (V) and the amount of the structural units (II) + (IV) to the above ranges, the moldability is improved, flatness, and warp deformation. Thus, a flat connector excellent in all of the performances such as heat resistance and crack resistance could be obtained.

本発明の全芳香族液晶性ポリマーは、直接重合法やエステル交換法を用いて重合され、重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等が用いられる。
本発明では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の酸無水物等が挙げられる。
これらの重合に際しては種々の触媒の使用が可能であり、代表的なものはジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタンけい酸塩類、チタンアルコラート類、カルボン酸のアルカリ及びアルカリ土類金属塩類、BF3 の如きルイス酸塩等が挙げられる。触媒の使用量は一般にはモノマーの全重量に基いて約0.001乃至1重量%、特に約0.003乃至0.2重量%が好ましい。
The wholly aromatic liquid crystalline polymer of the present invention is polymerized using a direct polymerization method or a transesterification method, and a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method or the like is used for the polymerization.
In the present invention, at the time of polymerization, an acylating agent for the polymerization monomer or a monomer having terminal activated as an acid chloride derivative can be used. Examples of the acylating agent include acid anhydrides such as acetic anhydride.
Various catalysts can be used for these polymerizations, and typical ones include dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali and alkaline earth of carboxylic acids. Metal salts, Lewis acid salts such as BF 3 and the like. The amount of catalyst used is generally about 0.001 to 1% by weight, particularly about 0.003 to 0.2% by weight, based on the total weight of the monomers.

また、溶液重合又はスラリー重合を行う場合、溶媒としては流動パラフィン、高耐熱性合成油、不活性鉱物油等が用いられる。   Moreover, when performing solution polymerization or slurry polymerization, as a solvent, liquid paraffin, a high heat resistant synthetic oil, an inert mineral oil, etc. are used.

反応条件としては、反応温度200〜380℃、最終到達圧力0.1〜760Torr(即ち、13〜101,080Pa)である。特に溶融反応では、反応温度260〜380℃、好ましくは300〜360℃、最終到達圧力1〜100Torr(即ち、133〜13,300Pa)、好ましくは1〜50Torr(即ち、133〜6,670Pa)である。   The reaction conditions are a reaction temperature of 200 to 380 ° C. and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to 101,080 Pa). Particularly in the melt reaction, the reaction temperature is 260 to 380 ° C., preferably 300 to 360 ° C., and the final ultimate pressure is 1 to 100 Torr (ie 133 to 13,300 Pa), preferably 1 to 50 Torr (ie 133 to 6,670 Pa).

反応は、全原料モノマー、アシル化剤及び触媒を同一反応容器に仕込んで反応を開始させる(一段方式)こともできるし、原料モノマー(I)、(II)及び(V)のヒドロキシル基をアシル化剤によりアシル化させた後、(III)及び(IV)のカルボキシル基と反応させる(二段方式)こともできる。   In the reaction, all the raw material monomers, the acylating agent and the catalyst can be charged in the same reaction vessel to start the reaction (one-step system), or the hydroxyl groups of the raw material monomers (I), (II) and (V) are acylated. After acylating with an agent, it can also be reacted with the carboxyl groups of (III) and (IV) (two-stage system).

溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にして行う。撹拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系からポリマーを排出する。   The melt polymerization is performed after the inside of the reaction system has reached a predetermined temperature, and the pressure reduction is started to a predetermined pressure reduction degree. After the torque of the stirrer reaches a predetermined value, an inert gas is introduced, and the polymer is discharged from the reaction system through a normal pressure from a reduced pressure state to a predetermined pressure state.

上記重合方法により製造されたポリマーは更に常圧又は減圧、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。固相重合反応の好ましい条件は、反応温度230〜350℃、好ましくは260〜330℃、最終到達圧力10〜760Torr(即ち、1,330〜101,080Pa)である。   The polymer produced by the above-described polymerization method can be further increased in molecular weight by solid-phase polymerization which is heated at normal pressure or reduced pressure and in an inert gas. Preferred conditions for the solid state polymerization reaction are a reaction temperature of 230 to 350 ° C., preferably 260 to 330 ° C., and a final ultimate pressure of 10 to 760 Torr (ie, 1,330 to 10,080 Pa).

溶融時に光学的異方性を示す液晶性ポリマーであることは、本発明において熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位(I)〜(V)からなる全芳香族ポリエステルは、構成成分およびポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本発明に係わるポリマーは溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。   The liquid crystalline polymer exhibiting optical anisotropy when melted is an indispensable element in the present invention in order to have both thermal stability and easy processability. The wholly aromatic polyesters comprising the structural units (I) to (V) may not form an anisotropic melt phase depending on the constituent components and the sequence distribution in the polymer, but the polymer according to the present invention is melted. Limited to wholly aromatic polyesters that sometimes exhibit optical anisotropy.

溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認はオリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。上記ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。   The property of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham using an Olympus polarizing microscope and observing it at a magnification of 150 times in a nitrogen atmosphere. The polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.

本発明の加工性の指標としては液晶性及び融点(液晶性発現温度)が考えられる。液晶性を示すか否かは溶融時の流動性に深く係わり、本願のポリマーは溶融状態で液晶性を示すことが不可欠である。   As an index of processability of the present invention, liquid crystallinity and melting point (liquid crystallinity expression temperature) can be considered. Whether or not it exhibits liquid crystallinity is deeply related to the fluidity at the time of melting, and it is essential that the polymer of the present application exhibit liquid crystallinity in a molten state.

ネマチックな液晶性ポリマーは融点以上で著しく粘性低下を生じるので、一般的に融点またはそれ以上の温度で液晶性を示すことが加工性の指標となる。融点(液晶性発現温度)は、出来得る限り高い方が耐熱性の観点からは好ましいが、ポリマーの溶融加工時の熱劣化や成形機の加熱能力等を考慮すると、390℃以下であることが望好ましい目安となる。なお、より好ましくは、380℃以下である。   Since a nematic liquid crystalline polymer causes a significant decrease in viscosity at a melting point or higher, generally exhibiting liquid crystallinity at a melting point or higher is an index of workability. The melting point (liquid crystallinity expression temperature) is preferably as high as possible from the viewpoint of heat resistance, but in view of thermal degradation during polymer melt processing, heating capability of the molding machine, etc., it may be 390 ° C. or lower. This is a desirable and desirable standard. In addition, More preferably, it is 380 degrees C or less.

更に、融点より10〜40℃高い温度で、剪断速度1000sec-1における溶融粘度が1×105 Pa・s以下であることが格子部の流動性を確保する上で好ましい。更に好ましくは5Pa・s以上で1×102 Pa・s以下である。これらの溶融粘度は液晶性を具備することで概ね実現される。 Furthermore, the melt viscosity at a shear rate of 1000 sec −1 at a temperature 10 to 40 ° C. higher than the melting point is preferably 1 × 10 5 Pa · s or less in order to ensure the fluidity of the lattice part. More preferably, it is 5 Pa · s or more and 1 × 10 2 Pa · s or less. These melt viscosities are generally realized by having liquid crystallinity.

本発明に使用する複合樹脂組成物は、上記(A)全芳香族液晶性ポリマー、(B)板状の無機充填剤及び(C)ガラス繊維からなるものである。
本発明に使用する(B)板状充填剤としては、タルク、マイカ、ガラスフレーク、各種の金属箔等が挙げられるが、タルク、マイカより選ばれる1種以上であることが好ましい。また、(B)板状充填剤の平均粒径については特に限定されないが、薄肉部の流動性を考慮すると小さい方が望ましいが、そり変形を小さくするためには一定の大きさを維持している必要がある。具体的には、1〜100μm、望ましくは5〜50μmが好ましい。
The composite resin composition used in the present invention is composed of (A) wholly aromatic liquid crystalline polymer, (B) plate-like inorganic filler, and (C) glass fiber.
Examples of the (B) plate-like filler used in the present invention include talc, mica, glass flakes, various metal foils, and the like, and preferably one or more selected from talc and mica. In addition, the average particle diameter of the (B) plate-like filler is not particularly limited, but it is desirable to be small in consideration of the fluidity of the thin-walled portion, but in order to reduce warpage deformation, a certain size is maintained. Need to be. Specifically, 1 to 100 μm, desirably 5 to 50 μm is preferable.

本発明に使用する(C)ガラス繊維は、重量平均繊維長が250〜800μmであることが好ましい。重量平均繊維長が800μmを超えると、流動性が悪化し成形不可能か、たとえ成形できても優れた平面度のコネクターとはならなかったり、重量平均繊維長が250μm未満の場合は、耐クラック性が劣り成形品の格子部に割れが生じ好ましくない場合がある。
また、(C)ガラス繊維の繊維径は特に制限されないが、一般的に5〜15μm程度のものが使用される。
The (C) glass fiber used in the present invention preferably has a weight average fiber length of 250 to 800 μm. If the weight average fiber length exceeds 800μm, the fluidity deteriorates and molding is impossible, or even if it can be molded, it will not be an excellent flatness connector, or if the weight average fiber length is less than 250μm, it will be crack resistant. In some cases, the properties are inferior and cracks occur in the lattice portion of the molded product.
Further, the fiber diameter of the (C) glass fiber is not particularly limited, but generally a fiber diameter of about 5 to 15 μm is used.

また、本発明に使用する複合樹脂組成物は、(B)成分が組成物全体に対し15〜25重量%、(C)成分が組成物全体に対し10〜25重量%、且つ(B)成分と(C)成分の合計が組成物全体に対し30〜40重量%(好ましくは30〜35重量%)であることが必要である。
(B)成分が15重量%より少ないとそり変形量が大きくなり好ましくなく、25重量%より多いと耐クラック性が劣り成形品の格子部に割れが生じ好ましくない。(C)成分が10重量%より少なかったり、25重量%より多いと耐クラック性が劣り成形品の格子部に割れが生じ好ましくない。また、(B)成分と(C)成分の合計が組成物全体に対し30重量部より少ないと耐熱性が低下し好ましくなく、40重量部より多いと耐クラック性が劣り成形品の格子部に割れが生じ好ましくない。
In addition, the composite resin composition used in the present invention, the component (B) is 15 to 25% by weight with respect to the whole composition, the component (C) is 10 to 25% by weight with respect to the whole composition, and the component (B) And the sum of the components (C) is required to be 30 to 40% by weight (preferably 30 to 35% by weight) based on the entire composition.
When the component (B) is less than 15% by weight, the amount of warpage deformation is increased, which is not preferable. When the component is more than 25% by weight, crack resistance is inferior and cracks occur in the lattice portion of the molded product. When the component (C) is less than 10% by weight or more than 25% by weight, the crack resistance is inferior and cracks occur in the lattice portion of the molded product. Further, if the total of the component (B) and the component (C) is less than 30 parts by weight with respect to the whole composition, the heat resistance is undesirably lowered, and if it exceeds 40 parts by weight, the crack resistance is poor and the lattice part of the molded product is inferior. Cracking is not preferable.

本発明の複合樹脂組成物を成形することにより、各種平面状コネクターを得ることができるが、従来、工業的に実用性のあるものが提供されていなかった、格子部のピッチ間隔が1.5mm以下、端子を保持する格子部の樹脂部分の幅が0.5mm以下、製品全体の高さが5.0mm以下という非常に薄肉の平面状コネクターに特に有効である。
このような平面状コネクターをより詳細に説明するならば、実施例で成形した図1に示すようなコネクターであり、厚みが4.0mm以下の外枠部と厚みが4.0mm以下の格子部からなり、格子部に40mm×40mm×1mm程度の製品中に数百のピン孔数を有するものである。図1に示すように、格子部のピッチ間隔が1.5mm以下、端子を保持する樹脂部分の幅が0.5mm以下という、射出成形が非常に困難な形状となっている。なお、本発明で言う平面状コネクターは、格子部の中に適当な大きさの開口部を有しているものも含まれる。
By molding the composite resin composition of the present invention, it is possible to obtain various planar connectors, but conventionally, the industrially practical one has not been provided, the pitch interval of the lattice portion is 1.5 mm or less This is particularly effective for a very thin planar connector in which the width of the resin portion of the lattice portion holding the terminals is 0.5 mm or less and the total height of the product is 5.0 mm or less.
If explaining such a planar connector in more detail, it is a connector as shown in FIG. 1 formed in the embodiment, and comprises an outer frame portion having a thickness of 4.0 mm or less and a lattice portion having a thickness of 4.0 mm or less. The lattice part has a number of pin holes of several hundreds in a product of about 40 mm × 40 mm × 1 mm. As shown in FIG. 1, injection molding is extremely difficult, with the pitch interval of the lattice portions being 1.5 mm or less and the width of the resin portion holding the terminals being 0.5 mm or less. The planar connector referred to in the present invention includes one having an opening of an appropriate size in the lattice portion.

本発明の複合樹脂組成物を用いることにより、図1に示すように、格子部のピッチ間隔が1.5mm以下(1.2mm)、端子を保持する格子部の樹脂部分の幅が0.5mm以下(0.18mm)という、格子部の樹脂部分の幅が非常に薄肉の平面状コネクターを成形性良く成形することが可能であり、その平面度も優れている。
この平面度を数値的に規定するならば、ピーク温度230〜280℃で表面実装のためのIRリフロー工程を経る前の平面度が0.05mm以下であり、なおかつリフロー前後の平面度の差が0.10mm以下であるものは、実用上優れた平面度を有するものと言える。
By using the composite resin composition of the present invention, as shown in FIG. 1, the pitch interval of the lattice portion is 1.5 mm or less (1.2 mm), and the width of the resin portion of the lattice portion holding the terminals is 0.5 mm or less (0.18). mm), a flat connector having a very thin resin portion in the lattice portion can be molded with good moldability, and its flatness is also excellent.
If this flatness is defined numerically, the flatness before the IR reflow process for surface mounting at a peak temperature of 230 to 280 ° C. is 0.05 mm or less, and the difference in flatness before and after reflow is 0.10. It can be said that what is mm or less has excellent flatness in practical use.

このような優れた平面度を有するコネクターを得る成形方法としては、特に制限はないが、経済的な射出成形方法が好ましく用いられる。射出成形でこのような優れた平面度を有するコネクターを得るためには、前記の液晶性ポリマー組成物を用いることが重要であるが、残留内部応力のない成形条件を選ぶことが好ましい。充填圧を低くし、得られるコネクターの残留内部応力を低下させるために、成形機のシリンダー温度は、液晶性ポリマーの融点T℃以上の温度が好ましく、またシリンダー温度が高すぎると樹脂の分解等に伴うシリンダーノズルからの鼻タレ等の問題が発生するため、シリンダー温度はT℃〜(T+30)℃、好ましくはT℃〜(T+15)℃である。また、金型温度は70〜100℃が好ましい。金型温度が低いと充填樹脂組成物が流動不良を起こし好ましくなく、金型温度が高すぎると、バリ発生等の問題が生じ好ましくない。射出速度については、150mm/sec以上で成形することが好ましい。射出速度が低いと、未充填成形品しか得られない場合や、たとえ完全に充填した成形品が得られたとしても充填圧が高く残留内部応力の大きい成形品となり、平面度の悪いコネクターしか得られない場合がある。   A molding method for obtaining a connector having such excellent flatness is not particularly limited, but an economical injection molding method is preferably used. In order to obtain a connector having such excellent flatness by injection molding, it is important to use the liquid crystalline polymer composition, but it is preferable to select molding conditions without residual internal stress. In order to lower the filling pressure and reduce the residual internal stress of the resulting connector, the cylinder temperature of the molding machine is preferably a temperature above the melting point T ° C. of the liquid crystalline polymer. In order to cause problems such as nasal sagging from the cylinder nozzle, the cylinder temperature is T ° C to (T + 30) ° C, preferably T ° C to (T + 15) ° C. The mold temperature is preferably 70 to 100 ° C. When the mold temperature is low, the filled resin composition is unfavorably caused by flow failure, and when the mold temperature is too high, problems such as generation of burrs are not preferable. The injection speed is preferably 150 mm / sec or more. If the injection speed is low, only unfilled molded products can be obtained, or even if a completely filled molded product is obtained, the molded product has a high filling pressure and a large residual internal stress, and only a connector with poor flatness can be obtained. It may not be possible.

なお、複合樹脂組成物に対し、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤および難燃剤等の添加剤を添加して、所望の特性を付与した組成物も本発明で言う複合樹脂組成物の範囲に含まれる。   In addition, additives such as nucleating agents, carbon black, pigments such as inorganic fired pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents, flame retardants, and the like are added to the composite resin composition. The composition imparted with the above characteristics is also included in the range of the composite resin composition referred to in the present invention.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例中の物性の測定および試験は次の方法で行った。
(1) 見掛け溶融粘度
L=20mm、d=1mmの(株)東洋精機製キャピログラフ1B型を使用し、融点よりも10〜20℃高い温度で、剪断速度1000/sでISO11443に準拠して、見掛け溶融粘度を測定した。
(2) コネクター平面度の測定
樹脂組成物ペレットから、下記成形条件で、図1に示すような、全体の大きさ39.82mm×41.82mm×1mmt、格子部ピッチ間隔1.2mmの平面状コネクター(ピン孔数750ピン)を射出成形した。
尚、ゲートは長さの長い辺(41.82mmの辺)からのフィルムゲートを用い、ゲート厚みは0.3mmとした。
得られたコネクターを水平な机の上に静置し、コネクターの高さをミツトヨ製クイックビジョン404PROCNC画像測定機により測定した。その際、コネクター端面より、0.5mmの位置を10mm間隔で測定し、最大高さと最小高さの差を平面度とした。
更に、下記条件のIRリフローを行い、上述の方法で平面度を測定し、リフロー前後の平面度の差を求めた。
[IRリフロー条件]
測定機;日本パルス技術研究所製大型卓上リフローハンダ付け装置RF-300(遠赤外線ヒーター使用)
試料送り速度;140mm/sec
リフロー炉通過時間;5min
温度条件 プレヒートゾーン;150℃、リフローゾーン;225℃、ピーク温度;287℃
[成形条件]
成形機;住友重機械工業SE30DUZ
シリンダー温度;
(ノズル)360℃−365℃−340℃−330℃(実施例1〜6、比較例8)
370℃−370℃−370℃−380℃(比較例1〜2)
350℃−350℃−340℃−330℃(比較例3〜7)
金型温度;80℃
射出速度;300mm/sec
保圧力;50MPa
保圧時間;2sec
冷却時間;10sec
スクリュー回転数;120rpm
スクリュー背圧;1.2MPa
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the measurement and test of the physical property in an Example were performed with the following method.
(1) Apparent melt viscosity L = 20mm, d = 1mm Co., Ltd. Capillograph Type 1B manufactured by Toyo Seiki Co., Ltd., at a temperature 10 to 20 ° C. higher than the melting point, at a shear rate of 1000 / s, according to ISO 11443, The apparent melt viscosity was measured.
(2) Measurement of connector flatness A flat connector (pin) with an overall size of 39.82mm x 41.82mm x 1mmt and a lattice pitch interval of 1.2mm as shown in Fig. 1 from the resin composition pellets under the following molding conditions. 750 pins) was injection molded.
The gate was a film gate from a long side (side of 41.82 mm), and the gate thickness was 0.3 mm.
The obtained connector was allowed to stand on a horizontal desk, and the height of the connector was measured with Mitutoyo Quick Vision 404PROCNC image measuring machine. At that time, 0.5 mm positions were measured at 10 mm intervals from the connector end face, and the difference between the maximum height and the minimum height was defined as flatness.
Furthermore, IR reflow was performed under the following conditions, and the flatness was measured by the above-described method to determine the difference in flatness before and after reflow.
[IR reflow conditions]
Measuring machine: RF-300 (using far-infrared heater)
Sample feed rate: 140mm / sec
Reflow furnace transit time: 5 min
Temperature conditions Preheat zone: 150 ° C, reflow zone: 225 ° C, peak temperature: 287 ° C
[Molding condition]
Molding machine; Sumitomo Heavy Industries SE30DUZ
Cylinder temperature;
(Nozzle) 360 ° C-365 ° C-340 ° C-330 ° C (Examples 1-6, Comparative Example 8)
370 ° C-370 ° C-370 ° C-380 ° C (Comparative Examples 1-2)
350 ° C-350 ° C-340 ° C-330 ° C (Comparative Examples 3-7)
Mold temperature: 80 ℃
Injection speed: 300mm / sec
Holding pressure: 50MPa
Holding pressure time: 2 sec
Cooling time: 10 sec
Screw rotation speed: 120rpm
Screw back pressure: 1.2MPa

(3) 液晶性ポリマーの融点
Perkin Elmer社製DSCにて、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
(4) 最小充填圧
図1の平面状コネクターを射出成形する際に良好な成形品を得られる最小の射出充填圧を最小充填圧とした。
(3) Melting point of liquid crystalline polymer
After observing the endothermic peak temperature (Tm1) observed when the polymer was measured at room temperature from 20 ° C / min on a Perkin Elmer DSC, it was held for 2 minutes at a temperature of (Tm1 + 40) ° C. The sample was once cooled to room temperature under a temperature drop condition of 20 ° C./min, and then the temperature of an endothermic peak observed when measured under a temperature rise condition of 20 ° C./min was measured again.
(4) Minimum Filling Pressure The minimum filling pressure at which a good molded product can be obtained when the planar connector of FIG.

(5) 荷重たわみ温度
下記成形条件で、板状充填剤及びガラス繊維を含む液晶性ポリマー組成物をそれぞれ射出成形し、ISO75-1,2に準拠して測定した。
[成形条件]
成形機;住友重機械工業SE100DU
シリンダー温度;
(ノズル)360℃−370℃−370℃−360℃−340℃−330℃(実施例1〜6、比較例8)
370℃−370℃−370℃−370℃−370℃−380℃(比較例1〜2)
350℃−350℃−350℃−350℃−340℃−330℃(比較例3〜7)
金型温度;80℃
射出速度;2m/min
保圧力;50MPa
保圧時間;2sec
冷却時間;10sec
スクリュー回転数;120rpm
スクリュー背圧;1.2MPa
(5) Deflection temperature under load Each liquid crystalline polymer composition containing a plate-like filler and glass fiber was injection molded under the following molding conditions, and measured according to ISO 75-1 and 2.
[Molding condition]
Molding machine: Sumitomo Heavy Industries SE100DU
Cylinder temperature;
(Nozzle) 360 ° C-370 ° C-370 ° C-360 ° C-340 ° C-330 ° C (Examples 1-6, Comparative Example 8)
370 ° C-370 ° C-370 ° C-370 ° C-370 ° C-380 ° C (Comparative Examples 1-2)
350 ° C-350 ° C-350 ° C-350 ° C-340 ° C-330 ° C (Comparative Examples 3-7)
Mold temperature: 80 ℃
Injection speed: 2m / min
Holding pressure: 50MPa
Holding pressure time: 2 sec
Cooling time: 10 sec
Screw rotation speed: 120rpm
Screw back pressure: 1.2MPa

(6)耐クラック性
板状充填剤及びガラス繊維を含む液晶性ポリマー組成物をそれぞれ射出成形機を用いて図2に示す成形品を下記の成形条件で射出成形した。図2に示す評価用射出成形品は、外周が直径:23.6mmで内部に31個のφ3.2mmの孔が開いており、孔間距離の最小肉厚が0.16mmである。ゲートは図2の矢印部の3点ゲートを採用した。
射出成形後の成形品を観察し、射出速度が50mm/sec及び150mm/secで成形品に割れが生じないものを◎、射出速度が150mm/secの場合に成形品に割れが生じないものを○、いずれも場合も成形品に割れが生じる場合は×とした。
[成形条件]
成形機;住友重機械工業SE30DUZ
シリンダー温度;
(ノズル)370℃−375℃−360℃−350℃(実施例1〜6、比較例8)
360℃−360℃−360℃−370℃(比較例1〜2)
350℃−350℃−340℃−330℃(比較例3〜7)
金型温度;140℃
射出速度;50mm/sec又は150mm/sec
保圧力;100MPa
保圧時間;2sec
冷却時間;10sec
スクリュー回転数;120rpm
スクリュー背圧;1.2MPa
(6) Crack resistance Each of the liquid crystalline polymer compositions containing a plate-like filler and glass fibers was injection molded under the following molding conditions using an injection molding machine. The evaluation injection-molded product shown in FIG. 2 has an outer diameter of 23.6 mm, 31 holes of φ3.2 mm inside, and a minimum wall thickness of 0.16 mm. A three-point gate indicated by an arrow in FIG.
Observe the molded product after injection molding, where the injection speed is 50 mm / sec and 150 mm / sec, the molded product will not crack ◎, and when the injection speed is 150 mm / sec, the molded product will not crack ○: In all cases, when the molded product was cracked, it was marked as x.
[Molding condition]
Molding machine; Sumitomo Heavy Industries SE30DUZ
Cylinder temperature;
(Nozzle) 370 ° C-375 ° C-360 ° C-350 ° C (Examples 1-6, Comparative Example 8)
360 ° C-360 ° C-360 ° C-370 ° C (Comparative Examples 1-2)
350 ° C-350 ° C-340 ° C-330 ° C (Comparative Examples 3-7)
Mold temperature: 140 ℃
Injection speed: 50mm / sec or 150mm / sec
Holding pressure: 100MPa
Holding pressure time: 2 sec
Cooling time: 10 sec
Screw rotation speed: 120rpm
Screw back pressure: 1.2MPa

実施例1〜6および比較例1〜8
下記条件にて、板状充填剤及びガラス繊維を含む液晶性ポリマー組成物の上記試験片を作製し、評価したところ、表1に示す結果を得た。
Examples 1-6 and Comparative Examples 1-8
When the said test piece of the liquid crystalline polymer composition containing a plate-shaped filler and glass fiber was produced and evaluated on condition of the following, the result shown in Table 1 was obtained.

(使用成分)
液晶性ポリマー1
[製造条件]
攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)2−ヒドロキシ−6−ナフトエ酸166 g(48モル%)(HNA)
(II)テレフタル酸76g(25モル%)(TA)
(III) 4,4'−ジヒドロキシビフェニル86g(25モル%)(BP)
(IV)4−ヒドロキシ安息香酸5g(2モル%)(HBA)
酢酸カリウム触媒22.5mg
無水酢酸191 g
原料を仕込んだ後、反応系の温度を140 ℃に上げ、140 ℃で1時間反応させた。その後、更に360 ℃まで5.5 時間かけて昇温し、そこから30分かけて5Torr(即ち667 Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。
得られたペレットについて、窒素気流下、300 ℃で8時間の熱処理を行った。ペレットの融点は349 ℃、結晶化熱量は5.6J/g、溶融粘度は23Pa・s であった。
(Used ingredients)
Liquid crystalline polymer 1
[Production conditions]
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
(I) 2-hydroxy-6-naphthoic acid 166 g (48 mol%) (HNA)
(II) 76 g (25 mol%) terephthalic acid (TA)
(III) 4,4′-dihydroxybiphenyl 86 g (25 mol%) (BP)
(IV) 4-hydroxybenzoic acid 5 g (2 mol%) (HBA)
Potassium acetate catalyst 22.5mg
Acetic anhydride 191 g
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 5 Torr (ie, 667 Pa) over 30 minutes to melt polymerize while distilling acetic acid, excess acetic anhydride, and other low-boiling components. Went. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize.
The obtained pellets were heat-treated at 300 ° C. for 8 hours under a nitrogen stream. The pellet had a melting point of 349 ° C., a heat of crystallization of 5.6 J / g, and a melt viscosity of 23 Pa · s.

液晶ポリマー2
[製造条件]
攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4−ヒドロキシ安息香酸:188.4 g(60モル%)(HBA)
(II)6−ヒドロキシ−2−ナフトエ酸:21.4g(5モル%)(HNA)
(III)テレフタル酸:66.8g(17.7モル%)(TA)
(IV) 4,4’−ジヒドロキシビフェニル:52.2g(12.3モル%)(BP)
(V)4−アセトキシアミノフェノール17.2g(5モル%)(APAP)
酢酸カリウム触媒15mg
無水酢酸226.2 g
原料を仕込んだ後、反応系の温度を140 ℃に上げ、140 ℃で1時間反応させた。その後、更に340 ℃まで4.5 時間かけて昇温し、そこから15分かけて10Torr(即ち667 Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。
液晶ポリマー2の融点は334℃、結晶化熱量は2.7J/g、溶融粘度は18Pa・sであった。
Liquid crystal polymer 2
[Production conditions]
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
(I) 4-hydroxybenzoic acid: 188.4 g (60 mol%) (HBA)
(II) 6-hydroxy-2-naphthoic acid: 21.4 g (5 mol%) (HNA)
(III) Terephthalic acid: 66.8 g (17.7 mol%) (TA)
(IV) 4,4′-Dihydroxybiphenyl: 52.2 g (12.3 mol%) (BP)
(V) 4-acetoxyaminophenol 17.2 g (5 mol%) (APAP)
Potassium acetate catalyst 15mg
Acetic anhydride 226.2 g
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further raised to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (ie, 667 Pa) over 15 minutes, and melt polymerization is performed while distilling off acetic acid, excess acetic anhydride, and other low-boiling components. Went. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize.
The melting point of the liquid crystal polymer 2 was 334 ° C., the heat of crystallization was 2.7 J / g, and the melt viscosity was 18 Pa · s.

液晶ポリマー3
[製造条件]
攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4−ヒドロキシ安息香酸1041g(48モル%)(HBA)
(II)6−ヒドロキシ−2−ナフトエ酸89g(3モル%)(HNA)
(III)テレフタル酸565g(21.7モル%)(TA)
(IV)イソフタル酸78g(3モル%)(IA)
(V)4,4’−ジヒドロキシビフェニル711g(24.3モル%)(BP)
酢酸カリウム触媒110mg
無水酢酸1645g
原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。
得られたポリマーの融点は358℃、結晶化熱量は1.6J/g、溶融粘度は9Pa・sであった。
Liquid crystal polymer 3
[Production conditions]
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
(I) 1041 g (48 mol%) of 4-hydroxybenzoic acid (HBA)
(II) 6-hydroxy-2-naphthoic acid 89 g (3 mol%) (HNA)
(III) Terephthalic acid 565g (21.7 mol%) (TA)
(IV) Isophthalic acid 78 g (3 mol%) (IA)
(V) 711 g (24.3 mol%) of 4,4′-dihydroxybiphenyl (BP)
110 mg potassium acetate catalyst
Acetic anhydride 1645g
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 10 Torr (ie, 1330 Pa) over 20 minutes, and melt polymerization is performed while distilling off acetic acid, excess acetic anhydride, and other low-boiling components. went. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize.
The obtained polymer had a melting point of 358 ° C., a heat of crystallization of 1.6 J / g, and a melt viscosity of 9 Pa · s.

(B)板状充填剤
・マイカ;(株)山口雲母工業製AB-25S、平均粒径25μm
・タルク;松村産業(株)製クラウンタルクPP、平均粒径10μm
(C)ガラス繊維
・ガラス繊維;日本電気硝子(株)製ECS03T-786H、繊維径10μm、長さ3mmのチョプドストランド
・ミルドファイバー;日東紡(株)製PF70E001(繊維径10μm、繊維長70μm)
(B) Plate-like filler, mica; AB-25S manufactured by Yamaguchi Mica Industry Co., Ltd., average particle size 25 μm
・ Talc: Crown Talc PP manufactured by Matsumura Sangyo Co., Ltd., average particle size 10μm
(C) Glass fiber / glass fiber: ECS03T-786H manufactured by Nippon Electric Glass Co., Ltd., fiber diameter 10 μm, chopped strand milled fiber with a length of 3 mm; PF70E001 manufactured by Nittobo Co., Ltd. (fiber diameter 10 μm, fiber length 70 μm) )

Figure 0005485216
Figure 0005485216

Claims (2)

(A)必須の構成成分として下記一般式(I),(II),(III),(IV)および(V)で表される構成単位からなり、全構成単位に対して(I)の構成単位が35〜75モル%、(II)の構成単位が2〜8モル%、(III)の構成単位が4.5〜30.5モル%、(IV)の構成単位が2〜8モル%、(V)の構成単位が12.5〜32.5モル%、(II)+(IV)の構成単位が4〜10モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステル、(B)板状の無機充填剤及び(C)ガラス繊維からなり、(B)成分が組成物全体に対し15〜25重量%、(C)成分が組成物全体に対し10〜25重量%、且つ(B)成分と(C)成分の合計が組成物全体に対し30〜40重量%である複合樹脂組成物から形成され、
外枠の内部に格子構造を有し、
格子部のピッチ間隔が1.5mm以下
の構造に特徴がある平面状コネクター。
Figure 0005485216
(A) Consists of structural units represented by the following general formulas (I), (II), (III), (IV) and (V) as essential constituents, and the constituent of (I) with respect to all structural units 35 to 75 mol% of units, 2 to 8 mol% of structural units of (II), 4.5 to 30.5 mol% of structural units of (III), 2 to 8 mol% of structural units of (IV), (V) A wholly aromatic polyester exhibiting optical anisotropy when melted, wherein the structural unit is 12.5-32.5 mol% and the structural unit (II) + (IV) is 4-10 mol%, (B) It consists of a plate-like inorganic filler and (C) glass fiber, the component (B) is 15 to 25% by weight with respect to the whole composition, the component (C) is 10 to 25% by weight with respect to the whole composition, and (B ) Component and (C) component is formed from a composite resin composition that is 30 to 40% by weight based on the total composition,
It has a lattice structure inside the outer frame,
A flat connector characterized by a structure with a pitch interval of 1.5mm or less in the lattice section.
Figure 0005485216
(B)板状の無機充填剤が、タルク、マイカより選ばれる1種以上である請求項1記載の平面状コネクター。 The planar connector according to claim 1, wherein the (B) plate-like inorganic filler is at least one selected from talc and mica.
JP2011081763A 2011-04-01 2011-04-01 Planar connector Active JP5485216B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011081763A JP5485216B2 (en) 2011-04-01 2011-04-01 Planar connector
KR1020137025768A KR101399743B1 (en) 2011-04-01 2012-03-28 Planar connector
PCT/JP2012/058051 WO2012137637A1 (en) 2011-04-01 2012-03-28 Planar connector
SG2013071675A SG193609A1 (en) 2011-04-01 2012-03-28 Planar connector
CN201280015085.XA CN103460515B (en) 2011-04-01 2012-03-28 Planar connector
TW101111292A TWI481661B (en) 2011-04-01 2012-03-30 Planar connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081763A JP5485216B2 (en) 2011-04-01 2011-04-01 Planar connector

Publications (2)

Publication Number Publication Date
JP2012214652A JP2012214652A (en) 2012-11-08
JP5485216B2 true JP5485216B2 (en) 2014-05-07

Family

ID=46969038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081763A Active JP5485216B2 (en) 2011-04-01 2011-04-01 Planar connector

Country Status (6)

Country Link
JP (1) JP5485216B2 (en)
KR (1) KR101399743B1 (en)
CN (1) CN103460515B (en)
SG (1) SG193609A1 (en)
TW (1) TWI481661B (en)
WO (1) WO2012137637A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769888B2 (en) * 2012-09-26 2015-08-26 ポリプラスチックス株式会社 Composite resin composition for electronic parts, and electronic parts molded from the composite resin composition
WO2014050370A1 (en) * 2012-09-27 2014-04-03 ポリプラスチックス株式会社 Composite resin composition and flat connector molded from same
JP6109651B2 (en) * 2013-06-06 2017-04-05 ポリプラスチックス株式会社 Composite resin composition and planar connector molded from the composite resin composition
CN107148448B (en) * 2014-12-05 2018-02-27 宝理塑料株式会社 Composite resin composition and planar connector
WO2018116888A1 (en) * 2016-12-21 2018-06-28 ポリプラスチックス株式会社 Liquid crystalline resin composition for surface-mounted relays and surface-mounted relay using same
JP6774329B2 (en) * 2016-12-28 2020-10-21 住友化学株式会社 Liquid crystal polyester resin composition
MY191157A (en) * 2019-04-03 2022-06-02 Polyplastics Co Wholly aromatic polyester and polyester resin composition
KR20220098130A (en) * 2019-10-31 2022-07-11 포리프라스틱 가부시키가이샤 Resin composition and connector
JP6944616B1 (en) * 2019-10-31 2021-10-06 ポリプラスチックス株式会社 Resin composition and planar connector
JP7281023B2 (en) * 2021-02-05 2023-05-24 ポリプラスチックス株式会社 Liquid crystalline resin composition for fan impeller and fan impeller using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943021B2 (en) * 1979-04-16 1984-10-19 富士通株式会社 data communication system
JPS5962630A (en) * 1982-07-26 1984-04-10 セラニ−ズ・コ−ポレイシヨン Anisotropic melt-processable polyester containing relativelylow concentration 6-oxy-2-naphthoyl portion
JPS5943021A (en) * 1982-09-02 1984-03-09 Ueno Seiyaku Oyo Kenkyusho:Kk Production of aromatic (co)polyester
JPH0216120A (en) * 1988-07-05 1990-01-19 Polyplastics Co Polyester resin exhibiting optical anisotropy when melted and resin composition
JP2000160030A (en) * 1998-11-30 2000-06-13 Otsuka Chem Co Ltd Flame retardant resin composition
US6222000B1 (en) * 2000-01-14 2001-04-24 Ticona Llc Process for producing amorphous anisotropic melt-forming polymers having a high degree of stretchability
JP4510420B2 (en) * 2003-10-02 2010-07-21 上野製薬株式会社 Liquid crystalline polyester resin
JP4717366B2 (en) 2004-03-26 2011-07-06 ポリプラスチックス株式会社 Planar connector
JP5165492B2 (en) * 2008-05-23 2013-03-21 ポリプラスチックス株式会社 Planar connector
JP2010037364A (en) * 2008-07-31 2010-02-18 Polyplastics Co Connector

Also Published As

Publication number Publication date
CN103460515B (en) 2015-05-27
SG193609A1 (en) 2013-10-30
JP2012214652A (en) 2012-11-08
KR20140009433A (en) 2014-01-22
KR101399743B1 (en) 2014-05-27
WO2012137637A1 (en) 2012-10-11
TWI481661B (en) 2015-04-21
TW201313824A (en) 2013-04-01
CN103460515A (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5485216B2 (en) Planar connector
JP5165492B2 (en) Planar connector
KR101413813B1 (en) Fully aromatic polyester and polyester resin composition
JP5753144B2 (en) Totally aromatic polyester and polyester resin composition, and polyester molded article
JP6157778B1 (en) Totally aromatic polyester and method for producing the same
JP6157779B1 (en) Totally aromatic polyester amide and method for producing the same
JP5753143B2 (en) Totally aromatic polyester and polyester resin composition, and polyester molded article
JP5826404B2 (en) Composite resin composition and planar connector molded from the composite resin composition
JP2016124947A (en) Production method of molded article and composite resin composition
JP6388749B1 (en) Totally aromatic polyester amide and method for producing the same
JP6133000B1 (en) Totally aromatic polyester amide and method for producing the same
JP6189750B2 (en) Totally aromatic polyester, polyester resin composition, and polyester molded article
CN109312070B (en) Wholly aromatic polyester amide and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130702

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140120

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5485216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250