JP6157778B1 - Totally aromatic polyester and method for producing the same - Google Patents

Totally aromatic polyester and method for producing the same Download PDF

Info

Publication number
JP6157778B1
JP6157778B1 JP2017507026A JP2017507026A JP6157778B1 JP 6157778 B1 JP6157778 B1 JP 6157778B1 JP 2017507026 A JP2017507026 A JP 2017507026A JP 2017507026 A JP2017507026 A JP 2017507026A JP 6157778 B1 JP6157778 B1 JP 6157778B1
Authority
JP
Japan
Prior art keywords
mol
acid
aromatic polyester
wholly aromatic
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017507026A
Other languages
Japanese (ja)
Other versions
JPWO2017068867A1 (en
Inventor
俊紀 川原
俊紀 川原
俊明 横田
俊明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Application granted granted Critical
Publication of JP6157778B1 publication Critical patent/JP6157778B1/en
Publication of JPWO2017068867A1 publication Critical patent/JPWO2017068867A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

低融点化と耐熱性との両立が十分であり、色相に優れる全芳香族ポリエステルを提供する。本発明に係る全芳香族ポリエステルは、必須の構成成分として、下記構成単位(I)〜(IV)からなり、全構成単位に対して、構成単位(I)を61〜68モル%、構成単位(II)を7〜14モル%、構成単位(III)を5.5〜9モル%、構成単位(IV)を16〜19.5モル%含み、構成単位(II)及び(III)の合計に対する構成単位(III)の比が0.30〜0.48であり、分子内にエステル結合又はエステル結合とケトン結合との組み合わせを有し、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0〜0.18モル%であり、溶融時に光学的異方性を示す。

Figure 0006157778
Provided is a wholly aromatic polyester that is sufficiently compatible with low melting point and heat resistance and excellent in hue. The wholly aromatic polyester according to the present invention comprises the following constituent units (I) to (IV) as essential constituent components, and the constituent units (I) are 61 to 68 mol%, constituent units with respect to all constituent units. 7 to 14 mol% of (II), 5.5 to 9 mol% of structural unit (III), 16 to 19.5 mol% of structural unit (IV), and the total of structural units (II) and (III) The ratio of the structural unit (III) to is 0.30 to 0.48, has an ester bond or a combination of an ester bond and a ketone bond in the molecule, and the ketone with respect to the sum of the ester bond and the ketone bond The amount of bonds is 0 to 0.18 mol%, and exhibits optical anisotropy when melted.
Figure 0006157778

Description

本発明は、全芳香族ポリエステル及びその製造方法に関する。   The present invention relates to a wholly aromatic polyester and a method for producing the same.

全芳香族ポリエステルとして現在市販されているものは4−ヒドロキシ安息香酸が主成分である。しかし、4−ヒドロキシ安息香酸のホモポリマーは、融点が分解点よりも高くなってしまうため、種々の成分を共重合することにより低融点化する必要がある。   What is currently marketed as a fully aromatic polyester is based on 4-hydroxybenzoic acid. However, since the homopolymer of 4-hydroxybenzoic acid has a melting point higher than the decomposition point, it is necessary to lower the melting point by copolymerizing various components.

例えば、共重合成分として、1,4−フェニレンジカルボン酸、1,4−ジヒドロキシベンゼン、4,4’−ジヒドロキシビフェニル等を用いた全芳香族ポリエステルが知られている。しかし、この全芳香族ポリエステルの融点は、350℃以上であり、汎用の装置にて溶融加工を行うには高すぎる。   For example, wholly aromatic polyesters using 1,4-phenylenedicarboxylic acid, 1,4-dihydroxybenzene, 4,4'-dihydroxybiphenyl, and the like as copolymerization components are known. However, the melting point of this wholly aromatic polyester is 350 ° C. or higher, which is too high for melt processing with a general-purpose apparatus.

また、このような全芳香族ポリエステルの融点を、汎用の溶融加工機器で加工できる温度まで下げるために、種々の方法が試みられている。しかし、低融点化がある程度実現される一方で高温(融点下近傍)での機械的強度に代表される、全芳香族ポリエステルの耐熱性を保てないという問題がある。   In addition, various methods have been tried to lower the melting point of such wholly aromatic polyesters to a temperature at which they can be processed by general-purpose melt processing equipment. However, there is a problem that the heat resistance of the wholly aromatic polyester, represented by mechanical strength at a high temperature (near the melting point), cannot be maintained while lowering the melting point to some extent.

これらの問題を解決するために、特許文献1では、4−ヒドロキシ安息香酸に、1,4−フェニレンジカルボン酸、1,3−フェニレンジカルボン酸、及び4,4’−ジヒドロキシビフェニルを組み合わせた共重合ポリエステルが提案されている。   In order to solve these problems, Patent Document 1 discloses a copolymer obtained by combining 4-hydroxybenzoic acid with 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, and 4,4′-dihydroxybiphenyl. Polyester has been proposed.

特公昭57−24407号公報Japanese Patent Publication No.57-24407

しかしながら、従来の全芳香族ポリエステルは、低融点化と耐熱性との両立が不十分である。また、全芳香族ポリエステルは、良好な外観を備えるよう、色相に優れることが求められる。   However, conventional wholly aromatic polyesters are insufficient in achieving both low melting point and heat resistance. Further, the wholly aromatic polyester is required to be excellent in hue so as to have a good appearance.

本発明は、上記課題に鑑み、低融点化と耐熱性との両立が十分であり、色相に優れる全芳香族ポリエステル及びその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a wholly aromatic polyester excellent in hue and having both a low melting point and heat resistance, and a method for producing the same.

本発明者らは、上記の課題を解決するために鋭意研究を重ねた。その結果、特定の構成単位からなり、各構成単位の含有量が特定の範囲であり、ケトン結合の量が特定の範囲である全芳香族ポリエステルにより、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的に、本発明は、以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by a wholly aromatic polyester composed of specific structural units, the content of each structural unit being in a specific range, and the amount of ketone bond being in a specific range. It came to be completed. More specifically, the present invention provides the following.

(1) 必須の構成成分として、下記構成単位(I)〜(IV)からなり、
全構成単位に対して構成単位(I)の含有量は61〜68モル%であり、
全構成単位に対して構成単位(II)の含有量は7〜14モル%であり、
全構成単位に対して構成単位(III)の含有量は5.5〜9モル%であり、
全構成単位に対して構成単位(IV)の含有量は16〜19.5モル%であり、
構成単位(II)と構成単位(III)との合計に対する構成単位(III)の比が0.30〜0.48であり、
分子内にエステル結合又はエステル結合とケトン結合との組み合わせを有し、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0〜0.18モル%である、溶融時に光学的異方性を示す全芳香族ポリエステル。
(1) As an essential constituent, it is composed of the following structural units (I) to (IV),
Content of structural unit (I) is 61-68 mol% with respect to all the structural units,
The content of the structural unit (II) is 7 to 14 mol% with respect to all the structural units,
Content of structural unit (III) is 5.5-9 mol% with respect to all the structural units,
The content of the structural unit (IV) is 16 to 19.5 mol% with respect to all the structural units,
The ratio of the structural unit (III) to the total of the structural unit (II) and the structural unit (III) is 0.30 to 0.48,
It has an ester bond or a combination of an ester bond and a ketone bond in the molecule, and the amount of the ketone bond relative to the total of the ester bond and the ketone bond is 0 to 0.18 mol%. A wholly aromatic polyester showing anisotropy.

Figure 0006157778
Figure 0006157778

(2) 融点が320〜340℃である(1)に記載の全芳香族ポリエステル。   (2) The wholly aromatic polyester according to (1), which has a melting point of 320 to 340 ° C.

(3) 融点と荷重たわみ温度との差が85℃以下である(1)又は(2)に記載の全芳香族ポリエステルであって、
前記荷重たわみ温度は、前記全芳香族ポリエステル60質量%と、平均繊維径11μm、平均繊維長75μmのミルドファイバー40質量%とを、前記全芳香族ポリエステルの融点+20℃にて溶融混練して得られるポリエステル樹脂組成物の状態で測定される全芳香族ポリエステル。
(3) The wholly aromatic polyester according to (1) or (2), wherein the difference between the melting point and the deflection temperature under load is 85 ° C. or less,
The deflection temperature under load is obtained by melt-kneading 60% by mass of the wholly aromatic polyester and 40% by mass of milled fiber having an average fiber diameter of 11 μm and an average fiber length of 75 μm at the melting point of the wholly aromatic polyester + 20 ° C. Wholly aromatic polyester measured in the state of the polyester resin composition obtained.

(4) 溶融時に光学的異方性を示す全芳香族ポリエステルの製造方法であって、
前記方法は、脂肪酸金属塩の存在下、4−ヒドロキシ安息香酸及び4,4’−ジヒドロキシビフェニルを脂肪酸無水物でアシル化して、1,4−フェニレンジカルボン酸及び1,3−フェニレンジカルボン酸とエステル交換する工程を含み、
4−ヒドロキシ安息香酸、1,4−フェニレンジカルボン酸、1,3−フェニレンジカルボン酸、及び4,4’−ジヒドロキシビフェニルからなる全モノマーに対し、
4−ヒドロキシ安息香酸の使用量が61〜68モル%、
1,4−フェニレンジカルボン酸の使用量が7〜14モル%、
1,3−フェニレンジカルボン酸の使用量が5.5〜9モル%、
4,4’−ジヒドロキシビフェニルの使用量が16〜19.5モル%
であり、
1,4−フェニレンジカルボン酸と1,3−フェニレンジカルボン酸との合計の使用量に対する1,3−フェニレンジカルボン酸の使用量の比が0.30〜0.48であり、
前記脂肪酸無水物の使用量が、4−ヒドロキシ安息香酸と4,4’−ジヒドロキシビフェニルとの合計の水酸基当量の1.02〜1.04倍である方法。
(4) A method for producing a wholly aromatic polyester exhibiting optical anisotropy when melted,
In the method, 4-hydroxybenzoic acid and 4,4′-dihydroxybiphenyl are acylated with a fatty acid anhydride in the presence of a fatty acid metal salt, and 1,4-phenylenedicarboxylic acid and 1,3-phenylenedicarboxylic acid are esterified. Including the step of exchanging,
For all monomers consisting of 4-hydroxybenzoic acid, 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, and 4,4′-dihydroxybiphenyl,
The amount of 4-hydroxybenzoic acid used is 61 to 68 mol%,
The amount of 1,4-phenylene dicarboxylic acid used is 7 to 14 mol%,
The amount of 1,3-phenylenedicarboxylic acid used is 5.5-9 mol%,
The amount of 4,4′-dihydroxybiphenyl used is 16 to 19.5 mol%.
And
The ratio of the amount of 1,3-phenylenedicarboxylic acid used to the total amount of 1,4-phenylenedicarboxylic acid and 1,3-phenylenedicarboxylic acid used is 0.30 to 0.48,
The method whose usage-amount of the said fatty acid anhydride is 1.02-1.04 times the sum total hydroxyl equivalent of 4-hydroxybenzoic acid and 4,4'- dihydroxybiphenyl.

(5) 前記脂肪酸金属塩が酢酸金属塩であり、前記脂肪酸無水物が無水酢酸である(4)に記載の方法。   (5) The method according to (4), wherein the fatty acid metal salt is an acetic acid metal salt and the fatty acid anhydride is acetic anhydride.

(6) 1,4−フェニレンジカルボン酸と1,3−フェニレンジカルボン酸との合計のモル数が4,4’−ジヒドロキシビフェニルのモル数の1〜1.06倍であり、又は、4,4’−ジヒドロキシビフェニルのモル数が1,4−フェニレンジカルボン酸と1,3−フェニレンジカルボン酸との合計のモル数の1〜1.06倍である(5)に記載の方法。   (6) The total number of moles of 1,4-phenylene dicarboxylic acid and 1,3-phenylene dicarboxylic acid is 1 to 1.06 times the number of moles of 4,4′-dihydroxybiphenyl, or 4,4 The method according to (5), wherein the number of moles of '-dihydroxybiphenyl is 1 to 1.06 times the total number of moles of 1,4-phenylenedicarboxylic acid and 1,3-phenylenedicarboxylic acid.

本発明によれば、特定の構成単位よりなり溶融時に光学的異方性を示す、本発明の全芳香族ポリエステルは、低融点化と耐熱性との両立が十分であり、色相に優れている。   According to the present invention, the wholly aromatic polyester of the present invention, which is composed of specific structural units and exhibits optical anisotropy when melted, has both a low melting point and sufficient heat resistance, and is excellent in hue. .

また、本発明の全芳香族ポリエステルは、成形加工温度があまり高くないために、特殊な構造を持った成形機を用いずとも射出成形、押出成形、圧縮成形等が可能である。   The wholly aromatic polyester of the present invention does not have a very high molding processing temperature, and thus can be injection molded, extruded, compressed, etc. without using a molding machine having a special structure.

本発明の全芳香族ポリエステルは、上記の通り、成形性に優れ、且つ様々な成形機を用いて成形可能である結果、種々の立体成形品、繊維、フィルム等に容易に加工できる。このため、本発明の全芳香族ポリエステルの好適な用途である、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース又はOA機器の加熱定着ロール等の成形品も容易に得られる。   As described above, the wholly aromatic polyester of the present invention is excellent in moldability and can be molded using various molding machines. As a result, it can be easily processed into various three-dimensional molded products, fibers, films and the like. For this reason, molded products such as connectors, CPU sockets, relay switch parts, bobbins, actuators, noise reduction filter cases, or heat fixing rolls for OA equipment, which are suitable uses of the wholly aromatic polyester of the present invention, can be easily obtained. .

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

<全芳香族ポリエステル>
本発明の全芳香族ポリエステルは、下記構成単位(I)、下記構成単位(II)、下記構成単位(III)、及び下記構成単位(IV)からなる。
<Totally aromatic polyester>
The wholly aromatic polyester of the present invention comprises the following structural unit (I), the following structural unit (II), the following structural unit (III), and the following structural unit (IV).

Figure 0006157778
Figure 0006157778

構成単位(I)は、4−ヒドロキシ安息香酸(以下、「HBA」ともいう。)から誘導される。本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(I)を61〜68モル%含む。構成単位(I)の含有量が61モル%未満、又は68モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。   The structural unit (I) is derived from 4-hydroxybenzoic acid (hereinafter also referred to as “HBA”). The wholly aromatic polyester of the present invention contains 61 to 68 mol% of the structural unit (I) with respect to all the structural units. When the content of the structural unit (I) is less than 61 mol% or exceeds 68 mol%, at least one of lowering the melting point and heat resistance tends to be insufficient.

構成単位(II)は、1,4−フェニレンジカルボン酸(以下、「TA」ともいう。)から誘導される。本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(II)を7〜14モル%含み、好ましくは9.5〜11.5モル%含む。構成単位(II)の含有量が7モル%未満、又は14モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。   The structural unit (II) is derived from 1,4-phenylenedicarboxylic acid (hereinafter also referred to as “TA”). The wholly aromatic polyester of the present invention contains 7 to 14 mol%, preferably 9.5 to 11.5 mol% of the structural unit (II) with respect to all the structural units. If the content of the structural unit (II) is less than 7 mol% or exceeds 14 mol%, at least one of lowering the melting point and heat resistance tends to be insufficient.

構成単位(III)は、1,3−フェニレンジカルボン酸(以下、「IA」ともいう。)から誘導される。本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(III)を5.5〜9モル%含み、好ましくは6.5〜8モル%含む。構成単位(III)の含有量が5.5モル%未満、又は9モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。   The structural unit (III) is derived from 1,3-phenylenedicarboxylic acid (hereinafter also referred to as “IA”). The wholly aromatic polyester of the present invention contains 5.5 to 9 mol%, preferably 6.5 to 8 mol% of the structural unit (III) with respect to all the structural units. When the content of the structural unit (III) is less than 5.5 mol% or exceeds 9 mol%, at least one of lowering the melting point and heat resistance tends to be insufficient.

構成単位(IV)は、4,4’−ジヒドロキシビフェニル(以下、「BP」ともいう。)から誘導される。本発明の全芳香族ポリエステルには、全構成単位に対して構成単位(IV)を16〜19.5モル%含む。構成単位(IV)の含有量が16モル%未満、又は19.5モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。   The structural unit (IV) is derived from 4,4′-dihydroxybiphenyl (hereinafter also referred to as “BP”). The wholly aromatic polyester of the present invention contains 16 to 19.5 mol% of the structural unit (IV) with respect to the total structural unit. When the content of the structural unit (IV) is less than 16 mol% or exceeds 19.5 mol%, at least one of lowering the melting point and heat resistance tends to be insufficient.

本発明の全芳香族ポリエステルにおいては、構成単位(II)と構成単位(III)との合計に対する構成単位(III)の比が0.30〜0.48モル%である。上記比が0.30モル%未満、又は0.48モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。   In the wholly aromatic polyester of the present invention, the ratio of the structural unit (III) to the total of the structural unit (II) and the structural unit (III) is 0.30 to 0.48 mol%. When the ratio is less than 0.30 mol% or exceeds 0.48 mol%, at least one of lowering the melting point and heat resistance tends to be insufficient.

全芳香族ポリエステルのあらゆる物性を左右する要素の一つとして、重合中の副反応により形成されるケトン結合がある。
本発明の全芳香族ポリエステルにおいては、エステル結合とケトン結合との合計に対するケトン結合の量が0〜0.18モル%である。上記ケトン結合の量が0.18モル%を超えると、色相が低下しやすい。
One of the factors affecting all physical properties of wholly aromatic polyesters is a ketone bond formed by a side reaction during polymerization.
In the wholly aromatic polyester of the present invention, the amount of the ketone bond relative to the total of the ester bond and the ketone bond is 0 to 0.18 mol%. When the amount of the ketone bond exceeds 0.18 mol%, the hue tends to be lowered.

以上の通り、本発明の全芳香族ポリエステルは、特定の構成単位(I)〜(IV)のそれぞれを、全構成単位に対して特定の量含有し、また、構成単位(II)と構成単位(III)との合計に対する構成単位(III)の比が特定の範囲に調整されており、更に、ケトン結合の量が特定の範囲に調整されているため、低融点化と耐熱性との両立が十分であり、色相に優れる。   As described above, the wholly aromatic polyester of the present invention contains a specific amount of each of the specific structural units (I) to (IV) with respect to the total structural units, and the structural unit (II) and the structural units. Since the ratio of the structural unit (III) to the total of (III) is adjusted to a specific range, and the amount of ketone bond is adjusted to a specific range, both low melting point and heat resistance are compatible. Is sufficient and has excellent hue.

上記の耐熱性を表す指標として、融点と荷重たわみ温度(以下、「DTUL」ともいう。)との差が挙げられる。この差が、85℃以下であると耐熱性が高くなる傾向にあり好ましい。DTULは、前記全芳香族ポリエステル60質量%と、平均繊維径11μm、平均繊維長75μmのミルドファイバー40質量%とを、前記全芳香族ポリエステルの融点+20℃にて溶融混練して得られるポリエステル樹脂組成物の状態で測定される値であり、ISO75−1,2に準拠して測定することができる。   As an index representing the heat resistance, a difference between a melting point and a deflection temperature under load (hereinafter also referred to as “DTUL”) can be given. If this difference is 85 ° C. or less, the heat resistance tends to increase, which is preferable. DTUL is a polyester resin obtained by melt-kneading 60% by mass of the wholly aromatic polyester and 40% by mass of milled fiber having an average fiber diameter of 11 μm and an average fiber length of 75 μm at the melting point of the wholly aromatic polyester + 20 ° C. It is a value measured in the state of the composition, and can be measured according to ISO75-1,2.

次いで、本発明の全芳香族ポリエステルの製造方法について説明する。本発明の全芳香族ポリエステルは、直接重合法やエステル交換法等を用いて重合される。重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等が用いられる。   Subsequently, the manufacturing method of the wholly aromatic polyester of this invention is demonstrated. The wholly aromatic polyester of the present invention is polymerized using a direct polymerization method or a transesterification method. In the polymerization, a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method, or the like is used.

本発明では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の脂肪酸無水物等が挙げられる。   In the present invention, at the time of polymerization, an acylating agent for the polymerization monomer or a monomer having terminal activated as an acid chloride derivative can be used. Examples of the acylating agent include fatty acid anhydrides such as acetic anhydride.

これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、ジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタン珪酸塩類、チタンアルコラート類、脂肪酸金属塩、BFの如きルイス酸塩等が挙げられ、脂肪酸金属塩が好ましい。触媒の使用量は一般にはモノマーの全質量に基づいて約0.001〜1質量%、特に約0.003〜0.2質量%が好ましい。In the polymerization, various catalysts can be used. Typical examples include dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, fatty acid metal salts, BF 3 Lewis acid salts such as are mentioned, and fatty acid metal salts are preferred. The amount of the catalyst used is generally about 0.001 to 1% by weight, particularly about 0.003 to 0.2% by weight, based on the total weight of the monomers.

また、溶液重合又はスラリー重合を行う場合、溶媒としては流動パラフィン、高耐熱性合成油、不活性鉱物油等が用いられる。   Moreover, when performing solution polymerization or slurry polymerization, as a solvent, liquid paraffin, a high heat resistant synthetic oil, an inert mineral oil, etc. are used.

反応条件としては、例えば、反応温度200〜380℃、最終到達圧力0.1〜760Torr(即ち、13〜101,080Pa)である。特に溶融反応では、例えば、反応温度260〜380℃、好ましくは300〜360℃、最終到達圧力1〜100Torr(即ち、133〜13,300Pa)、好ましくは1〜50Torr(即ち、133〜6,670Pa)である。   The reaction conditions are, for example, a reaction temperature of 200 to 380 ° C. and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to 101,080 Pa). Particularly in the melt reaction, for example, the reaction temperature is 260 to 380 ° C., preferably 300 to 360 ° C., the final ultimate pressure is 1 to 100 Torr (that is, 133 to 13,300 Pa), preferably 1 to 50 Torr (that is, 133 to 6,670 Pa). ).

反応は、全原料モノマー(HBA、TA、IA、及びBP)、アシル化剤、及び触媒を同一反応容器に仕込んで反応を開始させることもできるし(一段方式)、原料モノマーHBA及びBPの水酸基をアシル化剤によりアシル化させた後、TA及びIAのカルボキシル基と反応させることもできる(二段方式)。   The reaction can be started by charging all the raw material monomers (HBA, TA, IA, and BP), the acylating agent, and the catalyst in the same reaction vessel (one-stage system), or the hydroxyl groups of the raw material monomers HBA and BP. Can be acylated with an acylating agent and then reacted with carboxyl groups of TA and IA (two-stage system).

溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にしてから行う。撹拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系から全芳香族ポリエステルを排出する。   The melt polymerization is performed after the inside of the reaction system reaches a predetermined temperature, and after starting the pressure reduction to a predetermined degree of pressure reduction. After the torque of the stirrer reaches a predetermined value, an inert gas is introduced, and the total aromatic polyester is discharged from the reaction system by changing from a reduced pressure state to a normal pressure to a predetermined pressure state.

上記重合方法により製造された全芳香族ポリエステルは、更に常圧又は減圧、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。固相重合反応の好ましい条件は、反応温度230〜330℃、好ましくは250〜320℃、最終到達圧力10〜760Torr(即ち、1,330〜101,080Pa)である。   The wholly aromatic polyester produced by the above polymerization method can be further increased in molecular weight by solid-state polymerization that is heated at normal pressure or reduced pressure in an inert gas. The preferable conditions for the solid state polymerization reaction are a reaction temperature of 230 to 330 ° C., preferably 250 to 320 ° C., and a final ultimate pressure of 10 to 760 Torr (ie 1,330 to 101,080 Pa).

本発明の全芳香族ポリエステルの製造方法は、脂肪酸金属塩の存在下、4−ヒドロキシ安息香酸及び4,4’−ジヒドロキシビフェニルを脂肪酸無水物でアシル化して、1,4−フェニレンジカルボン酸及び1,3−フェニレンジカルボン酸とエステル交換する工程を含むことが好ましく、
4−ヒドロキシ安息香酸、1,4−フェニレンジカルボン酸、1,3−フェニレンジカルボン酸、及び4,4’−ジヒドロキシビフェニルからなる全モノマーに対し、
4−ヒドロキシ安息香酸の使用量が61〜68モル%、
1,4−フェニレンジカルボン酸の使用量が7〜14モル%、
1,3−フェニレンジカルボン酸の使用量が5.5〜9モル%、
4,4’−ジヒドロキシビフェニルの使用量が16〜19.5モル%
であることが好ましく、
1,4−フェニレンジカルボン酸と1,3−フェニレンジカルボン酸との合計の使用量に対する1,3−フェニレンジカルボン酸の使用量の比が0.30〜0.48であることが好ましく、
前記脂肪酸無水物の使用量は、4−ヒドロキシ安息香酸と4,4’−ジヒドロキシビフェニルとの合計の水酸基当量の1.02〜1.04倍であることが好ましい。上記脂肪酸金属塩が酢酸金属塩であり、上記脂肪酸無水物が無水酢酸であることがより好ましい。また、1,4−フェニレンジカルボン酸と1,3−フェニレンジカルボン酸との合計のモル数は、4,4’−ジヒドロキシビフェニルのモル数の1〜1.06倍であり、又は、4,4’−ジヒドロキシビフェニルのモル数は、1,4−フェニレンジカルボン酸と1,3−フェニレンジカルボン酸との合計のモル数の1〜1.06倍であることが好ましい。
In the process for producing a wholly aromatic polyester of the present invention, 1,4-phenylenedicarboxylic acid and 1 are prepared by acylating 4-hydroxybenzoic acid and 4,4′-dihydroxybiphenyl with a fatty acid anhydride in the presence of a fatty acid metal salt. Preferably comprising a step of transesterification with 3,3-phenylenedicarboxylic acid,
For all monomers consisting of 4-hydroxybenzoic acid, 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, and 4,4′-dihydroxybiphenyl,
The amount of 4-hydroxybenzoic acid used is 61 to 68 mol%,
The amount of 1,4-phenylene dicarboxylic acid used is 7 to 14 mol%,
The amount of 1,3-phenylenedicarboxylic acid used is 5.5-9 mol%,
The amount of 4,4′-dihydroxybiphenyl used is 16 to 19.5 mol%.
It is preferable that
The ratio of the amount of 1,3-phenylenedicarboxylic acid used relative to the total amount of 1,4-phenylenedicarboxylic acid and 1,3-phenylenedicarboxylic acid is preferably 0.30 to 0.48,
The amount of the fatty acid anhydride used is preferably 1.02 to 1.04 times the total hydroxyl equivalent of 4-hydroxybenzoic acid and 4,4′-dihydroxybiphenyl. More preferably, the fatty acid metal salt is an acetic acid metal salt and the fatty acid anhydride is acetic anhydride. The total number of moles of 1,4-phenylene dicarboxylic acid and 1,3-phenylene dicarboxylic acid is 1 to 1.06 times the number of moles of 4,4′-dihydroxybiphenyl, or 4,4 The number of moles of '-dihydroxybiphenyl is preferably 1 to 1.06 times the total number of moles of 1,4-phenylenedicarboxylic acid and 1,3-phenylenedicarboxylic acid.

次いで、全芳香族ポリエステルの性質について説明する。本発明の全芳香族ポリエステルは、溶融時に光学的異方性を示す。溶融時に光学的異方性を示すことは、本発明の全芳香族ポリエステルが液晶性ポリマーであることを意味する。   Next, the properties of the wholly aromatic polyester will be described. The wholly aromatic polyester of the present invention exhibits optical anisotropy when melted. An optical anisotropy when melted means that the wholly aromatic polyester of the present invention is a liquid crystalline polymer.

本発明において、全芳香族ポリエステルが液晶性ポリマーであることは、全芳香族ポリエステルが熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位(I)〜(IV)から構成される全芳香族ポリエステルは、構成成分及びポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本発明のポリマーは溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。   In the present invention, the fact that the wholly aromatic polyester is a liquid crystalline polymer is an indispensable element for the wholly aromatic polyester has both thermal stability and easy processability. The wholly aromatic polyesters composed of the structural units (I) to (IV) may not form an anisotropic melt phase depending on the constituent components and the sequence distribution in the polymer. Limited to wholly aromatic polyesters that exhibit optical anisotropy when melted.

溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認は、オリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。液晶性ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。   The property of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham Co., Ltd. using a polarizing microscope manufactured by Olympus and observing it at a magnification of 150 times in a nitrogen atmosphere. The liquid crystalline polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.

ネマチックな液晶性ポリマーは融点以上で著しく粘性低下を生じるので、一般的に融点又はそれ以上の温度で液晶性を示すことが加工性の指標となる。融点(液晶性発現温度)は、でき得る限り高い方が耐熱性の観点からは好ましいが、ポリマーの溶融加工時の熱劣化や成形機の加熱能力等を考慮すると、320〜340℃であることが好ましい目安となる。なお、より好ましくは、325〜335℃である。   Since a nematic liquid crystalline polymer causes a significant decrease in viscosity at the melting point or higher, generally exhibiting liquid crystallinity at the melting point or higher is an index of workability. The melting point (liquid crystallinity expression temperature) is preferably as high as possible from the viewpoint of heat resistance, but it is 320 to 340 ° C. in consideration of thermal degradation during polymer melt processing, heating capability of the molding machine, and the like. Is a preferred guideline. In addition, More preferably, it is 325-335 degreeC.

<ポリエステル樹脂組成物>
上記の本発明の全芳香族ポリエステルには、使用目的に応じて各種の繊維状、粉粒状、板状の無機及び有機の充填剤を配合することができる。
<Polyester resin composition>
Various fibrous, granular, and plate-like inorganic and organic fillers can be blended in the wholly aromatic polyester of the present invention according to the purpose of use.

本発明のポリエステル樹脂組成物に配合される、無機充填剤としては、繊維状、粒状、板状のものがある。   As an inorganic filler mix | blended with the polyester resin composition of this invention, there exist a fibrous form, a granular form, and a plate-shaped thing.

繊維状無機充填剤としてはガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイトの如き珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等の無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。   Silica such as glass fiber, asbestos fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, wollastonite as fibrous inorganic filler Inorganic fibrous materials such as fibers, magnesium sulfate fibers, aluminum borate fibers, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass. A particularly typical fibrous filler is glass fiber.

また、粉粒状無機充填剤としてはカーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、硅藻土、ウォラストナイトの如き硅酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他フェライト、炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。   In addition, as the granular inorganic filler, carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium oxalate, aluminum oxalate, kaolin, clay, diatomaceous earth, wollast Silicates such as knight, iron oxide, titanium oxide, zinc oxide, antimony trioxide, metal oxides such as alumina, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate Examples thereof include salts, other ferrites, silicon carbide, silicon nitride, boron nitride, and various metal powders.

また、板状無機充填剤としてはマイカ、ガラスフレーク、タルク、各種の金属箔等が挙げられる。   Examples of the plate-like inorganic filler include mica, glass flakes, talc, and various metal foils.

有機充填剤の例を示せば芳香族ポリエステル繊維、液晶性ポリマー繊維、芳香族ポリアミド、ポリイミド繊維等の耐熱性高強度合成繊維等である。   Examples of organic fillers include heat-resistant high-strength synthetic fibers such as aromatic polyester fibers, liquid crystalline polymer fibers, aromatic polyamides, and polyimide fibers.

これらの無機及び有機充填剤は一種又は二種以上併用することができる。繊維状無機充填剤と粒状又は板状無機充填剤との併用は、機械的強度と寸法精度、電気的性質等を兼備する上で好ましい組み合わせである。特に好ましくは、繊維状充填剤としてガラス繊維、板状充填剤としてマイカ及びタルクであり、その配合量は、全芳香族ポリエステル100質量部に対して120質量部以下、好ましくは20〜80質量部である。ガラス繊維をマイカ又はタルクと組み合わせることで、ポリエステル樹脂組成物は、熱変形温度、機械的物性等の向上が特に顕著である。   These inorganic and organic fillers can be used alone or in combination of two or more. The combined use of the fibrous inorganic filler and the granular or plate-like inorganic filler is a preferable combination in order to combine mechanical strength, dimensional accuracy, electrical properties, and the like. Particularly preferably, the fibrous filler is glass fiber, and the plate-like filler is mica and talc. It is. By combining glass fiber with mica or talc, the polyester resin composition is particularly prominent in improving the heat distortion temperature and mechanical properties.

これらの充填剤の使用にあたっては必要ならば収束剤又は表面処理剤を使用することができる。   In using these fillers, if necessary, a sizing agent or a surface treatment agent can be used.

本発明のポリエステル樹脂組成物は、上述の通り、必須成分として、本発明の全芳香族ポリエステル、無機又は有機充填剤を含むが、本発明の効果を害さない範囲であれば、その他の成分が含まれていてもよい。ここで、その他の成分とは、どのような成分であってもよく、例えば、その他の樹脂、酸化防止剤、安定剤、顔料、結晶核剤等の添加剤を挙げることができる。   As described above, the polyester resin composition of the present invention contains the wholly aromatic polyester of the present invention, an inorganic or organic filler as an essential component, but other components are included as long as the effects of the present invention are not impaired. It may be included. Here, the other component may be any component, and examples thereof include other resins, antioxidants, stabilizers, pigments, crystal nucleating agents and the like.

また、本発明のポリエステル樹脂組成物の製造方法は特に限定されず、従来公知の方法で、ポリエステル樹脂組成物を調製することができる。   Moreover, the manufacturing method of the polyester resin composition of this invention is not specifically limited, A polyester resin composition can be prepared by a conventionally well-known method.

<ポリエステル成形品>
本発明のポリエステル成形品は、本発明の全芳香族ポリエステル又はポリエステル樹脂組成物を成形してなる。成形方法としては、特に限定されず一般的な成形方法を採用することができる。一般的な成形方法としては、射出成形、押出成形、圧縮成形、ブロー成形、真空成形、発泡成形、回転成形、ガスインジェクション成形等の方法を例示することができる。
<Polyester molded product>
The polyester molded article of the present invention is formed by molding the wholly aromatic polyester or polyester resin composition of the present invention. The molding method is not particularly limited, and a general molding method can be employed. Examples of general molding methods include injection molding, extrusion molding, compression molding, blow molding, vacuum molding, foam molding, rotational molding, gas injection molding, and the like.

本発明の全芳香族ポリエステル等を成形してなるポリエステル成形品は、耐熱性、靱性に優れる。また、本発明のポリエステル樹脂組成物を成形してなるポリエステル成形品は、耐熱性、靱性に優れるとともに、無機又は有機充填剤を含むため、機械的強度等が更に改善される。   A polyester molded product formed by molding the wholly aromatic polyester of the present invention is excellent in heat resistance and toughness. Moreover, since the polyester molded article formed by shape | molding the polyester resin composition of this invention is excellent in heat resistance and toughness and contains an inorganic or organic filler, mechanical strength etc. are further improved.

また、本発明の全芳香族ポリエステル、ポリエステル樹脂組成物は、成形性に優れるため、容易に所望の形状のポリエステル成形品が得られる。   Moreover, since the wholly aromatic polyester and the polyester resin composition of the present invention are excellent in moldability, a polyester molded product having a desired shape can be easily obtained.

以上のような性質を有する本発明のポリエステル成形品の好ましい用途としては、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース又はOA機器の加熱定着ロール等が挙げられる。   Preferred uses of the polyester molded product of the present invention having the above properties include connectors, CPU sockets, relay switch parts, bobbins, actuators, noise reduction filter cases, heat fixing rolls for OA equipment, and the like.

以下、実施例により本発明を更に詳しく説明するが、本発明は以下の実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to a following example.

<実施例1>
撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、脂肪酸金属塩触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4−ヒドロキシ安息香酸10.9モル(66モル%)(HBA)
(II)テレフタル酸1.7モル(10.3モル%)(TA)
(III)イソフタル酸1.1モル(6.7モル%)(IA)
(IV)4,4’−ジヒドロキシビフェニル2.8モル(17モル%)(BP)
酢酸カリウム触媒110mg
無水酢酸1756g(HBAとBPとの合計の水酸基当量の1.04倍)
原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。
<Example 1>
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a decompression / outflow line was charged with the following raw material monomers, fatty acid metal salt catalyst, and acylating agent, and nitrogen substitution was started.
(I) 4-hydroxybenzoic acid 10.9 mol (66 mol%) (HBA)
(II) 1.7 mol (10.3 mol%) of terephthalic acid (TA)
(III) 1.1 mol (6.7 mol%) of isophthalic acid (IA)
(IV) 2.8 mol (17 mol%) of 4,4′-dihydroxybiphenyl (BP)
Potassium acetate catalyst 110mg
1756 g of acetic anhydride (1.04 times the total hydroxyl equivalent of HBA and BP)
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further increased to 360 ° C. over 5.5 hours, and then the pressure is reduced to 10 Torr (ie, 1330 Pa) over 20 minutes to melt while distilling acetic acid, excess acetic anhydride, and other low-boiling components. Polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from a reduced pressure state to a normal pressure, and the polymer was discharged from the lower part of the polymerization vessel.

<評価>
実施例1の全芳香族ポリエステルについて、融点、DTUL、色相(L値)、及びケトン結合量の評価を以下の方法で行った。評価結果を表1及び2に示す。
<Evaluation>
About the wholly aromatic polyester of Example 1, evaluation of melting | fusing point, DTUL, a hue (L value), and a ketone bond amount was performed with the following method. The evaluation results are shown in Tables 1 and 2.

[融点]
DSC(TAインスツルメント社製)にて、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
[Melting point]
After observing the endothermic peak temperature (Tm1) observed by DSC (manufactured by TA Instruments) at a temperature rising condition of 20 ° C./min from room temperature, the temperature is 2 at (Tm1 + 40) ° C. After being held for a minute, the sample was once cooled to room temperature under a temperature drop condition of 20 ° C./min, and then the temperature of the endothermic peak observed when measured under a temperature rise condition of 20 ° C./min was measured again.

[DTUL]
ポリマー60質量%とガラス繊維(セントラル硝子(株)製、ミルドファイバー、平均繊維径11μm、平均繊維長75μm)40質量%とを、二軸押出機((株)日本製鋼所製TEX30α型)を用いて、ポリマーの融点+20℃のシリンダー温度にて溶融混練し、ポリエステル樹脂組成物ペレットを得た。
上記ポリエステル樹脂組成物ペレットを、成形機(住友重機械工業(株)製「SE100DU」)を用いて、以下の成形条件で成形し、測定用試験片(4mm×10mm×80mm)を得た。この試験片を用いて、ISO75−1,2に準拠した方法で荷重たわみ温度を測定した。なお、曲げ応力としては、1.8MPaを用いた。結果を表1及び2に示す。
〔成形条件〕
シリンダー温度:ポリマーの融点+20℃
金型温度:80℃
背圧:2MPa
射出速度:33mm/sec
[DTUL]
60% by mass of polymer and 40% by mass of glass fiber (manufactured by Central Glass Co., Ltd., milled fiber, average fiber diameter 11 μm, average fiber length 75 μm), a twin-screw extruder (TEX30α type, manufactured by Nippon Steel) And melt-kneading at a cylinder temperature of the melting point of the polymer + 20 ° C. to obtain polyester resin composition pellets.
The polyester resin composition pellets were molded under the following molding conditions using a molding machine (“SE100DU” manufactured by Sumitomo Heavy Industries, Ltd.) to obtain measurement specimens (4 mm × 10 mm × 80 mm). Using this test piece, the deflection temperature under load was measured by a method based on ISO75-1,2. Note that 1.8 MPa was used as the bending stress. The results are shown in Tables 1 and 2.
〔Molding condition〕
Cylinder temperature: Polymer melting point + 20 ° C
Mold temperature: 80 ℃
Back pressure: 2MPa
Injection speed: 33mm / sec

[色相(L値)]
分光色差計(日本電色工業株式会社製「SE6000」)を用いて、ポリマーのL値を測定した。
[Hue (L value)]
The L value of the polymer was measured using a spectral color difference meter (“SE6000” manufactured by Nippon Denshoku Industries Co., Ltd.).

[ケトン結合量]
ポリマーのケトン結合量は、Polymer Degradation and Stability 76(2002)85−94に記載される、熱分解ガスクロマトグラフィー法によって算出した。具体的には、熱分解装置(フロンティア・ラボ(株)製「PY2020iD」)を用いて、ポリマーを水酸化テトラメチルアンモニウム(TMAH)共存下で加熱し、熱分解/メチル化によりガスを発生させた。このガスをガスクロマトグラフィー(アジレント・テクノロジー(株)製「GC−6890N」)を用いて分析し、ケトン結合に由来するピーク面積とエステル結合に由来するピーク面積との比からケトン結合量を算出した。
[Ketone binding amount]
The ketone bond amount of the polymer was calculated by a pyrolysis gas chromatography method described in Polymer Degradation and Stability 76 (2002) 85-94. Specifically, the polymer is heated in the presence of tetramethylammonium hydroxide (TMAH) using a pyrolysis device ("PY2020iD" manufactured by Frontier Laboratories) to generate gas by pyrolysis / methylation. It was. This gas is analyzed using gas chromatography ("GC-6890N" manufactured by Agilent Technologies), and the amount of ketone bond is calculated from the ratio of the peak area derived from the ketone bond to the peak area derived from the ester bond. did.

<実施例2〜7、比較例1〜12>
原料モノマーの種類、仕込み比率(モル%)を表1又は2に示す通りとした以外は、実施例1と同様にしてポリマーを得た。また、実施例1と同様の評価を行った。ただし、比較例11のポリマーを得る際は、酢酸カリウム触媒を使用せず、無水酢酸の使用量を、HBAとBPとの合計の水酸基当量の1.10倍とした。評価結果を表1及び2に示す。
<Examples 2-7, Comparative Examples 1-12>
A polymer was obtained in the same manner as in Example 1 except that the type of raw material monomer and the charging ratio (mol%) were as shown in Table 1 or 2. Moreover, the same evaluation as Example 1 was performed. However, when the polymer of Comparative Example 11 was obtained, the potassium acetate catalyst was not used, and the amount of acetic anhydride used was 1.10 times the total hydroxyl equivalent of HBA and BP. The evaluation results are shown in Tables 1 and 2.

Figure 0006157778
Figure 0006157778

Figure 0006157778
Figure 0006157778

Claims (6)

必須の構成成分として、下記構成単位(I)〜(IV)からなり、
全構成単位に対して構成単位(I)の含有量は61〜68モル%であり、
全構成単位に対して構成単位(II)の含有量は7〜14モル%であり、
全構成単位に対して構成単位(III)の含有量は5.5〜9モル%であり、
全構成単位に対して構成単位(IV)の含有量は16〜19.5モル%であり、
構成単位(II)と構成単位(III)との合計に対する構成単位(III)の比が0.39〜0.41であり、
分子内にエステル結合又はエステル結合とケトン結合との組み合わせを有し、前記エステル結合と前記ケトン結合との合計に対する前記ケトン結合の量が0〜0.18モル%である、溶融時に光学的異方性を示す全芳香族ポリエステル。
Figure 0006157778
As an essential constituent, it consists of the following structural units (I) to (IV),
Content of structural unit (I) is 61-68 mol% with respect to all the structural units,
The content of the structural unit (II) is 7 to 14 mol% with respect to all the structural units,
Content of structural unit (III) is 5.5-9 mol% with respect to all the structural units,
The content of the structural unit (IV) is 16 to 19.5 mol% with respect to all the structural units,
The ratio of the structural unit (III) to the total of the structural unit (II) and the structural unit (III) is 0.39 to 0.41 ,
It has an ester bond or a combination of an ester bond and a ketone bond in the molecule, and the amount of the ketone bond relative to the total of the ester bond and the ketone bond is 0 to 0.18 mol%. A wholly aromatic polyester showing anisotropy.
Figure 0006157778
融点が320〜340℃である請求項1に記載の全芳香族ポリエステル。   The wholly aromatic polyester according to claim 1, which has a melting point of 320 to 340 ° C. 融点と荷重たわみ温度との差が85℃以下である請求項1又は2に記載の全芳香族ポリエステルであって、
前記荷重たわみ温度は、前記全芳香族ポリエステル60質量%と、平均繊維径11μm、平均繊維長75μmのミルドファイバー40質量%とを、前記全芳香族ポリエステルの融点+20℃にて溶融混練して得られるポリエステル樹脂組成物の状態で測定される全芳香族ポリエステル。
The wholly aromatic polyester according to claim 1 or 2, wherein the difference between the melting point and the deflection temperature under load is 85 ° C or less,
The deflection temperature under load is obtained by melt-kneading 60% by mass of the wholly aromatic polyester and 40% by mass of milled fiber having an average fiber diameter of 11 μm and an average fiber length of 75 μm at the melting point of the wholly aromatic polyester + 20 ° C. Wholly aromatic polyester measured in the state of the polyester resin composition obtained.
溶融時に光学的異方性を示す全芳香族ポリエステルの製造方法であって、
前記方法は、脂肪酸金属塩の存在下、4−ヒドロキシ安息香酸及び4,4’−ジヒドロキシビフェニルを脂肪酸無水物でアシル化して、1,4−フェニレンジカルボン酸及び1,3−フェニレンジカルボン酸とエステル交換する工程を含み、
4−ヒドロキシ安息香酸、1,4−フェニレンジカルボン酸、1,3−フェニレンジカルボン酸、及び4,4’−ジヒドロキシビフェニルからなる全モノマーに対し、
4−ヒドロキシ安息香酸の使用量が61〜68モル%、
1,4−フェニレンジカルボン酸の使用量が7〜14モル%、
1,3−フェニレンジカルボン酸の使用量が5.5〜9モル%、
4,4’−ジヒドロキシビフェニルの使用量が16〜19.5モル%
であり、
1,4−フェニレンジカルボン酸と1,3−フェニレンジカルボン酸との合計の使用量に対する1,3−フェニレンジカルボン酸の使用量の比が0.39〜0.41であり、
前記脂肪酸無水物の使用量が、4−ヒドロキシ安息香酸と4,4’−ジヒドロキシビフェニルとの合計の水酸基当量の1.02〜1.04倍である方法。
A method for producing a wholly aromatic polyester exhibiting optical anisotropy when melted,
In the method, 4-hydroxybenzoic acid and 4,4′-dihydroxybiphenyl are acylated with a fatty acid anhydride in the presence of a fatty acid metal salt, and 1,4-phenylenedicarboxylic acid and 1,3-phenylenedicarboxylic acid are esterified. Including the step of exchanging,
For all monomers consisting of 4-hydroxybenzoic acid, 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, and 4,4′-dihydroxybiphenyl,
The amount of 4-hydroxybenzoic acid used is 61 to 68 mol%,
The amount of 1,4-phenylene dicarboxylic acid used is 7 to 14 mol%,
The amount of 1,3-phenylenedicarboxylic acid used is 5.5-9 mol%,
The amount of 4,4′-dihydroxybiphenyl used is 16 to 19.5 mol%.
And
The ratio of the amount of 1,3-phenylene dicarboxylic acid used to the total amount of 1,4-phenylene dicarboxylic acid and 1,3-phenylene dicarboxylic acid used is 0.39 to 0.41 ;
The method whose usage-amount of the said fatty acid anhydride is 1.02-1.04 times the sum total hydroxyl equivalent of 4-hydroxybenzoic acid and 4,4'- dihydroxybiphenyl.
前記脂肪酸金属塩が酢酸金属塩であり、前記脂肪酸無水物が無水酢酸である請求項4に記載の方法。   The method according to claim 4, wherein the fatty acid metal salt is an acetic acid metal salt and the fatty acid anhydride is acetic anhydride. 1,4−フェニレンジカルボン酸と1,3−フェニレンジカルボン酸との合計のモル数が4,4’−ジヒドロキシビフェニルのモル数の1〜1.06倍であり、又は、4,4’−ジヒドロキシビフェニルのモル数が1,4−フェニレンジカルボン酸と1,3−フェニレンジカルボン酸との合計のモル数の1〜1.06倍である請求項5に記載の方法。   The total number of moles of 1,4-phenylene dicarboxylic acid and 1,3-phenylene dicarboxylic acid is 1 to 1.06 times the number of moles of 4,4′-dihydroxybiphenyl, or 4,4′-dihydroxy The method according to claim 5, wherein the number of moles of biphenyl is 1 to 1.06 times the total number of moles of 1,4-phenylenedicarboxylic acid and 1,3-phenylenedicarboxylic acid.
JP2017507026A 2015-10-21 2016-08-31 Totally aromatic polyester and method for producing the same Active JP6157778B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015207434 2015-10-21
JP2015207434 2015-10-21
PCT/JP2016/075450 WO2017068867A1 (en) 2015-10-21 2016-08-31 Fully aromatic polyester, and production method therefor

Publications (2)

Publication Number Publication Date
JP6157778B1 true JP6157778B1 (en) 2017-07-05
JPWO2017068867A1 JPWO2017068867A1 (en) 2017-10-19

Family

ID=58557171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017507026A Active JP6157778B1 (en) 2015-10-21 2016-08-31 Totally aromatic polyester and method for producing the same

Country Status (4)

Country Link
JP (1) JP6157778B1 (en)
CN (1) CN108026258B (en)
TW (1) TWI680147B (en)
WO (1) WO2017068867A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083967A (en) * 2018-11-20 2020-06-04 住友化学株式会社 Aromatic polyester, method for producing the same, and composition
WO2020204125A1 (en) * 2019-04-03 2020-10-08 ポリプラスチックス株式会社 Fully aromatic polyester and polyester resin composition
WO2020204124A1 (en) * 2019-04-03 2020-10-08 ポリプラスチックス株式会社 Wholly aromatic polyester and polyester resin composition
KR20220098130A (en) * 2019-10-31 2022-07-11 포리프라스틱 가부시키가이샤 Resin composition and connector
CN114616283B (en) * 2019-10-31 2023-11-21 宝理塑料株式会社 Resin composition and planar connector
JP2021105107A (en) * 2019-12-26 2021-07-26 ポリプラスチックス株式会社 Wholly aromatic polyester, polyester resin composition, and molding
KR102601520B1 (en) * 2020-07-16 2023-11-14 포리프라스틱 가부시키가이샤 Resin composition and molded article thereof
CN112250846B (en) 2020-10-30 2022-12-02 金发科技股份有限公司 Liquid crystal polyester, liquid crystal polyester composition and application
KR20230098896A (en) 2020-11-25 2023-07-04 주식회사 쿠라레 Liquid crystal polyester fiber and its manufacturing method
CN114763681A (en) * 2021-01-14 2022-07-19 刘露 Wholly aromatic polyester paper and preparation method thereof
WO2022168706A1 (en) * 2021-02-05 2022-08-11 ポリプラスチックス株式会社 Fan impeller liquid crystal resin composition and fan impeller which uses same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019428A (en) * 2006-06-15 2008-01-31 Sumitomo Chemical Co Ltd Liquid crystalline polymer composition and application of the same
JP2010174114A (en) * 2009-01-29 2010-08-12 Toray Ind Inc Liquid crystalline resin composition
WO2011018837A1 (en) * 2009-08-11 2011-02-17 東レ株式会社 Liquid crystalline polyester and process for producing same
WO2012137636A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Fully aromatic polyester and polyester resin composition
WO2014050371A1 (en) * 2012-09-26 2014-04-03 ポリプラスチックス株式会社 Composite resin composition for electronic component and electronic component molded from composite resin composition
JP2015124276A (en) * 2013-12-26 2015-07-06 東レ株式会社 Liquid crystalline polyester resin composition and molded article thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207790B1 (en) * 2000-01-14 2001-03-27 Ticona Llc Process for producing amorphous anisotropic melt-forming polymers having a high degree of stretchability and polymers produced by same
KR100655195B1 (en) * 2005-11-02 2006-12-08 삼성정밀화학 주식회사 Manufacturing method of aromatic polyester
CN101210068B (en) * 2006-12-30 2010-05-26 长春人造树脂厂股份有限公司 Method for preparing full-aromatic polyester
CN101896533B (en) * 2007-12-12 2012-08-22 三菱化学株式会社 Aliphatic polyester resin and method for producing the same
WO2010013606A1 (en) * 2008-07-30 2010-02-04 Dic株式会社 Liquid crystal polymer and process for producing the liquid crystal polymer
KR101639439B1 (en) * 2008-12-25 2016-07-13 스미또모 가가꾸 가부시키가이샤 Liquid-crystalline polyester resin composition and connector using the same
CN103122057A (en) * 2011-11-17 2013-05-29 金发科技股份有限公司 Method for synthesizing liquid crystal polyester by aid of microwave
CN103570927A (en) * 2012-07-06 2014-02-12 金发科技股份有限公司 Thermotropic liquid crystal polyester and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019428A (en) * 2006-06-15 2008-01-31 Sumitomo Chemical Co Ltd Liquid crystalline polymer composition and application of the same
JP2010174114A (en) * 2009-01-29 2010-08-12 Toray Ind Inc Liquid crystalline resin composition
WO2011018837A1 (en) * 2009-08-11 2011-02-17 東レ株式会社 Liquid crystalline polyester and process for producing same
WO2012137636A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Fully aromatic polyester and polyester resin composition
WO2014050371A1 (en) * 2012-09-26 2014-04-03 ポリプラスチックス株式会社 Composite resin composition for electronic component and electronic component molded from composite resin composition
JP2015124276A (en) * 2013-12-26 2015-07-06 東レ株式会社 Liquid crystalline polyester resin composition and molded article thereof

Also Published As

Publication number Publication date
JPWO2017068867A1 (en) 2017-10-19
CN108026258A (en) 2018-05-11
TW201731907A (en) 2017-09-16
WO2017068867A1 (en) 2017-04-27
TWI680147B (en) 2019-12-21
CN108026258B (en) 2019-03-26

Similar Documents

Publication Publication Date Title
JP6157778B1 (en) Totally aromatic polyester and method for producing the same
KR101413813B1 (en) Fully aromatic polyester and polyester resin composition
JP6157779B1 (en) Totally aromatic polyester amide and method for producing the same
JP6837189B1 (en) Total aromatic polyester and polyester resin composition
JP6852233B2 (en) Total aromatic polyester and polyester resin compositions
JP5032957B2 (en) Totally aromatic polyester and polyester resin composition
JP6412296B1 (en) Totally aromatic polyester and polyester resin composition
JP6388749B1 (en) Totally aromatic polyester amide and method for producing the same
JP6133000B1 (en) Totally aromatic polyester amide and method for producing the same
WO2018207774A1 (en) Wholly aromatic polyester and polyester resin composition
JP5032958B2 (en) Totally aromatic polyester and polyester resin composition
JP6345373B1 (en) Totally aromatic polyester amide and method for producing the same
JP7332285B2 (en) Wholly aromatic polyesteramide, polyesteramide resin composition and polyesteramide molded article
JP6411706B1 (en) Totally aromatic polyester and polyester resin composition
JP6189750B2 (en) Totally aromatic polyester, polyester resin composition, and polyester molded article
WO2022210967A1 (en) Wholly aromatic polyester and polyester resin composition
WO2023176816A1 (en) Wholly aromatic polyester, resin composition, and molded article, and method for producing wholly aromatic polyester
JP2020041012A (en) Wholly aromatic polyester amide and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170606

R150 Certificate of patent or registration of utility model

Ref document number: 6157778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250