WO2021085240A1 - Resin composition and connector - Google Patents

Resin composition and connector Download PDF

Info

Publication number
WO2021085240A1
WO2021085240A1 PCT/JP2020/039381 JP2020039381W WO2021085240A1 WO 2021085240 A1 WO2021085240 A1 WO 2021085240A1 JP 2020039381 W JP2020039381 W JP 2020039381W WO 2021085240 A1 WO2021085240 A1 WO 2021085240A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
content
connector
less
mol
Prior art date
Application number
PCT/JP2020/039381
Other languages
French (fr)
Japanese (ja)
Inventor
博樹 深津
昭宏 長永
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN202080075154.0A priority Critical patent/CN114630865B/en
Priority to MYPI2022002005A priority patent/MY195150A/en
Priority to JP2021518020A priority patent/JP6944615B1/en
Priority to KR1020227012387A priority patent/KR20220098130A/en
Publication of WO2021085240A1 publication Critical patent/WO2021085240A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to a resin composition and a connector.
  • Liquid crystal polymers such as all-aromatic polyester are thermoplastic resins with excellent dimensional accuracy and fluidity. Due to these characteristics, liquid crystal polymers have been adopted as materials for various electronic components.
  • Patent Document 1 discloses a connector molded from a liquid crystal polymer composition reinforced with mica and glass fiber. Such a connector is for connecting a board-to-board connector or a flexible printed circuit board (FPC) and a flexible flat cable (FFC), which are required to have heat resistance, suppression of warpage deformation, fluidity, dimensional stability, and the like. It is used as a connector for flexible printed circuit boards used in
  • Sublimated products may be generated in the total aromatic polyester during the polymerization reaction. Such sublimated products may be precipitated and deposited on the inner wall of the polymerization vessel or the like, where polycondensation, deterioration, or carbonization may be mixed in the polymer as foreign matter. If foreign matter is mixed in the polymer, it may cause gate clogging during injection molding. Further, when the foreign matter is a carbide, it may cause poor continuity of the electronic component molded from the resin composition. In particular, in electronic components that have been made smaller and / or thinner, there is a higher possibility that conduction failure will occur. In addition, in the production of miniaturized and thinned electronic components, a resin composition having excellent fluidity and less warpage and deformation of the obtained molded product is required.
  • the present invention provides a resin composition capable of producing a molded product having excellent fluidity, less contamination of foreign substances, and less warpage and / or deformation, and a connector molded from the resin composition. Make it an issue.
  • the present invention has the following aspects.
  • [1] Contains (A) total aromatic polyester, (B) fibrous filler, and (C) plate-like filler, and (A) total aromatic polyester is the following constituent unit as an essential component. It contains (I) to (IV), the content of the structural unit (I) is 40 to 75 mol%, and the content of the structural unit (II) is 0.5 to 7.
  • the content of the constituent unit (III) is 8.5 to 30 mol%
  • the content of the constituent unit (IV) is 8.5 to 30 mol%
  • the constituent unit (A) total aromatic polyester is 57.5 to 80% by mass
  • the content of the fibrous filler is 1.5 to 15% by mass with respect to the entire resin composition
  • the content of the plate-like filler is 12.5 to 35% by mass with respect to the entire resin composition.
  • the total amount of (B) fibrous filler and (C) plate-like filler is 20.0 to 42.5% by mass with respect to the entire resin composition, and (B) the weight of the fibrous filler.
  • the total content of the structural units (I), (II), (III) and (IV) is 100 mol% with respect to all the structural units of (A) all aromatic polyesters, [1].
  • the resin composition according to. [3] The resin composition according to [1] or [2], wherein the (B) fibrous filler contains milled glass fiber.
  • the distance between pitches is 0.5 mm or less, the total length of the product is 3.5 mm or more, the product height is 4.0 mm or less, and the low profile is a board-to-board connector or a connector for a flexible printed circuit board.
  • a resin composition capable of producing a molded product having excellent fluidity, less contamination of foreign substances, and less warpage and / or deformation, and a connector molded from the resin composition. be able to.
  • the resin composition contains (A) a total aromatic polyester, (B) a fibrous filler, and (C) a plate-like filler.
  • the total aromatic polyester contains the following structural units (I) to (IV) as essential constituents. Since the following constituent units (I) to (IV) are contained as essential constituents, it is necessary to provide a molded product having excellent heat resistance and mechanical strength (particularly mechanical strength in a high temperature environment) required for electronic parts. In addition, since the melting point can be lowered to a melting point that can be processed by a general-purpose melting processing device, excellent moldability can be realized even when molding a miniaturized and / or thinned electronic component.
  • the structural unit (I) is derived from 6-hydroxy-2-naphthoic acid (hereinafter, also referred to as "HNA").
  • the total aromatic polyester contains 40 to 75 mol% of the structural unit (I) with respect to all the structural units. If the content of the structural unit (I) is less than 40 mol%, the melting point is excessively lowered and the heat resistance is insufficient. If the content of the structural unit (I) exceeds 75 mol%, solidification occurs during polymerization and a polymer cannot be obtained.
  • the content of the structural unit (I) is preferably 40 to 70 mol%, more preferably 40 to 65 mol%, and further preferably 40 to 63 mol%. , Even more preferably 40 to 62 mol%, and particularly preferably 40 to 60 mol%.
  • the structural unit (II) is derived from 4-hydroxybenzoic acid (hereinafter, also referred to as "HBA").
  • the total aromatic polyester contains 0.5 to 7.5 mol% of the structural unit (II) with respect to all the structural units. If the content of the structural unit (II) is less than 0.5 mol%, solidification occurs during polymerization and the polymer cannot be discharged. If the content of the structural unit (II) exceeds 7.5 mol%, the melting point is excessively lowered and the heat resistance is insufficient.
  • the content of the structural unit (II) is preferably 0.5 to 7.0 mol%, more preferably 1.0 to 7.0 mol%, and further preferably 1.0 to 7.0 mol%. Is 1.2 to 7.0 mol%, more preferably 1.5 to 6.5 mol%, and particularly preferably 2.0 to 6.0 mol%.
  • the structural unit (III) is derived from 1,4-phenylenedicarboxylic acid (hereinafter, also referred to as "TA").
  • the total aromatic polyester contains 8.5 to 30 mol% of the structural unit (III) with respect to all the structural units.
  • the content of the structural unit (III) is less than 8.5 mol% or more than 30 mol%, at least one of lowering the melting point for lowering the melting point to a temperature that can be processed by a general-purpose melting processing machine and heat resistance It tends to be insufficient.
  • the content of the structural unit (III) is preferably 10 to 30 mol%, more preferably 12 to 28 mol%, and further preferably 14 to 28. It is in mol%, more preferably 15 to 28 mol%, and particularly preferably 17 to 27 mol%.
  • the structural unit (IV) is derived from 4,4'-dihydroxybiphenyl (hereinafter, also referred to as "BP").
  • the total aromatic polyester contains 8.5 to 30 mol% of structural units (IV) with respect to all structural units. If the content of the structural unit (IV) is less than 8.5 mol% or more than 30 mol%, at least one of low melting point and heat resistance tends to be insufficient. From the viewpoint of achieving both a low melting point and heat resistance, the content of the structural unit (IV) is preferably 10 to 30 mol%, more preferably 12 to 28 mol%, and further preferably 14 to 28 mol%. It is in mol%, more preferably 15 to 28 mol%, and particularly preferably 17 to 27 mol%.
  • the total content of the constituent units (I), (II), (III) and (IV) of the total aromatic polyester is preferably 95 mol% or more based on the total constituent units of the total aromatic polyester. ..
  • the total content of the structural units (I), (II), (III) and (IV) is more preferably 100 mol% with respect to all the structural units of the total aromatic polyester.
  • the difference between the content of the constituent unit (III) and the content of the constituent unit (IV) of the total aromatic polyester is 0.150 mol% or less.
  • the difference between the content of the structural unit (III) and the content of the structural unit (IV) is preferably 0.145 mol% or less, and more preferably 0.140 mol% or less. It is more preferably 0.135 mol% or less, further preferably 0.130 mol% or less, and particularly preferably 0.125 mol% or less.
  • the temperature during the polymerization reaction is set to 140 ° C. to 360 ° C. in order to reduce the difference between the content of the structural unit (III) and the content of the structural unit (IV) to 0.150 mol% or less.
  • the temperature can be raised in stages.
  • the temperature is raised by changing the heating rate (for example, increasing the heating rate stepwise) by dividing the temperature from 140 ° C to 200 ° C, from 200 ° C to 270 ° C, and from 270 ° C to 360 ° C. Can be done.
  • the rate of temperature rise from 140 ° C. to 200 ° C. can be 0.4 ° C./min or more and less than 0.8 ° C./min.
  • the rate of temperature rise from 200 ° C. to 270 ° C. can be set to 0.8 ° C./min or more and 1.2 ° C./min or less.
  • the rate of temperature rise from 270 ° C. to 360 ° C. can be set to 0.4 ° C./min or more and 1.2 ° C./min or less.
  • All aromatic polyesters exhibit optical anisotropy when melted. Exhibiting optical anisotropy when melted means that the total aromatic polyester is a liquid crystal polymer.
  • the fact that the total aromatic polyester is a liquid crystal polymer is an indispensable element for the total aromatic polyester to have both thermal stability and easy workability.
  • the total aromatic polyester composed of the constituent units (I) to (IV) may not form an anisotropic molten phase depending on the constituent components and the sequence distribution in the polymer, but it is used in the present embodiment. Polymers are limited to all-aromatic polyesters that exhibit optical anisotropy when melted.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the confirmation of melt anisotropy can be carried out by melting a sample placed on a hot stage manufactured by Rinkamu using a polarizing microscope manufactured by Olympus and observing it at a magnification of 150 times in a nitrogen atmosphere. Liquid crystalline polymers are optically anisotropic and transmit light when inserted between orthogonal polarizers. If the sample is optically anisotropic, polarized light is transmitted even in a molten static liquid state, for example.
  • the melting point is preferably as high as possible from the viewpoint of heat resistance, but it is preferably 380 ° C. or lower in consideration of thermal deterioration during melt processing of the polymer and the heating capacity of the molding machine. It is more preferably 260 to 370 ° C, even more preferably 270 to 370 ° C, and particularly preferably 280 to 360 ° C.
  • the melt viscosity of the total aromatic polyester at a temperature 10 to 40 ° C. higher than the melting point of the total aromatic polyester and at a shear rate of 1000 / sec is preferably 1000 Pa ⁇ s or less.
  • the melt viscosity of the total aromatic polyester is more preferably 4 to 500 Pa ⁇ s, even more preferably 4 to 250 Pa ⁇ s, and particularly preferably 5 to 100 Pa ⁇ s.
  • the melt viscosity means the melt viscosity measured in accordance with ISO11443.
  • the amount of sublimated material during melt polymerization can be measured from the mass change of the reflux column and the upper part of the reactor used in melt polymerization.
  • the total aromatic polyester preferably has a sublimated amount of 2.3% or less at the time of melt polymerization. When the amount of sublimated material at the time of melt polymerization is 2.3% or less, the amount of foreign matter mixed in the polymer can be further reduced.
  • the amount of sublimated material during melt polymerization is more preferably 2.0% or less, still more preferably 1.9% or less.
  • the total aromatic polyester used in the present embodiment is polymerized by a direct polymerization method, a transesterification method, or the like.
  • a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method, etc., or a combination of two or more of these is used, and a melt polymerization method or a combination of the melt polymerization method and the solid phase polymerization method is used. Is preferably used.
  • the conditions for the polymerization reaction are not particularly limited as long as the polymerization of the above-mentioned structural units proceeds, and for example, the reaction temperature is 200 to 380 ° C. and the final ultimate pressure is 0.1 to 760 Torr (that is, 13 to 101,080 Pa). ) May be.
  • the temperature at the time of the polymerization reaction can be raised stepwise from 140 ° C. to 360 ° C. (divided into two or more steps or three or more steps). By gradually raising the temperature at the time of the polymerization reaction from 140 ° C. to 360 ° C., the content of the structural unit (III) and the content of the structural unit (IV) in the obtained total aromatic polyester The difference can easily be 0.150 mol% or less.
  • the temperature can be raised by changing the heating rate by dividing the temperature from 140 ° C. to 200 ° C., from 200 ° C. to 270 ° C., and from 270 ° C. to 360 ° C.
  • the rate of temperature rise from 140 ° C. to 200 ° C. can be 0.4 ° C./min or more and less than 0.8 ° C./min.
  • the rate of temperature rise from 200 ° C. to 270 ° C. can be set to 0.8 ° C./min or more and 1.2 ° C./min or less.
  • the rate of temperature rise from 270 ° C. to 360 ° C. can be set to 0.4 ° C./min or more and 1.2 ° C./min or less.
  • the amount of 1,4-phenylenedicarboxylic acid used (mol%) and the amount of 4,4'-dihydroxybiphenyl used (mol%) are determined from the viewpoint of increasing the molecular weight. It is preferable that they are equal. It should be noted that the generation of sublimated products during the production of the total aromatic polyester of the present embodiment causes a difference in their contents.
  • an acylating agent for the polymerized monomer or a monomer having an activated terminal can be used as an acid chloride derivative.
  • the acylating agent include fatty acid anhydrides such as acetic anhydride.
  • catalysts can be used for these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2).
  • 4-Pentandionato) Examples include metal salt-based catalysts such as cobalt (III) and organic compound-based catalysts such as 1-methylimidazole and 4-dimethylaminopyridine.
  • melt polymerization is carried out by starting depressurization to a predetermined decompression degree.
  • an inert gas is introduced, and the pressure is changed from a reduced pressure state to a normal pressure state to a predetermined pressure state, and the total aromatic polyester is discharged from the reaction system.
  • the total aromatic polyester produced by the above polymerization method can be further increased in molecular weight by solid-phase polymerization of normal pressure, reduced pressure, or heating in an inert gas.
  • the content of the total aromatic polyester is 57.5 to 80.0% by mass in the total resin composition.
  • the liquid crystal resin has excellent fluidity, rigidity, mechanical strength, heat resistance, chemical resistance, and electrical properties. Etc. can be sufficiently expressed.
  • the content of the total aromatic polyester in the resin composition is preferably 57.5 to 77.5% by mass, more preferably 59.7 to 77. From the viewpoint of heat resistance, high rigidity and high fluidity. 2% by mass.
  • the resin composition contains a fibrous filler. Since it contains a fibrous filler, it is possible to provide a molded product having excellent high-temperature rigidity and suppressed warpage deformation.
  • the fibrous filler is not particularly limited, and is not particularly limited, and is glass fiber, milled glass fiber, carbon fiber, asbestos fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate. Examples include whisker and calcium silicate whisker (wollastonite).
  • the fibrous filler preferably contains one or more selected from milled glass fiber and calcium silicate whisker (wollastonite) in that the high-temperature rigidity of the molded product obtained from the resin composition can be easily improved. More preferably, it contains milled glass fiber.
  • the weight average fiber length of the fibrous filler is less than 200 ⁇ m. Since the weight average fiber length of the fibrous filler is less than 200 ⁇ m, it is possible to achieve both high fluidity of the resin composition and suppression of warpage deformation of the molded product. If the weight average fiber length of the fibrous filler is 200 ⁇ m or more, the fluidity may decrease and it may become difficult to manufacture a molded product used as a miniaturized or thinned electronic device, which is not preferable. ..
  • the weight average fiber length of the fibrous filler is preferably 170 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the lower limit of the weight average fiber length is not particularly limited, and is preferably 50 ⁇ m or more, and more preferably 70 ⁇ m or more.
  • the weight average fiber length is 50 ⁇ m or more, the high-temperature rigidity of the molded product molded from the resin composition tends to be sufficient, which is preferable.
  • the weight average fiber length of the fibrous filler refers to the fibrous filler of the incinerated residue obtained by heating the resin composition at 600 ° C. for 2 hours to incinerate it to obtain an incinerated residue.
  • Stereomicroscopic images of 100 images are taken from a CCD camera into a PC and measured by an image measuring machine by an image processing method. This is repeated 10 times, and refers to the average value of the measured values when the number of fibrous fillers reaches about 1000.
  • the fiber diameter of the fibrous filler is not particularly limited, and generally about 5 to 15 ⁇ m is used.
  • the fibrous filler can be used alone or in combination of two or more.
  • the fiber diameter is the average value of the measured fiber diameters of 100 fibrous fillers obtained by observing the fibrous filler with a scanning electron microscope.
  • the content of the fibrous filler is 1.5 to 15% by mass with respect to the entire resin composition.
  • the content of the fibrous filler is less than 1.5% by mass with respect to the entire resin composition, the deflection temperature under load of the molded product such as a connector obtained from the resin composition is low, and the high temperature rigidity is not sufficient. Therefore, it is not preferable.
  • the content of the fibrous filler is more than 15% by mass with respect to the entire resin composition, the fluidity of the composition may deteriorate and the warpage deformation of the molded product may increase, which is not preferable.
  • the content of the fibrous filler is preferably 2 to 15% by mass, more preferably 2.5 to 15% by mass, and further preferably 3 to 15% by mass with respect to the entire resin composition.
  • the resin composition contains a plate-like filler. Since it contains a plate-shaped filler, it is possible to obtain a molded product in which warpage deformation is suppressed.
  • the plate-like filler include talc, mica, glass flakes, and various metal foils. It is preferable to include one or more selected from talc and mica in terms of suppressing warpage deformation of the molded product obtained from the resin composition without deteriorating the fluidity of the resin composition, and it is preferable to include talc. More preferred.
  • the average particle size of the plate-shaped filler is not particularly limited, and a smaller one is desirable in consideration of the fluidity in the thin-walled portion. On the other hand, in order to reduce the warp deformation of a molded product such as a connector obtained from the resin composition, it is necessary to maintain a certain size. Specifically, 1 to 100 ⁇ m is preferable, and 5 to 50 ⁇ m is more preferable.
  • the average particle size means a volume-based cumulative average particle size (D50) measured by a laser diffraction method.
  • the plate-shaped filler can be used alone or in combination of two or more.
  • talc As for talc, the total content of Fe 2 O 3 , Al 2 O 3 and Ca O is 2.5% by mass or less with respect to the total solid content of the talc, and the total of Fe 2 O 3 and Al 2 O 3 It is preferable that the content is more than 1.0% by mass and 2.0% by mass or less, and the CaO content is less than 0.5% by mass. That is, talc contains at least one of Fe 2 O 3 , Al 2 O 3 and Ca O in addition to SiO 2 and MgO, which are the main components thereof, and each component is contained in the above content range. There may be.
  • the total content of Fe 2 O 3 , Al 2 O 3 and CaO in the above talc is 2.5% by mass or less, the molding processability of the resin composition and the molding of a connector or the like molded from the resin composition are formed. The heat resistance of the product does not deteriorate easily.
  • the total content of Fe 2 O 3 , Al 2 O 3 and CaO is preferably 1.0% by mass or more and 2.0% by mass or less.
  • talc having a total content of Fe 2 O 3 and Al 2 O 3 of more than 1.0% by mass is easily available. Further, in the above talc, when the total content of Fe 2 O 3 and Al 2 O 3 is 2.0% by mass or less, the molding processability of the resin composition and the molding of a connector or the like molded from the resin composition are formed. The heat resistance of the product does not deteriorate easily.
  • the total content of Fe 2 O 3 and Al 2 O 3 is preferably more than 1.0% by mass and 1.7% by mass or less.
  • the CaO content is less than 0.5% by mass, the molding processability of the resin composition and the heat resistance of the molded product such as a connector molded from the resin composition are unlikely to deteriorate.
  • the CaO content is preferably 0.01% by mass or more and 0.4% by mass or less.
  • the volume-based cumulative average particle size (D50) of talc measured by laser diffraction is 4.0 to 20.0 ⁇ m from the viewpoint of preventing warpage deformation of the molded product and maintaining the fluidity of the resin composition. It is preferably 10 to 18 ⁇ m, and more preferably 10 to 18 ⁇ m.
  • Mica is a pulverized product of silicate minerals containing aluminum, potassium, magnesium, sodium, iron and the like.
  • Examples of mica include muscovite, phlogopite, biotite, and artificial mica. Of these, muscovite is preferable because it has a good hue and is inexpensive.
  • the wet pulverization method is a method in which rough mica is roughly pulverized by a dry pulverizer, water is added, and the main pulverization is performed by wet pulverization in a slurry state, and then dehydration and drying are performed.
  • the dry pulverization method is a low-cost and general method as compared with the wet pulverization method, it is easier to pulverize the mineral thinly and finely by using the wet pulverization method.
  • It is preferable to use a thin and fine pulverized product because mica having a preferable average particle size and thickness described later can be obtained. Therefore, it is preferable to use mica produced by the wet pulverization method.
  • coagulation sedimentation agents and sedimentation aids include polyaluminum chloride, aluminum sulfate, ferrous sulfate, ferric sulfate, copper chloride, polyiron sulfate, polyferric chloride, iron-silica inorganic polymer flocculant, and chloride.
  • Examples include ferric-silica inorganic polymer flocculant, slaked lime (Ca (OH) 2 ), caustic soda (NaOH), soda ash (Na 2 CO 3 ) and the like.
  • These coagulation sedimentation agents and sedimentation aids have an alkaline or acidic pH.
  • Mica preferably does not use a coagulation sedimentation agent and / or a sedimentation aid during wet pulverization. When mica that has not been treated with a coagulation sedimentation agent and / or a sedimentation aid is used, decomposition of the polymer in the resin composition is unlikely to occur, and a large amount of gas is less likely to be generated or the molecular weight of the polymer is less likely to decrease. It is easy to maintain the performance of the molded product better.
  • Mica preferably has an average particle size of 10 to 100 ⁇ m measured by a microtrack laser diffraction method, and particularly preferably has an average particle size of 20 to 80 ⁇ m.
  • the average particle size of mica is 10 ⁇ m or more, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable.
  • the average particle size of mica is 100 ⁇ m or less, the rigidity of the molded product is likely to be sufficiently improved, and the weld strength is also likely to be sufficient, which is preferable.
  • the average particle size of mica is 100 ⁇ m or less, it is easy to secure sufficient fluidity for molding a connector or the like.
  • the average thickness actually measured for 100 pieces by observation with an electron microscope is preferably 0.01 to 1 ⁇ m, and particularly preferably 0.03 to 0.3 ⁇ m.
  • the average thickness of mica is 0.01 ⁇ m or more, the mica is less likely to crack during the melt processing of the resin composition, and the rigidity of the molded product may be easily improved, which is preferable.
  • the thickness of mica is 1 ⁇ m or less, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable.
  • Mica may be surface-treated with a silane coupling agent or the like, and / or may be granulated with a binder to form granules.
  • the content of the plate-shaped filler is 12.5 to 35% by mass with respect to the entire resin composition. If the content of the plate-shaped filler is less than 12.5% by mass with respect to the entire resin composition, it is not preferable because the suppression of warpage deformation of the molded product obtained from the resin composition is not sufficient. If the content of the plate-shaped filler is more than 35% by mass with respect to the entire resin composition, the fluidity of the resin composition may deteriorate and molding of the resin composition may become difficult, which is not preferable. ..
  • the content of the plate-shaped filler is preferably 15 to 35% by mass, more preferably 16 to 33% by mass, and further preferably 17.5 to 32% by mass with respect to the entire resin composition.
  • the total amount of the fibrous filler and the plate-shaped filler is 20 to 42.5% by mass with respect to the entire resin composition.
  • the molded product such as a connector obtained from the resin composition has a low deflection temperature under load, insufficient high-temperature rigidity, and warpage deformation. It is not preferable because it may become large.
  • the total amount exceeds 42.5% by mass with respect to the entire resin composition, the fluidity of the resin composition deteriorates, and molding is performed when manufacturing small and thin molded products such as low-profile narrow pitch connectors. It is not preferable because it is inferior in sex.
  • the total amount is preferably 20 to 40% by mass, more preferably 20 to 35.5% by mass, and further preferably 22.5 to 35% by mass with respect to the entire resin composition.
  • the release agent is not particularly limited as long as it is generally available, and examples thereof include fatty acid esters, fatty acid metal salts, fatty acid amides, low molecular weight polyolefins, and the like. Fatty acid esters (eg, pentaerythritol tetrastearate) are preferred.
  • the amount of the release agent to be blended is preferably in the range of 0.1 to 3% by mass in the resin composition.
  • the blending amount of the release agent is 0.1% by mass or more, the releasability at the time of molding is improved, and it is easy to obtain a molded product with less warpage and / or deformation.
  • the mold deposit that is, the deposit on the mold in molding; hereinafter, also referred to as “MD”
  • MD the deposit on the mold in molding
  • the blending amount of the release agent is more preferably 0.1 to 1% by mass, still more preferably 0.1 to 0.5% by mass.
  • the resin composition includes pigments such as nucleating agents, carbon black, and inorganic calcined pigments, antioxidants, stabilizers, plasticizers, flame retardants, and components other than the above components (B) and (C).
  • pigments such as nucleating agents, carbon black, and inorganic calcined pigments, antioxidants, stabilizers, plasticizers, flame retardants, and components other than the above components (B) and (C).
  • One or more of the known inorganic fillers of the above may be blended in an amount of 5% by mass or less.
  • the resin composition includes liquid crystal resins other than the above-mentioned all aromatic polyesters, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polyallyl sulfone resin, thermoplastic polyimide resin, and thermoplastic.
  • Other thermoplastic resins such as urethane resin, polyaminobismaleimide resin, polyamideimide resin, and poly
  • the resin composition according to the present embodiment described above contains less foreign matter derived from the sublimated product during polymer polymerization.
  • a white backlight to a film (0.5 g / sheet, film thickness 100 ⁇ m) prepared by hot pressing the resin composition, and check the number of foreign matter using a loupe. It can be evaluated by doing.
  • the resin composition in which foreign matter is suppressed can suppress gate clogging during injection molding, has excellent molding stability, and can suppress foreign matter from being mixed into the obtained molded product. As a result, it is possible to suppress poor continuity of the electronic component formed from the resin composition.
  • the resin composition according to the present embodiment described above has excellent fluidity, the minimum filling pressure during molding is unlikely to be excessive, and the resin composition has a small and complicated shape such as a connector, particularly a low profile narrow pitch connector or the like. Parts and the like can be preferably molded.
  • the degree of fluidity is determined by the minimum filling pressure of the connector. That is, the minimum injection filling pressure at which a good molded product can be obtained when the FPC connector shown in FIG. 1 is injection molded is specified as the minimum filling pressure. The lower the minimum filling pressure, the better the fluidity is evaluated.
  • the resin composition has a melt viscosity of 1 ⁇ 105 Pa ⁇ s or less (more preferably) measured in accordance with ISO11443 at a temperature 10 to 30 ° C. higher than the melting point of the total aromatic polyester at a shear rate of 1000 / sec. Is 5 Pa ⁇ s or more and 1 ⁇ 102 Pa ⁇ s or less) in that the fluidity of the resin composition is ensured and the filling pressure does not become excessive during molding of the connector, especially the low-profile narrow pitch connector. preferable.
  • the resin composition according to the above-described embodiment contains a fully aromatic polyester, it has excellent heat resistance.
  • As an index showing the heat resistance of the resin composition there is a deflection temperature under load (hereinafter, also referred to as “DTUL”).
  • DTUL deflection temperature under load
  • the DTUL of the resin composition is preferably 265 ° C. or higher and 310 ° C. or lower, and more preferably 267 ° C. or higher and 300 ° C. or lower.
  • the resin composition preferably has a bending strength of 160 MPa or more in a bending test based on ASTM D790 of a 0.8 mm thick molded product molded from the resin composition.
  • the resin composition preferably has a bending fracture strain of 2.4% or more in a bending test based on ASTM D790 of a 0.8 mm thick molded product molded from the resin composition.
  • the resin composition preferably has a flexural modulus of 12000 MPa or more in a bending test based on ASTM D790 of a 0.8 mm thick molded product molded from the resin composition.
  • the method for producing the resin composition is not particularly limited as long as the components in the resin composition can be uniformly mixed, and can be appropriately selected from the conventionally known methods for producing the resin composition.
  • a method in which each component is melt-kneaded and extruded using a melt-kneading device such as a single-screw or twin-screw extruder, and then the obtained resin composition is processed into a desired form such as powder, flakes, and pellets. can be mentioned.
  • the resin composition according to the present embodiment can produce a molded product having excellent fluidity, less contamination with foreign substances, and less warpage and / or deformation. Therefore, a connector, a CPU socket, a relay switch component, a bobbin, and the like can be manufactured. It can be preferably used for manufacturing actuators, noise reduction filter cases, electronic circuit boards, heat fixing rolls for OA equipment, and the like. Since it has excellent fluidity and can suppress the occurrence of conduction failure due to the inclusion of foreign matter, it can be particularly preferably used for manufacturing a connector such as a low profile narrow pitch connector. For example, it can be preferably used for manufacturing a low-profile narrow pitch connector having a product total length of less than 30 mm and a product height of less than 5 mm.
  • the molded product according to the present embodiment is molded from the resin composition according to the present embodiment and includes the above resin composition. Since it is formed from the resin composition, it is possible to obtain a molded product with less foreign matter mixed in and less warpage and / or deformation.
  • the connector according to the present embodiment is molded from the resin composition according to the present embodiment and includes the above resin composition. Since it is formed from a resin composition, it is possible to obtain a connector with less foreign matter mixed in and less warpage and / or deformation. Since there is little foreign matter mixed in, poor continuity can be prevented.
  • a connector having a product overall length of less than 30 mm, preferably 20 mm or less, a product width of less than 3 mm, preferably less than 2 mm, and a product height of less than 5 mm, preferably less than 4.5 mm. can be mentioned.
  • the connector having a product total length of less than 30 mm and a product height of less than 5 mm is not particularly limited, and examples thereof include a low profile narrow pitch connector, a coaxial connector, a micro SIM connector, and a micro SD connector. Of these, a low profile narrow pitch connector is preferable.
  • the "low profile narrow pitch connector” is a low profile and narrow pitch connector.
  • the low profile narrow pitch connector is not particularly limited, and includes, for example, a board-to-board connector (also known as a "BtoB connector"), a flexible printed circuit board connector (flexible printed circuit board (FPC), and a flexible flat cable (FFC). (Used to connect, also known as "FPC connector”) and the like.
  • the distance between pitches is 0.5 mm or less
  • the total length of the product is 3.5 mm or more and less than 30 mm
  • the product height is 4.0 mm or less
  • the low profile is a board-to-board connector or a flexible printed circuit board connector. Narrow pitch connectors are preferred.
  • the molding method for obtaining the connector is not particularly limited, and it is preferable to select molding conditions without residual internal stress in order to prevent deformation of the obtained connector.
  • the cylinder temperature of the molding machine is preferably a temperature equal to or higher than the melting point of the total aromatic polyester.
  • the mold temperature is preferably 70 to 100 ° C. When the mold temperature is 70 to 100 ° C., it is possible to prevent the resin composition filled in the mold from causing poor flow, and it is also possible to prevent the occurrence of burrs.
  • the injection speed is preferably 150 mm / sec or more. When the injection speed is 150 mm / sec or more, it is possible to prevent the generation of unfilled molded products, prevent the increase in residual internal stress due to the filling pressure becoming too high, and make the connector with good flatness. ..
  • the connector is prevented from being mixed with foreign matter.
  • the degree of contamination of foreign matter is determined as follows. That is, the degree of mixing can be determined by the number of times the gate is clogged during molding of the connector. Since gate clogging is caused by the generation of foreign matter during molding, it can be evaluated that the mixing of foreign matter is suppressed when the gate clogging does not occur.
  • the connector is suppressed from warping deformation.
  • the degree of warpage of the connector is determined as follows. That is, with the FPC connector shown in FIG. 1, the height is measured at a plurality of positions indicated by black circles in FIG. 2, and the difference between the maximum height and the minimum height from the least squares plane is used as a sled.
  • the change in warpage is suppressed before and after performing IR reflow.
  • a blister is a fine bulge that occurs on the surface of a molded product when it is left in hot air or liquid for a long time.
  • the degree of blister generation is determined by the blister temperature. That is, the presence or absence of blister generation on the surface of the molded product sandwiched in a hot press at a predetermined temperature for 5 minutes is visually observed, and the maximum temperature at which the number of blister generation becomes zero is defined as the blister temperature. It is evaluated that the higher the blister temperature, the more the blister generation is suppressed.
  • the connector has excellent heat resistance, for example, heat resistance as evaluated by high temperature rigidity.
  • High temperature rigidity is evaluated by measuring the deflection temperature under load in accordance with ISO75-1 and ISO75-1.
  • the temperature of the reaction system was raised to 140 ° C, and the reaction was carried out at 140 ° C for 1 hour. Then, the temperature is further raised under the speed conditions shown in Table 1, and the pressure is reduced to 10 Torr (that is, 1330 Pa) over 20 minutes, and melt polymerization is carried out while distilling acetic acid, excess acetic anhydride, and other low boiling points. went.
  • the stirring torque reaches a predetermined value, nitrogen is introduced to change the pressure from a reduced pressure state to a pressurized state through normal pressure, and the product is discharged from the lower part of the polymerization vessel and pelletized to obtain a pellet-shaped prepolymer. It was.
  • the obtained prepolymer was heat-treated (solid-phase polymerization) at 300 ° C. for 3 hours under a nitrogen stream to obtain the desired polymer.
  • melt viscosity Using Capillograph (manufactured by Toyo Seiki Seisakusho Co., Ltd.), using an orifice with an inner diameter of 0.5 mm and a length of 30 mm at a temperature of 380 ° C., a shear rate of 1000 / sec, and ISO11443, all aromatic polyester. (The melt viscosity of Synthesis Examples 4 and 8 was measured at a temperature of 350 ° C.).
  • the monomer composition was calculated by the pyrolysis gas chromatography method described in Polymer Degradation and Stability 76 (2002) 85-94. Specifically, using a pyrolysis device (“PY2020iD” manufactured by Frontier Lab Co., Ltd.), all aromatic polyester is heated in the presence of tetramethylammonium hydroxide (TMAH), and gas is pyrolyzed / methylated. Was generated. This gas was analyzed using gas chromatography (“GC-6890N” manufactured by Azilent Technology Co., Ltd.), and the peak area derived from 1,4-phenylenedicarboxylic acid and the peak derived from 4,4′-dihydroxybiphenyl were analyzed. From the ratio to the area, the difference between the content of the constituent unit derived from 1,4-phenylenedicarboxylic acid and the content of the constituent unit derived from 4,4'-dihydroxybiphenyl was calculated.
  • TMAH tetramethylammonium hydroxide
  • Example 1 The total aromatic polyester obtained in Synthesis Example 1 and the following components were mixed using a twin-screw extruder to obtain a resin composition.
  • the extrusion conditions are as follows.
  • the blending amount of each component is as shown in Table 1.
  • the manufacturer's nominal value is different from the measured value (weight average fiber length) in the composition.
  • Examples 2 to 9, Comparative Examples 1 to 6 A resin composition was obtained in the same manner as in Example 1 except that the blending amount of each component was as shown in Table 1.
  • Examples 10 and 11, Comparative Examples 7 to 16 A resin composition was obtained in the same manner as in Example 1 except that the blending amount of each component was as shown in Table 2.
  • Weight average fiber length of fibrous filler 5 g of the resin composition pellet was heated at 600 ° C. for 2 hours to incinerate. After the ashing residue was sufficiently dispersed in a 5 mass% polyethylene glycol aqueous solution, it was transferred to a petri dish with a dropper, and the fibrous filler was observed under a microscope. At the same time, the weight average fiber length of the fibrous filler was measured using an image measuring device (LUZEXFS manufactured by Nireco Corporation). That is, a stereomicroscopic image of about 100 fibrous fillers of the ashing residue was taken from the CCD camera into a PC and measured by an image processing method with an image measuring machine. This was repeated 10 times, and the average value of the measured values when the number of fibrous fillers reached about 1000 was taken as the weight average fiber length.
  • image measuring device LZEXFS manufactured by Nireco Corporation
  • the resin composition was made into a film (0.5 g / sheet, film thickness 100 ⁇ m) using a high temperature hot press machine (“NP-SNH” manufactured by Toyo Seiki Seisakusho Co., Ltd.). A white backlight was applied to the film, and the number of foreign substances of 0.3 mm or more was confirmed using a loupe. The number of foreign substances was confirmed for 5 films (2.5 g), and the number of foreign substances per unit weight was determined. Evaluation was made according to the following criteria. 2 (good): The number of foreign substances was 0 / g. 1 (defective): The number of foreign substances was 1 piece / g or more.
  • Bending strength 2 (good): The bending strength was 160 MPa or more. 1 (defective): The bending strength was less than 160 MPa. Bending fracture strain 2 (good): The bending fracture strain was 2.4% or more. 1 (defective): The bending fracture strain was less than 2.4%. Bending elastic modulus 2 (good): The bending elastic modulus was 12000 MPa or more. 1 (defective): The flexural modulus was less than 12000 MPa.
  • the resin composition is injection-molded under the following molding conditions (gate: tunnel gate, gate size: ⁇ 0.4 mm), and the overall size is 17.6 mm ⁇ 4.00 mm ⁇ 1.16 mm, pitch as shown in FIG.
  • An FPC connector having a distance of 0.5 mm, a number of pin holes of 30 ⁇ 2 pins, and a minimum wall thickness of 0.12 mm was obtained.
  • Molding machine Sumitomo Heavy Industries, SE30DUZ Cylinder temperature: 370 ° C (Examples 1 to 7, Examples 9 to 11, Comparative Examples 1 to 5, Comparative Examples 7 to 16) 340 ° C. (Example 8, Comparative Example 6) Mold temperature: 80 ° C Injection speed: 200 mm / sec Holding pressure: 50 MPa
  • the obtained connector was allowed to stand on a horizontal desk, and the height of the connector was measured by a Mitutoyo Quick Vision 404PROCNC image measuring machine. At that time, the heights were measured at a plurality of positions indicated by black circles in FIG. 2, and the difference between the maximum height and the minimum height from the least squares plane was defined as the warp of the FPC connector. The warp was measured before and after the IR reflow performed under the following conditions.
  • FPC connector deformation amount The difference in warpage before and after reflow measured by the above method was determined as the amount of deformation of the FPC connector. Evaluation was made according to the following criteria. 2 (Good): The amount of deformation was 0.04 mm or less. 1 (defective): The amount of deformation was more than 0.04 mm.
  • Mold Tunnel gate mold, gate diameter 0.1 mm, 2 pieces (inject into 2 molds of the same shape at the same time) Cylinder temperature: 370 ° C (Examples 1 to 7, Examples 9 to 11, Comparative Examples 1 to 5, Comparative Examples 7 to 16) 340 ° C. (Example 8, Comparative Example 6) Mold temperature: 80 ° C Injection speed: 33 mm / sec Holding pressure: 50 MPa Number of shots: 360 shots Molding stability and the presence or absence of foreign matter mixed in the molded product were evaluated according to the following criteria. 2 (excellent molding stability and few foreign substances): Gate clogging did not occur. 1 (poor molding stability and a large amount of foreign matter): Gate clogging occurred once or more.
  • the resin composition obtained in the examples has excellent fluidity.
  • all aromatic polyesters in which the generation of sublimated substances during the polymerization reaction are suppressed are used, foreign substances are less likely to be mixed.
  • the connector molded from this resin composition had excellent heat resistance, less warpage and / or deformation, and blister generation was suppressed.

Abstract

[Problem] To provide: a resin composition which has excellent flowability and rarely undergoes the contamination with foreign matters, and from which a molded article having reduced warpage and/or deformation can be produced; and a connector molded from the resin composition. [Solution] A resin composition comprising (A) a wholly aromatic polyester, (B) a fibrous filler and (C) a sheet-like filler, wherein the component (A) contains constituent units (I) to (IV) as essential constituents, the contents of the constituent units (I), (II), (III) and (IV) respectively fall within specified mol% ranges relative to the total amount of all of the constituent units, the difference between the content of the constituent unit (III) and the content of the constituent unit (IV) is 0.150 mol% or less, the content of the wholly aromatic polyester (A) is 57.5 to 80% by mass, the content of the component (B) is 1.5 to 15% by mass relative to the whole mass of the resin composition, the content of the component (C) is 12.5 to 35% by mass relative to the whole mass of the resin composition, and the total amount of the components (B) and (C) is 20.0 to 42.5% by mass relative to the whole mass of the resin composition, and the weight average fiber length of the component (B) is shorter than 200 μm.

Description

樹脂組成物及びコネクターResin composition and connector
 本発明は、樹脂組成物及びコネクターに関する。 The present invention relates to a resin composition and a connector.
 全芳香族ポリエステルなどの液晶性ポリマーは、寸法精度、流動性等に優れる熱可塑性樹脂である。このような特徴を有するため、液晶性ポリマーは、各種電子部品の材料として採用されてきた。 Liquid crystal polymers such as all-aromatic polyester are thermoplastic resins with excellent dimensional accuracy and fluidity. Due to these characteristics, liquid crystal polymers have been adopted as materials for various electronic components.
 特に、近年のエレクトロニクス機器の小型化及び薄型化に伴い、エレクトロニクス機器を構成する電子部品(コネクター等)の低背化及び狭ピッチ化に対するニーズがある。例えば、特許文献1には、マイカ及びガラス繊維で強化された液晶性ポリマー組成物から成形されたコネクターが開示されている。このようなコネクターは、耐熱性、そり変形の抑制、流動性、寸法安定性等が要求される、基板対基板コネクターや、フレキシブルプリント基板(FPC)とフレキシブルフラットケーブル(FFC)とを接続するために使用されるフレキシブルプリント基板用コネクター等として採用されている。 In particular, with the recent miniaturization and thinning of electronic devices, there is a need for lowering the height and narrowing of the pitch of electronic components (connectors, etc.) that make up the electronic devices. For example, Patent Document 1 discloses a connector molded from a liquid crystal polymer composition reinforced with mica and glass fiber. Such a connector is for connecting a board-to-board connector or a flexible printed circuit board (FPC) and a flexible flat cable (FFC), which are required to have heat resistance, suppression of warpage deformation, fluidity, dimensional stability, and the like. It is used as a connector for flexible printed circuit boards used in
特開2006-37061号公報Japanese Unexamined Patent Publication No. 2006-37061
 全芳香族ポリエステルは、重合反応時に昇華物が発生することがある。そのような昇華物は、重合容器の内壁等に析出堆積し、そこで重縮合したり、劣化したり、あるいは炭化したりしたものが、異物としてポリマーに混入する場合がある。異物がポリマーに混入すると、射出成形時のゲート詰まりの原因となる。また、異物が炭化物である場合は、樹脂組成物から成形される電子部品の導通不良の原因となる可能性がある。特に、小型化及び/又は薄型化された電子部品においては、導通不良が発生してしまう可能性がより高くなる。
 加えて、小型化及び薄型化された電子部品の製造には、優れた流動性を有するとともに、得られる成形品のそりや変形が少ない樹脂組成物が求められる。
Sublimated products may be generated in the total aromatic polyester during the polymerization reaction. Such sublimated products may be precipitated and deposited on the inner wall of the polymerization vessel or the like, where polycondensation, deterioration, or carbonization may be mixed in the polymer as foreign matter. If foreign matter is mixed in the polymer, it may cause gate clogging during injection molding. Further, when the foreign matter is a carbide, it may cause poor continuity of the electronic component molded from the resin composition. In particular, in electronic components that have been made smaller and / or thinner, there is a higher possibility that conduction failure will occur.
In addition, in the production of miniaturized and thinned electronic components, a resin composition having excellent fluidity and less warpage and deformation of the obtained molded product is required.
 本発明は、流動性に優れるとともに異物の混入が少なく、かつそり及び/又は変形が少ない成形品を製造することができる樹脂組成物、及び当該樹脂組成物から成形されたコネクターを提供することを課題とする。 The present invention provides a resin composition capable of producing a molded product having excellent fluidity, less contamination of foreign substances, and less warpage and / or deformation, and a connector molded from the resin composition. Make it an issue.
 本発明は以下の態様を有する。
[1](A)全芳香族ポリエステルと、(B)繊維状充填剤と、(C)板状充填剤と、を含み、 (A)全芳香族ポリエステルは、必須の構成成分として下記構成単位(I)~(IV)を含有し、全構成単位に対して、構成単位(I)の含有量が40~75モル%であり、構成単位(II)の含有量が0.5~7.5モル%であり、構成単位(III)の含有量が8.5~30モル%であり、及び構成単位(IV)の含有量が8.5~30モル%であり、かつ、構成単位(III)の含有量と構成単位(IV)の含有量との差が0.150モル%以下であり、(A)全芳香族ポリエステルの含有量が57.5~80質量%であり、(B)繊維状充填剤の含有量が樹脂組成物全体に対して1.5~15質量%であり、(C)板状充填剤の含有量が樹脂組成物全体に対して12.5~35質量%であり、(B)繊維状充填剤及び(C)板状充填剤の総量が樹脂組成物全体に対して20.0~42.5質量%であり、(B)繊維状充填剤の重量平均繊維長が、200μm未満である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

[2]構成単位(I)、(II)、(III)及び(IV)の合計の含有量が、(A)全芳香族ポリエステルの全構成単位に対して100モル%である、[1]に記載の樹脂組成物。
[3]前記(B)繊維状充填剤がミルドガラスファイバーを含む、[1]又は[2]に記載の樹脂組成物。
[4]前記(C)板状充填剤が、タルク及びマイカからなる群より選ばれる1以上を含む、[1]から[3]のいずれかに記載の樹脂組成物。
[5]コネクター製造用である、[1]から[4]のいずれかに記載の樹脂組成物。
[6]コネクターを製造するための、[1]から[4]のいずれかに記載の樹脂組成物の使用。
[7][1]から[4]のいずれかに記載の樹脂組成物を含む、成形品。
[8][1]から[4]のいずれかに記載の樹脂組成物を含み、製品全長が30mm未満であり、製品高さが5mm未満である、コネクター。
[9]低背狭ピッチコネクターである、[8]に記載のコネクター。
[10]ピッチ間距離が0.5mm以下であり、製品全長が3.5mm以上であり、製品高さが4.0mm以下であり、基板対基板コネクター又はフレキシブルプリント基板用コネクターである低背狭ピッチコネクターである、[8]又は[9]に記載のコネクター。
The present invention has the following aspects.
[1] Contains (A) total aromatic polyester, (B) fibrous filler, and (C) plate-like filler, and (A) total aromatic polyester is the following constituent unit as an essential component. It contains (I) to (IV), the content of the structural unit (I) is 40 to 75 mol%, and the content of the structural unit (II) is 0.5 to 7. It is 5 mol%, the content of the constituent unit (III) is 8.5 to 30 mol%, and the content of the constituent unit (IV) is 8.5 to 30 mol%, and the constituent unit ( The difference between the content of III) and the content of the structural unit (IV) is 0.150 mol% or less, the content of (A) total aromatic polyester is 57.5 to 80% by mass, and (B). ) The content of the fibrous filler is 1.5 to 15% by mass with respect to the entire resin composition, and (C) the content of the plate-like filler is 12.5 to 35% by mass with respect to the entire resin composition. %, The total amount of (B) fibrous filler and (C) plate-like filler is 20.0 to 42.5% by mass with respect to the entire resin composition, and (B) the weight of the fibrous filler. A resin composition having an average fiber length of less than 200 μm.
Figure JPOXMLDOC01-appb-C000002

[2] The total content of the structural units (I), (II), (III) and (IV) is 100 mol% with respect to all the structural units of (A) all aromatic polyesters, [1]. The resin composition according to.
[3] The resin composition according to [1] or [2], wherein the (B) fibrous filler contains milled glass fiber.
[4] The resin composition according to any one of [1] to [3], wherein the (C) plate-like filler contains one or more selected from the group consisting of talc and mica.
[5] The resin composition according to any one of [1] to [4], which is used for manufacturing a connector.
[6] Use of the resin composition according to any one of [1] to [4] for manufacturing a connector.
[7] A molded product containing the resin composition according to any one of [1] to [4].
[8] A connector comprising the resin composition according to any one of [1] to [4], having a product total length of less than 30 mm and a product height of less than 5 mm.
[9] The connector according to [8], which is a low profile narrow pitch connector.
[10] The distance between pitches is 0.5 mm or less, the total length of the product is 3.5 mm or more, the product height is 4.0 mm or less, and the low profile is a board-to-board connector or a connector for a flexible printed circuit board. The connector according to [8] or [9], which is a pitch connector.
 本発明によれば、流動性に優れるとともに異物の混入が少なく、かつそり及び/又は変形が少ない成形品を製造することができる樹脂組成物、及び当該樹脂組成物から成形されたコネクターを提供することができる。 According to the present invention, there is provided a resin composition capable of producing a molded product having excellent fluidity, less contamination of foreign substances, and less warpage and / or deformation, and a connector molded from the resin composition. be able to.
実施例で成形したFPCコネクターを示す図である。(a)は正面図であり、(b)は平面図であり、(c)は側面図であり、(d)は裏面図であり、(e)は(b)におけるA-A断面図であり、(f)は(b)におけるB部の詳細な図である。なお、図中の数値の単位はmmである。It is a figure which shows the FPC connector molded in an Example. (A) is a front view, (b) is a plan view, (c) is a side view, (d) is a back view, and (e) is a sectional view taken along the line AA in (b). Yes, (f) is a detailed view of part B in (b). The unit of the numerical value in the figure is mm. 実施例で行ったFPCコネクターのそりの測定における測定箇所(黒丸)を示す図である。なお、図中の数値の単位はmmである。It is a figure which shows the measurement point (black circle) in the measurement of the warp of the FPC connector performed in an Example. The unit of the numerical value in the figure is mm. 実施例において成形安定性を評価するために用いた金型の形状を示す説明図であり、(a)は全体の平面図であり、(b)は金型の寸法を示す平面図であり、(c)は金型の寸法を示す側面図であり、(d)は金型の構成を示す側面図である。なお、図中の数値の単位はmmである。「PL」はパーティングラインを表す。「トンネルゲート」は、金型が有するトンネル型のゲートを表す。It is explanatory drawing which shows the shape of the mold used for evaluating the molding stability in an Example, (a) is a plan view of the whole, (b) is a plan view which shows the dimension of a mold. (C) is a side view showing the dimensions of the mold, and (d) is a side view showing the configuration of the mold. The unit of the numerical value in the figure is mm. "PL" represents a parting line. “Tunnel gate” represents a tunnel type gate of a mold.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 Hereinafter, one embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications as long as the effects of the present invention are not impaired.
[樹脂組成物]
 樹脂組成物は、(A)全芳香族ポリエステルと、(B)繊維状充填剤と、(C)板状充填剤と、を含む。
[Resin composition]
The resin composition contains (A) a total aromatic polyester, (B) a fibrous filler, and (C) a plate-like filler.
((A)全芳香族ポリエステル)
 全芳香族ポリエステルは、必須の構成成分として下記構成単位(I)~(IV)を含有する。必須の構成成分として下記構成単位(I)~(IV)を含有するので、電子部品に求められる優れた耐熱性及び機械的強度(特に高温環境下での機械強度)を有する成形品を与えることができるとともに、汎用の溶融加工機器で加工できる程度の融点に融点を下げることができるので小型化及び/又は薄型化された電子部品を成形する場合も優れた成形性を実現できる。
((A) All aromatic polyester)
The total aromatic polyester contains the following structural units (I) to (IV) as essential constituents. Since the following constituent units (I) to (IV) are contained as essential constituents, it is necessary to provide a molded product having excellent heat resistance and mechanical strength (particularly mechanical strength in a high temperature environment) required for electronic parts. In addition, since the melting point can be lowered to a melting point that can be processed by a general-purpose melting processing device, excellent moldability can be realized even when molding a miniaturized and / or thinned electronic component.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 構成単位(I)は、6-ヒドロキシ-2-ナフトエ酸(以下、「HNA」ともいう。)から誘導される。全芳香族ポリエステルは、全構成単位に対して構成単位(I)を40~75モル%含む。構成単位(I)の含有量が40モル%未満であると、融点が過度に低下し、耐熱性が不足する。構成単位(I)の含有量が75モル%を超えると、重合時に固化が発生し、ポリマーが得られない。耐熱性と重合性の観点から、構成単位(I)の含有量は、好ましくは40~70モル%であり、より好ましくは40~65モル%であり、更に好ましくは40~63モル%であり、より更に好ましくは40~62モル%であり、特に好ましくは40~60モル%である。 The structural unit (I) is derived from 6-hydroxy-2-naphthoic acid (hereinafter, also referred to as "HNA"). The total aromatic polyester contains 40 to 75 mol% of the structural unit (I) with respect to all the structural units. If the content of the structural unit (I) is less than 40 mol%, the melting point is excessively lowered and the heat resistance is insufficient. If the content of the structural unit (I) exceeds 75 mol%, solidification occurs during polymerization and a polymer cannot be obtained. From the viewpoint of heat resistance and polymerizable property, the content of the structural unit (I) is preferably 40 to 70 mol%, more preferably 40 to 65 mol%, and further preferably 40 to 63 mol%. , Even more preferably 40 to 62 mol%, and particularly preferably 40 to 60 mol%.
 構成単位(II)は、4-ヒドロキシ安息香酸(以下、「HBA」ともいう。)から誘導される。全芳香族ポリエステルは、全構成単位に対して構成単位(II)を0.5~7.5モル%含む。構成単位(II)の含有量が0.5モル%未満であると、重合時に固化が発生し、ポリマーを排出できない。構成単位(II)の含有量が7.5モル%を超えると、融点が過度に低下し、耐熱性が不足する。耐熱性と重合性の観点から、構成単位(II)の含有量は、好ましくは0.5~7.0モル%であり、より好ましくは1.0~7.0モル%であり、更に好ましくは1.2~7.0モル%であり、より更に好ましくは1.5~6.5モル%であり、特に好ましくは2.0~6.0モル%である。 The structural unit (II) is derived from 4-hydroxybenzoic acid (hereinafter, also referred to as "HBA"). The total aromatic polyester contains 0.5 to 7.5 mol% of the structural unit (II) with respect to all the structural units. If the content of the structural unit (II) is less than 0.5 mol%, solidification occurs during polymerization and the polymer cannot be discharged. If the content of the structural unit (II) exceeds 7.5 mol%, the melting point is excessively lowered and the heat resistance is insufficient. From the viewpoint of heat resistance and polymerizable property, the content of the structural unit (II) is preferably 0.5 to 7.0 mol%, more preferably 1.0 to 7.0 mol%, and further preferably 1.0 to 7.0 mol%. Is 1.2 to 7.0 mol%, more preferably 1.5 to 6.5 mol%, and particularly preferably 2.0 to 6.0 mol%.
 構成単位(III)は、1,4-フェニレンジカルボン酸(以下、「TA」ともいう。)から誘導される。全芳香族ポリエステルは、全構成単位に対して構成単位(III)を8.5~30モル%含む。構成単位(III)の含有量が8.5モル%未満、または30モル%を超えると、汎用の溶融加工機器で加工できる温度まで融点を下げるための低融点化、及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(III)の含有量は、好ましくは10~30モル%であり、より好ましくは12~28モル%であり、更に好ましくは14~28モル%であり、より更に好ましくは15~28モル%であり、特に好ましくは17~27モル%である。 The structural unit (III) is derived from 1,4-phenylenedicarboxylic acid (hereinafter, also referred to as "TA"). The total aromatic polyester contains 8.5 to 30 mol% of the structural unit (III) with respect to all the structural units. When the content of the structural unit (III) is less than 8.5 mol% or more than 30 mol%, at least one of lowering the melting point for lowering the melting point to a temperature that can be processed by a general-purpose melting processing machine and heat resistance It tends to be insufficient. From the viewpoint of achieving both a low melting point and heat resistance, the content of the structural unit (III) is preferably 10 to 30 mol%, more preferably 12 to 28 mol%, and further preferably 14 to 28. It is in mol%, more preferably 15 to 28 mol%, and particularly preferably 17 to 27 mol%.
 構成単位(IV)は、4,4’-ジヒドロキシビフェニル(以下、「BP」ともいう。)から誘導される。全芳香族ポリエステルは、全構成単位に対して構成単位(IV)を8.5~30モル%含む。構成単位(IV)の含有量が8.5モル%未満、または30モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(IV)の含有量は、好ましくは10~30モル%であり、より好ましくは12~28モル%であり、更に好ましくは14~28モル%であり、より更に好ましくは15~28モル%であり、特に好ましくは17~27モル%である。 The structural unit (IV) is derived from 4,4'-dihydroxybiphenyl (hereinafter, also referred to as "BP"). The total aromatic polyester contains 8.5 to 30 mol% of structural units (IV) with respect to all structural units. If the content of the structural unit (IV) is less than 8.5 mol% or more than 30 mol%, at least one of low melting point and heat resistance tends to be insufficient. From the viewpoint of achieving both a low melting point and heat resistance, the content of the structural unit (IV) is preferably 10 to 30 mol%, more preferably 12 to 28 mol%, and further preferably 14 to 28 mol%. It is in mol%, more preferably 15 to 28 mol%, and particularly preferably 17 to 27 mol%.
 全芳香族ポリエステルは、構成単位(I)、(II)、(III)及び(IV)の合計の含有量が、全芳香族ポリエステルの全構成単位に対して95モル%以上であることが好ましい。構成単位(I)、(II)、(III)及び(IV)の合計の含有量を、95モル%以上にすることで、優れた耐熱性、機械的強度及び成形性を容易に維持することができる。構成単位(I)、(II)、(III)及び(IV)の合計の含有量は、より好ましくは、全芳香族ポリエステルの全構成単位に対して100モル%である。 The total content of the constituent units (I), (II), (III) and (IV) of the total aromatic polyester is preferably 95 mol% or more based on the total constituent units of the total aromatic polyester. .. By setting the total content of the structural units (I), (II), (III) and (IV) to 95 mol% or more, excellent heat resistance, mechanical strength and moldability can be easily maintained. Can be done. The total content of the structural units (I), (II), (III) and (IV) is more preferably 100 mol% with respect to all the structural units of the total aromatic polyester.
 全芳香族ポリエステルは、構成単位(III)の含有量と構成単位(IV)の含有量との差が0.150モル%以下である。構成単位(III)の含有量と構成単位(IV)の含有量との差を0.150モル%以下にすることで、重合反応時の昇華物の発生を抑制することができ、それにより樹脂組成物への異物の混入を低減することができる。全芳香族ポリエステルは、構成単位(III)の含有量と構成単位(IV)の含有量との差が0.145モル%以下であることが好ましく、0.140モル%以下であることがより好ましく、0.135モル%以下であることが更に好ましく、0.130モル%以下であることがより更に好ましく、0.125モル%以下であることが特に好ましい。 The difference between the content of the constituent unit (III) and the content of the constituent unit (IV) of the total aromatic polyester is 0.150 mol% or less. By setting the difference between the content of the structural unit (III) and the content of the structural unit (IV) to 0.150 mol% or less, the generation of sublimated substances during the polymerization reaction can be suppressed, whereby the resin can be suppressed. It is possible to reduce the mixing of foreign substances into the composition. In the total aromatic polyester, the difference between the content of the structural unit (III) and the content of the structural unit (IV) is preferably 0.145 mol% or less, and more preferably 0.140 mol% or less. It is more preferably 0.135 mol% or less, further preferably 0.130 mol% or less, and particularly preferably 0.125 mol% or less.
 構成単位(III)の含有量と構成単位(IV)の含有量との差を0.150モル%以下にする方法としては、モノマーの配合量によって調整することの他、例えば、重合反応時の温度を段階的に分けて昇温すること(例えば、昇温速度を段階的に変更すること)によっても行うことができる。 As a method for reducing the difference between the content of the structural unit (III) and the content of the structural unit (IV) to 0.150 mol% or less, in addition to adjusting the content according to the amount of the monomer, for example, during the polymerization reaction. It can also be performed by gradually increasing the temperature (for example, changing the heating rate stepwise).
 例えば、一実施形態において、構成単位(III)の含有量と構成単位(IV)の含有量との差を0.150モル%以下にするために、重合反応時の温度を140℃から360℃まで段階的に分けて昇温させることができる。
 一実施形態において、140℃から200℃、200℃から270℃、270℃から360℃に分けて昇温速度を変更して(例えば、昇温速度を段階的に大きくして)昇温させることができる。
 一実施形態において、140℃から200℃への昇温速度を、0.4℃/分以上0.8℃/分未満にすることができる。200℃から270℃への昇温速度を、0.8℃/分以上1.2℃/分以下にすることができる。270℃から360℃への昇温速度を、0.4℃/分以上1.2℃/分以下にすることができる。
For example, in one embodiment, the temperature during the polymerization reaction is set to 140 ° C. to 360 ° C. in order to reduce the difference between the content of the structural unit (III) and the content of the structural unit (IV) to 0.150 mol% or less. The temperature can be raised in stages.
In one embodiment, the temperature is raised by changing the heating rate (for example, increasing the heating rate stepwise) by dividing the temperature from 140 ° C to 200 ° C, from 200 ° C to 270 ° C, and from 270 ° C to 360 ° C. Can be done.
In one embodiment, the rate of temperature rise from 140 ° C. to 200 ° C. can be 0.4 ° C./min or more and less than 0.8 ° C./min. The rate of temperature rise from 200 ° C. to 270 ° C. can be set to 0.8 ° C./min or more and 1.2 ° C./min or less. The rate of temperature rise from 270 ° C. to 360 ° C. can be set to 0.4 ° C./min or more and 1.2 ° C./min or less.
 次いで、全芳香族ポリエステルの性質について説明する。全芳香族ポリエステルは、溶融時に光学的異方性を示す。溶融時に光学的異方性を示すことは、全芳香族ポリエステルが液晶性ポリマーであることを意味する。 Next, the properties of all aromatic polyesters will be described. All aromatic polyesters exhibit optical anisotropy when melted. Exhibiting optical anisotropy when melted means that the total aromatic polyester is a liquid crystal polymer.
 本実施形態において、全芳香族ポリエステルが液晶性ポリマーであることは、全芳香族ポリエステルが熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位(I)~(IV)から構成される全芳香族ポリエステルは、構成成分及びポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本実施形態で用いるポリマーは、溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。 In the present embodiment, the fact that the total aromatic polyester is a liquid crystal polymer is an indispensable element for the total aromatic polyester to have both thermal stability and easy workability. The total aromatic polyester composed of the constituent units (I) to (IV) may not form an anisotropic molten phase depending on the constituent components and the sequence distribution in the polymer, but it is used in the present embodiment. Polymers are limited to all-aromatic polyesters that exhibit optical anisotropy when melted.
 溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認は、オリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。液晶性ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。 The nature of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the confirmation of melt anisotropy can be carried out by melting a sample placed on a hot stage manufactured by Rinkamu using a polarizing microscope manufactured by Olympus and observing it at a magnification of 150 times in a nitrogen atmosphere. Liquid crystalline polymers are optically anisotropic and transmit light when inserted between orthogonal polarizers. If the sample is optically anisotropic, polarized light is transmitted even in a molten static liquid state, for example.
 ネマチックな液晶性ポリマーは融点以上で著しく粘性低下を生じるので、一般的に融点又はそれ以上の温度で液晶性を示すことが加工性の指標となる。融点は、でき得る限り高い方が耐熱性の観点からは好ましいが、ポリマーの溶融加工時の熱劣化や成形機の加熱能力等を考慮すると、380℃以下であることが好ましい目安となる。なお、より好ましくは260~370℃であり、更により好ましくは270~370℃であり、特に好ましくは280~360℃である。 Since a nematic liquid crystal polymer causes a significant decrease in viscosity above the melting point, generally, showing liquid crystallinity at a temperature above the melting point is an index of processability. The melting point is preferably as high as possible from the viewpoint of heat resistance, but it is preferably 380 ° C. or lower in consideration of thermal deterioration during melt processing of the polymer and the heating capacity of the molding machine. It is more preferably 260 to 370 ° C, even more preferably 270 to 370 ° C, and particularly preferably 280 to 360 ° C.
 全芳香族ポリエステルの融点より10~40℃高い温度、かつ、剪断速度1000/秒における全芳香族ポリエステルの溶融粘度は、好ましくは1000Pa・s以下である。上記溶融粘度が1000Pa・s以下であると、全芳香族ポリエステルそのもの、又は、全芳香族ポリエステルを含有する組成物は、その成形時において、流動性が確保されやすく、充填圧力が過度になりにくい。全芳香族ポリエステルの上記溶融粘度は、より好ましくは4~500Pa・sであり、更により好ましくは4~250Pa・sであり、特に好ましくは5~100Pa・sである。なお、本明細書において、溶融粘度とは、ISO11443に準拠して測定した溶融粘度をいう。 The melt viscosity of the total aromatic polyester at a temperature 10 to 40 ° C. higher than the melting point of the total aromatic polyester and at a shear rate of 1000 / sec is preferably 1000 Pa · s or less. When the melt viscosity is 1000 Pa · s or less, the total aromatic polyester itself or the composition containing the total aromatic polyester tends to secure fluidity at the time of molding, and the filling pressure is unlikely to become excessive. .. The melt viscosity of the total aromatic polyester is more preferably 4 to 500 Pa · s, even more preferably 4 to 250 Pa · s, and particularly preferably 5 to 100 Pa · s. In addition, in this specification, the melt viscosity means the melt viscosity measured in accordance with ISO11443.
 上記全芳香族ポリエステルは、溶融重合時の昇華物の発生が少ないので、樹脂組成物に混入する異物を少なくすることができる。溶融重合時の昇華物量は、溶融重合で用いる還流カラム及びリアクター上部の質量変化から測定することができる。全芳香族ポリエステルは、溶融重合時の昇華物量が、2.3%以下であることが好ましい。溶融重合時の昇華物量が、2.3%以下であると、ポリマーに混入する異物をより少なくすることができる。溶融重合時の昇華物量は、より好ましくは2.0%以下であり、更に好ましくは1.9%以下である。 Since the above-mentioned all-aromatic polyester produces less sublimated matter during melt polymerization, it is possible to reduce the amount of foreign matter mixed in the resin composition. The amount of sublimated material during melt polymerization can be measured from the mass change of the reflux column and the upper part of the reactor used in melt polymerization. The total aromatic polyester preferably has a sublimated amount of 2.3% or less at the time of melt polymerization. When the amount of sublimated material at the time of melt polymerization is 2.3% or less, the amount of foreign matter mixed in the polymer can be further reduced. The amount of sublimated material during melt polymerization is more preferably 2.0% or less, still more preferably 1.9% or less.
 次いで、全芳香族ポリエステルの製造方法について説明する。本実施形態で用いる全芳香族ポリエステルは、直接重合法やエステル交換法等を用いて重合される。重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。 Next, a method for producing an all-aromatic polyester will be described. The total aromatic polyester used in the present embodiment is polymerized by a direct polymerization method, a transesterification method, or the like. In the polymerization, a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method, etc., or a combination of two or more of these is used, and a melt polymerization method or a combination of the melt polymerization method and the solid phase polymerization method is used. Is preferably used.
 重合反応の条件としては、上記の構成単位の重合が進行する条件であれば特に限定されず、例えば、反応温度200~380℃、最終到達圧力0.1~760Torr(すなわち、13~101,080Pa)であってもよい。
 一実施形態において、重合反応時の温度を140℃から360℃まで段階的に分けて(2段階以上、又は3段階以上に分けて)昇温させることができる。重合反応時の温度を140℃から360℃まで段階的に分けて昇温させることで、得られる全芳香族ポリエステル中の構成単位(III)の含有量と構成単位(IV)の含有量との差を容易に0.150モル%以下にすることができる。
 一実施形態において、140℃から200℃、200℃から270℃、270℃から360℃に分けて昇温速度を変更して昇温させることができる。
 一実施形態において、140℃から200℃への昇温速度を、0.4℃/分以上0.8℃/分未満にすることができる。200℃から270℃への昇温速度を、0.8℃/分以上1.2℃/分以下にすることができる。270℃から360℃への昇温速度を、0.4℃/分以上1.2℃/分以下にすることができる。
The conditions for the polymerization reaction are not particularly limited as long as the polymerization of the above-mentioned structural units proceeds, and for example, the reaction temperature is 200 to 380 ° C. and the final ultimate pressure is 0.1 to 760 Torr (that is, 13 to 101,080 Pa). ) May be.
In one embodiment, the temperature at the time of the polymerization reaction can be raised stepwise from 140 ° C. to 360 ° C. (divided into two or more steps or three or more steps). By gradually raising the temperature at the time of the polymerization reaction from 140 ° C. to 360 ° C., the content of the structural unit (III) and the content of the structural unit (IV) in the obtained total aromatic polyester The difference can easily be 0.150 mol% or less.
In one embodiment, the temperature can be raised by changing the heating rate by dividing the temperature from 140 ° C. to 200 ° C., from 200 ° C. to 270 ° C., and from 270 ° C. to 360 ° C.
In one embodiment, the rate of temperature rise from 140 ° C. to 200 ° C. can be 0.4 ° C./min or more and less than 0.8 ° C./min. The rate of temperature rise from 200 ° C. to 270 ° C. can be set to 0.8 ° C./min or more and 1.2 ° C./min or less. The rate of temperature rise from 270 ° C. to 360 ° C. can be set to 0.4 ° C./min or more and 1.2 ° C./min or less.
 本実施形態の全芳香族ポリエステルの製造方法は、高分子量化の観点から、1,4-フェニレンジカルボン酸の使用量(モル%)と4,4’-ジヒドロキシビフェニルの使用量(モル%)が等しいことが好ましい。なお、本実施形態の全芳香族ポリエステルの製造中に昇華物が発生することで、これらの含有量に差が生じる。 In the method for producing a total aromatic polyester of the present embodiment, the amount of 1,4-phenylenedicarboxylic acid used (mol%) and the amount of 4,4'-dihydroxybiphenyl used (mol%) are determined from the viewpoint of increasing the molecular weight. It is preferable that they are equal. It should be noted that the generation of sublimated products during the production of the total aromatic polyester of the present embodiment causes a difference in their contents.
 本実施形態では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の脂肪酸無水物等が挙げられる。 In the present embodiment, during polymerization, an acylating agent for the polymerized monomer or a monomer having an activated terminal can be used as an acid chloride derivative. Examples of the acylating agent include fatty acid anhydrides such as acetic anhydride.
 これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、1-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒を挙げることができる。 Various catalysts can be used for these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2). , 4-Pentandionato) Examples include metal salt-based catalysts such as cobalt (III) and organic compound-based catalysts such as 1-methylimidazole and 4-dimethylaminopyridine.
 反応は、全原料モノマー(6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、1,4-フェニレンジカルボン酸、及び4,4’-ジヒドロキシビフェニル)、アシル化剤、及び触媒を同一反応容器に仕込んで反応を開始させることもできるし(一段方式)、6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ安息香酸、及び4,4’-ジヒドロキシビフェニルの水酸基をアシル化剤によりアシル化させた後、1,4-フェニレンジカルボン酸のカルボキシル基と反応させることもできる(二段方式)。 In the reaction, all raw material monomers (6-hydroxy-2-naphthoic acid, 4-hydroxybenzoic acid, 1,4-phenylenedicarboxylic acid, and 4,4'-dihydroxybiphenyl), an acylating agent, and a catalyst were used in the same reaction vessel. (One-step method), 6-hydroxy-2-naphthoic acid, 4-hydroxybenzoic acid, and 4,4'-dihydroxybiphenyl were acylated with an acylating agent. Later, it can also be reacted with the carboxyl group of 1,4-phenylenedicarboxylic acid (two-stage method).
 溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にして行う。撹拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系から全芳香族ポリエステルを排出する。 After the inside of the reaction system reaches a predetermined temperature, melt polymerization is carried out by starting depressurization to a predetermined decompression degree. After the torque of the stirrer reaches a predetermined value, an inert gas is introduced, and the pressure is changed from a reduced pressure state to a normal pressure state to a predetermined pressure state, and the total aromatic polyester is discharged from the reaction system.
 上記重合方法により製造された全芳香族ポリエステルは、更に常圧又は減圧、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。 The total aromatic polyester produced by the above polymerization method can be further increased in molecular weight by solid-phase polymerization of normal pressure, reduced pressure, or heating in an inert gas.
 全芳香族ポリエステルの含有量は、全樹脂組成物中に57.5~80.0質量%である。全芳香族ポリエステルの含有量を57.5~80.0質量%の範囲内にすることで、液晶性樹脂が有する優れた流動性、剛性、機械強度、耐熱性、耐薬品性、電気的性質等を十分に発現させることができる。樹脂組成物中の全芳香族ポリエステルの含有量は、耐熱性、高剛性、高流動性の観点から、好ましくは57.5~77.5質量%であり、より好ましくは59.7~77.2質量%である。 The content of the total aromatic polyester is 57.5 to 80.0% by mass in the total resin composition. By setting the content of the total aromatic polyester in the range of 57.5 to 80.0% by mass, the liquid crystal resin has excellent fluidity, rigidity, mechanical strength, heat resistance, chemical resistance, and electrical properties. Etc. can be sufficiently expressed. The content of the total aromatic polyester in the resin composition is preferably 57.5 to 77.5% by mass, more preferably 59.7 to 77. From the viewpoint of heat resistance, high rigidity and high fluidity. 2% by mass.
((B)繊維状充填剤)
 樹脂組成物は、繊維状充填剤を含む。繊維状充填剤を含むので、高温剛性に優れるとともにそり変形が抑制されている成形品を与えることができる。繊維状充填剤としては、特に限定されず、ガラス繊維、ミルドガラスファイバー、カーボン繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維、硼素繊維、チタン酸カリウムウィスカー、ケイ酸カルシウムウィスカー(ウォラストナイト)等が挙げられる。繊維状充填剤は、樹脂組成物から得られる成形品の高温剛性が向上しやすい点で、ミルドガラスファイバー及びケイ酸カルシウムウィスカー(ウォラストナイト)から選択される1種以上を含むことが好ましく、ミルドガラスファイバーを含むことがより好ましい。
((B) Fibrous filler)
The resin composition contains a fibrous filler. Since it contains a fibrous filler, it is possible to provide a molded product having excellent high-temperature rigidity and suppressed warpage deformation. The fibrous filler is not particularly limited, and is not particularly limited, and is glass fiber, milled glass fiber, carbon fiber, asbestos fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate. Examples include whisker and calcium silicate whisker (wollastonite). The fibrous filler preferably contains one or more selected from milled glass fiber and calcium silicate whisker (wollastonite) in that the high-temperature rigidity of the molded product obtained from the resin composition can be easily improved. More preferably, it contains milled glass fiber.
 繊維状充填剤の重量平均繊維長は、200μm未満である。繊維状充填剤の重量平均繊維長が200μm未満であるので、樹脂組成物の高流動性と成形品のそり変形の抑制とを両立することができる。繊維状充填剤の重量平均繊維長が200μm以上であると、流動性が低下して小型化又は薄型化されたエレクトロニクス機器として用いられる成形品の製造が困難になってしまうことがあるので好ましくない。
 繊維状充填剤の重量平均繊維長は、好ましくは170μm以下であり、より好ましくは150μm以下である。重量平均繊維長の下限としては、特に限定されず、50μm以上であることが好ましく、70μm以上であることがより好ましい。上記重量平均繊維長が50μm以上であると、樹脂組成物から成形される成形品の高温剛性が十分となりやすいため好ましい。
The weight average fiber length of the fibrous filler is less than 200 μm. Since the weight average fiber length of the fibrous filler is less than 200 μm, it is possible to achieve both high fluidity of the resin composition and suppression of warpage deformation of the molded product. If the weight average fiber length of the fibrous filler is 200 μm or more, the fluidity may decrease and it may become difficult to manufacture a molded product used as a miniaturized or thinned electronic device, which is not preferable. ..
The weight average fiber length of the fibrous filler is preferably 170 μm or less, more preferably 150 μm or less. The lower limit of the weight average fiber length is not particularly limited, and is preferably 50 μm or more, and more preferably 70 μm or more. When the weight average fiber length is 50 μm or more, the high-temperature rigidity of the molded product molded from the resin composition tends to be sufficient, which is preferable.
 なお、本明細書において、繊維状充填剤の重量平均繊維長とは、樹脂組成物を600℃で2時間加熱し灰化して灰化残渣を得て、この灰化残渣の繊維状充填剤約100本が撮影された実体顕微鏡画像をCCDカメラからPCに取り込み、画像測定機によって画像処理手法により測定する。これを10回繰り返し、繊維状充填剤の本数が約1000本となったときの測定値の平均値をいう。 In the present specification, the weight average fiber length of the fibrous filler refers to the fibrous filler of the incinerated residue obtained by heating the resin composition at 600 ° C. for 2 hours to incinerate it to obtain an incinerated residue. Stereomicroscopic images of 100 images are taken from a CCD camera into a PC and measured by an image measuring machine by an image processing method. This is repeated 10 times, and refers to the average value of the measured values when the number of fibrous fillers reaches about 1000.
 繊維状充填剤の繊維径は、特に制限されず、一般的に5~15μm程度のものが使用される。繊維状充填剤は、1種単独で又は2種以上組み合わせて使用することができる。繊維径は、繊維状充填剤を走査型電子顕微鏡で観察し、100本の繊維状充填剤について繊維径を測定した値の平均値とする。 The fiber diameter of the fibrous filler is not particularly limited, and generally about 5 to 15 μm is used. The fibrous filler can be used alone or in combination of two or more. The fiber diameter is the average value of the measured fiber diameters of 100 fibrous fillers obtained by observing the fibrous filler with a scanning electron microscope.
 繊維状充填剤の含有量は、樹脂組成物全体に対して1.5~15質量%である。繊維状充填剤の含有量が、樹脂組成物全体に対して1.5質量%未満であると、樹脂組成物から得られるコネクター等の成形品の荷重たわみ温度が低く、高温剛性が十分ではないため好ましくない。繊維状充填剤の含有量が、樹脂組成物全体に対して15質量%超であると、組成物の流動性が悪化し、成形品のそり変形が大きくなる恐れがあるため好ましくない。
 繊維状充填剤の含有量は、好ましくは樹脂組成物全体に対して2~15質量%であり、より好ましくは2.5~15質量%であり、更に好ましくは3~15質量%である。
The content of the fibrous filler is 1.5 to 15% by mass with respect to the entire resin composition. When the content of the fibrous filler is less than 1.5% by mass with respect to the entire resin composition, the deflection temperature under load of the molded product such as a connector obtained from the resin composition is low, and the high temperature rigidity is not sufficient. Therefore, it is not preferable. If the content of the fibrous filler is more than 15% by mass with respect to the entire resin composition, the fluidity of the composition may deteriorate and the warpage deformation of the molded product may increase, which is not preferable.
The content of the fibrous filler is preferably 2 to 15% by mass, more preferably 2.5 to 15% by mass, and further preferably 3 to 15% by mass with respect to the entire resin composition.
((C)板状充填剤)
 樹脂組成物は、板状充填剤を含む。板状充填剤を含むので、そり変形が抑制された成形品を得ることができる。板状充填剤としては、タルク、マイカ、ガラスフレーク、各種の金属箔等が挙げられる。樹脂組成物の流動性を悪化させることなく、樹脂組成物から得られる成形品のそり変形を抑制させるという点でタルク及びマイカから選択される1種以上を含むことが好ましく、タルクを含むことがより好ましい。
((C) Plate-shaped filler)
The resin composition contains a plate-like filler. Since it contains a plate-shaped filler, it is possible to obtain a molded product in which warpage deformation is suppressed. Examples of the plate-like filler include talc, mica, glass flakes, and various metal foils. It is preferable to include one or more selected from talc and mica in terms of suppressing warpage deformation of the molded product obtained from the resin composition without deteriorating the fluidity of the resin composition, and it is preferable to include talc. More preferred.
 板状充填剤の平均粒径については特に限定されず、薄肉部における流動性を考慮すると小さい方が望ましい。一方、樹脂組成物から得られるコネクター等の成形品のそり変形を小さくするためには一定の大きさを維持している必要がある。具体的には、1~100μmが好ましく、5~50μmがより好ましい。平均粒径は、レーザー回折法で測定した体積基準の累積平均粒子径(D50)を意味する。
 板状充填剤は、1種単独で又は2種以上組み合わせて使用することができる。
The average particle size of the plate-shaped filler is not particularly limited, and a smaller one is desirable in consideration of the fluidity in the thin-walled portion. On the other hand, in order to reduce the warp deformation of a molded product such as a connector obtained from the resin composition, it is necessary to maintain a certain size. Specifically, 1 to 100 μm is preferable, and 5 to 50 μm is more preferable. The average particle size means a volume-based cumulative average particle size (D50) measured by a laser diffraction method.
The plate-shaped filler can be used alone or in combination of two or more.
(タルク)
 タルクとしては、当該タルクの全固形分量に対して、Fe、Al及びCaOの合計含有量が2.5質量%以下であり、Fe及びAlの合計含有量が1.0質量%超2.0質量%以下であり、かつCaOの含有量が0.5質量%未満であるものが好ましい。即ち、タルクは、その主成分たるSiO及びMgOの他、Fe、Al及びCaOのうちの少なくとも1種を含有し、各成分を上記の含有量範囲で含有するものであってもよい。
(talc)
As for talc, the total content of Fe 2 O 3 , Al 2 O 3 and Ca O is 2.5% by mass or less with respect to the total solid content of the talc, and the total of Fe 2 O 3 and Al 2 O 3 It is preferable that the content is more than 1.0% by mass and 2.0% by mass or less, and the CaO content is less than 0.5% by mass. That is, talc contains at least one of Fe 2 O 3 , Al 2 O 3 and Ca O in addition to SiO 2 and MgO, which are the main components thereof, and each component is contained in the above content range. There may be.
 上記タルクにおいて、Fe、Al及びCaOの合計含有量が2.5質量%以下であると、樹脂組成物の成形加工性及び当該樹脂組成物から成形されたコネクター等の成形品の耐熱性が悪化しにくい。Fe、Al及びCaOの合計含有量は、1.0質量%以上2.0質量%以下が好ましい。 When the total content of Fe 2 O 3 , Al 2 O 3 and CaO in the above talc is 2.5% by mass or less, the molding processability of the resin composition and the molding of a connector or the like molded from the resin composition are formed. The heat resistance of the product does not deteriorate easily. The total content of Fe 2 O 3 , Al 2 O 3 and CaO is preferably 1.0% by mass or more and 2.0% by mass or less.
 上記タルクのうち、Fe及びAlの合計含有量が1.0質量%超のタルクは入手しやすい。また、上記タルクにおいて、Fe及びAlの合計含有量が2.0質量%以下であると、樹脂組成物の成形加工性及び当該樹脂組成物から成形されたコネクター等の成形品の耐熱性が悪化しにくい。Fe及びAlの合計含有量は、1.0質量%超1.7質量%以下が好ましい。 Of the above talc, talc having a total content of Fe 2 O 3 and Al 2 O 3 of more than 1.0% by mass is easily available. Further, in the above talc, when the total content of Fe 2 O 3 and Al 2 O 3 is 2.0% by mass or less, the molding processability of the resin composition and the molding of a connector or the like molded from the resin composition are formed. The heat resistance of the product does not deteriorate easily. The total content of Fe 2 O 3 and Al 2 O 3 is preferably more than 1.0% by mass and 1.7% by mass or less.
 上記タルクにおいて、CaOの含有量が0.5質量%未満であると、樹脂組成物の成形加工性及び当該樹脂組成物から成形されたコネクター等の成形品の耐熱性が悪化しにくい。CaOの含有量は、0.01質量%以上0.4質量%以下が好ましい。 In the above talc, when the CaO content is less than 0.5% by mass, the molding processability of the resin composition and the heat resistance of the molded product such as a connector molded from the resin composition are unlikely to deteriorate. The CaO content is preferably 0.01% by mass or more and 0.4% by mass or less.
 タルクの、レーザー回折法で測定した体積基準の累積平均粒子径(D50)は、成形品のそり変形の防止及び樹脂組成物の流動性の維持という観点から、4.0~20.0μmであることが好ましく、10~18μmであることがより好ましい。 The volume-based cumulative average particle size (D50) of talc measured by laser diffraction is 4.0 to 20.0 μm from the viewpoint of preventing warpage deformation of the molded product and maintaining the fluidity of the resin composition. It is preferably 10 to 18 μm, and more preferably 10 to 18 μm.
(マイカ)
 マイカとは、アルミニウム、カリウム、マグネシウム、ナトリウム、鉄等を含んだケイ酸塩鉱物の粉砕物である。マイカとしては、白雲母、金雲母、黒雲母、人造雲母等が挙げられるが、これらのうち色相が良好であり、低価格であるという点で白雲母が好ましい。
(Mica)
Mica is a pulverized product of silicate minerals containing aluminum, potassium, magnesium, sodium, iron and the like. Examples of mica include muscovite, phlogopite, biotite, and artificial mica. Of these, muscovite is preferable because it has a good hue and is inexpensive.
 マイカの製造において、鉱物を粉砕する方法としては、湿式粉砕法及び乾式粉砕法が知られている。湿式粉砕法とは、マイカ原石を乾式粉砕機にて粗粉砕した後、水を加えてスラリー状態にて湿式粉砕で本粉砕し、その後、脱水、乾燥を行う方法である。湿式粉砕法と比較して、乾式粉砕法は低コストで一般的な方法であるが、湿式粉砕法を用いると、鉱物を薄く細かく粉砕することがより容易である。後述する好ましい平均粒径及び厚みを有するマイカが得られるという理由で、薄く細かい粉砕物を使用することが好ましい。したがって、湿式粉砕法により製造されたマイカを使用するのが好ましい。 In the production of mica, a wet crushing method and a dry crushing method are known as methods for crushing minerals. The wet pulverization method is a method in which rough mica is roughly pulverized by a dry pulverizer, water is added, and the main pulverization is performed by wet pulverization in a slurry state, and then dehydration and drying are performed. Although the dry pulverization method is a low-cost and general method as compared with the wet pulverization method, it is easier to pulverize the mineral thinly and finely by using the wet pulverization method. It is preferable to use a thin and fine pulverized product because mica having a preferable average particle size and thickness described later can be obtained. Therefore, it is preferable to use mica produced by the wet pulverization method.
 湿式粉砕法においては、被粉砕物を水に分散させる工程が必要であるため、被粉砕物の分散効率を高めるために、被粉砕物に凝集沈降剤及び/又は沈降助剤を加えることが一般的である。凝集沈降剤及び沈降助剤としては、ポリ塩化アルミニウム、硫酸アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化コッパラス、ポリ硫酸鉄、ポリ塩化第二鉄、鉄-シリカ無機高分子凝集剤、塩化第二鉄-シリカ無機高分子凝集剤、消石灰(Ca(OH))、苛性ソーダ(NaOH)、ソーダ灰(NaCO)等が挙げられる。これらの凝集沈降剤及び沈降助剤は、pHがアルカリ性又は酸性である。
 マイカは、湿式粉砕する際に凝集沈降剤及び/又は沈降助剤を使用していないものが好ましい。凝集沈降剤及び/又は沈降助剤で処理されていないマイカを使用すると、樹脂組成物中のポリマーの分解が生じにくく、多量のガス発生やポリマーの分子量低下等が起きにくいため、得られるコネクター等の成形品の性能をより良好に維持するのが容易である。
Since the wet pulverization method requires a step of dispersing the object to be crushed in water, it is common to add a coagulation sedimentation agent and / or a sedimentation aid to the object to be pulverized in order to improve the dispersion efficiency of the object to be pulverized. Is the target. Examples of coagulation sedimentation agents and sedimentation aids include polyaluminum chloride, aluminum sulfate, ferrous sulfate, ferric sulfate, copper chloride, polyiron sulfate, polyferric chloride, iron-silica inorganic polymer flocculant, and chloride. Examples include ferric-silica inorganic polymer flocculant, slaked lime (Ca (OH) 2 ), caustic soda (NaOH), soda ash (Na 2 CO 3 ) and the like. These coagulation sedimentation agents and sedimentation aids have an alkaline or acidic pH.
Mica preferably does not use a coagulation sedimentation agent and / or a sedimentation aid during wet pulverization. When mica that has not been treated with a coagulation sedimentation agent and / or a sedimentation aid is used, decomposition of the polymer in the resin composition is unlikely to occur, and a large amount of gas is less likely to be generated or the molecular weight of the polymer is less likely to decrease. It is easy to maintain the performance of the molded product better.
 マイカは、マイクロトラックレーザー回折法により測定した平均粒径が10~100μmであるものが好ましく、平均粒径が20~80μmであるものが特に好ましい。マイカの平均粒径が10μm以上であると、成形品の剛性に対する改良効果が十分となりやすいため好ましい。マイカの平均粒径が100μm以下であると、成形品の剛性の向上が十分となりやすく、ウェルド強度も十分となりやすいため好ましい。更に、マイカの平均粒径が100μm以下であると、コネクター等を成形するのに十分な流動性を確保しやすい。 Mica preferably has an average particle size of 10 to 100 μm measured by a microtrack laser diffraction method, and particularly preferably has an average particle size of 20 to 80 μm. When the average particle size of mica is 10 μm or more, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable. When the average particle size of mica is 100 μm or less, the rigidity of the molded product is likely to be sufficiently improved, and the weld strength is also likely to be sufficient, which is preferable. Further, when the average particle size of mica is 100 μm or less, it is easy to secure sufficient fluidity for molding a connector or the like.
 マイカの厚みは、電子顕微鏡の観察により100個について実測した平均厚みが0.01~1μmであることが好ましく、0.03~0.3μmであることが特に好ましい。マイカの平均厚みが0.01μm以上であると、樹脂組成物の溶融加工の際にマイカが割れにくくなるため、成形品の剛性が向上しやすい可能性があるため好ましい。マイカの厚みが1μm以下であると、成形品の剛性に対する改良効果が十分となりやすいため好ましい。 As for the thickness of mica, the average thickness actually measured for 100 pieces by observation with an electron microscope is preferably 0.01 to 1 μm, and particularly preferably 0.03 to 0.3 μm. When the average thickness of mica is 0.01 μm or more, the mica is less likely to crack during the melt processing of the resin composition, and the rigidity of the molded product may be easily improved, which is preferable. When the thickness of mica is 1 μm or less, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable.
 マイカは、シランカップリング剤等で表面処理されていてもよく、かつ/又は、結合剤で造粒し顆粒状とされていてもよい。 Mica may be surface-treated with a silane coupling agent or the like, and / or may be granulated with a binder to form granules.
 板状充填剤の含有量は、樹脂組成物全体に対して12.5~35質量%である。板状充填剤の含有量が、樹脂組成物全体に対して12.5質量%未満であると、樹脂組成物から得られる成形品のそり変形の抑制が十分ではないため好ましくない。板状充填剤の含有量が、樹脂組成物全体に対して35質量%超であると、樹脂組成物の流動性が悪化し、樹脂組成物の成形が困難になる可能性があるため好ましくない。
 板状充填剤の含有量は、好ましくは樹脂組成物全体に対して15~35質量%であり、より好ましくは16~33質量%であり、更に好ましくは17.5~32質量%である。
The content of the plate-shaped filler is 12.5 to 35% by mass with respect to the entire resin composition. If the content of the plate-shaped filler is less than 12.5% by mass with respect to the entire resin composition, it is not preferable because the suppression of warpage deformation of the molded product obtained from the resin composition is not sufficient. If the content of the plate-shaped filler is more than 35% by mass with respect to the entire resin composition, the fluidity of the resin composition may deteriorate and molding of the resin composition may become difficult, which is not preferable. ..
The content of the plate-shaped filler is preferably 15 to 35% by mass, more preferably 16 to 33% by mass, and further preferably 17.5 to 32% by mass with respect to the entire resin composition.
(繊維状充填剤及び板状充填剤の総量)
 樹脂組成物において、繊維状充填剤及び板状充填剤の総量は、樹脂組成物全体に対して20~42.5質量%である。上記総量が、樹脂組成物全体に対して20質量%未満であると、樹脂組成物から得られるコネクター等の成形品は、荷重たわみ温度が低く、高温剛性が十分ではなく、また、そり変形が大きくなる恐れがあるため好ましくない。上記総量が、樹脂組成物全体に対して42.5質量%超であると、樹脂組成物の流動性が悪化し、低背狭ピッチコネクターなどの小型及び薄型の成形品を製造する際の成形性が劣るため好ましくない。上記総量は、樹脂組成物全体に対して、好ましくは20~40質量%であり、より好ましくは20~35.5質量%であり、更に好ましくは22.5~35質量%である。
(Total amount of fibrous filler and plate-like filler)
In the resin composition, the total amount of the fibrous filler and the plate-shaped filler is 20 to 42.5% by mass with respect to the entire resin composition. When the total amount is less than 20% by mass with respect to the entire resin composition, the molded product such as a connector obtained from the resin composition has a low deflection temperature under load, insufficient high-temperature rigidity, and warpage deformation. It is not preferable because it may become large. If the total amount exceeds 42.5% by mass with respect to the entire resin composition, the fluidity of the resin composition deteriorates, and molding is performed when manufacturing small and thin molded products such as low-profile narrow pitch connectors. It is not preferable because it is inferior in sex. The total amount is preferably 20 to 40% by mass, more preferably 20 to 35.5% by mass, and further preferably 22.5 to 35% by mass with respect to the entire resin composition.
(離型剤)
 樹脂組成物には、離型剤を配合することが好ましい。離型剤としては、一般的に入手可能なものであれば、特に限定されるものではなく、例えば、脂肪酸エステル類、脂肪酸金属塩類、脂肪酸アミド類、低分子量ポリオレフィン等が挙げられ、ペンタエリスリトールの脂肪酸エステル(例えば、ペンタエリスリトールテトラステアレート)が好ましい。
(Release agent)
It is preferable to add a mold release agent to the resin composition. The release agent is not particularly limited as long as it is generally available, and examples thereof include fatty acid esters, fatty acid metal salts, fatty acid amides, low molecular weight polyolefins, and the like. Fatty acid esters (eg, pentaerythritol tetrastearate) are preferred.
 離型剤の配合量としては、樹脂組成物において、0.1~3質量%の範囲が好ましい。離型剤の配合量が0.1質量%以上であると、成形時の離型性が向上するとともに、そり及び/又は変形が少ない成形品を得やすい。離型剤の配合量が3質量%以下であるとモールドデポジット(即ち、成形における金型への付着物をいう。以下、「MD」ともいう。)が低減しやすい。離型剤の配合量は、より好ましくは0.1~1質量%であり、更に好ましくは0.1~0.5質量%である。 The amount of the release agent to be blended is preferably in the range of 0.1 to 3% by mass in the resin composition. When the blending amount of the release agent is 0.1% by mass or more, the releasability at the time of molding is improved, and it is easy to obtain a molded product with less warpage and / or deformation. When the blending amount of the release agent is 3% by mass or less, the mold deposit (that is, the deposit on the mold in molding; hereinafter, also referred to as “MD”) is likely to be reduced. The blending amount of the release agent is more preferably 0.1 to 1% by mass, still more preferably 0.1 to 0.5% by mass.
(その他の成分)
 樹脂組成物には、上記の成分の他に、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、難燃剤、及び上記成分(B)及び(C)以外の公知の無機充填剤のうちの1種以上を、5質量%以下配合してもよい。
 また、樹脂組成物には、上記全芳香族ポリエステル以外の液晶性樹脂や、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリアミノビスマレイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂等の他の熱可塑性樹脂を、樹脂組成物全体に対して、7質量%以下、又は5質量%以下配合してもよい。
(Other ingredients)
In addition to the above components, the resin composition includes pigments such as nucleating agents, carbon black, and inorganic calcined pigments, antioxidants, stabilizers, plasticizers, flame retardants, and components other than the above components (B) and (C). One or more of the known inorganic fillers of the above may be blended in an amount of 5% by mass or less.
The resin composition includes liquid crystal resins other than the above-mentioned all aromatic polyesters, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polyallyl sulfone resin, thermoplastic polyimide resin, and thermoplastic. Other thermoplastic resins such as urethane resin, polyaminobismaleimide resin, polyamideimide resin, and polyetherimide resin may be blended in an amount of 7% by mass or less or 5% by mass or less based on the entire resin composition.
(樹脂組成物)
 上記した本実施形態に係る樹脂組成物は、ポリマー重合時の昇華物に由来する異物の混入が少ない。樹脂組成物中への異物混入の有無は、樹脂組成物をホットプレスで作製したフィルム(0.5g/枚、膜厚100μm)に白色のバックライトを当て、ルーペを用いて異物の個数を確認することで評価することができる。異物の混入が抑制された樹脂組成物は、射出成形時のゲート詰まりを抑制することができ成形安定性に優れるとともに、得られる成形品への異物の混入の抑制することができる。その結果、樹脂組成物から形成された電子部品の導通不良を抑制することができる。
(Resin composition)
The resin composition according to the present embodiment described above contains less foreign matter derived from the sublimated product during polymer polymerization. To check for the presence or absence of foreign matter mixed in the resin composition, apply a white backlight to a film (0.5 g / sheet, film thickness 100 μm) prepared by hot pressing the resin composition, and check the number of foreign matter using a loupe. It can be evaluated by doing. The resin composition in which foreign matter is suppressed can suppress gate clogging during injection molding, has excellent molding stability, and can suppress foreign matter from being mixed into the obtained molded product. As a result, it is possible to suppress poor continuity of the electronic component formed from the resin composition.
 上記した本実施形態に係る樹脂組成物は、流動性に優れるため、成形時の最小充填圧力が過度になりにくく、コネクター、特に、低背狭ピッチコネクター等のような小型で複雑な形状を有する部品等を好ましく成形できる。流動性の程度は、コネクターの最小充填圧力により判断する。即ち、図1に示すFPCコネクターを射出成形する際に良好な成形品を得られる最小の射出充填圧力を最小充填圧力として特定する。最小充填圧力が低いほど、流動性が優れていると評価される。 Since the resin composition according to the present embodiment described above has excellent fluidity, the minimum filling pressure during molding is unlikely to be excessive, and the resin composition has a small and complicated shape such as a connector, particularly a low profile narrow pitch connector or the like. Parts and the like can be preferably molded. The degree of fluidity is determined by the minimum filling pressure of the connector. That is, the minimum injection filling pressure at which a good molded product can be obtained when the FPC connector shown in FIG. 1 is injection molded is specified as the minimum filling pressure. The lower the minimum filling pressure, the better the fluidity is evaluated.
 樹脂組成物は、全芳香族ポリエステルの融点より10~30℃高い温度で、剪断速度1000/秒で、ISO11443に準拠して測定した樹脂組成物の溶融粘度が1×105Pa・s以下(より好ましくは、5Pa・s以上1×102Pa・s以下)であることが、コネクター、特に、低背狭ピッチコネクターの成形時において、樹脂組成物の流動性を確保し、充填圧力が過度にならない点で好ましい。 The resin composition has a melt viscosity of 1 × 105 Pa · s or less (more preferably) measured in accordance with ISO11443 at a temperature 10 to 30 ° C. higher than the melting point of the total aromatic polyester at a shear rate of 1000 / sec. Is 5 Pa · s or more and 1 × 102 Pa · s or less) in that the fluidity of the resin composition is ensured and the filling pressure does not become excessive during molding of the connector, especially the low-profile narrow pitch connector. preferable.
 上記した本実施形態に係る樹脂組成物は、全芳香族ポリエステルを含有するので、耐熱性に優れている。樹脂組成物の耐熱性を表す指標として、荷重たわみ温度(以下、「DTUL」ともいう。)が挙げられる。DTULが、260℃以上であると耐熱性が高くなる傾向にあり好ましい。DTULは、ISO75-1,2に準拠して測定することができる。低融点化と耐熱性との両立の観点から、樹脂組成物のDTULは、好ましくは265℃以上310℃以下、より好ましくは267℃以上300℃以下である。 Since the resin composition according to the above-described embodiment contains a fully aromatic polyester, it has excellent heat resistance. As an index showing the heat resistance of the resin composition, there is a deflection temperature under load (hereinafter, also referred to as “DTUL”). When DTUL is 260 ° C. or higher, heat resistance tends to be high, which is preferable. DTUL can be measured according to ISO75-1 and ISO75-1. From the viewpoint of achieving both a low melting point and heat resistance, the DTUL of the resin composition is preferably 265 ° C. or higher and 310 ° C. or lower, and more preferably 267 ° C. or higher and 300 ° C. or lower.
 樹脂組成物は、樹脂組成物から成形される0.8mm厚の成形品のASTM D790に準拠した曲げ試験において、曲げ強度が160MPa以上であることが好ましい。
 樹脂組成物は、樹脂組成物から成形される0.8mm厚の成形品のASTM D790に準拠した曲げ試験において、曲げ破断歪が2.4%以上であることが好ましい。
 樹脂組成物は、樹脂組成物から成形される0.8mm厚の成形品のASTM D790に準拠した曲げ試験において、曲げ弾性率が12000MPa以上であることが好ましい。
The resin composition preferably has a bending strength of 160 MPa or more in a bending test based on ASTM D790 of a 0.8 mm thick molded product molded from the resin composition.
The resin composition preferably has a bending fracture strain of 2.4% or more in a bending test based on ASTM D790 of a 0.8 mm thick molded product molded from the resin composition.
The resin composition preferably has a flexural modulus of 12000 MPa or more in a bending test based on ASTM D790 of a 0.8 mm thick molded product molded from the resin composition.
(樹脂組成物の製造方法)
 樹脂組成物の製造方法は、樹脂組成物中の成分を均一に混合できれば特に限定されず、従来知られる樹脂組成物の製造方法から適宜選択することができる。例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出した後、得られた樹脂組成物を粉末、フレーク、ペレット等の所望の形態に加工する方法が挙げられる。
(Manufacturing method of resin composition)
The method for producing the resin composition is not particularly limited as long as the components in the resin composition can be uniformly mixed, and can be appropriately selected from the conventionally known methods for producing the resin composition. For example, a method in which each component is melt-kneaded and extruded using a melt-kneading device such as a single-screw or twin-screw extruder, and then the obtained resin composition is processed into a desired form such as powder, flakes, and pellets. Can be mentioned.
[用途]
 本実施形態に係る樹脂組成物は、流動性に優れるとともに異物の混入が少なく、かつそり及び/又は変形が少ない成形品を製造することができるので、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース、電子回路基板又はOA機器の加熱定着ロール等の製造に好ましく用いることができる。流動性に優れ、かつ異物の混入による導通不良の発生を抑制することもできるので、特に、低背狭ピッチコネクター等のコネクターの製造に好ましく用いることができる。例えば、製品全長が30mm未満であり、製品高さが5mm未満である低背狭ピッチコネクターの製造用に好ましく用いることができる。
[Use]
The resin composition according to the present embodiment can produce a molded product having excellent fluidity, less contamination with foreign substances, and less warpage and / or deformation. Therefore, a connector, a CPU socket, a relay switch component, a bobbin, and the like can be manufactured. It can be preferably used for manufacturing actuators, noise reduction filter cases, electronic circuit boards, heat fixing rolls for OA equipment, and the like. Since it has excellent fluidity and can suppress the occurrence of conduction failure due to the inclusion of foreign matter, it can be particularly preferably used for manufacturing a connector such as a low profile narrow pitch connector. For example, it can be preferably used for manufacturing a low-profile narrow pitch connector having a product total length of less than 30 mm and a product height of less than 5 mm.
[成形品]
 本実施形態に係る成形品は、上記本実施形態に係る樹脂組成物から成形され、上記樹脂組成物を含む。樹脂組成物から形成されるので、異物の混入が少なく、かつそり及び/又は変形が少ない成形品にすることができる。
[Molding]
The molded product according to the present embodiment is molded from the resin composition according to the present embodiment and includes the above resin composition. Since it is formed from the resin composition, it is possible to obtain a molded product with less foreign matter mixed in and less warpage and / or deformation.
[コネクター]
 本実施形態に係るコネクターは、上記本実施形態に係る樹脂組成物から成形され、上記樹脂組成物を含む。樹脂組成物から形成されるので、異物の混入が少なく、かつそり及び/又は変形が少ないコネクターにすることができる。異物の混入が少ないので、導通不良を防ぐことができる。
 例えば、製品全長が30mm未満であり、好ましくは20mm以下であり、製品幅が3mm未満であり、好ましくは2mm未満であり、製品高さが5mm未満であり、好ましくは4.5mm未満であるコネクターが挙げられる。製品全長が30mm未満であり、製品高さが5mm未満であるコネクターとしては、特に限定されず、例えば、低背狭ピッチコネクター、同軸コネクター、マイクロSIMコネクター、マイクロSDコネクター等が挙げられる。
 中でも、低背狭ピッチコネクターが好適である。「低背狭ピッチコネクター」とは、低背化及び狭ピッチ化されたコネクターである。低背狭ピッチコネクターとしては、特に限定されず、例えば、基板対基板コネクター(「BtoBコネクター」としても知られる)、フレキシブルプリント基板用コネクター(フレキシブルプリント基板(FPC)とフレキシブルフラットケーブル(FFC)とを接続するために使用され、「FPCコネクター」としても知られる)等が挙げられる。中でも、ピッチ間距離が0.5mm以下であり、製品全長が3.5mm以上30mm未満であり、製品高さが4.0mm以下であり、基板対基板コネクター又はフレキシブルプリント基板用コネクターである低背狭ピッチコネクターが好適である。
[connector]
The connector according to the present embodiment is molded from the resin composition according to the present embodiment and includes the above resin composition. Since it is formed from a resin composition, it is possible to obtain a connector with less foreign matter mixed in and less warpage and / or deformation. Since there is little foreign matter mixed in, poor continuity can be prevented.
For example, a connector having a product overall length of less than 30 mm, preferably 20 mm or less, a product width of less than 3 mm, preferably less than 2 mm, and a product height of less than 5 mm, preferably less than 4.5 mm. Can be mentioned. The connector having a product total length of less than 30 mm and a product height of less than 5 mm is not particularly limited, and examples thereof include a low profile narrow pitch connector, a coaxial connector, a micro SIM connector, and a micro SD connector.
Of these, a low profile narrow pitch connector is preferable. The "low profile narrow pitch connector" is a low profile and narrow pitch connector. The low profile narrow pitch connector is not particularly limited, and includes, for example, a board-to-board connector (also known as a "BtoB connector"), a flexible printed circuit board connector (flexible printed circuit board (FPC), and a flexible flat cable (FFC). (Used to connect, also known as "FPC connector") and the like. Among them, the distance between pitches is 0.5 mm or less, the total length of the product is 3.5 mm or more and less than 30 mm, the product height is 4.0 mm or less, and the low profile is a board-to-board connector or a flexible printed circuit board connector. Narrow pitch connectors are preferred.
 コネクターを得る成形方法としては特に限定されず、得られるコネクターの変形等を防ぐために、残留内部応力のない成形条件を選ぶことが好ましい。充填圧力を低くし、得られるコネクターの残留内部応力を低下させるために、成形機のシリンダー温度は、全芳香族ポリエステルの融点以上の温度が好ましい。 The molding method for obtaining the connector is not particularly limited, and it is preferable to select molding conditions without residual internal stress in order to prevent deformation of the obtained connector. In order to lower the filling pressure and reduce the residual internal stress of the obtained connector, the cylinder temperature of the molding machine is preferably a temperature equal to or higher than the melting point of the total aromatic polyester.
 金型温度は70~100℃が好ましい。金型温度が70~100℃であると、金型に充填された樹脂組成物が流動不良を起こすことを防ぐことができるとともに、バリ発生を防ぐこともできる。射出速度については、150mm/秒以上で成形することが好ましい。射出速度が150mm/秒以上であると、未充填成形品の発生を防ぐことができるとともに、充填圧力が高くなりすぎることによる残留内部応力の増大を防ぎ、平面度が良いコネクターにすることができる。 The mold temperature is preferably 70 to 100 ° C. When the mold temperature is 70 to 100 ° C., it is possible to prevent the resin composition filled in the mold from causing poor flow, and it is also possible to prevent the occurrence of burrs. The injection speed is preferably 150 mm / sec or more. When the injection speed is 150 mm / sec or more, it is possible to prevent the generation of unfilled molded products, prevent the increase in residual internal stress due to the filling pressure becoming too high, and make the connector with good flatness. ..
 コネクターは、異物の混入が抑制されている。異物の混入の程度は、以下のとおりにして判断する。即ち、コネクターの成形時のゲートが詰まる回数にて、混入の程度を判断することができる。ゲート詰まりは成形時に異物が発生することにより生じるので、ゲート詰まりが発生しない場合に、異物の混入が抑制されていると評価することができる。 The connector is prevented from being mixed with foreign matter. The degree of contamination of foreign matter is determined as follows. That is, the degree of mixing can be determined by the number of times the gate is clogged during molding of the connector. Since gate clogging is caused by the generation of foreign matter during molding, it can be evaluated that the mixing of foreign matter is suppressed when the gate clogging does not occur.
 コネクターは、そり変形が抑制されている。コネクターのそりの程度は、以下のとおりにして判断する。即ち、図1に示すFPCコネクターにて、図2において黒丸で示す複数の位置で高さを測定し、最小二乗平面からの最大高さと最小高さとの差をそりとする。本実施形態に係るコネクターは、IRリフローを行う前後において、そりの変化が抑制されている。 The connector is suppressed from warping deformation. The degree of warpage of the connector is determined as follows. That is, with the FPC connector shown in FIG. 1, the height is measured at a plurality of positions indicated by black circles in FIG. 2, and the difference between the maximum height and the minimum height from the least squares plane is used as a sled. In the connector according to the present embodiment, the change in warpage is suppressed before and after performing IR reflow.
 コネクターは、ブリスター発生が抑制されている。ブリスターは、成形品を高温の空気中及び液体中に長時間放置した場合に、表面に生じる細かい膨れのことである。ブリスター発生の程度は、ブリスター温度により判断する。即ち、所定温度のホットプレスに5分間挟んだ成形品の表面におけるブリスター発生の有無を目視にて観察し、ブリスターの発生個数がゼロとなる最高温度をブリスター温度とする。ブリスター温度が高いほど、ブリスター発生が抑制されていると評価される。 Blister generation is suppressed in the connector. A blister is a fine bulge that occurs on the surface of a molded product when it is left in hot air or liquid for a long time. The degree of blister generation is determined by the blister temperature. That is, the presence or absence of blister generation on the surface of the molded product sandwiched in a hot press at a predetermined temperature for 5 minutes is visually observed, and the maximum temperature at which the number of blister generation becomes zero is defined as the blister temperature. It is evaluated that the higher the blister temperature, the more the blister generation is suppressed.
 コネクターは、耐熱性、例えば、高温剛性により評価されるような耐熱性に優れる。高温剛性は、ISO75-1,2に準拠して荷重たわみ温度を測定することで評価する。 The connector has excellent heat resistance, for example, heat resistance as evaluated by high temperature rigidity. High temperature rigidity is evaluated by measuring the deflection temperature under load in accordance with ISO75-1 and ISO75-1.
 以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the interpretation of the present invention is not limited by these Examples.
[合成例1]
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、脂肪酸金属塩触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)6-ヒドロキシ-2-ナフトエ酸 0.883モル(48モル%)(HNA)
(II)4-ヒドロキシ安息香酸 0.037モル(2モル%)(HBA)
(III)1,4-フェニレンジカルボン酸 0.46モル(25モル%)(TA)
(IV)4,4’-ジヒドロキシビフェニル 0.46モル(25モル%)(BP)
酢酸カリウム触媒 150ppm
トリス(2,4-ペンタンジオナト)コバルト(III)触媒 150ppm
無水酢酸 1.91モル(HBAとBPとの合計の水酸基当量の1.04倍)
[Synthesis Example 1]
The following raw material monomers, fatty acid metal salt catalysts, and acylating agents were charged into a polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a depressurization / outflow line, and nitrogen substitution was started.
(I) 6-Hydroxy-2-naphthoic acid 0.883 mol (48 mol%) (HNA)
(II) 4-Hydroxybenzoic acid 0.037 mol (2 mol%) (HBA)
(III) 1,4-phenylenedicarboxylic acid 0.46 mol (25 mol%) (TA)
(IV) 4,4'-Dihydroxybiphenyl 0.46 mol (25 mol%) (BP)
Potassium acetate catalyst 150ppm
Tris (2,4-pentanedionato) cobalt (III) catalyst 150ppm
1.91 mol of acetic anhydride (1.04 times the total hydroxyl equivalent of HBA and BP)
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に表1に示す速度条件で昇温し、そこから20分かけて10Torr(すなわち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部から生成物を排出し、ペレタイズしてペレット状のプレポリマーを得た。得られたプレポリマーを、窒素気流下、300℃で3時間、加熱処理(固相重合)を行い、目的とするポリマーを得た。 After charging the raw materials, the temperature of the reaction system was raised to 140 ° C, and the reaction was carried out at 140 ° C for 1 hour. Then, the temperature is further raised under the speed conditions shown in Table 1, and the pressure is reduced to 10 Torr (that is, 1330 Pa) over 20 minutes, and melt polymerization is carried out while distilling acetic acid, excess acetic anhydride, and other low boiling points. went. After the stirring torque reaches a predetermined value, nitrogen is introduced to change the pressure from a reduced pressure state to a pressurized state through normal pressure, and the product is discharged from the lower part of the polymerization vessel and pelletized to obtain a pellet-shaped prepolymer. It was. The obtained prepolymer was heat-treated (solid-phase polymerization) at 300 ° C. for 3 hours under a nitrogen stream to obtain the desired polymer.
[合成例2~8]
 原料モノマーの種類、使用量(モル%)、昇温速度を表1に示すとおりとした以外は、実施例1と同様にしてポリマーを得た。
[合成例9~14]
 原料モノマーの種類、使用量(モル%)、昇温速度を表2に示すとおりとした以外は、実施例1と同様にしてポリマーを得た。
[Synthesis Examples 2 to 8]
A polymer was obtained in the same manner as in Example 1 except that the type of raw material monomer, the amount used (mol%), and the rate of temperature rise were as shown in Table 1.
[Synthesis Examples 9 to 14]
A polymer was obtained in the same manner as in Example 1 except that the type of raw material monomer, the amount used (mol%), and the rate of temperature rise were as shown in Table 2.
[昇華物量]
 合成例1~14における溶融重合において、還流カラム及びリアクター上部の質量変化から、昇華物量を測定した。評価結果を表1,2に示す。
[Sublimation quantity]
In the melt polymerization in Synthesis Examples 1 to 14, the amount of sublimated material was measured from the mass change of the reflux column and the upper part of the reactor. The evaluation results are shown in Tables 1 and 2.
[測定]
 合成例1~14の全芳香族ポリエステルについて、融点、溶融粘度、末端基量を以下の方法で測定した。結果を表1,2に示す。
[Measurement]
The melting point, melt viscosity, and amount of terminal groups of all aromatic polyesters of Synthesis Examples 1 to 14 were measured by the following methods. The results are shown in Tables 1 and 2.
(融点)
 示差走査熱量計(DSC、パーキンエルマー社製)にて、全芳香族ポリエステルを室温から20℃/分の昇温条件で加熱した際に観測される吸熱ピーク温度(Tm1)の測定後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で加熱した際に観測される吸熱ピークの温度を測定した。
(Melting point)
After measuring the heat absorption peak temperature (Tm1) observed when all aromatic polyester is heated from room temperature to 20 ° C./min with a differential scanning calorimeter (DSC, manufactured by Perkin Elmer), (Tm1 + 40). ) After holding at a temperature of ° C for 2 minutes, once cooled to room temperature under a temperature decreasing condition of 20 ° C / min, and then heating again under a heating condition of 20 ° C / min, the temperature of the heat absorption peak observed is measured. did.
(溶融粘度)
 キャピログラフ((株)東洋精機製作所製)を使用し、温度380℃で、内径0.5mm、長さ30mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、全芳香族ポリエステルの溶融粘度を測定した(合成例4、8の溶融粘度は温度350℃で測定した)。
(Melting viscosity)
Using Capillograph (manufactured by Toyo Seiki Seisakusho Co., Ltd.), using an orifice with an inner diameter of 0.5 mm and a length of 30 mm at a temperature of 380 ° C., a shear rate of 1000 / sec, and ISO11443, all aromatic polyester. (The melt viscosity of Synthesis Examples 4 and 8 was measured at a temperature of 350 ° C.).
(モノマー組成(含有量))
 Polymer Degradation and Stability 76(2002)85-94に記載される、熱分解ガスクロマトグラフィー法によってモノマー組成を算出した。具体的には、熱分解装置(フロンティア・ラボ(株)製「PY2020iD」)を用いて、全芳香族ポリエステルを水酸化テトラメチルアンモニウム(TMAH)共存下で加熱し、熱分解/メチル化によりガスを発生させた。このガスをガスクロマトグラフィー(アジレント・テクノロジー(株)製「GC-6890N」)を用いて分析し、1,4-フェニレンジカルボン酸に由来するピーク面積と4,4’-ジヒドロキシビフェニルに由来するピーク面積との比から、1,4-フェニレンジカルボン酸から誘導される構成単位の含有量と4,4’-ジヒドロキシビフェニルから誘導される構成単位の含有量との差を算出した。
(Monomer composition (content))
The monomer composition was calculated by the pyrolysis gas chromatography method described in Polymer Degradation and Stability 76 (2002) 85-94. Specifically, using a pyrolysis device (“PY2020iD” manufactured by Frontier Lab Co., Ltd.), all aromatic polyester is heated in the presence of tetramethylammonium hydroxide (TMAH), and gas is pyrolyzed / methylated. Was generated. This gas was analyzed using gas chromatography (“GC-6890N” manufactured by Azilent Technology Co., Ltd.), and the peak area derived from 1,4-phenylenedicarboxylic acid and the peak derived from 4,4′-dihydroxybiphenyl were analyzed. From the ratio to the area, the difference between the content of the constituent unit derived from 1,4-phenylenedicarboxylic acid and the content of the constituent unit derived from 4,4'-dihydroxybiphenyl was calculated.
[実施例1]
 合成例1で得られた全芳香族ポリエステルと、下記の成分とを二軸押出機を使用して混合し、樹脂組成物を得た。押出条件は以下のとおりである。各成分の配合量は表1に示したとおりである。
(B)繊維状充填剤
 ミルドガラスファイバー(ミルドファイバー):日本電気硝子(株)製「EPH-80M」、繊維径10.5μm、平均繊維長80μm(メーカー公称値)
 ケイ酸カルシウムウィスカー(ウォラストナイト):IMERYS社製「 NYGLOS 8」、平均繊維径8μm、平均繊維長130μm、アスペクト比16)
 なお、上記のメーカー公称値は、組成物中での実測値(重量平均繊維長)とは異なっている。重量平均繊維長については、後述する。
(C)板状充填剤
 タルク:松村産業(株)製「クラウンタルクPP」、平均粒径10μm
 マイカ:(株)山口雲母工業製「AB-25S」、平均粒径25μm
 離型剤:ペンタエリスリトールテトラステアレート(エメリーオレオケミカルズジャパン(株)製)
[Example 1]
The total aromatic polyester obtained in Synthesis Example 1 and the following components were mixed using a twin-screw extruder to obtain a resin composition. The extrusion conditions are as follows. The blending amount of each component is as shown in Table 1.
(B) Fibrous filler Milled glass fiber (milled fiber): "EPH-80M" manufactured by Nippon Electric Glass Co., Ltd., fiber diameter 10.5 μm, average fiber length 80 μm (manufacturer's nominal value)
Calcium silicate whiskers (Wollastonite): "NYGLOS 8" manufactured by IMERYS, average fiber diameter 8 μm, average fiber length 130 μm, aspect ratio 16)
The manufacturer's nominal value is different from the measured value (weight average fiber length) in the composition. The weight average fiber length will be described later.
(C) Plate-shaped filler talc: "Crown talc PP" manufactured by Matsumura Sangyo Co., Ltd., average particle size 10 μm
Mica: "AB-25S" manufactured by Yamaguchi Mica Industry Co., Ltd., average particle size 25 μm
Release agent: Pentaerythritol tetrastearate (manufactured by Emery Oleo Chemicals Japan Co., Ltd.)
(押出条件)
 メインフィード口に設けられたシリンダーの温度を250℃とし、他のシリンダーの温度はすべて360℃とした。全芳香族ポリエステルはすべてをメインフィード口から供給した。また、充填剤はサイドフィード口から供給した。
(Extrusion conditions)
The temperature of the cylinder provided at the main feed port was 250 ° C., and the temperature of all other cylinders was 360 ° C. All aromatic polyesters were supplied through the main feed port. The filler was supplied from the side feed port.
[実施例2~9、比較例1~6]
 各成分の配合量を表1に示すとおりとした以外は、実施例1と同様にして樹脂組成物を得た。
[実施例10,11、比較例7~16]
 各成分の配合量を表2に示すとおりとした以外は、実施例1と同様にして樹脂組成物を得た。
[Examples 2 to 9, Comparative Examples 1 to 6]
A resin composition was obtained in the same manner as in Example 1 except that the blending amount of each component was as shown in Table 1.
[Examples 10 and 11, Comparative Examples 7 to 16]
A resin composition was obtained in the same manner as in Example 1 except that the blending amount of each component was as shown in Table 2.
[測定及び評価]
 樹脂組成物中の繊維状充填剤の重量平均繊維長、及び樹脂組成物の各種物性等を下記の方法で測定した。結果を表1,2に示す。
[Measurement and evaluation]
The weight average fiber length of the fibrous filler in the resin composition, various physical properties of the resin composition, and the like were measured by the following methods. The results are shown in Tables 1 and 2.
(繊維状充填剤の重量平均繊維長)
 樹脂組成物ペレット5gを600℃で2時間加熱し灰化した。灰化残渣を5質量%ポリエチレングリコール水溶液に十分分散させた後、スポイトでシャーレに移し、顕微鏡で繊維状充填剤を観察した。同時に画像測定器((株)ニレコ製LUZEXFS)を用いて繊維状充填剤の重量平均繊維長を測定した。すなわち、灰化残渣の繊維状充填剤約100本が撮影された実体顕微鏡画像をCCDカメラからPCに取り込み、画像測定機によって画像処理手法により測定した。これを10回繰り返し、繊維状充填剤の本数が約1000本となったときの測定値の平均値を重量平均繊維長とした。
(Weight average fiber length of fibrous filler)
5 g of the resin composition pellet was heated at 600 ° C. for 2 hours to incinerate. After the ashing residue was sufficiently dispersed in a 5 mass% polyethylene glycol aqueous solution, it was transferred to a petri dish with a dropper, and the fibrous filler was observed under a microscope. At the same time, the weight average fiber length of the fibrous filler was measured using an image measuring device (LUZEXFS manufactured by Nireco Corporation). That is, a stereomicroscopic image of about 100 fibrous fillers of the ashing residue was taken from the CCD camera into a PC and measured by an image processing method with an image measuring machine. This was repeated 10 times, and the average value of the measured values when the number of fibrous fillers reached about 1000 was taken as the weight average fiber length.
(樹脂組成物の溶融粘度)
 (株)東洋精機製作所製キャピログラフ1B型を使用し、全芳香族ポリエステルの融点よりも10~30℃高い温度で、内径1mm、長さ20mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、樹脂組成物の溶融粘度を測定した。
 以下の基準に従って評価した。
 2(良好):溶融粘度が50Pa・s以下であった。
 1(不良):溶融粘度が50Pa・s超であった。
 なお、測定温度は、以下のとおりである。
 合成例1~3、5~7、9~14の全芳香族ポリエステルを使用した樹脂組成物:380℃
 合成例4、8の全芳香族ポリエステルを使用した樹脂組成物:350℃
(Melted viscosity of resin composition)
Using Capillograph 1B type manufactured by Toyo Seiki Seisakusho Co., Ltd., using an orifice with an inner diameter of 1 mm and a length of 20 mm at a temperature 10 to 30 ° C higher than the melting point of all aromatic polyester, at a shear rate of 1000 / sec, ISO11443. The melt viscosity of the resin composition was measured according to the above.
Evaluation was made according to the following criteria.
2 (Good): The melt viscosity was 50 Pa · s or less.
1 (defective): The melt viscosity was more than 50 Pa · s.
The measured temperature is as follows.
Resin composition using all aromatic polyesters of Synthesis Examples 1 to 3, 5 to 7, 9 to 14: 380 ° C.
Resin composition using all aromatic polyesters of Synthesis Examples 4 and 8: 350 ° C.
(異物)
 高温対応ホットプレス機((株)東洋精機製作所製「NP-SNH」)を用いて樹脂組成物をフィルム化(0.5g/枚、膜厚100μm)した。フィルムに白色のバックライトを当て、ルーペを用いて、0.3mm以上の異物の個数を確認した。この異物の個数の確認をフィルム5枚(2.5g)に対して行い、単位重量あたりの異物の個数を求めた。
 以下の基準に従って評価した。
 2(良好):異物の個数が0個/gであった。
 1(不良):異物の個数が1個/g以上であった。
(Foreign matter)
The resin composition was made into a film (0.5 g / sheet, film thickness 100 μm) using a high temperature hot press machine (“NP-SNH” manufactured by Toyo Seiki Seisakusho Co., Ltd.). A white backlight was applied to the film, and the number of foreign substances of 0.3 mm or more was confirmed using a loupe. The number of foreign substances was confirmed for 5 films (2.5 g), and the number of foreign substances per unit weight was determined.
Evaluation was made according to the following criteria.
2 (good): The number of foreign substances was 0 / g.
1 (defective): The number of foreign substances was 1 piece / g or more.
(曲げ試験)
 下記成形条件で、樹脂組成物を射出成形して130mm×13mm×0.8mmの成形品を得、ASTM D790に準拠し、曲げ強度、曲げ破断歪、及び曲げ弾性率を測定した。
<成形条件>
成形機:住友重機械工業、SE100DU
シリンダー温度:
370℃(実施例1~7、実施例9~11、比較例1~5、比較例7~16)
340℃(実施例8、比較例6)
金型温度:80℃
射出速度:33mm/sec
保圧:50MPa
(Bending test)
The resin composition was injection-molded under the following molding conditions to obtain a molded product having a size of 130 mm × 13 mm × 0.8 mm, and the bending strength, bending breaking strain, and bending elastic modulus were measured according to ASTM D790.
<Molding conditions>
Molding machine: Sumitomo Heavy Industries, SE100DU
Cylinder temperature:
370 ° C (Examples 1 to 7, Examples 9 to 11, Comparative Examples 1 to 5, Comparative Examples 7 to 16)
340 ° C. (Example 8, Comparative Example 6)
Mold temperature: 80 ° C
Injection speed: 33 mm / sec
Holding pressure: 50 MPa
 以下の基準に従って評価した。
曲げ強度
 2(良好):上記曲げ強度が160MPa以上であった。
 1(不良):上記曲げ強度が160MPa未満であった。
曲げ破断歪
 2(良好):上記曲げ破断歪が2.4%以上であった。
 1(不良):上記曲げ破断歪が2.4%未満であった。
曲げ弾性率
 2(良好):上記曲げ弾性率が12000MPa以上であった。
 1(不良):上記曲げ弾性率が12000MPa未満であった。
Evaluation was made according to the following criteria.
Bending strength 2 (good): The bending strength was 160 MPa or more.
1 (defective): The bending strength was less than 160 MPa.
Bending fracture strain 2 (good): The bending fracture strain was 2.4% or more.
1 (defective): The bending fracture strain was less than 2.4%.
Bending elastic modulus 2 (good): The bending elastic modulus was 12000 MPa or more.
1 (defective): The flexural modulus was less than 12000 MPa.
(荷重たわみ温度)
 下記成形条件で、樹脂組成物を射出成形して4mm×10mm×80mmの成形品を得、ISO75-1,2に準拠して荷重たわみ温度を測定した。
<成形条件>
成形機:住友重機械工業、SE100DU
シリンダー温度:
370℃(実施例1~7、実施例9~11、比較例1~5、比較例7~16)
340℃(実施例8、比較例6)
金型温度:90℃
射出速度:33mm/sec
保圧:50MPa
(Deflection temperature under load)
Under the following molding conditions, the resin composition was injection-molded to obtain a molded product having a size of 4 mm × 10 mm × 80 mm, and the deflection temperature under load was measured in accordance with ISO75-1 and ISO75-1.
<Molding conditions>
Molding machine: Sumitomo Heavy Industries, SE100DU
Cylinder temperature:
370 ° C (Examples 1 to 7, Examples 9 to 11, Comparative Examples 1 to 5, Comparative Examples 7 to 16)
340 ° C. (Example 8, Comparative Example 6)
Mold temperature: 90 ° C
Injection speed: 33 mm / sec
Holding pressure: 50 MPa
 以下の基準に従って評価した。
 2(良好):上記荷重たわみ温度が260℃以上であった。
 1(不良):上記荷重たわみ温度が260℃未満であった。
Evaluation was made according to the following criteria.
2 (Good): The deflection temperature under load was 260 ° C. or higher.
1 (defective): The deflection temperature under load was less than 260 ° C.
(ブリスター温度)
 下記成形条件で、樹脂組成物を射出成形して12.5mm×120mm×0.8mmの成形品を得、この成形品30個を所定温度のシリコーンオイルに浸漬して、洗剤で洗浄後、自然乾燥し、目視にて表面にブリスターが発生しているかどうかを調べた。ブリスター温度は、成形品30個中、ブリスターの発生個数がゼロとなる最低温度とした。
<成形条件>
成形機:住友重機械工業、SE100DU
シリンダー温度:
370℃(実施例1~7、実施例9~11、比較例1~5、比較例7~16)
340℃(実施例8、比較例6)
金型温度:90℃
射出速度:33mm/sec
(Blister temperature)
Under the following molding conditions, the resin composition is injection-molded to obtain a molded product of 12.5 mm × 120 mm × 0.8 mm, 30 of these molded products are immersed in silicone oil at a predetermined temperature, washed with a detergent, and then naturally. It was dried and visually inspected for blisters on the surface. The blister temperature was set to the minimum temperature at which the number of blisters generated was zero out of 30 molded products.
<Molding conditions>
Molding machine: Sumitomo Heavy Industries, SE100DU
Cylinder temperature:
370 ° C (Examples 1 to 7, Examples 9 to 11, Comparative Examples 1 to 5, Comparative Examples 7 to 16)
340 ° C. (Example 8, Comparative Example 6)
Mold temperature: 90 ° C
Injection speed: 33 mm / sec
 以下の基準に従って評価した。
 2(良好):上記ブリスター温度が260℃以上であった。
 1(不良):上記ブリスター温度が260℃未満であった。
Evaluation was made according to the following criteria.
2 (Good): The blister temperature was 260 ° C. or higher.
1 (defective): The blister temperature was less than 260 ° C.
(FPCコネクターそり)
 下記成形条件で、樹脂組成物を射出成形し(ゲート:トンネルゲート、ゲートサイズ:φ0.4mm)、図1に示すような、全体の大きさ17.6mm×4.00mm×1.16mm、ピッチ間距離0.5mm、ピン孔数30×2ピン、最小肉厚:0.12mmのFPCコネクターを得た。
<成形条件>
成形機:住友重機械工業、SE30DUZ
シリンダー温度:
370℃(実施例1~7、実施例9~11、比較例1~5、比較例7~16)
340℃(実施例8、比較例6)
金型温度:80℃
射出速度:200mm/sec
保圧:50MPa
(FPC connector sled)
The resin composition is injection-molded under the following molding conditions (gate: tunnel gate, gate size: φ0.4 mm), and the overall size is 17.6 mm × 4.00 mm × 1.16 mm, pitch as shown in FIG. An FPC connector having a distance of 0.5 mm, a number of pin holes of 30 × 2 pins, and a minimum wall thickness of 0.12 mm was obtained.
<Molding conditions>
Molding machine: Sumitomo Heavy Industries, SE30DUZ
Cylinder temperature:
370 ° C (Examples 1 to 7, Examples 9 to 11, Comparative Examples 1 to 5, Comparative Examples 7 to 16)
340 ° C. (Example 8, Comparative Example 6)
Mold temperature: 80 ° C
Injection speed: 200 mm / sec
Holding pressure: 50 MPa
 得られたコネクターを水平な机の上に静置し、コネクターの高さをミツトヨ製クイックビジョン404PROCNC画像測定機により測定した。その際、図2において黒丸で示す複数の位置で高さを測定し、最小二乗平面からの最大高さと最小高さとの差をFPCコネクターのそりとした。なお、そりは、下記条件で行ったIRリフローの前後で測定した。
<IRリフロー条件>
測定機:日本パルス技術研究所製大型卓上リフローハンダ付け装置RF-300(遠赤外線ヒーター使用)
試料送り速度:140mm/sec
リフロー炉通過時間:5分
プレヒートゾーンの温度条件:150℃
リフローゾーンの温度条件:190℃
ピーク温度:251℃
The obtained connector was allowed to stand on a horizontal desk, and the height of the connector was measured by a Mitutoyo Quick Vision 404PROCNC image measuring machine. At that time, the heights were measured at a plurality of positions indicated by black circles in FIG. 2, and the difference between the maximum height and the minimum height from the least squares plane was defined as the warp of the FPC connector. The warp was measured before and after the IR reflow performed under the following conditions.
<IR reflow conditions>
Measuring machine: Large desktop reflow soldering device RF-300 (using far-infrared heater) manufactured by Japan Pulse Technology Research Institute
Sample feed rate: 140 mm / sec
Reflow furnace transit time: 5 minutes Preheat zone temperature condition: 150 ° C
Reflow zone temperature conditions: 190 ° C
Peak temperature: 251 ° C
 以下の基準に従って評価した。
IRリフロー前
 2(良好):上記そりが0.03mm以下であった。
 1(不良):上記そりが0.03mm超であった。
IRリフロー後
 2(良好):上記そりが0.07mm以下であった。
 1(不良):上記そりが0.07mm超であった。
Evaluation was made according to the following criteria.
Before IR reflow 2 (good): The warp was 0.03 mm or less.
1 (defective): The warp was more than 0.03 mm.
After IR reflow 2 (good): The warp was 0.07 mm or less.
1 (defective): The warp was more than 0.07 mm.
(FPCコネクター変形量)
 上述の方法で測定したリフロー前後のそりの差をFPCコネクター変形量として求めた。以下の基準に従って評価した。
 2(良好):上記変形量が0.04mm以下であった。
 1(不良):上記変形量が0.04mm超であった。
(FPC connector deformation amount)
The difference in warpage before and after reflow measured by the above method was determined as the amount of deformation of the FPC connector. Evaluation was made according to the following criteria.
2 (Good): The amount of deformation was 0.04 mm or less.
1 (defective): The amount of deformation was more than 0.04 mm.
(FPCコネクター最小充填圧力)
 図1のFPCコネクターを射出成形する際に良好な成形品を得られる最小の射出充填圧力を最小充填圧力として測定した。以下の基準に従って評価した。
 2(良好):上記最小充填圧力が110MPa以下であった。
 1(不良):上記最小充填圧力が110MPa超であった。
(Minimum filling pressure of FPC connector)
When the FPC connector of FIG. 1 was injection-molded, the minimum injection-filling pressure at which a good molded product could be obtained was measured as the minimum filling pressure. Evaluation was made according to the following criteria.
2 (Good): The minimum filling pressure was 110 MPa or less.
1 (defective): The minimum filling pressure was over 110 MPa.
(成形安定性及び成形品への異物混入:ゲート詰まり)
 図3に記載の金型を用いて、以下の条件で成形評価を行った。
<成形条件>
 金型:トンネルゲート型、ゲート直径0.1mm、2個取り(同じ形状の金型2個に同時に射出する)
 シリンダー温度:
370℃(実施例1~7、実施例9~11、比較例1~5、比較例7~16)
340℃(実施例8、比較例6)
 金型温度:80℃
 射出速度:33mm/sec
 保圧:50MPa
 ショット数:360ショット
 成形安定性及び成形品への異物混入の有無を、以下の基準で評価した。
 2(成形安定性に優れ、異物が少ない):ゲート詰まりが発生しなかった。
 1(成形安定性が劣り、異物が多い):ゲート詰まりが1回以上発生した。
(Molding stability and foreign matter mixed in the molded product: gate clogging)
Using the mold shown in FIG. 3, molding evaluation was performed under the following conditions.
<Molding conditions>
Mold: Tunnel gate mold, gate diameter 0.1 mm, 2 pieces (inject into 2 molds of the same shape at the same time)
Cylinder temperature:
370 ° C (Examples 1 to 7, Examples 9 to 11, Comparative Examples 1 to 5, Comparative Examples 7 to 16)
340 ° C. (Example 8, Comparative Example 6)
Mold temperature: 80 ° C
Injection speed: 33 mm / sec
Holding pressure: 50 MPa
Number of shots: 360 shots Molding stability and the presence or absence of foreign matter mixed in the molded product were evaluated according to the following criteria.
2 (excellent molding stability and few foreign substances): Gate clogging did not occur.
1 (poor molding stability and a large amount of foreign matter): Gate clogging occurred once or more.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004


Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 表1,2に示すように、実施例で得られる樹脂組成物は、流動性に優れている。また、重合反応時の昇華物の発生が抑制されている全芳香族ポリエステルを用いているので、異物の混入が少ない。この樹脂組成物から成形されたコネクターは、耐熱性に優れ、そり及び/又は変形が少なく、ブリスター発生も抑制されていた。 As shown in Tables 1 and 2, the resin composition obtained in the examples has excellent fluidity. In addition, since all aromatic polyesters in which the generation of sublimated substances during the polymerization reaction are suppressed are used, foreign substances are less likely to be mixed. The connector molded from this resin composition had excellent heat resistance, less warpage and / or deformation, and blister generation was suppressed.

Claims (10)

  1.  (A)全芳香族ポリエステルと、(B)繊維状充填剤と、(C)板状充填剤と、を含み、
     (A)全芳香族ポリエステルは、必須の構成成分として下記構成単位(I)~(IV)を含有し、全構成単位に対して、構成単位(I)の含有量が40~75モル%であり、構成単位(II)の含有量が0.5~7.5モル%であり、構成単位(III)の含有量が8.5~30モル%であり、及び構成単位(IV)の含有量が8.5~30モル%であり、かつ、構成単位(III)の含有量と構成単位(IV)の含有量との差が0.150モル%以下であり、
     (A)全芳香族ポリエステルの含有量が57.5~80質量%であり、
     (B)繊維状充填剤の含有量が樹脂組成物全体に対して1.5~15質量%であり、
     (C)板状充填剤の含有量が樹脂組成物全体に対して12.5~35質量%であり、
     (B)繊維状充填剤及び(C)板状充填剤の総量が樹脂組成物全体に対して20.0~42.5質量%であり、
     (B)繊維状充填剤の重量平均繊維長が、200μm未満である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    It contains (A) a total aromatic polyester, (B) a fibrous filler, and (C) a plate-like filler.
    (A) The total aromatic polyester contains the following structural units (I) to (IV) as essential constituents, and the content of the structural unit (I) is 40 to 75 mol% with respect to all the structural units. Yes, the content of the constituent unit (II) is 0.5 to 7.5 mol%, the content of the constituent unit (III) is 8.5 to 30 mol%, and the content of the constituent unit (IV). The amount is 8.5 to 30 mol%, and the difference between the content of the constituent unit (III) and the content of the constituent unit (IV) is 0.150 mol% or less.
    (A) The total aromatic polyester content is 57.5 to 80% by mass.
    (B) The content of the fibrous filler is 1.5 to 15% by mass with respect to the entire resin composition.
    (C) The content of the plate-shaped filler is 12.5 to 35% by mass with respect to the entire resin composition.
    The total amount of the (B) fibrous filler and the (C) plate-like filler is 20.0 to 42.5% by mass with respect to the entire resin composition.
    (B) A resin composition in which the weight average fiber length of the fibrous filler is less than 200 μm.
    Figure JPOXMLDOC01-appb-C000001
  2.  構成単位(I)、(II)、(III)及び(IV)の合計の含有量が、(A)全芳香族ポリエステルの全構成単位に対して100モル%である、請求項1に記載の樹脂組成物。 The first aspect of the present invention, wherein the total content of the constituent units (I), (II), (III) and (IV) is 100 mol% with respect to all the constituent units of (A) all aromatic polyesters. Resin composition.
  3.  前記(B)繊維状充填剤がミルドガラスファイバーを含む、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the (B) fibrous filler contains milled glass fiber.
  4.  前記(C)板状充填剤が、タルク及びマイカからなる群より選ばれる1以上を含む、請求項1から3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the (C) plate-like filler contains one or more selected from the group consisting of talc and mica.
  5.  コネクター製造用である、請求項1から4のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, which is used for manufacturing a connector.
  6.  コネクターを製造するための、請求項1から4のいずれか一項に記載の樹脂組成物の使用。 Use of the resin composition according to any one of claims 1 to 4 for manufacturing a connector.
  7.  請求項1から4のいずれか一項に記載の樹脂組成物を含む、成形品。 A molded product containing the resin composition according to any one of claims 1 to 4.
  8.  請求項1から4のいずれか一項に記載の樹脂組成物を含み、製品全長が30mm未満であり、製品高さが5mm未満である、コネクター。 A connector containing the resin composition according to any one of claims 1 to 4, having a product total length of less than 30 mm and a product height of less than 5 mm.
  9.  低背狭ピッチコネクターである、請求項8に記載のコネクター。 The connector according to claim 8, which is a low profile narrow pitch connector.
  10.  ピッチ間距離が0.5mm以下であり、
     製品全長が3.5mm以上であり、
     製品高さが4.0mm以下であり、
     基板対基板コネクター又はフレキシブルプリント基板用コネクターである低背狭ピッチコネクターである、請求項8又は9に記載のコネクター。
    The distance between pitches is 0.5 mm or less,
    The total length of the product is 3.5 mm or more,
    The product height is 4.0 mm or less,
    The connector according to claim 8 or 9, which is a low-profile narrow-pitch connector that is a board-to-board connector or a connector for a flexible printed circuit board.
PCT/JP2020/039381 2019-10-31 2020-10-20 Resin composition and connector WO2021085240A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080075154.0A CN114630865B (en) 2019-10-31 2020-10-20 Resin composition and connector
MYPI2022002005A MY195150A (en) 2019-10-31 2020-10-20 Resin Composition and Connector
JP2021518020A JP6944615B1 (en) 2019-10-31 2020-10-20 Resin composition and connector
KR1020227012387A KR20220098130A (en) 2019-10-31 2020-10-20 Resin composition and connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019198970 2019-10-31
JP2019-198970 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085240A1 true WO2021085240A1 (en) 2021-05-06

Family

ID=75715925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039381 WO2021085240A1 (en) 2019-10-31 2020-10-20 Resin composition and connector

Country Status (6)

Country Link
JP (1) JP6944615B1 (en)
KR (1) KR20220098130A (en)
CN (1) CN114630865B (en)
MY (1) MY195150A (en)
TW (1) TW202124513A (en)
WO (1) WO2021085240A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037061A (en) * 2004-07-30 2006-02-09 Polyplastics Co Liquid crystalline polyester resin composition
WO2009141996A1 (en) * 2008-05-23 2009-11-26 ポリプラスチックス株式会社 Planar connector
WO2010013578A1 (en) * 2008-07-31 2010-02-04 ポリプラスチックス株式会社 Connector
JP2011046191A (en) * 2009-07-28 2011-03-10 Polyplastics Co Manufacturing method of liquid crystalline resin composition, liquid crystalline resin composition, and apparatus for manufacturing liquid crystalline resin
WO2012137637A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Planar connector
WO2020204125A1 (en) * 2019-04-03 2020-10-08 ポリプラスチックス株式会社 Fully aromatic polyester and polyester resin composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268252A (en) * 2002-03-19 2003-09-25 Polyplastics Co Liquid crystalline polymer composition
EP2695905B1 (en) * 2011-04-01 2021-01-27 Polyplastics Co., Ltd. Fully aromatic polyester and polyester resin composition
JP5753144B2 (en) * 2012-09-21 2015-07-22 ポリプラスチックス株式会社 Totally aromatic polyester and polyester resin composition, and polyester molded article
KR101627243B1 (en) * 2012-09-27 2016-06-03 포리프라스틱 가부시키가이샤 Composite resin composition and flat connector molded from same
JP6157778B1 (en) * 2015-10-21 2017-07-05 ポリプラスチックス株式会社 Totally aromatic polyester and method for producing the same
CN113710724B (en) * 2019-04-03 2023-11-03 宝理塑料株式会社 Wholly aromatic polyester and polyester resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037061A (en) * 2004-07-30 2006-02-09 Polyplastics Co Liquid crystalline polyester resin composition
WO2009141996A1 (en) * 2008-05-23 2009-11-26 ポリプラスチックス株式会社 Planar connector
JP2010003661A (en) * 2008-05-23 2010-01-07 Polyplastics Co Plane-form connector
WO2010013578A1 (en) * 2008-07-31 2010-02-04 ポリプラスチックス株式会社 Connector
JP2011046191A (en) * 2009-07-28 2011-03-10 Polyplastics Co Manufacturing method of liquid crystalline resin composition, liquid crystalline resin composition, and apparatus for manufacturing liquid crystalline resin
WO2012137637A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Planar connector
WO2020204125A1 (en) * 2019-04-03 2020-10-08 ポリプラスチックス株式会社 Fully aromatic polyester and polyester resin composition

Also Published As

Publication number Publication date
JPWO2021085240A1 (en) 2021-11-25
TW202124513A (en) 2021-07-01
CN114630865A (en) 2022-06-14
MY195150A (en) 2023-01-11
KR20220098130A (en) 2022-07-11
CN114630865B (en) 2023-12-01
JP6944615B1 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP5769888B2 (en) Composite resin composition for electronic parts, and electronic parts molded from the composite resin composition
JP6356938B1 (en) Composite resin composition and connector molded from the composite resin composition
JP6321899B1 (en) Composite resin composition and connector molded from the composite resin composition
JP6345376B1 (en) Composite resin composition and electronic component molded from the composite resin composition
WO2017110867A1 (en) Composite resin composition and connector formed from composite resin composition
JP6841978B2 (en) A connector containing a liquid crystal resin composition and a molded product of the liquid crystal resin composition.
JP6109651B2 (en) Composite resin composition and planar connector molded from the composite resin composition
JPWO2019203157A1 (en) Liquid crystalline resin composition
JP6321898B1 (en) Composite resin composition and electronic component molded from the composite resin composition
JP2018095684A (en) Composite resin composition, and connector molded from the composite resin composition
JP2018095683A (en) Composite resin composition, and electronic component molded from the composite resin composition
WO2021085240A1 (en) Resin composition and connector
JP6944616B1 (en) Resin composition and planar connector
JP6895032B1 (en) A connector containing a liquid crystal resin composition and a molded product of the liquid crystal resin composition.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021518020

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880546

Country of ref document: EP

Kind code of ref document: A1