WO2014050371A1 - Composite resin composition for electronic component and electronic component molded from composite resin composition - Google Patents

Composite resin composition for electronic component and electronic component molded from composite resin composition Download PDF

Info

Publication number
WO2014050371A1
WO2014050371A1 PCT/JP2013/072226 JP2013072226W WO2014050371A1 WO 2014050371 A1 WO2014050371 A1 WO 2014050371A1 JP 2013072226 W JP2013072226 W JP 2013072226W WO 2014050371 A1 WO2014050371 A1 WO 2014050371A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
composite resin
electronic component
respect
content
Prior art date
Application number
PCT/JP2013/072226
Other languages
French (fr)
Japanese (ja)
Inventor
博樹 深津
峰生 大竹
和博 龍
淳一郎 杉浦
吉昭 田口
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2014538282A priority Critical patent/JP5769888B2/en
Priority to KR1020157010325A priority patent/KR20150060829A/en
Priority to SG11201502394YA priority patent/SG11201502394YA/en
Priority to CN201380050474.0A priority patent/CN104704049B/en
Publication of WO2014050371A1 publication Critical patent/WO2014050371A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/521Inorganic solid particles

Definitions

  • the present invention relates to a composite resin composition for electronic parts and an electronic part molded from the composite resin composition.
  • the present invention relates to a composite resin composition for an asymmetric electronic component, an asymmetric electronic component molded from the composite resin composition, a composite resin composition for a low profile narrow pitch connector, and a low molding molded from the composite resin composition.
  • narrow pitch connectors relate to narrow pitch connectors.
  • the liquid crystalline polymer is a thermoplastic resin excellent in dimensional accuracy, fluidity and the like. Due to these characteristics, liquid crystalline polymers have been conventionally employed as materials for various electronic components. In manufacturing such an electronic component, the liquid crystal polymer composition is required to have good fluidity. Examples of the electronic component include an asymmetric electronic component, a low profile narrow pitch connector, and a coaxial connector.
  • the molding technique has been devised, and a specific plate-like filler has been proposed in terms of material.
  • a specific plate-like filler has been proposed in terms of material.
  • a typical example of such an asymmetric electronic component is a memory module connector having a latch structure (having fixing claws at both ends) such as a DDR-DIMM connector.
  • a memory module connector for a notebook personal computer has a latch structure for mounting and a notch for alignment, and thus has a very complicated shape.
  • Patent Document 1 is formed from a liquid crystalline polymer composition obtained by blending a specific amount of a specific fibrous filler and a specific plate-like filler.
  • An asymmetric electronic component having no symmetry with respect to any of the XY axis plane, the YZ axis plane, and the XZ axis plane of the product is disclosed.
  • Patent Document 2 discloses a connector formed from a liquid crystalline polymer composition reinforced with mica and glass fiber. Such connectors are for board-to-board connectors and flexible printed boards used to connect flexible printed boards (FPCs) and flexible flat cables (FFCs) that require fluidity and dimensional stability. Used as a connector.
  • conventional liquid crystalline polymer compositions are not sufficiently fluid.
  • the asymmetric electronic component is disclosed in the above-mentioned Patent Document 1 due to a shape change accompanying an increase in the integration rate in the recent asymmetric electronic component, particularly a decrease in pitch distance, a product height, and an increase in the number of poles. It has been found that conventional liquid crystal polymer compositions such as the prepared liquid crystal polymer composition may not be able to cope with them. That is, the conventional liquid crystalline polymer composition has insufficient fluidity, and it has been difficult to obtain an asymmetric electronic component in which warpage deformation is suppressed from such a liquid crystalline polymer composition.
  • the present inventors have found that the above problem can be solved by combining a liquid crystalline polymer containing a predetermined amount of a specific structural unit, glass fibers and / or milled fibers, and a plate-like inorganic filler. Specifically, the present invention provides the following.
  • a composite resin composition for electronic parts comprising (A) a liquid crystalline polymer, (B) a milled fiber, and (C) a plate-like inorganic filler,
  • the (A) liquid crystalline polymer has, as essential constituents, the following constituent units: (I) constituent units derived from 4-hydroxybenzoic acid, (II) constituent units derived from 2-hydroxy-6-naphthoic acid, III) a structural unit derived from terephthalic acid, (IV) a structural unit derived from isophthalic acid, and (V) a structural unit derived from 4,4′-dihydroxybiphenyl,
  • the content of the structural unit (I) with respect to all the structural units is 35 to 75 mol%
  • the content of the structural unit (II) with respect to the total structural unit is 2 to 8 mol%
  • the content of the structural unit (III) with respect to all the structural units is 4.5 to 30.5 mol%
  • the electronic component is a low profile narrow pitch connector,
  • the above (A) liquid crystalline polymer has a [melting point-crystallization temperature] value of 50 to 60 ° C. and conforms to ISO 11443 at a shear rate of 1000 / sec at a temperature 10 to 20 ° C. higher than the melting point.
  • the composite resin composition for electronic parts according to (4), wherein the melt viscosity measured in this way is 5 to 15 Pa ⁇ s.
  • the average fiber length of the (B) milled fiber is 50 to 100 ⁇ m
  • (C) The plate-like inorganic filler is a composite resin composition for electronic parts according to (4) or (5), which is at least one selected from the group consisting of talc and mica.
  • the content of the liquid crystal polymer (A) is 47.5 to 65% by mass with respect to the entire composite resin composition
  • the content of the (B) milled fiber is 15 to 30% by mass with respect to the entire composite resin composition
  • the content of the (C) plate-like inorganic filler is 20 to 35% by mass with respect to the entire composite resin composition
  • the electronic component according to (7) which is an asymmetric electronic component having no symmetry with respect to any of the XY axis plane, the YZ axis plane, and the XZ axis plane of the molded product.
  • a connector for a memory module having a pitch distance of 0.8 mm or less, a total product length of 60.0 mm or more, a product height of 6.0 mm or less, and a pole number of 150 or more.
  • the content of the (C) plate-like inorganic filler is 10 to 30% by mass with respect to the entire composite resin composition,
  • the distance between pitches is 0.5 mm or less,
  • the total product length is 4.0mm or more,
  • the product height is 4.0 mm or less,
  • the electronic component according to (7) which is a low-profile narrow-pitch connector that is a board-to-board connector or a connector for a flexible printed board.
  • the above (A) liquid crystalline polymer has a [melting point-crystallization temperature] value of 50 to 60 ° C. and conforms to ISO 11443 at a shear rate of 1000 / sec at a temperature 10 to 20 ° C. higher than the melting point.
  • the average fiber length of the (B) glass fiber and milled fiber is 50 to 100 ⁇ m
  • the (C) plate-like inorganic filler is an electronic component according to (12) or (13), which is at least one selected from the group consisting of talc and mica.
  • a composite resin composition for electronic parts having good fluidity and an electronic part molded from the composite resin composition.
  • a composite resin composition for an asymmetric electronic component capable of obtaining an asymmetric electronic component having good fluidity and suppressing warpage deformation, and an asymmetric electronic component molded from the composite resin composition Is provided.
  • the composite resin composition in the present invention contains a predetermined amount of a specific liquid crystalline polymer, glass fibers and / or milled fibers, and a plate-like inorganic filler.
  • a specific liquid crystalline polymer glass fibers and / or milled fibers
  • a plate-like inorganic filler a plate-like inorganic filler
  • the liquid crystalline polymer in the present invention contains, as essential constituents, the following constituent units: (I) constituent units derived from 4-hydroxybenzoic acid (also referred to as “HBA”), (II) 2-hydroxy-6-naphthoic acid A structural unit derived from (also referred to as “HNA”), (III) a structural unit derived from terephthalic acid (also referred to as “TA”), (IV) a structural unit derived from isophthalic acid (also referred to as “IA”), and (V) Contains structural units derived from 4,4′-dihydroxybiphenyl (also referred to as “BP”).
  • HBA 4-hydroxybenzoic acid
  • HNA 2-hydroxy-6-naphthoic acid
  • HNA terephthalic acid
  • IA isophthalic acid
  • V Contains structural units derived from 4,4′-dihydroxybiphenyl (also referred to as “BP”).
  • the liquid crystalline polymer in the present invention contains the above structural units at a specific ratio. That is, the content of the structural unit (I) is 35 to 75 mol% (preferably 40 to 65 mol%) with respect to all the structural units.
  • the content of the structural unit (II) is 2 to 8 mol% (preferably 3 to 7 mol%) with respect to all the structural units.
  • the content of the structural unit (III) is 4.5 to 30.5 mol% (preferably 13 to 26 mol%) based on all the structural units.
  • the content of the structural unit (IV) is 2 to 8 mol% (preferably 3 to 7 mol%) with respect to all the structural units.
  • the content of the structural unit (V) is 12.5 to 32.5 mol% (preferably 15.5 to 29 mol%) with respect to all the structural units.
  • the total amount of the structural units (II) and (IV) is 4 to 10 mol% (preferably 5 to 10 mol%) with respect to the total structural units.
  • the melting point of the liquid crystalline polymer is remarkably increased, and asymmetric electronic components, low-profile narrow pitch connectors, and
  • the liquid crystalline polymer is solidified in the reactor, and it may not be possible to manufacture a liquid crystalline polymer having a desired molecular weight.
  • the content of the constituent unit (II) is less than 2 mol% with respect to all constituent units, when manufacturing molded articles such as electronic parts including asymmetric electronic parts, low profile narrow pitch connectors, and coaxial connectors This is not preferable because cracks may occur in the molded product. Further, if the content of the structural unit (II) is more than 8 mol% with respect to all the structural units, the heat resistance of the liquid crystalline polymer is lowered, which is not preferable.
  • the melting point of the liquid crystalline polymer becomes remarkably high, and the asymmetric electronic component, low profile
  • the liquid crystalline polymer is solidified in the reactor, and it may not be possible to produce a liquid crystalline polymer having a desired molecular weight.
  • the content of the constituent unit of (IV) is less than 2 mol% with respect to all constituent units, when manufacturing molded articles such as electronic parts including asymmetric electronic parts, low profile narrow pitch connectors, and coaxial connectors This is not preferable because cracks may occur in the molded product.
  • the melting point of the liquid crystalline polymer becomes extremely high, and the liquid crystalline polymer is solidified in the reactor when a molded product such as an asymmetric electronic component, a low-profile narrow pitch connector, and an electronic component including a coaxial connector is manufactured. Since it may become impossible to manufacture the liquid crystalline polymer of molecular weight, it is not preferable.
  • the content of the structural unit (IV) is more than 8 mol% with respect to all the structural units, the heat resistance of the liquid crystalline polymer is lowered, which is not preferable.
  • the melting point of the liquid crystalline polymer is remarkably increased, and the asymmetric electronic component liquid crystalline polymer is Solidifying in a reactor to produce a liquid crystalline polymer having a desired molecular weight is not preferable because it becomes impossible to produce a molded product such as a low-profile narrow pitch connector and an electronic component including a coaxial connector.
  • the crystallization heat amount of the liquid crystalline polymer can be 2.5 J / g or more.
  • a molded product such as an asymmetric electronic component, a low-profile narrow-pitch connector, and an electronic component including a coaxial connector
  • a preferable value for the heat of crystallization of the liquid crystalline polymer is 2.3 J / g or less, and more preferably 2.0 J / g or less.
  • the crystallization heat quantity indicates the crystallization state of the liquid crystalline polymer, and is a value obtained by differential calorimetry.
  • Tm1 endothermic peak temperature
  • Tm1 + 40 ° C. for 2 minutes the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when measured under the temperature lowering condition per minute.
  • the heat resistance of the liquid crystalline polymer is lowered, which is not preferable.
  • the well-known other structural unit can also be introduce
  • the liquid crystalline polymer in the present invention can be obtained by polymerizing the above structural units by a direct polymerization method, a transesterification method, a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method or the like.
  • an acylating agent for the above structural unit or a monomer whose terminal is activated as an acid chloride derivative can be used in combination.
  • the acylating agent include acid anhydrides such as acetic anhydride.
  • various catalysts can be used, for example, dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali metal salts of carboxylic acids, alkaline earths. Metal salts, Lewis acid salts (BF 3 and the like) and the like.
  • the amount of the catalyst used may be about 0.001 to 1% by mass, preferably about 0.003 to 0.2% by mass, based on the total amount of the above structural units.
  • the conditions for the polymerization reaction are not particularly limited as long as the polymerization of the above structural units proceeds.
  • the reaction temperature is 200 to 380 ° C.
  • the final ultimate pressure is 0.1 to 760 Torr (that is, 13 to 101,080 Pa). ).
  • the polymerization reaction may be a method (one-stage system) in which all the raw material monomers, acylating agent and catalyst are charged in the same reaction vessel to start the reaction, and corresponds to each structural unit of (I), (II) and (V).
  • acylating the raw material monomers that is, the structural unit derived from 4-hydroxybenzoic acid, the structural unit derived from 2-hydroxy-6-naphthoic acid, and the hydroxyl group of 4,4′-dihydroxybiphenyl with an acylating agent
  • a raw material monomer corresponding to each structural unit of (III) and (IV) that is, a method of reacting with carboxyl groups of terephthalic acid and isophthalic acid (two-stage method) may be used.
  • liquid crystalline polymers containing the structural units (I) to (V) do not form an anisotropic molten phase depending on the constituent components and the sequence distribution in the liquid crystalline polymer.
  • the liquid crystalline polymer in the present invention is preferably a liquid crystalline polymer that forms an anisotropic molten phase, that is, a liquid crystalline polymer that exhibits optical anisotropy when melted, in that it has processability.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. Specifically, for melting anisotropy, a polarizing microscope (manufactured by Olympus Co., Ltd.) is used, a sample placed on a hot stage (manufactured by Linkham Co., Ltd.) is melted, and the magnification is 150 times under a nitrogen atmosphere. This can be confirmed by observation. Liquid crystalline polymers that exhibit optical anisotropy when melted are optically anisotropic and transmit light when inserted between crossed polarizers. When the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.
  • the melt viscosity of the liquid crystalline polymer measured in accordance with ISO 11443 at a temperature 10 to 20 ° C. higher than the melting point and at a shear rate of 1000 / second is more preferably 1 ⁇ 10 5 Pa ⁇ s or less (more preferably 5 Pa ⁇ s or more). And 1 ⁇ 10 2 Pa ⁇ s or less) at the time of molding an electronic component, particularly at the time of molding a portion having a complicated shape such as a latch structure or a notch in an asymmetric electronic component. This is preferable in that the fluidity of the resin is ensured and the filling pressure does not become excessive.
  • the liquid crystalline polymer in the present invention has a value of [melting point ⁇ crystallization temperature], which is a value obtained by subtracting the crystallization temperature from the melting point, and a temperature of 10 to 20 ° C. higher than the melting point.
  • the melt viscosity measured according to ISO 11443 at a shear rate of 1000 / sec is preferably 5 to 15 Pa ⁇ s. According to such a liquid crystalline polymer, the fluidity of the composite resin composition can be secured at the time of molding an electronic component, particularly at the time of molding a low profile narrow pitch connector, etc., and therefore the filling pressure becomes an excessive value. This can be suppressed.
  • the composite resin composition in the present invention contains the liquid crystalline polymer in the composite resin composition in an amount of 40 to 80% by mass with respect to the total composite resin composition. If the content of the liquid crystalline polymer is less than 40% by mass with respect to the entire composite resin composition, the fluidity is deteriorated, which is not preferable. When the content of the liquid crystalline polymer is more than 80% by mass with respect to the entire composite resin composition, an asymmetric electronic component obtained from the composite resin composition, a low-profile narrow pitch connector, an electronic component including a coaxial connector, etc. This is not preferable because the flexural modulus and crack resistance of the molded product are lowered.
  • the composite resin composition in the present invention preferably contains the liquid crystalline polymer in the composite resin composition in an amount of 50 to 70% by mass based on the entire composite resin composition.
  • the liquid crystal polymer is contained in the composite resin composition in an amount of 47.5 to 65% by mass with respect to the entire composite resin composition. Is preferred.
  • the content of the liquid crystalline polymer is 47.5% by mass or more based on the entire composite resin composition, the fluidity of the composite resin composition tends to be good, and the asymmetric electronic component obtained from the composite resin composition It is preferable because warpage deformation of a molded product such as the above is difficult to increase.
  • the content of the liquid crystalline polymer is 65% by mass or less with respect to the entire composite resin composition, the bending elastic modulus and crack resistance of molded products such as asymmetric electronic parts obtained from the composite resin composition are unlikely to decrease.
  • the composite resin composition of the present invention is for an asymmetric electronic component
  • the liquid crystalline polymer is contained in the composite resin composition in an amount of 50 to 55% by mass with respect to the total composite resin composition. preferable.
  • the composite resin composition in the present invention contains the above-mentioned liquid crystalline polymer and milled fiber, a molded product obtained by molding the composite resin composition is excellent in high-temperature rigidity.
  • the average fiber length of the milled fiber calculated from the fiber length of the milled fiber is preferably 50 to 150 ⁇ m.
  • An average fiber length of 50 ⁇ m or more is preferable because the high-temperature rigidity of a molded product obtained from the composite resin composition is sufficient.
  • An average fiber length of 150 ⁇ m or less is preferable because the fluidity of the composite resin composition becomes good and warpage deformation of the molded product does not easily increase.
  • the average fiber length of the milled fiber calculated from the fiber length of the milled fiber in the composite resin composition of the present invention is 50 to 100 ⁇ m.
  • the average fiber length of 50 ⁇ m or more is preferable because the high-temperature rigidity of a molded product obtained from the composite resin composition is sufficient.
  • the average fiber length is 100 ⁇ m or less, the fluidity of the composite resin composition becomes good and it is difficult to mold the composite resin composition, which is preferable.
  • the fiber diameter of the milled fiber in the present invention is not particularly limited, but generally about 5 to 15 ⁇ m is used.
  • the composite resin composition in the present invention contains 10 to 30% by mass of milled fiber with respect to the entire composite resin composition.
  • the content of the milled fiber is less than 10% by mass relative to the entire composite resin composition, molding of electronic components including asymmetric electronic components, low profile narrow pitch connectors, and coaxial connectors obtained from the composite resin composition This is not preferable because the weight deflection temperature of the product is low and the high-temperature rigidity is not sufficient. If the content of the milled fiber is more than 30% by mass with respect to the entire composite resin composition, the fluidity of the composition deteriorates, which is not preferable.
  • the composite resin composition in the present invention preferably contains 15 to 30% by mass of milled fiber with respect to the entire composite resin composition, particularly when used for asymmetric electronic components.
  • a molded article such as an asymmetric electronic component obtained from the composite resin composition is less likely to have a low deflection temperature, and has high-temperature rigidity. This is preferable because it is sufficient.
  • the content of the milled fiber is 30% by mass or less with respect to the entire composite resin composition because the fluidity of the composite resin composition becomes good and warpage deformation of the molded article is difficult to increase.
  • the composite resin composition in the present invention further includes a plate-like inorganic filler.
  • a plate-like inorganic filler By including a plate-like inorganic filler in the composite resin composition in the present invention, a molded product in which warpage deformation is suppressed can be obtained.
  • the plate-like inorganic filler is contained in an amount of 10 to 35% by mass with respect to the entire composite resin composition. If the content of the plate-like inorganic filler is less than 10% by mass with respect to the entire composite resin composition, it is not preferable because warpage deformation of a molded product obtained from the composite resin composition is not sufficient. If the content of the plate-like inorganic filler is more than 35% by mass with respect to the entire composite resin composition, the fluidity of the composite resin composition may be deteriorated and it may be difficult to mold the composite resin composition. This is not preferable.
  • the plate-like inorganic filler is preferably contained in an amount of 20 to 35% by mass with respect to the entire composite resin composition, particularly when the composite resin composition is for an asymmetric electronic component. It is preferable that the content of the plate-like inorganic filler is 20% by mass or more based on the entire composite resin composition because warpage deformation of a molded product such as an asymmetric electronic component obtained from the composite resin composition is difficult to increase. It is preferable that the content of the plate-like inorganic filler is 35% by mass or less with respect to the entire composite resin composition because the fluidity of the composite resin composition tends to be good.
  • the plate-like inorganic filler is preferably contained in an amount of 10 to 30% by mass based on the entire composite resin composition, particularly when the composite resin composition is for a low profile narrow pitch connector.
  • the content of the plate-like inorganic filler is 10% by mass or more based on the entire composite resin composition, it is possible to sufficiently suppress warpage deformation of a molded product such as a low profile narrow pitch connector obtained from the composite resin composition. It is preferable because it is easy.
  • the content of the plate-like inorganic filler is 30% by mass or less with respect to the entire composite resin composition, the fluidity of the composite resin composition tends to be good, and it is difficult to form the composite resin composition. preferable.
  • Examples of the plate-like inorganic filler in the present invention include talc, mica, glass flakes, various metal foils and the like, but a molded product obtained from the composite resin composition without deteriorating the fluidity of the composite resin composition. It is preferable that it is 1 or more types chosen from the group which consists of a talc and a mica at the point of suppressing warp deformation
  • a certain size must be maintained.
  • it is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m.
  • the total content of Fe 2 O 3 , Al 2 O 3 , and CaO is 2.5 mass% or less with respect to the total solid content of the talc, and Fe 2 O 3 and The total content of Al 2 O 3 is more than 1.0% by mass and 2.0% by mass or less, and the content of CaO is preferably less than 0.5% by mass. That is, the talc that can be used in the present invention contains at least one of Fe 2 O 3 , Al 2 O 3 , and CaO in addition to the main components SiO 2 and MgO, and each component has the above content. It may be contained in a range.
  • the molding processability of the composite resin composition and the asymmetric electron molded from the composite resin composition is unlikely to deteriorate.
  • the total content of Fe 2 O 3 , Al 2 O 3 , and CaO is preferably 1.0% by mass or more and 2.0% by mass or less.
  • talc having a total content of Fe 2 O 3 and Al 2 O 3 of more than 1.0% by mass is easily available. Further, in the talc, when the total content of Fe 2 O 3 and Al 2 O 3 is 2.0% by mass or less, the molding processability of the composite resin composition and the asymmetric electronic component molded from the composite resin composition In addition, the heat resistance of molded products such as electronic parts including low-profile narrow-pitch connectors and coaxial connectors is unlikely to deteriorate.
  • the total content of Fe 2 O 3 and Al 2 O 3 is preferably more than 1.0 mass% and not more than 1.7 mass%.
  • the CaO content is less than 0.5% by mass, the molding processability of the composite resin composition, the asymmetric electronic component molded from the composite resin composition, the low profile narrow pitch connector, and the coaxial The heat resistance of molded products such as electronic parts including connectors is unlikely to deteriorate.
  • the content of CaO is preferably 0.01% by mass or more and 0.4% by mass or less.
  • the mass average or volume-based cumulative average particle diameter (D 50 ) of talc in the present invention measured by laser diffraction method is 4 from the viewpoint of preventing warpage deformation of the molded product and maintaining fluidity of the composite resin composition. It is preferably from 0 to 20.0 ⁇ m, more preferably from 10 to 18 ⁇ m.
  • Mica is a pulverized product of silicate mineral containing aluminum, potassium, magnesium, sodium, iron and the like.
  • examples of mica that can be used in the present invention include muscovite, phlogopite, biotite, and artificial mica. Of these, muscovite is preferable in terms of good hue and low price.
  • wet pulverization and dry pulverization are known as methods for pulverizing minerals.
  • the wet pulverization method is a method in which raw mica is roughly pulverized with a dry pulverizer, then water is added and main pulverization is performed by wet pulverization in a slurry state, followed by dehydration and drying.
  • the dry pulverization method is a general method at a low cost.
  • the wet pulverization method it is easier to pulverize the mineral thinly and finely.
  • the present invention it is preferable to use a thin and fine pulverized product because mica having a preferable average particle diameter and thickness described later can be obtained. Therefore, in the present invention, it is preferable to use mica produced by a wet pulverization method.
  • Examples of the coagulating settling agent and settling aid that can be used in the present invention include polyaluminum chloride, aluminum sulfate, ferrous sulfate, ferric sulfate, copper chloride, polyiron sulfate, polyferric chloride, iron-silica inorganic high Examples thereof include molecular flocculants, ferric chloride-silica inorganic polymer flocculants, slaked lime (Ca (OH) 2 ), caustic soda (NaOH), and soda ash (Na 2 CO 3 ). These coagulating sedimentation agents and sedimentation aids are alkaline or acidic in pH.
  • the mica used in the present invention is preferably one that does not use a coagulating sedimentation agent and / or a sedimentation aid when wet milling.
  • the use of mica not treated with a coagulating sedimentation agent and / or a sedimentation aid makes it difficult for the polymer in the composite resin composition to decompose, resulting in a large amount of gas generation and a decrease in the molecular weight of the polymer. It is easy to better maintain the performance of molded parts such as electronic parts, electronic parts including low-profile narrow-pitch connectors, and coaxial connectors.
  • the mica that can be used in the present invention preferably has an average particle diameter of 10 to 100 ⁇ m as measured by a microtrack laser diffraction method, and particularly preferably has an average particle diameter of 20 to 80 ⁇ m. It is preferable that the average particle diameter of mica is 10 ⁇ m or more because the effect of improving the rigidity of the molded product is likely to be sufficient. It is preferable that the average particle diameter of mica is 100 ⁇ m or less because the rigidity of the molded product is likely to be sufficiently improved and the weld strength is likely to be sufficient. Furthermore, when the average particle size of mica is 100 ⁇ m or less, it is easy to ensure sufficient fluidity for molding electronic components including the asymmetric electronic component, low profile narrow pitch connector, and coaxial connector of the present invention.
  • the thickness of the mica that can be used in the present invention is preferably 0.01 to 1 ⁇ m, particularly preferably 0.03 to 0.3 ⁇ m, as measured by observation with an electron microscope.
  • the mica thickness is 0.01 ⁇ m or more, the mica is difficult to break during the melt processing of the composite resin composition, and therefore, the rigidity of the molded product may be easily improved. It is preferable that the mica thickness is 1 ⁇ m or less because the effect of improving the rigidity of the molded product tends to be sufficient.
  • the mica that can be used in the present invention may be surface-treated with a silane coupling agent or the like and / or granulated with a binder.
  • pigments such as nucleating agent, carbon black, inorganic calcined pigment, antioxidant, stabilizer, plasticizer, lubricant, mold release agent, flame retardant, and You may mix
  • the method for producing the composite resin composition in the present invention is not particularly limited as long as the components in the composite resin composition can be uniformly mixed, and can be appropriately selected from conventionally known methods for producing resin compositions.
  • each component is melt-kneaded and extruded using a melt-kneader such as a single-screw or twin-screw extruder, and then the resulting composite resin composition is processed into a desired form such as powder, flakes, pellets, etc.
  • a melt-kneader such as a single-screw or twin-screw extruder
  • the composite resin composition according to the present invention is excellent in fluidity, so that the minimum filling pressure at the time of molding is not excessively excessive, and the component having a complicated shape such as an asymmetric electronic component having a latch structure or a notch, a low profile A small and complex part such as a pitch connector, a coaxial connector, or the like can be preferably formed.
  • the minimum filling pressure is specified as the minimum injection filling pressure at which a good molded product can be obtained at 365 ° C. when molding the composite resin composition.
  • the electronic component of the present invention can be obtained by molding the composite resin composition of the present invention. Although it does not specifically limit as an electronic component, Asymmetrical electronic components, a low profile narrow pitch connector, a coaxial connector, etc. are mentioned.
  • the asymmetric electronic component of the present invention refers to a component that has no symmetry with respect to any of the XY axis plane, the YZ axis plane, and the XZ axis plane of the molded product.
  • the XY axis plane, the YZ axis plane, and the XZ axis plane have symmetry, so that the symmetry should be maintained during molding.
  • the asymmetric electronic component of the present invention has a complicated shape, and it is difficult to suppress warpage deformation by a molding method.
  • warpage deformation is suppressed by using a specific composite resin composition.
  • a typical example of such an asymmetric electronic component is a certain type of connector or socket.
  • Connector for memory module such as DIMM connector, DDR-DIMM connector, DDR2-DIMM connector, DDR-SO-DIMM connector, DDR2-SO-DIMM connector, DDR-Micro-DIMM connector, DDR2-Micro-DIMM connector Is mentioned.
  • DIMM connector DDR-DIMM connectors and DDR2-DIMM connectors are preferred, especially for thin-walled and complex memory module connectors for laptop computers, with a pitch-to-pitch distance of 0.8 mm or less and a total product length of 60.0 mm.
  • the product height is 6.0 mm or less and the number of poles is 150 or more.
  • Such a memory module connector is subjected to an IR reflow process for surface mounting at a peak temperature of 230 to 280 ° C, the warp before the IR reflow process is 0.1 mm or less, and the warp before and after the reflow.
  • such a requirement can be satisfied.
  • the socket examples include a memory card socket such as a card bus, CF card, memory stick, PC card, SD card, SDMo, smart card, smart media card, microSD card, miniSD card, xD picture card, TransFlash, etc.
  • a memory card socket having a rail structure and a product height of 3.0 mm or less is suitable.
  • the low profile narrow pitch connector of the present invention By molding the composite resin composition in the present invention, the low profile narrow pitch connector of the present invention can be obtained.
  • the shape of the low-profile narrow-pitch connector of the present invention is not particularly limited, but the low-profile narrow-pitch connector has a pitch distance of 0.5 mm or less, a total product length of 4.0 mm or more, and a product height of 4.0 mm or less. It may be.
  • the type of the low-profile narrow-pitch connector of the present invention is not particularly limited, but a board-to-board connector (also known as “BtoB connector”), a flexible printed circuit board (FPC), and a flexible flat cable (FFC) are connected. It may be a flexible printed circuit board connector (also known as an “FPC connector”) or the like.
  • the coaxial connector of the present invention can be obtained by molding the composite resin composition of the present invention.
  • the resin composition is excellent in fluidity.
  • this composite resin composition is The coaxial connector can be manufactured smoothly by using.
  • the coaxial connector with a thickness of 100 micrometers or less is mentioned.
  • the molding method for obtaining the electronic component of the present invention such as the asymmetric electronic component of the present invention, low-profile narrow pitch connector, coaxial connector, etc. is not particularly limited, but in order to prevent deformation of the obtained electronic component, warpage deformation is particularly suppressed.
  • the cylinder temperature of the molding machine should be higher than the melting point of the liquid crystalline polymer. preferable.
  • the mold temperature is preferably 70 to 100 ° C. If the mold temperature is not too low, it is particularly preferable that the mold temperature is 70 ° C. or higher because the composite resin composition filled in the mold hardly causes poor flow. If the mold temperature is not too high, it is particularly preferable that the mold temperature is 100 ° C. or lower because problems such as burrs are unlikely to occur.
  • the injection speed is preferably 150 mm / second or more. If the injection speed is not too low, particularly when the injection speed is 150 mm / sec or more, it is unlikely that only an unfilled molded product will be obtained. A completely filled molded product has a high filling pressure and a residual internal stress. It is difficult to obtain a large molded product, and it is unlikely that only an electronic component having a problem in terms of shape such as an asymmetric electronic component having a large warp deformation and a connector having poor flatness may be obtained.
  • warpage deformation is suppressed in the asymmetric electronic component of the present invention.
  • the degree of warping of the asymmetric electronic component is determined as follows. That is, the asymmetric electronic component is placed on a horizontal desk, the height of the asymmetric electronic component is measured by an image measuring machine, and the difference between the maximum height and the minimum height from the least squares plane is determined as the sled of the asymmetric electronic component. To do.
  • changes in warpage are suppressed before and after performing IR reflow.
  • the electronic parts of the present invention such as the asymmetric electronic parts of the present invention, low profile narrow pitch connectors, coaxial connectors, etc. are excellent in high temperature rigidity.
  • the high temperature stiffness is evaluated by measuring the deflection temperature under load in accordance with ISO 75-1 and 2 standard.
  • Method for producing liquid crystalline polymer 1 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomers, a metal catalyst, and an acylating agent, and nitrogen substitution was started.
  • the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further increased to 360 ° C. over 5.5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 20 minutes, while acetic acid, excess acetic anhydride, and other low boiling points are distilled off. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize. The obtained pellet had a melting point of 358 ° C., a crystallization temperature of 303 ° C., a crystallization heat amount of 1.6 J / g, and a melt viscosity of 9 Pa ⁇ s.
  • the melting point, crystallization temperature, crystallization heat quantity, and melt viscosity of the pellet were measured under the following conditions.
  • Method for producing liquid crystalline polymer 2 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomers, a metal catalyst, and an acylating agent, and nitrogen substitution was started.
  • the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further raised to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (ie, 667 Pa) over 15 minutes while acetic acid, excess acetic anhydride, and other low boiling points are distilled off. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize. The obtained pellet had a melting point of 334 ° C., a crystallization temperature of 290 ° C., a crystallization heat amount of 2.7 J / g, and a melt viscosity of 18 Pa ⁇ s.
  • the extrusion conditions for obtaining the composite resin composition are as follows. [Extrusion conditions] [Examples 1 to 11, Comparative Examples 4, 5, 10, 11, Reference Examples 1 to 4] The temperature of the cylinder provided at the main feed port was 250 ° C., and the temperatures of the other cylinders were all 370 ° C. All liquid crystalline polymers were supplied from the main feed port. The filler was supplied from the side feed port. [Comparative Examples 1 to 3, 6 to 9] The temperature of the cylinder provided at the main feed port was 250 ° C., and the temperature of the other cylinders was all 350 ° C. All liquid crystalline polymers were supplied from the main feed port. The filler was supplied from the side feed port.
  • the average glass fiber length of the glass fiber and milled fiber in a composite resin composition was measured with the following method. [Measurement of average glass fiber length] 5 g of the composite resin composition pellets were heated and ashed at 600 ° C. for 2 hours. The incineration residue was sufficiently dispersed in a 5% by mass polyethylene glycol aqueous solution, then transferred to a petri dish with a dropper, and glass fibers or milled fibers were observed with a microscope. At the same time, the weight average fiber length of the glass fiber or milled fiber was measured using an image measuring instrument (LUZEXFS manufactured by Nireco Corporation).
  • the composite resin composition was injection-molded under the following molding conditions (gate: tunnel gate, gate size: ⁇ 0.75 mm), and the overall size as shown in FIG. 1 was 70.0 mm ⁇ 26.0 mm ⁇ 4.0 mmt, A DDR-DIMM connector having a pitch distance of 0.6 mm and a pin hole number of 100 ⁇ 2 was obtained.
  • Molding machine Sumitomo Heavy Industries SE30DUZ Cylinder temperature (indicates temperature from nozzle side): 360 ° C.-365 ° C.-340 ° C.-330 ° C.
  • Example 1 to 3 Comparative Examples 4 and 5, Reference Examples 1 and 2 350 ° C.-350 ° C.-340 ° C.-330 ° C. (Comparative Examples 1 to 3) Mold temperature: 80 °C Injection speed: 300 mm / sec Holding pressure: 50 MPa Holding time: 2 seconds Cooling time: 10 seconds Screw rotation speed: 120 rpm Screw back pressure: 1.2MPa
  • the obtained connector was placed on a horizontal desk, and the height of the connector was measured with Mitutoyo Quick Vision 404 PROCNC image measuring machine. At that time, the height was measured at a plurality of positions indicated by black circles in FIG. 2, and the difference between the maximum height and the minimum height from the least square plane was defined as the DDR connector warp. The warpage was measured before and after IR reflow performed under the following conditions.
  • IR reflow conditions Measuring machine: RF-300 (using far infrared heater) Sample feed rate: 140 mm / sec Reflow furnace passage time: 5 minutes
  • Preheat zone temperature condition 150 ° C.
  • Reflow zone temperature condition 190 ° C Peak temperature: 251 ° C
  • DDR connector deformation The difference in warpage before and after reflow measured by the above method was determined as the amount of deformation of the DDR connector.
  • DDR connector minimum filling pressure When the DDR-DIMM connector of FIG. 1 was injection molded, the minimum injection filling pressure at which a good molded product was obtained was measured as the minimum filling pressure.
  • Molding machine Sumitomo Heavy Industries, SE100DU Cylinder temperature (indicates temperature from nozzle side): 360 ° C.-370 ° C.-370 ° C.-360 ° C.-340 ° C.-330 ° C.
  • Example 1 to 3 Comparative Examples 4 and 5, Reference Examples 1 and 2 350 ° C-350 ° C-350 ° C-350 ° C-340 ° C-330 ° C (Comparative Examples 1 to 3) Mold temperature: 80 °C Injection speed: 2 m / min Holding pressure: 50 MPa Holding time: 2 seconds Cooling time: 10 seconds Screw rotation speed: 120 rpm Screw back pressure: 1.2MPa
  • the composite resin composition of the present invention has good fluidity, and the asymmetric electronic component molded from the composite resin composition is suppressed from warping deformation and has high-temperature rigidity. It was excellent.
  • the composite resin composition as shown in FIG. 3 has an overall size of 17.6 mm ⁇ 4.00 mm ⁇ 1.16 mm, a pitch distance of 0.5 mm, a pin hole number of 30 ⁇ 2 pins, and a minimum thickness.
  • a FPC connector having a thickness of 0.12 mm (gate: tunnel gate ( ⁇ 0.4 mm)) was injection molded, and the minimum injection filling pressure at which a good molded product was obtained was measured as the minimum filling pressure.
  • Molding machine Sumitomo Heavy Industries, SE30DUZ Cylinder temperature (indicates temperature from nozzle side): 365 ° C.-365 ° C.-355 ° C.-345 ° C.
  • Molding machine Sumitomo Heavy Industries, SE100DU Cylinder temperature (indicates temperature from nozzle side): 360 ° C.-370 ° C.-370 ° C.-360 ° C.-340 ° C.-330 ° C.
  • the composite resin composition of the present invention was excellent in fluidity, and the value of the minimum filling pressure of the low profile narrow pitch connector molded from the composite resin composition was reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

The objective of the present invention is to provide a composite resin composition for electronic components which has excellent fluidity and an electronic component molded from the composite resin composition. The present invention provides a composite resin composition for electronic components comprising (A) a liquid crystal polymer, (B) milled fiber and (C) a plate-like inorganic filler, wherein (A) the liquid crystal polymer includes, as essential components, (I) a constitutional unit derived from a 4-hydroxybenzoic acid, (II) a constitutional unit derived from a 2-hydroxy-6-naphthoic acid, (III) a constitutional unit derived from a terephthalic acid, (IV) a constitutional unit derived from an isophthalic acid and (V) a constitutional unit derived from a 4,4'-dihydroxybiphenyl.

Description

電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品Composite resin composition for electronic parts, and electronic parts molded from the composite resin composition
 本発明は、電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品に関する。特に、本発明は、非対称電子部品用複合樹脂組成物、当該複合樹脂組成物から成形された非対称電子部品、低背狭ピッチコネクター用複合樹脂組成物、及び当該複合樹脂組成物から成形された低背狭ピッチコネクターに関する。 The present invention relates to a composite resin composition for electronic parts and an electronic part molded from the composite resin composition. In particular, the present invention relates to a composite resin composition for an asymmetric electronic component, an asymmetric electronic component molded from the composite resin composition, a composite resin composition for a low profile narrow pitch connector, and a low molding molded from the composite resin composition. Related to narrow pitch connectors.
 液晶性ポリマーは、寸法精度、流動性等に優れる熱可塑性樹脂である。このような特徴を有するため、液晶性ポリマーは、従来より各種電子部品の材料として採用されてきた。このような電子部品を製造する上で、液晶ポリマー組成物には、流動性が良好であることが求められる。電子部品としては、例えば、非対称電子部品、低背狭ピッチコネクター、同軸コネクター等が挙げられる。 The liquid crystalline polymer is a thermoplastic resin excellent in dimensional accuracy, fluidity and the like. Due to these characteristics, liquid crystalline polymers have been conventionally employed as materials for various electronic components. In manufacturing such an electronic component, the liquid crystal polymer composition is required to have good fluidity. Examples of the electronic component include an asymmetric electronic component, a low profile narrow pitch connector, and a coaxial connector.
 特に、非対称電子部品については、下記のような背景が存在する。近年のエレクトロニクス機器の高性能化に伴う、コネクターの高耐熱化(実装技術による生産性向上)、高密度化(多芯化)、及び小型化という時代の要請もあり、上記液晶性ポリマーの特徴を活かし、ガラス繊維で強化された液晶性ポリマー組成物がコネクター材料として採用されている。 Especially for asymmetric electronic components, the following background exists. Due to the demands of the era of higher heat resistance of connectors (improvement of productivity by mounting technology), higher density (multi-core), and miniaturization due to the recent high performance of electronic equipment, the characteristics of the above liquid crystalline polymer Taking advantage of the above, a liquid crystalline polymer composition reinforced with glass fiber has been adopted as a connector material.
 しかし、近年、コネクターにおいて軽薄短小化がさらに進み、成形品の肉厚不足による剛性不足や金属端子のインサートによる内部応力により、成形後及びリフロー加熱中にそり変形が発生し、基板とのハンダ付け不良となる問題が生じている。すなわち、従来のガラス繊維のみによる強化では、剛性を上げるためにガラス繊維の添加量を増やすと薄肉部分に樹脂が充填せず、又は成形時の圧力によりインサート端子が変形する問題があった。 In recent years, however, connectors have become lighter, thinner, and smaller, and due to insufficient rigidity due to insufficient thickness of molded parts and internal stress due to metal terminal inserts, warpage deformation occurs after molding and during reflow heating, and soldering to the board There is a problem that becomes defective. That is, in the conventional reinforcement using only glass fibers, there is a problem that if the addition amount of the glass fibers is increased in order to increase the rigidity, the resin is not filled in the thin portion, or the insert terminal is deformed by the pressure during molding.
 かかるそり変形の問題を解決するため、成形手法を工夫することが行われ、また材料面からは特定の板状充填剤の配合が提案されている。すなわち、市場に多く存在する通常のコネクター(電子部品)の場合、成形に際し、対称性を保つようなゲート位置、設計をすることで、製品の寸法精度、そりをコントロールすることが可能であり、さらに従来提案されている低そり材料を使用することで、そり変形の少ない製品が得られている。 In order to solve the problem of warp deformation, the molding technique has been devised, and a specific plate-like filler has been proposed in terms of material. In other words, in the case of ordinary connectors (electronic parts) that exist in the market a lot, it is possible to control the dimensional accuracy and warpage of the product by designing the gate position and design so as to maintain symmetry. Further, by using a conventionally proposed low warp material, a product with little warp deformation is obtained.
 しかしながら、近年における電子部品の形状の複雑化に伴い、成形品のXY軸面、YZ軸面、及びXZ軸面の何れの軸面に対しても対称性がない非対称電子部品の提供が求められている。かかる非対称電子部品としては、DDR-DIMMコネクター等のラッチ構造(両端に固定用の爪がある)を持つメモリーモジュール用コネクターが代表例として挙げられる。特にノートパソコン用メモリーモジュール用コネクターでは、取り付けのためのラッチ構造を有し、また位置合わせのための切り欠きがあるため、非常に複雑な形状となる。 However, as the shape of electronic components has become more complex in recent years, it has been required to provide an asymmetric electronic component that is not symmetric with respect to any of the XY, YZ, and XZ axial surfaces of the molded product. ing. A typical example of such an asymmetric electronic component is a memory module connector having a latch structure (having fixing claws at both ends) such as a DDR-DIMM connector. In particular, a memory module connector for a notebook personal computer has a latch structure for mounting and a notch for alignment, and thus has a very complicated shape.
 このような非対称電子部品の場合、成形品のXY軸面、YZ軸面、及びXZ軸面の何れのかの軸面に対して対称性を有する通常のコネクター(対称電子部品)と異なり、対称性を有しないことから、成形手法の面からのそり変形改善には限界がある。また、複雑な形状を有する非対称電子部品の場合、成形品内の樹脂及びフィラーの配向が複雑となり、より高い流動性も必要となり、そり変形の抑制がより困難である。 In the case of such an asymmetric electronic component, unlike a normal connector (symmetric electronic component) having symmetry with respect to any of the XY axis plane, YZ axis plane, and XZ axis plane of the molded product, symmetry Therefore, there is a limit to the improvement of warp deformation from the viewpoint of the molding technique. In addition, in the case of an asymmetric electronic component having a complicated shape, the orientation of the resin and filler in the molded product is complicated, higher fluidity is required, and it is more difficult to suppress warpage deformation.
 このような問題点を解決する技術として、例えば、特許文献1には、特定の繊維状充填剤と特定の板状充填剤とを特定量配合してなる液晶性ポリマー組成物から成形され、成形品のXY軸面、YZ軸面、及びXZ軸面の何れの軸面に対しても対称性がない非対称電子部品が開示されている。 As a technique for solving such problems, for example, Patent Document 1 is formed from a liquid crystalline polymer composition obtained by blending a specific amount of a specific fibrous filler and a specific plate-like filler. An asymmetric electronic component having no symmetry with respect to any of the XY axis plane, the YZ axis plane, and the XZ axis plane of the product is disclosed.
 また、特に、低背狭ピッチコネクターについては、下記のような背景が存在する。近年のエレクトロニクス機器の小型化及び薄型化に伴い、エレクトロニクス機器を構成する電子部品(コネクター等)の低背化及び狭ピッチ化に対するニーズがある。例えば、特許文献2には、マイカ及びガラス繊維で強化された液晶性ポリマー組成物から成形されたコネクターが開示されている。このようなコネクターは、流動性、寸法安定性等が要求される、基板対基板コネクターや、フレキシブルプリント基板(FPC)とフレキシブルフラットケーブル(FFC)とを接続するために使用されるフレキシブルプリント基板用コネクター等として採用されている。 In particular, the following background exists for low-profile narrow-pitch connectors. With the recent downsizing and thinning of electronic devices, there is a need for lowering the height and narrowing the pitch of electronic components (connectors and the like) constituting the electronic device. For example, Patent Document 2 discloses a connector formed from a liquid crystalline polymer composition reinforced with mica and glass fiber. Such connectors are for board-to-board connectors and flexible printed boards used to connect flexible printed boards (FPCs) and flexible flat cables (FFCs) that require fluidity and dimensional stability. Used as a connector.
国際公開第2008/023839号International Publication No. 2008/023839 特開2006-37061号公報JP 2006-37061 A
 しかしながら、従来の液晶性ポリマー組成物は流動性が十分ではない。特に、非対称電子部品については、最近の非対称電子部品における集積率の増加等に伴う形状変化、特にピッチ間距離や製品高さの減少、極数の増加等の要因により、上記特許文献1に開示された液晶性ポリマー組成物等の従来の液晶性ポリマー組成物では対処しきれない場合があることが判明した。すなわち、従来の液晶性ポリマー組成物は流動性が十分ではなく、このような液晶性ポリマー組成物から、そり変形が抑制された非対称電子部品を得ることは困難であった。また、特に、低背狭ピッチコネクターについては、従来の液晶性ポリマー組成物から、コネクターを成形しようとすると、組成物の流動性が十分ではなく加工性に劣るため、低背化及び狭ピッチ化に対するニーズに対応した低背狭ピッチコネクターの製造が困難であった。 However, conventional liquid crystalline polymer compositions are not sufficiently fluid. In particular, the asymmetric electronic component is disclosed in the above-mentioned Patent Document 1 due to a shape change accompanying an increase in the integration rate in the recent asymmetric electronic component, particularly a decrease in pitch distance, a product height, and an increase in the number of poles. It has been found that conventional liquid crystal polymer compositions such as the prepared liquid crystal polymer composition may not be able to cope with them. That is, the conventional liquid crystalline polymer composition has insufficient fluidity, and it has been difficult to obtain an asymmetric electronic component in which warpage deformation is suppressed from such a liquid crystalline polymer composition. In particular, for low-profile narrow pitch connectors, when a connector is formed from a conventional liquid crystalline polymer composition, the flowability of the composition is not sufficient and the processability is poor, resulting in a low profile and narrow pitch. It was difficult to manufacture low-profile narrow-pitch connectors that meet the needs of
 本発明は、かかる事情に鑑みてなされたものであり、流動性が良好である電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品を提供することを目的とする。本発明は、好ましい一態様において、流動性が良好であり、そり変形が抑制された非対称電子部品が得られる非対称電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された非対称電子部品を提供することを目的とする。本発明は、好ましい別の態様において、流動性が良好であり、低背狭ピッチコネクターの製造を実現できる複合樹脂組成物、及び当該複合樹脂組成物から成形された低背狭ピッチコネクターを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a composite resin composition for electronic parts having good fluidity, and an electronic part molded from the composite resin composition. In one preferred embodiment of the present invention, a composite resin composition for an asymmetric electronic component that can provide an asymmetric electronic component with good fluidity and reduced warpage deformation, and an asymmetric electronic component molded from the composite resin composition The purpose is to provide. In another preferred embodiment, the present invention provides a composite resin composition having good fluidity and capable of realizing the production of a low profile narrow pitch connector, and a low profile narrow pitch connector molded from the composite resin composition. For the purpose.
 本発明者らは、特定の構成単位を所定量含む液晶性ポリマーと、ガラス繊維及び/又はミルドファイバーと、板状無機充填材と、を組み合わせることで上記の課題を解決できることを見出した。具体的には、本発明は、以下のようなものを提供する。 The present inventors have found that the above problem can be solved by combining a liquid crystalline polymer containing a predetermined amount of a specific structural unit, glass fibers and / or milled fibers, and a plate-like inorganic filler. Specifically, the present invention provides the following.
 (1) (A)液晶性ポリマーと、(B)ミルドファイバーと、(C)板状無機充填材と、を含む電子部品用複合樹脂組成物であって、
 上記(A)液晶性ポリマーは、必須の構成成分として、下記の構成単位:(I)4-ヒドロキシ安息香酸由来の構成単位、(II)2-ヒドロキシ-6-ナフトエ酸由来の構成単位、(III)テレフタル酸由来の構成単位、(IV)イソフタル酸由来の構成単位、及び(V)4,4’-ジヒドロキシビフェニル由来の構成単位を含み、
 全構成単位に対して(I)の構成単位の含有量は35~75モル%であり、
 全構成単位に対して(II)の構成単位の含有量は2~8モル%であり、
 全構成単位に対して(III)の構成単位の含有量は4.5~30.5モル%であり、
 全構成単位に対して(IV)の構成単位の含有量は2~8モル%であり、
 全構成単位に対して(V)の構成単位の含有量は12.5~32.5モル%であり、
 全構成単位に対して(II)及び(IV)の構成単位の総量は4~10モル%であり、
 上記(A)液晶性ポリマーの含有量は、複合樹脂組成物全体に対して40~80質量%であり、
 上記(B)ミルドファイバーの含有量は、複合樹脂組成物全体に対して10~30質量%であり、
 上記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して10~35質量%である電子部品用複合樹脂組成物。
(1) A composite resin composition for electronic parts comprising (A) a liquid crystalline polymer, (B) a milled fiber, and (C) a plate-like inorganic filler,
The (A) liquid crystalline polymer has, as essential constituents, the following constituent units: (I) constituent units derived from 4-hydroxybenzoic acid, (II) constituent units derived from 2-hydroxy-6-naphthoic acid, III) a structural unit derived from terephthalic acid, (IV) a structural unit derived from isophthalic acid, and (V) a structural unit derived from 4,4′-dihydroxybiphenyl,
The content of the structural unit (I) with respect to all the structural units is 35 to 75 mol%,
The content of the structural unit (II) with respect to the total structural unit is 2 to 8 mol%,
The content of the structural unit (III) with respect to all the structural units is 4.5 to 30.5 mol%,
The content of the structural unit (IV) with respect to all the structural units is 2 to 8 mol%,
The content of the structural unit (V) with respect to all the structural units is 12.5 to 32.5 mol%,
The total amount of the structural units (II) and (IV) is 4 to 10 mol% with respect to all the structural units,
The content of the liquid crystal polymer (A) is 40 to 80% by mass with respect to the entire composite resin composition,
The content of the (B) milled fiber is 10 to 30% by mass with respect to the entire composite resin composition,
The composite resin composition for electronic parts, wherein the content of the (C) plate-like inorganic filler is 10 to 35% by mass with respect to the entire composite resin composition.
 (2) 上記電子部品が非対称電子部品であり、
 上記(A)液晶性ポリマーの含有量は、複合樹脂組成物全体に対して47.5~65質量%であり、
 上記(B)ミルドファイバーの含有量は、複合樹脂組成物全体に対して15~30質量%であり、
 上記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して20~35質量%である(1)に記載の電子部品用複合樹脂組成物。
(2) The electronic component is an asymmetric electronic component,
The content of the liquid crystal polymer (A) is 47.5 to 65% by mass with respect to the entire composite resin composition,
The content of the (B) milled fiber is 15 to 30% by mass with respect to the entire composite resin composition,
The composite resin composition for electronic components according to (1), wherein the content of the (C) plate-like inorganic filler is 20 to 35% by mass with respect to the entire composite resin composition.
 (3) 上記(C)板状無機充填材は、タルク及びマイカからなる群より選ばれる1種以上である(2)に記載の電子部品用複合樹脂組成物。 (3) The composite resin composition for electronic components according to (2), wherein the (C) plate-like inorganic filler is at least one selected from the group consisting of talc and mica.
 (4) 上記電子部品が低背狭ピッチコネクターであり、
 上記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して10~30質量%である(1)に記載の電子部品用複合樹脂組成物。
(4) The electronic component is a low profile narrow pitch connector,
The composite resin composition for electronic parts according to (1), wherein the content of the (C) plate-like inorganic filler is 10 to 30% by mass with respect to the entire composite resin composition.
 (5) 上記(A)液晶性ポリマーは、[融点-結晶化温度]の値が50~60℃であり、融点よりも10~20℃高い温度において、剪断速度1000/秒で、ISO11443に準拠して測定された溶融粘度が5~15Pa・sである(4)に記載の電子部品用複合樹脂組成物。 (5) The above (A) liquid crystalline polymer has a [melting point-crystallization temperature] value of 50 to 60 ° C. and conforms to ISO 11443 at a shear rate of 1000 / sec at a temperature 10 to 20 ° C. higher than the melting point. (4) The composite resin composition for electronic parts according to (4), wherein the melt viscosity measured in this way is 5 to 15 Pa · s.
 (6) 上記(B)ミルドファイバーの平均繊維長は50~100μmであり、かつ、
 上記(C)板状無機充填材は、タルク及びマイカからなる群より選ばれる1種以上である(4)又は(5)に記載の電子部品用複合樹脂組成物。
(6) The average fiber length of the (B) milled fiber is 50 to 100 μm, and
(C) The plate-like inorganic filler is a composite resin composition for electronic parts according to (4) or (5), which is at least one selected from the group consisting of talc and mica.
 (7) (1)に記載の電子部品用複合樹脂組成物から成形される電子部品。 (7) An electronic component molded from the composite resin composition for electronic components according to (1).
 (8) 上記(A)液晶性ポリマーの含有量は、複合樹脂組成物全体に対して47.5~65質量%であり、
 上記(B)ミルドファイバーの含有量は、複合樹脂組成物全体に対して15~30質量%であり、
 上記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して20~35質量%であり、
 成形品のXY軸面、YZ軸面、及びXZ軸面の何れの軸面に対しても対称性がない非対称電子部品である(7)に記載の電子部品。
(8) The content of the liquid crystal polymer (A) is 47.5 to 65% by mass with respect to the entire composite resin composition,
The content of the (B) milled fiber is 15 to 30% by mass with respect to the entire composite resin composition,
The content of the (C) plate-like inorganic filler is 20 to 35% by mass with respect to the entire composite resin composition,
The electronic component according to (7), which is an asymmetric electronic component having no symmetry with respect to any of the XY axis plane, the YZ axis plane, and the XZ axis plane of the molded product.
 (9) 上記(C)板状無機充填材は、タルク及びマイカからなる群より選ばれる1種以上であるである(8)に記載の電子部品。 (9) The electronic component according to (8), wherein the (C) plate-like inorganic filler is at least one selected from the group consisting of talc and mica.
 (10) ピッチ間距離が0.8mm以下、製品全長が60.0mm以上、製品高さが6.0mm以下、極数が150極以上のメモリーモジュール用コネクターである(8)又は(9)に記載の電子部品。 (10) A connector for a memory module having a pitch distance of 0.8 mm or less, a total product length of 60.0 mm or more, a product height of 6.0 mm or less, and a pole number of 150 or more. The electronic component described.
 (11) レール構造を有し、製品高さが3.0mm以下のメモリーカードソケットである(8))又は(9)に記載の電子部品。 (11) The electronic component according to (8) or (9), which is a memory card socket having a rail structure and a product height of 3.0 mm or less.
 (12) 上記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して10~30質量%であり、
 ピッチ間距離が0.5mm以下であり、
 製品全長が4.0mm以上であり、
 製品高さが4.0mm以下であり、
 基板対基板コネクター又はフレキシブルプリント基板用コネクターである低背狭ピッチコネクターである(7)に記載の電子部品。
(12) The content of the (C) plate-like inorganic filler is 10 to 30% by mass with respect to the entire composite resin composition,
The distance between pitches is 0.5 mm or less,
The total product length is 4.0mm or more,
The product height is 4.0 mm or less,
The electronic component according to (7), which is a low-profile narrow-pitch connector that is a board-to-board connector or a connector for a flexible printed board.
 (13) 上記(A)液晶性ポリマーは、[融点-結晶化温度]の値が50~60℃であり、融点よりも10~20℃高い温度において、剪断速度1000/秒で、ISO11443に準拠して測定された溶融粘度が5~15Pa・sである(12)に記載の電子部品。 (13) The above (A) liquid crystalline polymer has a [melting point-crystallization temperature] value of 50 to 60 ° C. and conforms to ISO 11443 at a shear rate of 1000 / sec at a temperature 10 to 20 ° C. higher than the melting point. The electronic component according to (12), which has a melt viscosity measured in the range of 5 to 15 Pa · s.
 (14) 上記(B)ガラス繊維及びミルドファイバーの平均繊維長は50~100μmであり、かつ、
 上記(C)板状無機充填材は、タルク及びマイカからなる群より選ばれる1種以上である(12)又は(13)に記載の電子部品。
(14) The average fiber length of the (B) glass fiber and milled fiber is 50 to 100 μm, and
The (C) plate-like inorganic filler is an electronic component according to (12) or (13), which is at least one selected from the group consisting of talc and mica.
 本発明によれば、流動性が良好である電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品を提供される。本発明の好ましい一態様においては、流動性が良好であり、そり変形が抑制された非対称電子部品が得られる非対称電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された非対称電子部品が提供される。本発明の好ましい一態様においては、流動性が良好であり、低背狭ピッチコネクターの製造を実現できる複合樹脂組成物、及び当該複合樹脂組成物から成形された低背狭ピッチコネクターが提供される。 According to the present invention, there are provided a composite resin composition for electronic parts having good fluidity, and an electronic part molded from the composite resin composition. In a preferred embodiment of the present invention, a composite resin composition for an asymmetric electronic component capable of obtaining an asymmetric electronic component having good fluidity and suppressing warpage deformation, and an asymmetric electronic component molded from the composite resin composition Is provided. In a preferred embodiment of the present invention, there are provided a composite resin composition having good fluidity and capable of producing a low profile narrow pitch connector, and a low profile narrow pitch connector molded from the composite resin composition. .
実施例で成形したDDR-DIMMコネクターを示す図である。なお、Aはゲート位置を示す。It is a figure which shows the DDR-DIMM connector shape | molded in the Example. A indicates the gate position. 実施例で行ったDDR-DIMMコネクターのそりの測定における測定点を示す図である。It is a figure which shows the measuring point in the measurement of the curvature of the DDR-DIMM connector performed in the Example. 実施例で成形した低背狭ピッチコネクター(フレキシブルプリント基板用コネクター)を示す図である。なお、図中の数値の単位はmmである。It is a figure which shows the low profile narrow pitch connector (connector for flexible printed circuit boards) shape | molded in the Example. In addition, the unit of the numerical value in a figure is mm.
 以下、本発明の実施形態について具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.
 [複合樹脂組成物]
 本発明における複合樹脂組成物は、特定の液晶性ポリマーと、ガラス繊維及び/又はミルドファイバーと、板状無機充填材とを所定量ずつ含む。以下、本発明における複合樹脂組成物を構成する成分について説明する。
[Composite resin composition]
The composite resin composition in the present invention contains a predetermined amount of a specific liquid crystalline polymer, glass fibers and / or milled fibers, and a plate-like inorganic filler. Hereinafter, the components constituting the composite resin composition in the present invention will be described.
 (液晶性ポリマー)
 本発明における液晶性ポリマーは、必須の構成成分として、下記の構成単位:(I)4-ヒドロキシ安息香酸(「HBA」とも呼ばれる)由来の構成単位、(II)2-ヒドロキシ-6-ナフトエ酸(「HNA」とも呼ばれる)由来の構成単位、(III)テレフタル酸(「TA」とも呼ばれる)由来の構成単位、(IV)イソフタル酸(「IA」とも呼ばれる)由来の構成単位、及び(V)4,4’-ジヒドロキシビフェニル(「BP」とも呼ばれる)由来の構成単位を含む。
(Liquid crystal polymer)
The liquid crystalline polymer in the present invention contains, as essential constituents, the following constituent units: (I) constituent units derived from 4-hydroxybenzoic acid (also referred to as “HBA”), (II) 2-hydroxy-6-naphthoic acid A structural unit derived from (also referred to as “HNA”), (III) a structural unit derived from terephthalic acid (also referred to as “TA”), (IV) a structural unit derived from isophthalic acid (also referred to as “IA”), and (V) Contains structural units derived from 4,4′-dihydroxybiphenyl (also referred to as “BP”).
 本発明における液晶性ポリマーには、上記の構成単位が特定の割合で含まれる。すなわち、全構成単位に対して(I)の構成単位の含有量は35~75モル%(好ましくは40~65モル%)である。全構成単位に対して(II)の構成単位の含有量は2~8モル%(好ましくは3~7モル%)である。全構成単位に対して(III)の構成単位の含有量は4.5~30.5モル%(好ましくは13~26モル%)である。全構成単位に対して(IV)の構成単位の含有量は2~8モル%(好ましくは3~7モル%)である。全構成単位に対して(V)の構成単位の含有量は12.5~32.5モル%(好ましくは15.5~29モル%)である。全構成単位に対して(II)及び(IV)の構成単位の総量は4~10モル%(好ましくは5~10モル%)である。 The liquid crystalline polymer in the present invention contains the above structural units at a specific ratio. That is, the content of the structural unit (I) is 35 to 75 mol% (preferably 40 to 65 mol%) with respect to all the structural units. The content of the structural unit (II) is 2 to 8 mol% (preferably 3 to 7 mol%) with respect to all the structural units. The content of the structural unit (III) is 4.5 to 30.5 mol% (preferably 13 to 26 mol%) based on all the structural units. The content of the structural unit (IV) is 2 to 8 mol% (preferably 3 to 7 mol%) with respect to all the structural units. The content of the structural unit (V) is 12.5 to 32.5 mol% (preferably 15.5 to 29 mol%) with respect to all the structural units. The total amount of the structural units (II) and (IV) is 4 to 10 mol% (preferably 5 to 10 mol%) with respect to the total structural units.
 全構成単位に対して(I)の構成単位の含有量が35モル%未満又は75モル%超であると、液晶性ポリマーの融点が著しく高くなり、非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品を製造する際に液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することができなくなる可能性があるため好ましくない。 When the content of the constituent unit (I) is less than 35 mol% or more than 75 mol% with respect to all the constituent units, the melting point of the liquid crystalline polymer is remarkably increased, and asymmetric electronic components, low-profile narrow pitch connectors, and When manufacturing a molded article such as an electronic component including a coaxial connector, the liquid crystalline polymer is solidified in the reactor, and it may not be possible to manufacture a liquid crystalline polymer having a desired molecular weight.
 全構成単位に対して(II)の構成単位の含有量が2モル%未満であると、非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品を製造する際に、成形品に割れが発生する可能性があるため好ましくない。また、全構成単位に対して(II)の構成単位の含有量が8モル%超であると、液晶性ポリマーの耐熱性が低くなるため好ましくない。 When the content of the constituent unit (II) is less than 2 mol% with respect to all constituent units, when manufacturing molded articles such as electronic parts including asymmetric electronic parts, low profile narrow pitch connectors, and coaxial connectors This is not preferable because cracks may occur in the molded product. Further, if the content of the structural unit (II) is more than 8 mol% with respect to all the structural units, the heat resistance of the liquid crystalline polymer is lowered, which is not preferable.
 全構成単位に対して(III)の構成単位の含有量が4.5モル%未満又は30.5モル%超であると、液晶性ポリマーの融点が著しく高くなり、非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品を製造する際に液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することができなくなる可能性があるため好ましくない。 When the content of the structural unit of (III) is less than 4.5 mol% or more than 30.5 mol% with respect to all the structural units, the melting point of the liquid crystalline polymer becomes remarkably high, and the asymmetric electronic component, low profile When manufacturing molded products such as electronic components including pitch connectors and coaxial connectors, the liquid crystalline polymer is solidified in the reactor, and it may not be possible to produce a liquid crystalline polymer having a desired molecular weight. .
 全構成単位に対して(IV)の構成単位の含有量が2モル%未満であると、非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品を製造する際に、成形品に割れが発生する可能性があるため好ましくない。また、液晶性ポリマーの融点が著しく高くなり、非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品を製造する際に液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することができなくなる可能性があるため好ましくない。 When the content of the constituent unit of (IV) is less than 2 mol% with respect to all constituent units, when manufacturing molded articles such as electronic parts including asymmetric electronic parts, low profile narrow pitch connectors, and coaxial connectors This is not preferable because cracks may occur in the molded product. In addition, the melting point of the liquid crystalline polymer becomes extremely high, and the liquid crystalline polymer is solidified in the reactor when a molded product such as an asymmetric electronic component, a low-profile narrow pitch connector, and an electronic component including a coaxial connector is manufactured. Since it may become impossible to manufacture the liquid crystalline polymer of molecular weight, it is not preferable.
 また、全構成単位に対して(IV)の構成単位の含有量が8モル%超であると、液晶性ポリマーの耐熱性が低くなるため好ましくない。 In addition, if the content of the structural unit (IV) is more than 8 mol% with respect to all the structural units, the heat resistance of the liquid crystalline polymer is lowered, which is not preferable.
 全構成単位に対して(V)の構成単位の含有量が12.5モル%未満又は32.5モル%超であると、液晶性ポリマーの融点が著しく高くなり、非対称電子部品液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することが、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品を製造する際にできなくなるため好ましくない。 When the content of the structural unit (V) is less than 12.5 mol% or more than 32.5 mol% with respect to all the structural units, the melting point of the liquid crystalline polymer is remarkably increased, and the asymmetric electronic component liquid crystalline polymer is Solidifying in a reactor to produce a liquid crystalline polymer having a desired molecular weight is not preferable because it becomes impossible to produce a molded product such as a low-profile narrow pitch connector and an electronic component including a coaxial connector.
 全構成単位に対して(II)及び(IV)の構成単位の総量が4モル%未満であると、液晶性ポリマーの結晶化熱量が2.5J/g以上となり得る。この場合、非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品を製造する際に、成形品に割れが発生する可能性があるため好ましくない。液晶性ポリマーの結晶化熱量の好ましい値は、2.3J/g以下であり、より好ましくは2.0J/g以下である。なお、結晶化熱量は、液晶性ポリマーの結晶化状態を示し、示差熱量測定によって求められる値である。具体的には、液晶性ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+40℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を指す。 When the total amount of the structural units (II) and (IV) is less than 4 mol% with respect to all the structural units, the crystallization heat amount of the liquid crystalline polymer can be 2.5 J / g or more. In this case, when a molded product such as an asymmetric electronic component, a low-profile narrow-pitch connector, and an electronic component including a coaxial connector is manufactured, there is a possibility that the molded product may be cracked. A preferable value for the heat of crystallization of the liquid crystalline polymer is 2.3 J / g or less, and more preferably 2.0 J / g or less. The crystallization heat quantity indicates the crystallization state of the liquid crystalline polymer, and is a value obtained by differential calorimetry. Specifically, after observing the endothermic peak temperature (Tm1) observed when the liquid crystalline polymer is measured from room temperature at a temperature rising condition of 20 ° C./min, the liquid crystal polymer is held at a temperature of Tm1 + 40 ° C. for 2 minutes, and then 20 ° C. It refers to the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when measured under the temperature lowering condition per minute.
 また、全構成単位に対して(II)及び(IV)の構成単位の総量が10モル%超であると、液晶性ポリマーの耐熱性が低くなるため好ましくない。 Further, if the total amount of the structural units (II) and (IV) is more than 10 mol% with respect to all the structural units, the heat resistance of the liquid crystalline polymer is lowered, which is not preferable.
 なお、本発明における液晶性ポリマーには、本発明の目的を阻害しない範囲で公知の他の構成単位を導入することもできる。 In addition, the well-known other structural unit can also be introduce | transduced into the liquid crystalline polymer in this invention in the range which does not inhibit the objective of this invention.
 本発明における液晶性ポリマーは、上記の構成単位を、直接重合法、エステル交換法、溶融重合法、溶液重合法、スラリー重合法、固相重合法等によって重合させることで得られる。 The liquid crystalline polymer in the present invention can be obtained by polymerizing the above structural units by a direct polymerization method, a transesterification method, a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method or the like.
 上記の構成単位の重合においては、上記の構成単位に加えて、上記の構成単位に対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを併用できる。アシル化剤としては、無水酢酸等の酸無水物等が挙げられる。 In the polymerization of the above structural unit, in addition to the above structural unit, an acylating agent for the above structural unit or a monomer whose terminal is activated as an acid chloride derivative can be used in combination. Examples of the acylating agent include acid anhydrides such as acetic anhydride.
 上記の構成単位の重合においては、種々の触媒を使用でき、例えば、ジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタンけい酸塩類、チタンアルコラート類、カルボン酸のアルカリ金属塩類、アルカリ土類金属塩類、ルイス酸塩(BF等)等が挙げられる。触媒の使用量は、上記の構成単位の総量に対して約0.001~1質量%、好ましくは約0.003~0.2質量%であってもよい。 In the polymerization of the above structural units, various catalysts can be used, for example, dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali metal salts of carboxylic acids, alkaline earths. Metal salts, Lewis acid salts (BF 3 and the like) and the like. The amount of the catalyst used may be about 0.001 to 1% by mass, preferably about 0.003 to 0.2% by mass, based on the total amount of the above structural units.
 重合反応の条件としては、上記の構成単位の重合が進行する条件であれば特に限定されず、例えば、反応温度200~380℃、最終到達圧力0.1~760Torr(すなわち、13~101,080Pa)であってもよい。 The conditions for the polymerization reaction are not particularly limited as long as the polymerization of the above structural units proceeds. For example, the reaction temperature is 200 to 380 ° C., the final ultimate pressure is 0.1 to 760 Torr (that is, 13 to 101,080 Pa). ).
 重合反応は、全原料モノマー、アシル化剤及び触媒を同一反応容器に仕込んで反応を開始させる方法(一段方式)でもよく、(I)、(II)及び(V)の各構成単位に対応する原料モノマー、すなわち、4-ヒドロキシ安息香酸由来の構成単位、2-ヒドロキシ-6-ナフトエ酸由来の構成単位、及び4,4’-ジヒドロキシビフェニルのヒドロキシル基をアシル化剤によりアシル化させた後、(III)及び(IV)の各構成単位に対応する原料モノマー、すなわち、テレフタル酸及びイソフタル酸のカルボキシル基と反応させる方法(二段方式)でもよい。 The polymerization reaction may be a method (one-stage system) in which all the raw material monomers, acylating agent and catalyst are charged in the same reaction vessel to start the reaction, and corresponds to each structural unit of (I), (II) and (V). After acylating the raw material monomers, that is, the structural unit derived from 4-hydroxybenzoic acid, the structural unit derived from 2-hydroxy-6-naphthoic acid, and the hydroxyl group of 4,4′-dihydroxybiphenyl with an acylating agent, A raw material monomer corresponding to each structural unit of (III) and (IV), that is, a method of reacting with carboxyl groups of terephthalic acid and isophthalic acid (two-stage method) may be used.
 上記の構成単位(I)乃至(V)を含む液晶性ポリマーは、構成成分及び液晶性ポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、熱安定性と易加工性を併せ持つ点で、本発明における液晶性ポリマーは、異方性溶融相を形成するもの、すなわち、溶融時に光学的異方性を示す液晶性ポリマーであることが好ましい。 Some liquid crystalline polymers containing the structural units (I) to (V) do not form an anisotropic molten phase depending on the constituent components and the sequence distribution in the liquid crystalline polymer. The liquid crystalline polymer in the present invention is preferably a liquid crystalline polymer that forms an anisotropic molten phase, that is, a liquid crystalline polymer that exhibits optical anisotropy when melted, in that it has processability.
 溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。具体的には、溶融異方性は、偏光顕微鏡(オリンパス(株)製等)を使用し、ホットステージ(リンカム社製等)にのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより確認できる。溶融時に光学的異方性を示す液晶性ポリマーは、光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光が透過する。 The property of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. Specifically, for melting anisotropy, a polarizing microscope (manufactured by Olympus Co., Ltd.) is used, a sample placed on a hot stage (manufactured by Linkham Co., Ltd.) is melted, and the magnification is 150 times under a nitrogen atmosphere. This can be confirmed by observation. Liquid crystalline polymers that exhibit optical anisotropy when melted are optically anisotropic and transmit light when inserted between crossed polarizers. When the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.
 さらに、融点より10~20℃高い温度で、剪断速度1000/秒で、ISO11443に準拠して測定した液晶性ポリマーの溶融粘度が1×10Pa・s以下(さらに好ましくは、5Pa・s以上かつ1×10Pa・s以下)であることが、電子部品の成形時において、特に、非対称電子部品におけるラッチ構造や切り欠き等の複雑な形状を有する部分の成形時において、複合樹脂組成物の流動性を確保し、充填圧力が過度にならない点で好ましい。 Further, the melt viscosity of the liquid crystalline polymer measured in accordance with ISO 11443 at a temperature 10 to 20 ° C. higher than the melting point and at a shear rate of 1000 / second is more preferably 1 × 10 5 Pa · s or less (more preferably 5 Pa · s or more). And 1 × 10 2 Pa · s or less) at the time of molding an electronic component, particularly at the time of molding a portion having a complicated shape such as a latch structure or a notch in an asymmetric electronic component. This is preferable in that the fluidity of the resin is ensured and the filling pressure does not become excessive.
 また、本発明における液晶性ポリマーは、融点から結晶化温度を引いた値である、[融点-結晶化温度]の値が50~60℃であり、かつ、融点より10~20℃高い温度において、剪断速度1000/秒で、ISO11443に準拠して測定された溶融粘度が5~15Pa・sであることが好ましい。このような液晶性ポリマーによれば、電子部品の成形時において、特に、低背狭ピッチコネクター等の成形時において、複合樹脂組成物の流動性を確保できるため、充填圧力が過度な値となることを抑制できる。 Further, the liquid crystalline polymer in the present invention has a value of [melting point−crystallization temperature], which is a value obtained by subtracting the crystallization temperature from the melting point, and a temperature of 10 to 20 ° C. higher than the melting point. The melt viscosity measured according to ISO 11443 at a shear rate of 1000 / sec is preferably 5 to 15 Pa · s. According to such a liquid crystalline polymer, the fluidity of the composite resin composition can be secured at the time of molding an electronic component, particularly at the time of molding a low profile narrow pitch connector, etc., and therefore the filling pressure becomes an excessive value. This can be suppressed.
 本発明における複合樹脂組成物は、上記の液晶性ポリマーを、複合樹脂組成物中に、複合樹脂組成物全体に対して40~80質量%含む。液晶性ポリマーの含有量が、複合樹脂組成物全体に対して40質量%未満であると、流動性が悪化するため好ましくない。液晶性ポリマーの含有量が、複合樹脂組成物全体に対して80質量%超であると、複合樹脂組成物から得られる非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品の曲げ弾性率及び耐クラック性が低下するため好ましくない。本発明における複合樹脂組成物は、上記の液晶性ポリマーを、複合樹脂組成物中に、複合樹脂組成物全体に対して50~70質量%含むことが好ましい。 The composite resin composition in the present invention contains the liquid crystalline polymer in the composite resin composition in an amount of 40 to 80% by mass with respect to the total composite resin composition. If the content of the liquid crystalline polymer is less than 40% by mass with respect to the entire composite resin composition, the fluidity is deteriorated, which is not preferable. When the content of the liquid crystalline polymer is more than 80% by mass with respect to the entire composite resin composition, an asymmetric electronic component obtained from the composite resin composition, a low-profile narrow pitch connector, an electronic component including a coaxial connector, etc. This is not preferable because the flexural modulus and crack resistance of the molded product are lowered. The composite resin composition in the present invention preferably contains the liquid crystalline polymer in the composite resin composition in an amount of 50 to 70% by mass based on the entire composite resin composition.
 本発明における複合樹脂組成物は、特に、非対称電子部品用である場合、上記の液晶性ポリマーを、複合樹脂組成物中に、複合樹脂組成物全体に対して47.5~65質量%含むことが好ましい。液晶性ポリマーの含有量が、複合樹脂組成物全体に対して47.5質量%以上であると、複合樹脂組成物の流動性が良好となりやすく、また、複合樹脂組成物から得られる非対称電子部品等の成形品のそり変形が大きくなりにくいため好ましい。液晶性ポリマーの含有量が、複合樹脂組成物全体に対して65質量%以下であると、複合樹脂組成物から得られる非対称電子部品等の成形品の曲げ弾性率及び耐クラック性が低下しにくいため好ましい。本発明における複合樹脂組成物は、特に、非対称電子部品用である場合、上記の液晶性ポリマーを、複合樹脂組成物中に、複合樹脂組成物全体に対して50~55質量%含むことがより好ましい。 In particular, when the composite resin composition of the present invention is for an asymmetric electronic component, the liquid crystal polymer is contained in the composite resin composition in an amount of 47.5 to 65% by mass with respect to the entire composite resin composition. Is preferred. When the content of the liquid crystalline polymer is 47.5% by mass or more based on the entire composite resin composition, the fluidity of the composite resin composition tends to be good, and the asymmetric electronic component obtained from the composite resin composition It is preferable because warpage deformation of a molded product such as the above is difficult to increase. When the content of the liquid crystalline polymer is 65% by mass or less with respect to the entire composite resin composition, the bending elastic modulus and crack resistance of molded products such as asymmetric electronic parts obtained from the composite resin composition are unlikely to decrease. Therefore, it is preferable. In particular, when the composite resin composition of the present invention is for an asymmetric electronic component, it is more preferable that the liquid crystalline polymer is contained in the composite resin composition in an amount of 50 to 55% by mass with respect to the total composite resin composition. preferable.
 (ミルドファイバー)
 本発明における複合樹脂組成物は、上記の液晶性ポリマーと、ミルドファイバーと、を含むため、当該複合樹脂組成物を成形して得られた成形品は高温剛性に優れる。
(Milled fiber)
Since the composite resin composition in the present invention contains the above-mentioned liquid crystalline polymer and milled fiber, a molded product obtained by molding the composite resin composition is excellent in high-temperature rigidity.
 本発明の複合樹脂組成物において、ミルドファイバーの繊維長から算出される、ミルドファイバーの平均繊維長は50~150μmであることが好ましい。平均繊維長が50μm以上であると、複合樹脂組成物から得られる成形品の高温剛性が十分であるため好ましい。平均繊維長が150μm以下であると、複合樹脂組成物の流動性が良好となり、成形品のそり変形が大きくなりにくいため好ましい。 In the composite resin composition of the present invention, the average fiber length of the milled fiber calculated from the fiber length of the milled fiber is preferably 50 to 150 μm. An average fiber length of 50 μm or more is preferable because the high-temperature rigidity of a molded product obtained from the composite resin composition is sufficient. An average fiber length of 150 μm or less is preferable because the fluidity of the composite resin composition becomes good and warpage deformation of the molded product does not easily increase.
 特に、本発明の複合樹脂組成物が低背狭ピッチコネクター用である場合、本発明の複合樹脂組成物において、ミルドファイバーの繊維長から算出される、ミルドファイバーの平均繊維長は50~100μmであることが好ましい。平均繊維長が50μm以上であると、複合樹脂組成物から得られる成形品の高温剛性が十分であるため好ましい。平均繊維長が100μm以下であると、複合樹脂組成物の流動性が良好となり、複合樹脂組成物の成形が困難になりにくいため好ましい。 In particular, when the composite resin composition of the present invention is for a low profile narrow pitch connector, the average fiber length of the milled fiber calculated from the fiber length of the milled fiber in the composite resin composition of the present invention is 50 to 100 μm. Preferably there is. An average fiber length of 50 μm or more is preferable because the high-temperature rigidity of a molded product obtained from the composite resin composition is sufficient. When the average fiber length is 100 μm or less, the fluidity of the composite resin composition becomes good and it is difficult to mold the composite resin composition, which is preferable.
 また、本発明におけるミルドファイバーの繊維径は、特に制限されないが、一般的に5~15μm程度のものが使用される。 Further, the fiber diameter of the milled fiber in the present invention is not particularly limited, but generally about 5 to 15 μm is used.
 本発明における複合樹脂組成物は、ミルドファイバーを、複合樹脂組成物全体に対して10~30質量%含む。ミルドファイバーの含有量が、複合樹脂組成物全体に対して10質量%未満であると、複合樹脂組成物から得られる非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品の加重たわみ温度が低く、高温剛性が十分ではないため好ましくない。ミルドファイバーの含有量が、複合樹脂組成物全体に対して30質量%超であると、組成物の流動性が悪化するため好ましくない。 The composite resin composition in the present invention contains 10 to 30% by mass of milled fiber with respect to the entire composite resin composition. When the content of the milled fiber is less than 10% by mass relative to the entire composite resin composition, molding of electronic components including asymmetric electronic components, low profile narrow pitch connectors, and coaxial connectors obtained from the composite resin composition This is not preferable because the weight deflection temperature of the product is low and the high-temperature rigidity is not sufficient. If the content of the milled fiber is more than 30% by mass with respect to the entire composite resin composition, the fluidity of the composition deteriorates, which is not preferable.
 本発明における複合樹脂組成物は、特に、非対称電子部品用である場合、ミルドファイバーを、複合樹脂組成物全体に対して15~30質量%含むことが好ましい。ミルドファイバーの含有量が、複合樹脂組成物全体に対して15質量%以上であると、複合樹脂組成物から得られる非対称電子部品等の成形品は、加重たわみ温度が低くなりにくく、高温剛性が十分であるため好ましい。ミルドファイバーの含有量が、複合樹脂組成物全体に対して30質量%以下であると、複合樹脂組成物の流動性が良好となり、成形品のそり変形が大きくなりにくいため好ましい。 The composite resin composition in the present invention preferably contains 15 to 30% by mass of milled fiber with respect to the entire composite resin composition, particularly when used for asymmetric electronic components. When the content of the milled fiber is 15% by mass or more based on the entire composite resin composition, a molded article such as an asymmetric electronic component obtained from the composite resin composition is less likely to have a low deflection temperature, and has high-temperature rigidity. This is preferable because it is sufficient. It is preferable that the content of the milled fiber is 30% by mass or less with respect to the entire composite resin composition because the fluidity of the composite resin composition becomes good and warpage deformation of the molded article is difficult to increase.
 (板状無機充填材)
 本発明における複合樹脂組成物には、板状無機充填材がさらに含まれる。本発明における複合樹脂組成物に板状無機充填材が含まれることにより、そり変形が抑制された成形品を得ることができる。
(Plate-like inorganic filler)
The composite resin composition in the present invention further includes a plate-like inorganic filler. By including a plate-like inorganic filler in the composite resin composition in the present invention, a molded product in which warpage deformation is suppressed can be obtained.
 板状無機充填材は、複合樹脂組成物全体に対して10~35質量%含まれる。板状無機充填材の含有量が、複合樹脂組成物全体に対して10質量%未満であると、複合樹脂組成物から得られる成形品のそり変形の抑制が十分ではないため好ましくない。板状無機充填材の含有量が、複合樹脂組成物全体に対して35質量%超であると、複合樹脂組成物の流動性が悪化し、複合樹脂組成物の成形が困難になる可能性があるため好ましくない。 The plate-like inorganic filler is contained in an amount of 10 to 35% by mass with respect to the entire composite resin composition. If the content of the plate-like inorganic filler is less than 10% by mass with respect to the entire composite resin composition, it is not preferable because warpage deformation of a molded product obtained from the composite resin composition is not sufficient. If the content of the plate-like inorganic filler is more than 35% by mass with respect to the entire composite resin composition, the fluidity of the composite resin composition may be deteriorated and it may be difficult to mold the composite resin composition. This is not preferable.
 板状無機充填材は、特に、複合樹脂組成物が非対称電子部品用である場合、複合樹脂組成物全体に対して20~35質量%含まれることが好ましい。板状無機充填材の含有量が、複合樹脂組成物全体に対して20質量%以上であると、複合樹脂組成物から得られる非対称電子部品等の成形品のそり変形が大きくなりにくいため好ましい。板状無機充填材の含有量が、複合樹脂組成物全体に対して35質量%以下であると、複合樹脂組成物の流動性が良好となりやすいため好ましい。 The plate-like inorganic filler is preferably contained in an amount of 20 to 35% by mass with respect to the entire composite resin composition, particularly when the composite resin composition is for an asymmetric electronic component. It is preferable that the content of the plate-like inorganic filler is 20% by mass or more based on the entire composite resin composition because warpage deformation of a molded product such as an asymmetric electronic component obtained from the composite resin composition is difficult to increase. It is preferable that the content of the plate-like inorganic filler is 35% by mass or less with respect to the entire composite resin composition because the fluidity of the composite resin composition tends to be good.
 板状無機充填材は、特に、複合樹脂組成物が低背狭ピッチコネクター用である場合、複合樹脂組成物全体に対して10~30質量%含まれることが好ましい。板状無機充填材の含有量が、複合樹脂組成物全体に対して10質量%以上であると、複合樹脂組成物から得られる低背狭ピッチコネクター等の成形品のそり変形の抑制が十分となりやすいため好ましい。板状無機充填材の含有量が、複合樹脂組成物全体に対して30質量%以下であると、複合樹脂組成物の流動性が良好となりやすく、複合樹脂組成物の成形が困難になりにくいため好ましい。 The plate-like inorganic filler is preferably contained in an amount of 10 to 30% by mass based on the entire composite resin composition, particularly when the composite resin composition is for a low profile narrow pitch connector. When the content of the plate-like inorganic filler is 10% by mass or more based on the entire composite resin composition, it is possible to sufficiently suppress warpage deformation of a molded product such as a low profile narrow pitch connector obtained from the composite resin composition. It is preferable because it is easy. When the content of the plate-like inorganic filler is 30% by mass or less with respect to the entire composite resin composition, the fluidity of the composite resin composition tends to be good, and it is difficult to form the composite resin composition. preferable.
 本発明における板状無機充填材としては、タルク、マイカ、ガラスフレーク、各種の金属箔等が挙げられるが、複合樹脂組成物の流動性を悪化させることなく、複合樹脂組成物から得られる成形品のそり変形を抑制させるという点でタルク及びマイカからなる群より選ばれる1種以上であることが好ましい。また、板状無機充填材の平均粒径については特に限定されないが、薄肉部における流動性を考慮すると小さい方が望ましい。一方、複合樹脂組成物から得られる非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品のそり変形を小さくするためには一定の大きさを維持していることが望ましい。具体的には、1~100μmが好ましく、5~50μmがより好ましい。 Examples of the plate-like inorganic filler in the present invention include talc, mica, glass flakes, various metal foils and the like, but a molded product obtained from the composite resin composition without deteriorating the fluidity of the composite resin composition. It is preferable that it is 1 or more types chosen from the group which consists of a talc and a mica at the point of suppressing warp deformation | transformation. Further, the average particle diameter of the plate-like inorganic filler is not particularly limited, but a smaller one is desirable in consideration of fluidity in the thin portion. On the other hand, in order to reduce warping deformation of molded products such as asymmetric electronic parts obtained from composite resin compositions, low-profile narrow-pitch connectors, and electronic parts including coaxial connectors, a certain size must be maintained. desirable. Specifically, it is preferably 1 to 100 μm, more preferably 5 to 50 μm.
 〔タルク〕
 本発明において使用できるタルクとしては、当該タルクの全固形分量に対して、Fe、Al、及びCaOの合計含有量が2.5質量%以下であり、Fe及びAlの合計含有量が1.0質量%超2.0質量%以下であり、かつCaOの含有量が0.5質量%未満であるものが好ましい。すなわち、本発明において使用できるタルクは、その主成分たるSiO及びMgOの他、Fe、Al、及びCaOのうちの少なくとも1種を含有し、各成分を上記の含有量範囲で含有するものであってもよい。
〔talc〕
As the talc that can be used in the present invention, the total content of Fe 2 O 3 , Al 2 O 3 , and CaO is 2.5 mass% or less with respect to the total solid content of the talc, and Fe 2 O 3 and The total content of Al 2 O 3 is more than 1.0% by mass and 2.0% by mass or less, and the content of CaO is preferably less than 0.5% by mass. That is, the talc that can be used in the present invention contains at least one of Fe 2 O 3 , Al 2 O 3 , and CaO in addition to the main components SiO 2 and MgO, and each component has the above content. It may be contained in a range.
 上記タルクにおいて、Fe、Al、及びCaOの合計含有量が2.5質量%以下であると、複合樹脂組成物の成形加工性及び複合樹脂組成物から成形された非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品の耐熱性が悪化しにくい。Fe、Al、及びCaOの合計含有量は、1.0質量%以上2.0質量%以下が好ましい。 In the talc, when the total content of Fe 2 O 3 , Al 2 O 3 , and CaO is 2.5% by mass or less, the molding processability of the composite resin composition and the asymmetric electron molded from the composite resin composition The heat resistance of molded parts such as electronic parts including parts, low-profile narrow pitch connectors, and coaxial connectors is unlikely to deteriorate. The total content of Fe 2 O 3 , Al 2 O 3 , and CaO is preferably 1.0% by mass or more and 2.0% by mass or less.
 また、上記タルクのうち、Fe及びAlの合計含有量が1.0質量%超のタルクは入手しやすい。また、上記タルクにおいて、Fe及びAlの合計含有量が2.0質量%以下であると、複合樹脂組成物の成形加工性及び複合樹脂組成物から成形された非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品の耐熱性が悪化しにくい。Fe及びAlの合計含有量は、1.0質量%超1.7質量%以下が好ましい。 Of the talc, talc having a total content of Fe 2 O 3 and Al 2 O 3 of more than 1.0% by mass is easily available. Further, in the talc, when the total content of Fe 2 O 3 and Al 2 O 3 is 2.0% by mass or less, the molding processability of the composite resin composition and the asymmetric electronic component molded from the composite resin composition In addition, the heat resistance of molded products such as electronic parts including low-profile narrow-pitch connectors and coaxial connectors is unlikely to deteriorate. The total content of Fe 2 O 3 and Al 2 O 3 is preferably more than 1.0 mass% and not more than 1.7 mass%.
 さらに、上記タルクにおいて、CaOの含有量が0.5質量%未満であると、複合樹脂組成物の成形加工性及び複合樹脂組成物から成形された非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品の耐熱性が悪化しにくい。CaOの含有量は、0.01質量%以上0.4質量%以下が好ましい。 Further, in the above talc, when the CaO content is less than 0.5% by mass, the molding processability of the composite resin composition, the asymmetric electronic component molded from the composite resin composition, the low profile narrow pitch connector, and the coaxial The heat resistance of molded products such as electronic parts including connectors is unlikely to deteriorate. The content of CaO is preferably 0.01% by mass or more and 0.4% by mass or less.
 本発明におけるタルクの、レーザー回折法で測定した質量基準又は体積基準の累積平均粒子径(D50)は、成形品のそり変形の防止及び複合樹脂組成物の流動性の維持という観点から、4.0~20.0μmであることが好ましく、10~18μmであることがより好ましい。 The mass average or volume-based cumulative average particle diameter (D 50 ) of talc in the present invention measured by laser diffraction method is 4 from the viewpoint of preventing warpage deformation of the molded product and maintaining fluidity of the composite resin composition. It is preferably from 0 to 20.0 μm, more preferably from 10 to 18 μm.
 〔マイカ〕
 マイカとは、アルミニウム、カリウム、マグネシウム、ナトリウム、鉄等を含んだケイ酸塩鉱物の粉砕物である。本発明において使用できるマイカとしては、白雲母、金雲母、黒雲母、人造雲母等が挙げられるが、これらのうち色相が良好であり、低価格であるという点で白雲母が好ましい。
[Mica]
Mica is a pulverized product of silicate mineral containing aluminum, potassium, magnesium, sodium, iron and the like. Examples of mica that can be used in the present invention include muscovite, phlogopite, biotite, and artificial mica. Of these, muscovite is preferable in terms of good hue and low price.
 また、マイカの製造において、鉱物を粉砕する方法としては、湿式粉砕法及び乾式粉砕法が知られている。湿式粉砕法とは、マイカ原石を乾式粉砕機にて粗粉砕した後、水を加えてスラリー状態にて湿式粉砕で本粉砕し、その後、脱水、乾燥を行う方法である。湿式粉砕法と比較して、乾式粉砕法は低コストで一般的な方法であるが、湿式粉砕法を用いると、鉱物を薄く細かく粉砕することがより容易である。後述する好ましい平均粒径及び厚みを有するマイカが得られるという理由で、本発明においては薄く細かい粉砕物を使用することが好ましい。したがって、本発明においては、湿式粉砕法により製造されたマイカを使用するのが好ましい。 Further, in the production of mica, wet pulverization and dry pulverization are known as methods for pulverizing minerals. The wet pulverization method is a method in which raw mica is roughly pulverized with a dry pulverizer, then water is added and main pulverization is performed by wet pulverization in a slurry state, followed by dehydration and drying. Compared with the wet pulverization method, the dry pulverization method is a general method at a low cost. However, when the wet pulverization method is used, it is easier to pulverize the mineral thinly and finely. In the present invention, it is preferable to use a thin and fine pulverized product because mica having a preferable average particle diameter and thickness described later can be obtained. Therefore, in the present invention, it is preferable to use mica produced by a wet pulverization method.
 また、湿式粉砕法においては、被粉砕物を水に分散させることが必要となるため、被粉砕物の分散効率を高めるために、被粉砕物に凝集沈降剤及び/又は沈降助剤を加えることが一般的である。本発明において使用できる凝集沈降剤及び沈降助剤としては、ポリ塩化アルミニウム、硫酸アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化コッパラス、ポリ硫酸鉄、ポリ塩化第二鉄、鉄-シリカ無機高分子凝集剤、塩化第二鉄-シリカ無機高分子凝集剤、消石灰(Ca(OH))、苛性ソーダ(NaOH)、ソーダ灰(NaCO)等が挙げられる。これらの凝集沈降剤及び沈降助剤は、pHがアルカリ性又は酸性である。本発明で使用するマイカは、湿式粉砕する際に凝集沈降剤及び/又は沈降助剤を使用していないものが好ましい。凝集沈降剤及び/又は沈降助剤で処理されていないマイカを使用すると、複合樹脂組成物中のポリマーの分解が生じにくく、多量のガス発生やポリマーの分子量低下等が起きにくいため、得られる非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等の成形品の性能をより良好に維持するのが容易である。 In addition, in the wet pulverization method, it is necessary to disperse the material to be pulverized in water. Therefore, in order to increase the dispersion efficiency of the material to be pulverized, a coagulating sedimentation agent and / or a precipitation aid is added to the material to be pulverized. Is common. Examples of the coagulating settling agent and settling aid that can be used in the present invention include polyaluminum chloride, aluminum sulfate, ferrous sulfate, ferric sulfate, copper chloride, polyiron sulfate, polyferric chloride, iron-silica inorganic high Examples thereof include molecular flocculants, ferric chloride-silica inorganic polymer flocculants, slaked lime (Ca (OH) 2 ), caustic soda (NaOH), and soda ash (Na 2 CO 3 ). These coagulating sedimentation agents and sedimentation aids are alkaline or acidic in pH. The mica used in the present invention is preferably one that does not use a coagulating sedimentation agent and / or a sedimentation aid when wet milling. The use of mica not treated with a coagulating sedimentation agent and / or a sedimentation aid makes it difficult for the polymer in the composite resin composition to decompose, resulting in a large amount of gas generation and a decrease in the molecular weight of the polymer. It is easy to better maintain the performance of molded parts such as electronic parts, electronic parts including low-profile narrow-pitch connectors, and coaxial connectors.
 本発明において使用できるマイカは、マイクロトラックレーザー回折法により測定した平均粒径が10~100μmであるものが好ましく、平均粒径が20~80μmであるものが特に好ましい。マイカの平均粒径が10μm以上であると、成形品の剛性に対する改良効果が十分となりやすいため好ましい。マイカの平均粒径が100μm以下であると、成形品の剛性の向上が十分となりやすく、ウエルド強度も十分となりやすいため好ましい。さらに、マイカの平均粒径が100μm以下であると、本発明の非対称電子部品、低背狭ピッチコネクター、及び同軸コネクターを含む電子部品等を成形するのに十分な流動性を確保しやすい。 The mica that can be used in the present invention preferably has an average particle diameter of 10 to 100 μm as measured by a microtrack laser diffraction method, and particularly preferably has an average particle diameter of 20 to 80 μm. It is preferable that the average particle diameter of mica is 10 μm or more because the effect of improving the rigidity of the molded product is likely to be sufficient. It is preferable that the average particle diameter of mica is 100 μm or less because the rigidity of the molded product is likely to be sufficiently improved and the weld strength is likely to be sufficient. Furthermore, when the average particle size of mica is 100 μm or less, it is easy to ensure sufficient fluidity for molding electronic components including the asymmetric electronic component, low profile narrow pitch connector, and coaxial connector of the present invention.
 本発明において使用できるマイカの厚みは、電子顕微鏡の観察により実測した厚みが0.01~1μmであることが好ましく、0.03~0.3μmであることが特に好ましい。マイカの厚みが0.01μm以上であると、複合樹脂組成物の溶融加工の際にマイカが割れにくくなるため、成形品の剛性が向上しやすい可能性があるため好ましい。マイカの厚みが1μm以下であると、成形品の剛性に対する改良効果が十分となりやすいため好ましい。 The thickness of the mica that can be used in the present invention is preferably 0.01 to 1 μm, particularly preferably 0.03 to 0.3 μm, as measured by observation with an electron microscope. When the mica thickness is 0.01 μm or more, the mica is difficult to break during the melt processing of the composite resin composition, and therefore, the rigidity of the molded product may be easily improved. It is preferable that the mica thickness is 1 μm or less because the effect of improving the rigidity of the molded product tends to be sufficient.
 本発明において使用できるマイカは、シランカップリング剤等で表面処理されていてもよく、かつ/又は、結合剤で造粒し顆粒状とされていてもよい。 The mica that can be used in the present invention may be surface-treated with a silane coupling agent or the like and / or granulated with a binder.
 (その他の成分)
 本発明における複合樹脂組成物には、上記の成分の他に、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤、難燃剤、及び公知の無機充填剤のうちの1種以上を配合してもよい。
(Other ingredients)
In the composite resin composition of the present invention, in addition to the above-mentioned components, pigments such as nucleating agent, carbon black, inorganic calcined pigment, antioxidant, stabilizer, plasticizer, lubricant, mold release agent, flame retardant, and You may mix | blend 1 or more types in a well-known inorganic filler.
 本発明における複合樹脂組成物の製造方法は、複合樹脂組成物中の成分を均一に混合できれば特に限定されず、従来知られる樹脂組成物の製造方法から適宜選択することができる。例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出した後、得られた複合樹脂組成物を粉末、フレーク、ペレット等の所望の形態に加工する方法が挙げられる。 The method for producing the composite resin composition in the present invention is not particularly limited as long as the components in the composite resin composition can be uniformly mixed, and can be appropriately selected from conventionally known methods for producing resin compositions. For example, each component is melt-kneaded and extruded using a melt-kneader such as a single-screw or twin-screw extruder, and then the resulting composite resin composition is processed into a desired form such as powder, flakes, pellets, etc. A method is mentioned.
 本発明における複合樹脂組成物は流動性に優れるため、成形時の最小充填圧力が過度になりにくく、ラッチ構造や切り欠き等を備える非対称電子部品のような複雑な形状を有する部品、低背狭ピッチコネクター等のような小型で複雑な形状を有する部品、同軸コネクター等を好ましく成形できる。最小充填圧力は、複合樹脂組成物を成形する際に、365℃において良好な成形品を得られる最小の射出充填圧として特定される。 The composite resin composition according to the present invention is excellent in fluidity, so that the minimum filling pressure at the time of molding is not excessively excessive, and the component having a complicated shape such as an asymmetric electronic component having a latch structure or a notch, a low profile A small and complex part such as a pitch connector, a coaxial connector, or the like can be preferably formed. The minimum filling pressure is specified as the minimum injection filling pressure at which a good molded product can be obtained at 365 ° C. when molding the composite resin composition.
 [電子部品]
 本発明における複合樹脂組成物を成形することにより、本発明の電子部品を得ることができる。電子部品としては、特に限定されないが、非対称電子部品、低背狭ピッチコネクター、同軸コネクター等が挙げられる。
[Electronic parts]
The electronic component of the present invention can be obtained by molding the composite resin composition of the present invention. Although it does not specifically limit as an electronic component, Asymmetrical electronic components, a low profile narrow pitch connector, a coaxial connector, etc. are mentioned.
 (非対称電子部品)
 本発明における複合樹脂組成物を成形することにより、本発明の非対称電子部品を得ることができる。本発明の非対称電子部品とは、成形品のXY軸面、YZ軸面、及びXZ軸面の何れの軸面に対しても対称性がないものをいう。
(Asymmetric electronic components)
By molding the composite resin composition of the present invention, the asymmetric electronic component of the present invention can be obtained. The asymmetric electronic component of the present invention refers to a component that has no symmetry with respect to any of the XY axis plane, the YZ axis plane, and the XZ axis plane of the molded product.
 市場に多く存在する通常のコネクター(電子部品)の場合、XY軸面、YZ軸面、及びXZ軸面の何れかの軸面において対称性を有するものであり、成形に際し、対称性を保つようなゲート位置及び設計とすることで、製品の寸法精度及びそりをコントロールすることが可能である。これに対し、本発明の非対称電子部品は、形状が複雑であり、成形手法ではそり変形を抑制することが困難なものである。本発明の非対称電子部品では、特定の複合樹脂組成物を用いることで、そり変形が抑制されている。 In the case of ordinary connectors (electronic parts) that exist in the market, the XY axis plane, the YZ axis plane, and the XZ axis plane have symmetry, so that the symmetry should be maintained during molding. By using a proper gate position and design, it is possible to control the dimensional accuracy and warpage of the product. On the other hand, the asymmetric electronic component of the present invention has a complicated shape, and it is difficult to suppress warpage deformation by a molding method. In the asymmetric electronic component of the present invention, warpage deformation is suppressed by using a specific composite resin composition.
 このような非対称電子部品の代表例としては、ある種のコネクター、ソケットが挙げられる。
 コネクターとしては、DIMMコネクター、DDR-DIMMコネクター、DDR2-DIMMコネクター、DDR-SO-DIMMコネクター、DDR2-SO-DIMMコネクター、DDR-Micro-DIMMコネクター、DDR2-Micro-DIMMコネクター等のメモリーモジュール用コネクターが挙げられる。中でも、DDR-DIMMコネクター及びDDR2-DIMMコネクターが好適であり、特にノートパソコン用途の薄肉で形状の複雑なメモリーモジュール用コネクターであって、ピッチ間距離が0.8mm以下、製品全長が60.0mm以上、製品高さが6.0mm以下、極数が150極以上のものが特に好適である。このようなメモリーモジュール用コネクターは、ピーク温度230~280℃で表面実装のためのIRリフロー工程に供せられ、IRリフロー工程を経る前のそりが0.1mm以下であり、なおかつリフロー前後のそりの差が0.05mm以下であることが求められるが、本発明によればこのような要求を満足できる。
A typical example of such an asymmetric electronic component is a certain type of connector or socket.
Connector for memory module such as DIMM connector, DDR-DIMM connector, DDR2-DIMM connector, DDR-SO-DIMM connector, DDR2-SO-DIMM connector, DDR-Micro-DIMM connector, DDR2-Micro-DIMM connector Is mentioned. Of these, DDR-DIMM connectors and DDR2-DIMM connectors are preferred, especially for thin-walled and complex memory module connectors for laptop computers, with a pitch-to-pitch distance of 0.8 mm or less and a total product length of 60.0 mm. As described above, it is particularly preferable that the product height is 6.0 mm or less and the number of poles is 150 or more. Such a memory module connector is subjected to an IR reflow process for surface mounting at a peak temperature of 230 to 280 ° C, the warp before the IR reflow process is 0.1 mm or less, and the warp before and after the reflow. However, according to the present invention, such a requirement can be satisfied.
 また、ソケットとしては、カードバス、CFカード、メモリースティック、PCカード、SDカード、SDMo、スマートカード、スマートメディアカード、microSDカード、miniSDカード、xDピクチャーカード、TransFlash等のメモリーカードソケットが挙げられ、特にレール構造を有し、製品高さが3.0mm以下のメモリーカードソケットが好適である。 Examples of the socket include a memory card socket such as a card bus, CF card, memory stick, PC card, SD card, SDMo, smart card, smart media card, microSD card, miniSD card, xD picture card, TransFlash, etc. A memory card socket having a rail structure and a product height of 3.0 mm or less is suitable.
 (低背狭ピッチコネクター)
 本発明における複合樹脂組成物を成形することにより、本発明の低背狭ピッチコネクターを得ることができる。本発明の低背狭ピッチコネクターの形状としては、特に限定されないが、ピッチ間距離が0.5mm以下、製品全長が4.0mm以上、製品高さが4.0mm以下である低背狭ピッチコネクターであってもよい。また、本発明の低背狭ピッチコネクターの種類としては特に限定されないが、基板対基板コネクター(「BtoBコネクター」としても知られる)、フレキシブルプリント基板(FPC)とフレキシブルフラットケーブル(FFC)とを接続するために使用されるフレキシブルプリント基板用コネクター(「FPC用コネクター」としても知られる)等であってもよい。
(Low profile narrow pitch connector)
By molding the composite resin composition in the present invention, the low profile narrow pitch connector of the present invention can be obtained. The shape of the low-profile narrow-pitch connector of the present invention is not particularly limited, but the low-profile narrow-pitch connector has a pitch distance of 0.5 mm or less, a total product length of 4.0 mm or more, and a product height of 4.0 mm or less. It may be. Further, the type of the low-profile narrow-pitch connector of the present invention is not particularly limited, but a board-to-board connector (also known as “BtoB connector”), a flexible printed circuit board (FPC), and a flexible flat cable (FFC) are connected. It may be a flexible printed circuit board connector (also known as an “FPC connector”) or the like.
 (同軸コネクター)
 本発明における複合樹脂組成物を成形することにより、本発明の同軸コネクターを得ることができる。樹脂組成物を成形して同軸コネクターを製造するには、当該樹脂組成物が流動性に優れることを要するが、本発明における複合樹脂組成物は、流動性に優れるため、この複合樹脂組成物を用いて円滑に同軸コネクターを製造することができる。同軸コネクターとしては、特に限定されないが、例えば、厚み100μm以下の同軸コネクターが挙げられる。
(Coaxial connector)
The coaxial connector of the present invention can be obtained by molding the composite resin composition of the present invention. In order to produce a coaxial connector by molding a resin composition, it is necessary that the resin composition is excellent in fluidity. However, since the composite resin composition in the present invention is excellent in fluidity, this composite resin composition is The coaxial connector can be manufactured smoothly by using. Although it does not specifically limit as a coaxial connector, For example, the coaxial connector with a thickness of 100 micrometers or less is mentioned.
 本発明の非対称電子部品、低背狭ピッチコネクター、同軸コネクター等の本発明の電子部品を得る成形方法としては特に限定されないが、得られる電子部品の変形等を防ぐために、特に、そり変形が抑制された非対称電子部品を得るために、又は、得られる低背狭ピッチコネクターや同軸コネクターの変形等を防ぐために、残留内部応力のない成形条件を選ぶことが好ましい。充填圧力を低くし、非対称電子部品、低背狭ピッチコネクター、同軸コネクター等の得られる電子部品の残留内部応力を低下させるために、成形機のシリンダー温度は、液晶性ポリマーの融点以上の温度が好ましい。 The molding method for obtaining the electronic component of the present invention, such as the asymmetric electronic component of the present invention, low-profile narrow pitch connector, coaxial connector, etc. is not particularly limited, but in order to prevent deformation of the obtained electronic component, warpage deformation is particularly suppressed. In order to obtain the obtained asymmetric electronic component, or in order to prevent deformation or the like of the obtained low profile narrow pitch connector or coaxial connector, it is preferable to select molding conditions without residual internal stress. In order to lower the filling pressure and reduce the residual internal stress of the obtained electronic parts such as asymmetric electronic parts, low profile narrow pitch connectors, coaxial connectors, etc., the cylinder temperature of the molding machine should be higher than the melting point of the liquid crystalline polymer. preferable.
 また、金型温度は70~100℃が好ましい。金型温度が低すぎなければ、特に、金型温度が70℃以上であると、金型に充填された複合樹脂組成物が流動不良を起こしにくいため好ましい。金型温度が高すぎなければ、特に、金型温度が100℃以下であると、バリ発生等の問題が生じにくいため好ましい。射出速度については、150mm/秒以上で成形することが好ましい。射出速度が低すぎなければ、特に、射出速度が150mm/秒以上であると、未充填成形品しか得られない可能性が低く、完全に充填した成形品は、充填圧力が高く残留内部応力の大きい成形品となりにくく、そり変形の大きい非対称電子部品、平面度が劣るコネクター等の、形状の点で問題のある電子部品しか得られない可能性が低い。 The mold temperature is preferably 70 to 100 ° C. If the mold temperature is not too low, it is particularly preferable that the mold temperature is 70 ° C. or higher because the composite resin composition filled in the mold hardly causes poor flow. If the mold temperature is not too high, it is particularly preferable that the mold temperature is 100 ° C. or lower because problems such as burrs are unlikely to occur. The injection speed is preferably 150 mm / second or more. If the injection speed is not too low, particularly when the injection speed is 150 mm / sec or more, it is unlikely that only an unfilled molded product will be obtained. A completely filled molded product has a high filling pressure and a residual internal stress. It is difficult to obtain a large molded product, and it is unlikely that only an electronic component having a problem in terms of shape such as an asymmetric electronic component having a large warp deformation and a connector having poor flatness may be obtained.
 特に、本発明の非対称電子部品は、そり変形が抑制されている。非対称電子部品のそりの程度は、以下の通りにして判断する。すなわち、非対称電子部品を水平な机の上に静置し、非対称電子部品の高さを画像測定機により測定し、最小二乗平面からの最大高さと最小高さとの差を非対称電子部品のそりとする。本発明の非対称電子部品は、IRリフローを行う前後において、そりの変化が抑制されている。 In particular, warpage deformation is suppressed in the asymmetric electronic component of the present invention. The degree of warping of the asymmetric electronic component is determined as follows. That is, the asymmetric electronic component is placed on a horizontal desk, the height of the asymmetric electronic component is measured by an image measuring machine, and the difference between the maximum height and the minimum height from the least squares plane is determined as the sled of the asymmetric electronic component. To do. In the asymmetric electronic component of the present invention, changes in warpage are suppressed before and after performing IR reflow.
 また、本発明の非対称電子部品、低背狭ピッチコネクター、同軸コネクター等の本発明の電子部品は、高温剛性に優れる。高温剛性は、ISO75-1,2に準拠して荷重たわみ温度を測定することで評価する。 Also, the electronic parts of the present invention such as the asymmetric electronic parts of the present invention, low profile narrow pitch connectors, coaxial connectors, etc. are excellent in high temperature rigidity. The high temperature stiffness is evaluated by measuring the deflection temperature under load in accordance with ISO 75-1 and 2 standard.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
 (液晶性ポリマー1の製造方法)
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
 (I)4-ヒドロキシ安息香酸:1041g(48モル%)(HBA)
 (II)6-ヒドロキシ-2-ナフトエ酸:89g(3モル%)(HNA)
 (III)テレフタル酸:565g(21.7モル%)(TA)
 (IV)イソフタル酸:78g(3モル%)(IA)
 (V)4,4’-ジヒドロキシビフェニル:711g(24.3モル%)(BP)
 酢酸カリウム触媒:110mg
 無水酢酸:1645g
(Method for producing liquid crystalline polymer 1)
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomers, a metal catalyst, and an acylating agent, and nitrogen substitution was started.
(I) 4-hydroxybenzoic acid: 1041 g (48 mol%) (HBA)
(II) 6-Hydroxy-2-naphthoic acid: 89 g (3 mol%) (HNA)
(III) Terephthalic acid: 565 g (21.7 mol%) (TA)
(IV) Isophthalic acid: 78 g (3 mol%) (IA)
(V) 4,4′-dihydroxybiphenyl: 711 g (24.3 mol%) (BP)
Potassium acetate catalyst: 110 mg
Acetic anhydride: 1645g
 重合容器に原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、さらに360℃まで5.5時間かけて昇温し、そこから20分かけて10Torr(すなわち、1330Pa)まで減圧して、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。得られたペレットの融点は358℃、結晶化温度は303℃、結晶化熱量は1.6J/g、溶融粘度は9Pa・sであった。 After charging the raw materials into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further increased to 360 ° C. over 5.5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 20 minutes, while acetic acid, excess acetic anhydride, and other low boiling points are distilled off. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize. The obtained pellet had a melting point of 358 ° C., a crystallization temperature of 303 ° C., a crystallization heat amount of 1.6 J / g, and a melt viscosity of 9 Pa · s.
 なお、本実施例において、ペレットの融点、結晶化温度、結晶化熱量、及び溶融粘度の測定は、それぞれ下記の条件で行った。 In this example, the melting point, crystallization temperature, crystallization heat quantity, and melt viscosity of the pellet were measured under the following conditions.
 [融点の測定]
 TAインスツルメント社製DSCにて、液晶性ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
[Measurement of melting point]
After observing the endothermic peak temperature (Tm1) observed when the liquid crystalline polymer was measured at room temperature from 20 ° C./min with a DSC manufactured by TA Instruments, 2 at a temperature of (Tm1 + 40) ° C. After being held for a minute, the sample was once cooled to room temperature under a temperature drop condition of 20 ° C./min, and then the temperature of the endothermic peak observed when measured under a temperature rise condition of 20 ° C./min was measured again.
 [結晶化温度の測定]
 TAインスツルメント社製DSCにて、液晶性ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度を測定した。
[Measurement of crystallization temperature]
After observing the endothermic peak temperature (Tm1) observed when the liquid crystalline polymer was measured at room temperature from 20 ° C./min with a DSC manufactured by TA Instruments, 2 at a temperature of (Tm1 + 40) ° C. After maintaining for a minute, an exothermic peak temperature observed when measuring under a temperature drop condition of 20 ° C./min was measured.
 [結晶化熱量の測定]
 TAインスツルメント社製DSCにて、全芳香族ポリエステル及びポリエステル樹脂組成物を室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を測定した。
[Measurement of heat of crystallization]
After observing the endothermic peak temperature (Tm1) observed when the wholly aromatic polyester and the polyester resin composition were measured from room temperature at a temperature rising condition of 20 ° C./min on a DSC manufactured by TA Instruments, (Tm1 + 40 ) After holding at a temperature of 2 ° C. for 2 minutes, the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when the temperature was measured under a temperature decreasing condition of 20 ° C./min was measured.
 [溶融粘度の測定]
 L=20mm、d=1mmの(株)東洋精機製キャピログラフ1B型を使用し、液晶性ポリマーの融点よりも10~20℃高い温度で、剪断速度1000/秒で、ISO11443に準拠して、液晶性ポリマーの溶融粘度を測定した。
[Measurement of melt viscosity]
Using a Capillograph Type 1B manufactured by Toyo Seiki Co., Ltd. with L = 20 mm and d = 1 mm, and a temperature 10 to 20 ° C. higher than the melting point of the liquid crystalline polymer, a shear rate of 1000 / sec, and a liquid crystal conforming to ISO11443 The melt viscosity of the conductive polymer was measured.
 (液晶性ポリマー2の製造方法)
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
 (I)4-ヒドロキシ安息香酸:188.4g(60モル%)(HBA)
 (II)6-ヒドロキシ-2-ナフトエ酸:21.4g(5モル%)(HNA)
 (III)テレフタル酸:66.8g(17.7モル%)(TA)
 (IV)4,4’-ジヒドロキシビフェニル:52.2g(12.3モル%)(BP)
 (V)4-アセトキシアミノフェノール:17.2g(5モル%)(APAP)
 酢酸カリウム触媒:15mg
 無水酢酸:226.2g
(Method for producing liquid crystalline polymer 2)
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomers, a metal catalyst, and an acylating agent, and nitrogen substitution was started.
(I) 4-Hydroxybenzoic acid: 188.4 g (60 mol%) (HBA)
(II) 6-hydroxy-2-naphthoic acid: 21.4 g (5 mol%) (HNA)
(III) Terephthalic acid: 66.8 g (17.7 mol%) (TA)
(IV) 4,4′-dihydroxybiphenyl: 52.2 g (12.3 mol%) (BP)
(V) 4-acetoxyaminophenol: 17.2 g (5 mol%) (APAP)
Potassium acetate catalyst: 15mg
Acetic anhydride: 226.2 g
 重合容器に原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、さらに340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(すなわち、667Pa)まで減圧して、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。得られたペレットの融点は334℃、結晶化温度は290℃、結晶化熱量は2.7J/g、溶融粘度は18Pa・sであった。 After charging the raw materials into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further raised to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (ie, 667 Pa) over 15 minutes while acetic acid, excess acetic anhydride, and other low boiling points are distilled off. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize. The obtained pellet had a melting point of 334 ° C., a crystallization temperature of 290 ° C., a crystallization heat amount of 2.7 J / g, and a melt viscosity of 18 Pa · s.
 (液晶性ポリマー以外の成分)
 上記で得られた各液晶性ポリマーと、下記の成分とを二軸押出機を使用して混合し、複合樹脂組成物を得た。各成分の配合量は表1~3に示した通りである。
(B)ガラス繊維及び/又はミルドファイバー
 ガラス繊維:日本電気硝子(株)製ECS03T-786H、繊維径10μm、長さ3mmのチョプドストランド
 ミルドファイバー:日東紡(株)製PF70E001、繊維径10μm、平均繊維長70μm
(C)板状無機充填材
 タルク;松村産業(株)製クラウンタルクPP、平均粒径10μm
 マイカ;(株)山口雲母工業製AB-25S、平均粒径25μm
(Components other than liquid crystalline polymers)
Each liquid crystalline polymer obtained above and the following components were mixed using a twin screw extruder to obtain a composite resin composition. The amount of each component is as shown in Tables 1 to 3.
(B) Glass fiber and / or milled fiber Glass fiber: ECS03T-786H manufactured by Nippon Electric Glass Co., Ltd., fiber diameter 10 μm, chopped strand having a length of 3 mm Milled fiber: PF70E001 manufactured by Nittobo Co., Ltd., fiber diameter 10 μm, Average fiber length 70μm
(C) Plate-like inorganic filler Talc; Crown Talc PP manufactured by Matsumura Sangyo Co., Ltd., average particle size 10 μm
Mica: AB-25S manufactured by Yamaguchi Mica Industry Co., Ltd., average particle size 25 μm
 また、複合樹脂組成物を得る際の押出条件は下記の通りである。
 [押出条件]
 〔実施例1~11、比較例4、5、10、11、参考例1~4〕
 メインフィード口に設けられたシリンダーの温度を250℃とし、他のシリンダーの温度はすべて370℃とした。液晶性ポリマーはすべてをメインフィード口から供給した。また、充填材はサイドフィード口から供給した。
 〔比較例1~3、6~9〕
 メインフィード口に設けられたシリンダーの温度を250℃とし、他のシリンダーの温度はすべて350℃とした。液晶性ポリマーはすべてをメインフィード口から供給した。また、充填材はサイドフィード口から供給した。
The extrusion conditions for obtaining the composite resin composition are as follows.
[Extrusion conditions]
[Examples 1 to 11, Comparative Examples 4, 5, 10, 11, Reference Examples 1 to 4]
The temperature of the cylinder provided at the main feed port was 250 ° C., and the temperatures of the other cylinders were all 370 ° C. All liquid crystalline polymers were supplied from the main feed port. The filler was supplied from the side feed port.
[Comparative Examples 1 to 3, 6 to 9]
The temperature of the cylinder provided at the main feed port was 250 ° C., and the temperature of the other cylinders was all 350 ° C. All liquid crystalline polymers were supplied from the main feed port. The filler was supplied from the side feed port.
 なお、複合樹脂組成物中のガラス繊維及びミルドファイバーの平均ガラス繊維長は下記の方法で測定した。
 [平均ガラス繊維長の測定]
 複合樹脂組成物ペレット5gを600℃で2時間加熱し灰化した。灰化残渣を5質量%ポリエチレングリコール水溶液に十分分散させた後、スポイトでシャーレに移し、顕微鏡でガラス繊維又はミルドファイバーを観察した。同時に画像測定器((株)ニレコ製LUZEXFS)を用いてガラス繊維又はミルドファイバーの重量平均繊維長を測定した。
In addition, the average glass fiber length of the glass fiber and milled fiber in a composite resin composition was measured with the following method.
[Measurement of average glass fiber length]
5 g of the composite resin composition pellets were heated and ashed at 600 ° C. for 2 hours. The incineration residue was sufficiently dispersed in a 5% by mass polyethylene glycol aqueous solution, then transferred to a petri dish with a dropper, and glass fibers or milled fibers were observed with a microscope. At the same time, the weight average fiber length of the glass fiber or milled fiber was measured using an image measuring instrument (LUZEXFS manufactured by Nireco Corporation).
 <非対称電子部品の作製及び評価>
 下記の方法に基づき、複合樹脂組成物から成形したDDR-DIMMコネクターの物性を測定した。各評価結果を表1に示す。
<Production and evaluation of asymmetric electronic components>
Based on the following method, the physical properties of the DDR-DIMM connector molded from the composite resin composition were measured. Each evaluation result is shown in Table 1.
 (DDRコネクターそり)
 下記成形条件で、複合樹脂組成物を射出成形し(ゲート:トンネルゲート、ゲートサイズ:φ0.75mm)、図1に示すような、全体の大きさ70.0mm×26.0mm×4.0mmt、ピッチ間距離0.6mm、ピン孔数100×2のDDR-DIMMコネクターを得た。
 [成形条件]
 成形機:住友重機械工業SE30DUZ
 シリンダー温度(ノズル側からの温度を示す):
     360℃-365℃-340℃-330℃(実施例1~3、比較例4、5、参考例1、2)
     350℃-350℃-340℃-330℃(比較例1~3)
 金型温度:80℃
 射出速度:300mm/秒
 保圧力:50MPa
 保圧時間:2秒
 冷却時間:10秒
 スクリュー回転数:120rpm
 スクリュー背圧:1.2MPa
(DDR connector sled)
The composite resin composition was injection-molded under the following molding conditions (gate: tunnel gate, gate size: φ0.75 mm), and the overall size as shown in FIG. 1 was 70.0 mm × 26.0 mm × 4.0 mmt, A DDR-DIMM connector having a pitch distance of 0.6 mm and a pin hole number of 100 × 2 was obtained.
[Molding condition]
Molding machine: Sumitomo Heavy Industries SE30DUZ
Cylinder temperature (indicates temperature from nozzle side):
360 ° C.-365 ° C.-340 ° C.-330 ° C. (Examples 1 to 3, Comparative Examples 4 and 5, Reference Examples 1 and 2)
350 ° C.-350 ° C.-340 ° C.-330 ° C. (Comparative Examples 1 to 3)
Mold temperature: 80 ℃
Injection speed: 300 mm / sec Holding pressure: 50 MPa
Holding time: 2 seconds Cooling time: 10 seconds Screw rotation speed: 120 rpm
Screw back pressure: 1.2MPa
 得られたコネクターを水平な机の上に静置し、コネクターの高さをミツトヨ製クイックビジョン404PROCNC画像測定機により測定した。その際、図2において黒丸で示す複数の位置で高さを測定し、最小二乗平面からの最大高さと最小高さとの差をDDRコネクターのそりとした。なお、そりは、下記条件で行ったIRリフローの前後で測定した。
 [IRリフロー条件]
 測定機:日本パルス技術研究所製大型卓上リフローハンダ付け装置RF-300(遠赤外線ヒーター使用)
 試料送り速度:140mm/秒
 リフロー炉通過時間:5分
 プレヒートゾーンの温度条件:150℃
 リフローゾーンの温度条件:190℃
 ピーク温度:251℃
The obtained connector was placed on a horizontal desk, and the height of the connector was measured with Mitutoyo Quick Vision 404 PROCNC image measuring machine. At that time, the height was measured at a plurality of positions indicated by black circles in FIG. 2, and the difference between the maximum height and the minimum height from the least square plane was defined as the DDR connector warp. The warpage was measured before and after IR reflow performed under the following conditions.
[IR reflow conditions]
Measuring machine: RF-300 (using far infrared heater)
Sample feed rate: 140 mm / sec Reflow furnace passage time: 5 minutes Preheat zone temperature condition: 150 ° C.
Reflow zone temperature condition: 190 ° C
Peak temperature: 251 ° C
 (DDRコネクター変形量)
 上述の方法で測定したリフロー前後のそりの差をDDRコネクター変形量として求めた。
(DDR connector deformation)
The difference in warpage before and after reflow measured by the above method was determined as the amount of deformation of the DDR connector.
 (DDRコネクター最小充填圧力)
 図1のDDR-DIMMコネクターを射出成形する際に良好な成形品を得られる最小の射出充填圧力を最小充填圧力として測定した。
(DDR connector minimum filling pressure)
When the DDR-DIMM connector of FIG. 1 was injection molded, the minimum injection filling pressure at which a good molded product was obtained was measured as the minimum filling pressure.
 (荷重たわみ温度)
 下記成形条件で、複合樹脂組成物を射出成形して成形品を得、ISO75-1,2に準拠して荷重たわみ温度を測定した。
 [成形条件]
 成形機:住友重機械工業、SE100DU
 シリンダー温度(ノズル側からの温度を示す):
     360℃-370℃-370℃-360℃-340℃-330℃(実施例1~3、比較例4、5、参考例1、2)
     350℃-350℃-350℃-350℃-340℃-330℃(比較例1~3)
 金型温度:80℃
 射出速度:2m/分
 保圧力:50MPa
 保圧時間:2秒
 冷却時間:10秒
 スクリュー回転数:120rpm
 スクリュー背圧:1.2MPa
(Load deflection temperature)
Under the following molding conditions, the composite resin composition was injection molded to obtain a molded product, and the deflection temperature under load was measured in accordance with ISO75-1,2.
[Molding condition]
Molding machine: Sumitomo Heavy Industries, SE100DU
Cylinder temperature (indicates temperature from nozzle side):
360 ° C.-370 ° C.-370 ° C.-360 ° C.-340 ° C.-330 ° C. (Examples 1 to 3, Comparative Examples 4 and 5, Reference Examples 1 and 2)
350 ° C-350 ° C-350 ° C-350 ° C-340 ° C-330 ° C (Comparative Examples 1 to 3)
Mold temperature: 80 ℃
Injection speed: 2 m / min Holding pressure: 50 MPa
Holding time: 2 seconds Cooling time: 10 seconds Screw rotation speed: 120 rpm
Screw back pressure: 1.2MPa
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される通り、本発明の複合樹脂組成物は、流動性が良好であり、当該複合樹脂組成物から成形された非対称電子部品は、そり変形が抑制されており、また、高温剛性に優れていた。 As shown in Table 1, the composite resin composition of the present invention has good fluidity, and the asymmetric electronic component molded from the composite resin composition is suppressed from warping deformation and has high-temperature rigidity. It was excellent.
 <低背狭ピッチコネクターの作製及び評価>
 下記の方法に基づき、低背狭ピッチコネクターの成形時のコネクター最小充填圧力及び荷重たわみ温度を測定した。その結果を表2及び3に示す。なお、表中、「充填不可」とは、成形機に複合樹脂組成物を充填できなかったことを指す。
<Production and evaluation of low-profile narrow-pitch connectors>
Based on the following method, the connector minimum filling pressure and the deflection temperature under load at the time of molding a low profile narrow pitch connector were measured. The results are shown in Tables 2 and 3. In the table, “unfillable” means that the composite resin composition could not be filled in the molding machine.
 (コネクター最小充填圧力)
 下記成形条件で、複合樹脂組成物を図3に示すような、全体の大きさ17.6mm×4.00mm×1.16mm、ピッチ間距離0.5mm、ピン孔数30×2ピン、最小肉厚:0.12mmのFPCコネクター(ゲート:トンネルゲート(φ0.4mm))を射出成形し、良好な成形品を得られる最小の射出充填圧力を最小充填圧力として測定した。
 [成形条件]
 成形機:住友重機械工業、SE30DUZ
 シリンダー温度(ノズル側からの温度を示す):
     365℃-365℃-355℃-345℃(実施例4~11、比較例10、11、参考例3、4)
     350℃-350℃-340℃-330℃(比較例6~9)
 金型温度:80℃
 射出速度:12m/分
 保圧力:50MPa
 保圧時間:2秒
 冷却時間:5秒
 スクリュー回転数:120-100rpm
 スクリュー背圧:1.5-1.0MPa
(Connector minimum filling pressure)
Under the following molding conditions, the composite resin composition as shown in FIG. 3 has an overall size of 17.6 mm × 4.00 mm × 1.16 mm, a pitch distance of 0.5 mm, a pin hole number of 30 × 2 pins, and a minimum thickness. A FPC connector having a thickness of 0.12 mm (gate: tunnel gate (φ0.4 mm)) was injection molded, and the minimum injection filling pressure at which a good molded product was obtained was measured as the minimum filling pressure.
[Molding condition]
Molding machine: Sumitomo Heavy Industries, SE30DUZ
Cylinder temperature (indicates temperature from nozzle side):
365 ° C.-365 ° C.-355 ° C.-345 ° C. (Examples 4 to 11, Comparative Examples 10 and 11, Reference Examples 3 and 4)
350 ° C.-350 ° C.-340 ° C.-330 ° C. (Comparative Examples 6 to 9)
Mold temperature: 80 ℃
Injection speed: 12 m / min Holding pressure: 50 MPa
Holding time: 2 seconds Cooling time: 5 seconds Screw rotation speed: 120-100rpm
Screw back pressure: 1.5-1.0MPa
 (荷重たわみ温度)
 下記成形条件で、複合樹脂組成物をそれぞれ射出成形して成形品を得て、ISO75-1,2に準拠して荷重たわみ温度を測定した。
 [成形条件]
 成形機:住友重機械工業、SE100DU
シリンダー温度(ノズル側からの温度を示す):
     360℃-370℃-370℃-360℃-340℃-330℃(実施例4~11、比較例10、11、参考例3、4)
     350℃-350℃-350℃-350℃-340℃-330℃(比較例6~9)
 金型温度:80℃
 射出速度:2m/分
 保圧力:50MPa
 保圧時間:2秒
 冷却時間:10秒
 スクリュー回転数:120rpm
 スクリュー背圧:1.2MPa
(Load deflection temperature)
Under the following molding conditions, each composite resin composition was injection-molded to obtain a molded product, and the deflection temperature under load was measured according to ISO75-1 and ISO2.
[Molding condition]
Molding machine: Sumitomo Heavy Industries, SE100DU
Cylinder temperature (indicates temperature from nozzle side):
360 ° C.-370 ° C.-370 ° C.-360 ° C.-340 ° C.-330 ° C. (Examples 4 to 11, Comparative Examples 10 and 11, Reference Examples 3 and 4)
350 ° C-350 ° C-350 ° C-350 ° C-340 ° C-330 ° C (Comparative Examples 6 to 9)
Mold temperature: 80 ℃
Injection speed: 2 m / min Holding pressure: 50 MPa
Holding time: 2 seconds Cooling time: 10 seconds Screw rotation speed: 120 rpm
Screw back pressure: 1.2MPa
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び3に示される通り、本発明の複合樹脂組成物は、流動性に優れ、当該複合樹脂組成物から成形された低背狭ピッチコネクターは、最小充填圧力の値が低減されていた。 As shown in Tables 2 and 3, the composite resin composition of the present invention was excellent in fluidity, and the value of the minimum filling pressure of the low profile narrow pitch connector molded from the composite resin composition was reduced.

Claims (14)

  1.  (A)液晶性ポリマーと、(B)ミルドファイバーと、(C)板状無機充填材と、を含む電子部品用複合樹脂組成物であって、
     前記(A)液晶性ポリマーは、必須の構成成分として、下記の構成単位:(I)4-ヒドロキシ安息香酸由来の構成単位、(II)2-ヒドロキシ-6-ナフトエ酸由来の構成単位、(III)テレフタル酸由来の構成単位、(IV)イソフタル酸由来の構成単位、及び(V)4,4’-ジヒドロキシビフェニル由来の構成単位を含み、
     全構成単位に対して(I)の構成単位の含有量は35~75モル%であり、
     全構成単位に対して(II)の構成単位の含有量は2~8モル%であり、
     全構成単位に対して(III)の構成単位の含有量は4.5~30.5モル%であり、
     全構成単位に対して(IV)の構成単位の含有量は2~8モル%であり、
     全構成単位に対して(V)の構成単位の含有量は12.5~32.5モル%であり、
     全構成単位に対して(II)及び(IV)の構成単位の総量は4~10モル%であり、
     前記(A)液晶性ポリマーの含有量は、複合樹脂組成物全体に対して40~80質量%であり、
     前記(B)ミルドファイバーの含有量は、複合樹脂組成物全体に対して10~30質量%であり、
     前記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して10~35質量%である電子部品用複合樹脂組成物。
    A composite resin composition for electronic parts, comprising (A) a liquid crystalline polymer, (B) a milled fiber, and (C) a plate-like inorganic filler,
    The (A) liquid crystalline polymer has, as essential constituent components, the following constituent units: (I) constituent units derived from 4-hydroxybenzoic acid, (II) constituent units derived from 2-hydroxy-6-naphthoic acid, ( III) a structural unit derived from terephthalic acid, (IV) a structural unit derived from isophthalic acid, and (V) a structural unit derived from 4,4′-dihydroxybiphenyl,
    The content of the structural unit (I) with respect to all the structural units is 35 to 75 mol%,
    The content of the structural unit (II) with respect to the total structural unit is 2 to 8 mol%,
    The content of the structural unit (III) with respect to all the structural units is 4.5 to 30.5 mol%,
    The content of the structural unit (IV) with respect to all the structural units is 2 to 8 mol%,
    The content of the structural unit (V) with respect to all the structural units is 12.5 to 32.5 mol%,
    The total amount of the structural units (II) and (IV) is 4 to 10 mol% with respect to all the structural units,
    The content of the (A) liquid crystalline polymer is 40 to 80% by mass with respect to the entire composite resin composition,
    The content of the (B) milled fiber is 10 to 30% by mass with respect to the entire composite resin composition,
    The composite resin composition for electronic parts, wherein the content of the (C) plate-like inorganic filler is 10 to 35% by mass with respect to the entire composite resin composition.
  2.  前記電子部品が非対称電子部品であり、
     前記(A)液晶性ポリマーの含有量は、複合樹脂組成物全体に対して47.5~65質量%であり、
     前記(B)ミルドファイバーの含有量は、複合樹脂組成物全体に対して15~30質量%であり、
     前記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して20~35質量%である請求項1に記載の電子部品用複合樹脂組成物。
    The electronic component is an asymmetric electronic component;
    The content of the (A) liquid crystalline polymer is 47.5 to 65% by mass with respect to the entire composite resin composition,
    The content of the (B) milled fiber is 15 to 30% by mass with respect to the entire composite resin composition,
    The composite resin composition for electronic parts according to claim 1, wherein the content of the (C) plate-like inorganic filler is 20 to 35 mass% with respect to the entire composite resin composition.
  3.  前記(C)板状無機充填材は、タルク及びマイカからなる群より選ばれる1種以上である請求項2に記載の電子部品用複合樹脂組成物。 The composite resin composition for electronic parts according to claim 2, wherein the (C) plate-like inorganic filler is at least one selected from the group consisting of talc and mica.
  4.  前記電子部品が低背狭ピッチコネクターであり、
     前記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して10~30質量%である請求項1に記載の電子部品用複合樹脂組成物。
    The electronic component is a low profile narrow pitch connector;
    The composite resin composition for electronic parts according to claim 1, wherein the content of the (C) plate-like inorganic filler is 10 to 30% by mass with respect to the entire composite resin composition.
  5.  前記(A)液晶性ポリマーは、[融点-結晶化温度]の値が50~60℃であり、融点よりも10~20℃高い温度において、剪断速度1000/秒で、ISO11443に準拠して測定された溶融粘度が5~15Pa・sである請求項4に記載の電子部品用複合樹脂組成物。 The (A) liquid crystalline polymer has a value of [melting point−crystallization temperature] of 50 to 60 ° C., measured at a shear rate of 1000 / sec at a temperature 10 to 20 ° C. higher than the melting point, according to ISO 11443. The composite resin composition for electronic parts according to claim 4, wherein the melt viscosity is 5 to 15 Pa · s.
  6.  前記(B)ミルドファイバーの平均繊維長は50~100μmであり、かつ、
     前記(C)板状無機充填材は、タルク及びマイカからなる群より選ばれる1種以上である請求項4又は5に記載の電子部品用複合樹脂組成物。
    The average fiber length of the (B) milled fiber is 50 to 100 μm, and
    The composite resin composition for electronic parts according to claim 4 or 5, wherein the (C) plate-like inorganic filler is at least one selected from the group consisting of talc and mica.
  7.  請求項1に記載の電子部品用複合樹脂組成物から成形される電子部品。 An electronic component molded from the composite resin composition for an electronic component according to claim 1.
  8.  前記(A)液晶性ポリマーの含有量は、複合樹脂組成物全体に対して47.5~65質量%であり、
     前記(B)ミルドファイバーの含有量は、複合樹脂組成物全体に対して15~30質量%であり、
     前記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して20~35質量%であり、
     成形品のXY軸面、YZ軸面、及びXZ軸面の何れの軸面に対しても対称性がない非対称電子部品である請求項7に記載の電子部品。
    The content of the (A) liquid crystalline polymer is 47.5 to 65% by mass with respect to the entire composite resin composition,
    The content of the (B) milled fiber is 15 to 30% by mass with respect to the entire composite resin composition,
    The content of the (C) plate-like inorganic filler is 20 to 35% by mass with respect to the entire composite resin composition,
    The electronic component according to claim 7, wherein the electronic component is an asymmetric electronic component having no symmetry with respect to any of the XY axis plane, the YZ axis plane, and the XZ axis plane of the molded product.
  9.  前記(C)板状無機充填材は、タルク及びマイカからなる群より選ばれる1種以上であるである請求項8に記載の電子部品。 The electronic component according to claim 8, wherein the (C) plate-like inorganic filler is at least one selected from the group consisting of talc and mica.
  10.  ピッチ間距離が0.8mm以下、製品全長が60.0mm以上、製品高さが6.0mm以下、極数が150極以上のメモリーモジュール用コネクターである請求項8又は9に記載の電子部品。 10. The electronic component according to claim 8, which is a memory module connector having a pitch distance of 0.8 mm or less, a total product length of 60.0 mm or more, a product height of 6.0 mm or less, and a pole number of 150 or more.
  11.  レール構造を有し、製品高さが3.0mm以下のメモリーカードソケットである請求項8又は9に記載の電子部品。 10. The electronic component according to claim 8, wherein the electronic component is a memory card socket having a rail structure and a product height of 3.0 mm or less.
  12.  前記(C)板状無機充填材の含有量は、複合樹脂組成物全体に対して10~30質量%であり、
     ピッチ間距離が0.5mm以下であり、
     製品全長が4.0mm以上であり、
     製品高さが4.0mm以下であり、
     基板対基板コネクター又はフレキシブルプリント基板用コネクターである低背狭ピッチコネクターである請求項7に記載の電子部品。
    The content of the (C) plate-like inorganic filler is 10 to 30% by mass with respect to the entire composite resin composition,
    The distance between pitches is 0.5 mm or less,
    The total product length is 4.0mm or more,
    The product height is 4.0 mm or less,
    The electronic component according to claim 7, wherein the electronic component is a low-profile narrow-pitch connector that is a board-to-board connector or a flexible printed board connector.
  13.  前記(A)液晶性ポリマーは、[融点-結晶化温度]の値が50~60℃であり、融点よりも10~20℃高い温度において、剪断速度1000/秒で、ISO11443に準拠して測定された溶融粘度が5~15Pa・sである請求項12に記載の電子部品。 The (A) liquid crystalline polymer has a value of [melting point−crystallization temperature] of 50 to 60 ° C., measured at a shear rate of 1000 / sec at a temperature 10 to 20 ° C. higher than the melting point, according to ISO 11443. The electronic component according to claim 12, wherein the melt viscosity is 5 to 15 Pa · s.
  14.  前記(B)ミルドファイバーの平均繊維長は50~100μmであり、かつ、
     前記(C)板状無機充填材は、タルク及びマイカからなる群より選ばれる1種以上である請求項12又は13に記載の電子部品。
    The average fiber length of the (B) milled fiber is 50 to 100 μm, and
    The electronic component according to claim 12 or 13, wherein the (C) plate-like inorganic filler is at least one selected from the group consisting of talc and mica.
PCT/JP2013/072226 2012-09-26 2013-08-20 Composite resin composition for electronic component and electronic component molded from composite resin composition WO2014050371A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014538282A JP5769888B2 (en) 2012-09-26 2013-08-20 Composite resin composition for electronic parts, and electronic parts molded from the composite resin composition
KR1020157010325A KR20150060829A (en) 2012-09-26 2013-08-20 Composite resin composition for electronic component and electronic component molded from composite resin composition
SG11201502394YA SG11201502394YA (en) 2012-09-26 2013-08-20 Composite resin composition for electronic component and electronic component molded from composite resin composition
CN201380050474.0A CN104704049B (en) 2012-09-26 2013-08-20 Electronic component-use composite resin composition and the electronic unit being molded with by this composite resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012212179 2012-09-26
JP2012-212179 2012-09-26
JP2012-212180 2012-09-26
JP2012212180 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014050371A1 true WO2014050371A1 (en) 2014-04-03

Family

ID=50387781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072226 WO2014050371A1 (en) 2012-09-26 2013-08-20 Composite resin composition for electronic component and electronic component molded from composite resin composition

Country Status (7)

Country Link
JP (1) JP5769888B2 (en)
KR (1) KR20150060829A (en)
CN (1) CN104704049B (en)
MY (1) MY174277A (en)
SG (1) SG11201502394YA (en)
TW (1) TWI502019B (en)
WO (1) WO2014050371A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068867A1 (en) * 2015-10-21 2017-04-27 ポリプラスチックス株式会社 Fully aromatic polyester, and production method therefor
WO2017110866A1 (en) * 2015-12-25 2017-06-29 ポリプラスチックス株式会社 Composite resin composition and electronic component formed from composite resin composition
WO2017110867A1 (en) * 2015-12-25 2017-06-29 ポリプラスチックス株式会社 Composite resin composition and connector formed from composite resin composition
WO2018066417A1 (en) * 2016-10-07 2018-04-12 ポリプラスチックス株式会社 Composite resin composition, and connector formed from said composite resin composition
WO2018066416A1 (en) * 2016-10-07 2018-04-12 ポリプラスチックス株式会社 Composite resin composition, and electronic component formed from said composite resin composition
WO2018074155A1 (en) * 2016-10-21 2018-04-26 ポリプラスチックス株式会社 Composite resin composition, and electronic component formed from said composite resin composition
WO2018074156A1 (en) * 2016-10-21 2018-04-26 ポリプラスチックス株式会社 Composite resin composition and connector molded from same
JPWO2022168706A1 (en) * 2021-02-05 2022-08-11

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105837803B (en) * 2016-02-01 2017-05-31 金发科技股份有限公司 A kind of liquid crystal polyester and the moulding compound being made from it and its application
CN109844028B (en) * 2016-12-21 2020-09-11 宝理塑料株式会社 Liquid crystalline resin composition for surface mount relay and surface mount relay using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221582A (en) * 1995-12-15 1997-08-26 Toray Ind Inc Liquid crystal resin composition and molded product
JP2000344879A (en) * 1999-03-30 2000-12-12 Nippon Petrochem Co Ltd Manufacture of thermotropic liquid crystalline copolyester, composition and molded article therefrom
JP2004256656A (en) * 2003-02-26 2004-09-16 Toray Ind Inc Liquid crystalline polyester and composition containing the same
JP2009221406A (en) * 2008-03-18 2009-10-01 Ueno Fine Chem Ind Ltd Method for producing liquid-crystalline polyester
JP2010037364A (en) * 2008-07-31 2010-02-18 Polyplastics Co Connector
WO2012117475A1 (en) * 2011-02-28 2012-09-07 東レ株式会社 Liquid crystal polyester resin composition and metal composite molded article using same
WO2012137637A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Planar connector
WO2012137636A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Fully aromatic polyester and polyester resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216120A (en) * 1988-07-05 1990-01-19 Polyplastics Co Polyester resin exhibiting optical anisotropy when melted and resin composition
US5804634A (en) * 1995-12-15 1998-09-08 Toray Industries, Inc. Liquid crystalline resin compound and moldings thereof
JP2000160030A (en) * 1998-11-30 2000-06-13 Otsuka Chem Co Ltd Flame retardant resin composition
TWI472574B (en) * 2006-08-24 2015-02-11 Polyplastics Co Asymmetric electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221582A (en) * 1995-12-15 1997-08-26 Toray Ind Inc Liquid crystal resin composition and molded product
JP2000344879A (en) * 1999-03-30 2000-12-12 Nippon Petrochem Co Ltd Manufacture of thermotropic liquid crystalline copolyester, composition and molded article therefrom
JP2004256656A (en) * 2003-02-26 2004-09-16 Toray Ind Inc Liquid crystalline polyester and composition containing the same
JP2009221406A (en) * 2008-03-18 2009-10-01 Ueno Fine Chem Ind Ltd Method for producing liquid-crystalline polyester
JP2010037364A (en) * 2008-07-31 2010-02-18 Polyplastics Co Connector
WO2012117475A1 (en) * 2011-02-28 2012-09-07 東レ株式会社 Liquid crystal polyester resin composition and metal composite molded article using same
WO2012137637A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Planar connector
WO2012137636A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Fully aromatic polyester and polyester resin composition

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068867A1 (en) * 2015-10-21 2017-04-27 ポリプラスチックス株式会社 Fully aromatic polyester, and production method therefor
JP6157778B1 (en) * 2015-10-21 2017-07-05 ポリプラスチックス株式会社 Totally aromatic polyester and method for producing the same
WO2017110866A1 (en) * 2015-12-25 2017-06-29 ポリプラスチックス株式会社 Composite resin composition and electronic component formed from composite resin composition
WO2017110867A1 (en) * 2015-12-25 2017-06-29 ポリプラスチックス株式会社 Composite resin composition and connector formed from composite resin composition
CN109790379A (en) * 2016-10-07 2019-05-21 宝理塑料株式会社 Composite resin composition and the electronic component as made of composite resin composition forming
WO2018066416A1 (en) * 2016-10-07 2018-04-12 ポリプラスチックス株式会社 Composite resin composition, and electronic component formed from said composite resin composition
JP6345376B1 (en) * 2016-10-07 2018-06-20 ポリプラスチックス株式会社 Composite resin composition and electronic component molded from the composite resin composition
JP6356938B1 (en) * 2016-10-07 2018-07-11 ポリプラスチックス株式会社 Composite resin composition and connector molded from the composite resin composition
WO2018066417A1 (en) * 2016-10-07 2018-04-12 ポリプラスチックス株式会社 Composite resin composition, and connector formed from said composite resin composition
CN109790379B (en) * 2016-10-07 2020-04-07 宝理塑料株式会社 Composite resin composition and electronic component molded from same
WO2018074155A1 (en) * 2016-10-21 2018-04-26 ポリプラスチックス株式会社 Composite resin composition, and electronic component formed from said composite resin composition
WO2018074156A1 (en) * 2016-10-21 2018-04-26 ポリプラスチックス株式会社 Composite resin composition and connector molded from same
JP6321898B1 (en) * 2016-10-21 2018-05-09 ポリプラスチックス株式会社 Composite resin composition and electronic component molded from the composite resin composition
JP6321899B1 (en) * 2016-10-21 2018-05-09 ポリプラスチックス株式会社 Composite resin composition and connector molded from the composite resin composition
JPWO2022168706A1 (en) * 2021-02-05 2022-08-11
JP7281023B2 (en) 2021-02-05 2023-05-24 ポリプラスチックス株式会社 Liquid crystalline resin composition for fan impeller and fan impeller using the same

Also Published As

Publication number Publication date
CN104704049A (en) 2015-06-10
SG11201502394YA (en) 2015-05-28
MY174277A (en) 2020-04-01
JPWO2014050371A1 (en) 2016-08-22
TW201431949A (en) 2014-08-16
KR20150060829A (en) 2015-06-03
CN104704049B (en) 2016-10-12
TWI502019B (en) 2015-10-01
JP5769888B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5769888B2 (en) Composite resin composition for electronic parts, and electronic parts molded from the composite resin composition
JP6345376B1 (en) Composite resin composition and electronic component molded from the composite resin composition
JP6356938B1 (en) Composite resin composition and connector molded from the composite resin composition
JP6321899B1 (en) Composite resin composition and connector molded from the composite resin composition
CN113015765B (en) Liquid crystalline resin composition and connector of molded article comprising same
WO2017110867A1 (en) Composite resin composition and connector formed from composite resin composition
JP6109651B2 (en) Composite resin composition and planar connector molded from the composite resin composition
JP6321898B1 (en) Composite resin composition and electronic component molded from the composite resin composition
WO2017110866A1 (en) Composite resin composition and electronic component formed from composite resin composition
JP2018095683A (en) Composite resin composition, and electronic component molded from the composite resin composition
JP2018095684A (en) Composite resin composition, and connector molded from the composite resin composition
JP7038260B2 (en) An electronic component containing a liquid crystal resin composition and a molded product of the liquid crystal resin composition.
JP6944615B1 (en) Resin composition and connector
JP6895032B1 (en) A connector containing a liquid crystal resin composition and a molded product of the liquid crystal resin composition.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157010325

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13841543

Country of ref document: EP

Kind code of ref document: A1