JP5479070B2 - 光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラム - Google Patents

光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラム Download PDF

Info

Publication number
JP5479070B2
JP5479070B2 JP2009286973A JP2009286973A JP5479070B2 JP 5479070 B2 JP5479070 B2 JP 5479070B2 JP 2009286973 A JP2009286973 A JP 2009286973A JP 2009286973 A JP2009286973 A JP 2009286973A JP 5479070 B2 JP5479070 B2 JP 5479070B2
Authority
JP
Japan
Prior art keywords
pattern
diffraction pattern
optical image
resist
image intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009286973A
Other languages
English (en)
Other versions
JP2011129721A (ja
Inventor
均成 高橋
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009286973A priority Critical patent/JP5479070B2/ja
Priority to US12/960,074 priority patent/US8318393B2/en
Publication of JP2011129721A publication Critical patent/JP2011129721A/ja
Application granted granted Critical
Publication of JP5479070B2 publication Critical patent/JP5479070B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • G03F7/70441Optical proximity correction [OPC]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラムに関する。
半導体装置を製造する際のリソグラフィ工程では、微細なパターンを形成するために、実際に形成するパターンの4倍サイズのマスク(レチクル)と、縮小投影光学系から構成される露光装置とを用いる。
ところが、近年ではパターンの微細化に伴い、4倍体のマスクを用いてもマスクパターンの形成が困難になりつつある。また、光学系の設計や部材の物理的な制限により、ウェハ上に形成可能なパターンのサイズも限界に近づいている。こうした問題に対する超解像技術(RET:Resolution Enhancement Techniques)として、ダブルパターニングなどの新規な露光技術が提案されている。このダブルパターニングでは最初の露光と2回目の露光との重ね合わせの際に生じるズレなど、解決しなければならない問題が多数あり容易ではない。
こうした問題を解決する手法として、既存の露光技術で形成したウェハ上のパターンをシフターとして作用させるような全面露光を用いることにより、微細なパターンを形成する技術が提案されている(特許文献1参照)。
しかしながら、上記特許文献1の提案では、複雑な干渉パターンに基づいてパターンが形成されるので、干渉パターンを形成する際に用いるマスクパターンを最適なマスクパターン形状に補正することが困難であるというという問題があった。
特開平5−47623号公報
本発明は、全面露光によって形成される光学像強度分布を短時間で正確に算出する光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラムを提供することを目的とする。
本願発明の一態様によれば、基板上に形成された回折パターンの上面側から全面露光を行なうことによって前記回折パターンの下層側に配置されたレジストに形成される光学像強度分布を、前記回折パターンに対してフラクショナルフーリエ変換を用いることにより算出することを特徴とする光学像強度算出方法が提供される。
また、本願発明の一態様によれば、基板上にリソグラフィまたはインプリント法を用いて形成された回折パターンの上面側から全面露光を行なうことによって前記回折パターンの下層側に配置されたレジストに形成される光学像強度分布を、前記回折パターンに対してフラクショナルフーリエ変換を用いることにより算出する工程と、前記算出された光学像強度分布が所望の条件を満たしているか否かを検証する工程と、前記検証の結果、所望の条件を満たしていないと判断する場合には、前記回折パターンをリソグラフィまたはインプリント法を用いて形成する際に用いられるマスク又はテンプレートに形成されるパターンを補正する工程と、を備えたことを特徴とするパターン生成方法が提供される。
また、本願発明の一態様によれば、基板上に形成された回折パターンの上面側から全面露光を行なうことによって前記回折パターンの下層側に配置されたレジストに形成される光学像強度分布を、前記回折パターンに対してフラクショナルフーリエ変換を用いることにより算出する工程をコンピュータに実行させることを特徴とする光学像強度分布算出プログラムが提供される。
本発明によれば、全面露光によって形成される光学像強度分布を短時間で正確に算出することが可能になる効果を奏する。
図1は、回折パターンとレジスト層の構成を示す断面図である。 図2は、パターン形成層へのパターン形成処理手順を示す図である。 図3は、シミュレーション装置の構成を示すブロック図である。 図4は、マスクパターンの補正処理手順を示すフローチャートである。 図5は、マルチモード導波路解析方法を用いた光学像強度分布のシミュレーション方法を説明するための図である。 図6は、シミュレーション装置のハードウェア構成を示す図である。
以下に添付図面を参照して、本発明の実施の形態に係る光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラムを詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
(実施の形態)
本実施の形態では、所望のパターン形成を行う層(パターン形成層)よりも上層側に、レジスト層と、露光光を回折させる回折パターンと、を形成しておき、回折パターン上から全面露光を行う。そして、回折パターン上から全面露光を行なった場合にレジスト層に形成される光学像強度分布を、回折パターンにマルチモード導波路解析方法やフラクショナルFFT(Fast Fourier Transform)(フラクショナルフーリエ変換)を用いてシミュレーションする。さらに、レジスト層に形成される光学像強度分布が所望のパターンを形成できる分布となるよう、回折パターン(回折パターンの作成に用いるマスクパターン)などを補正する。換言すると、形成するレジストパターンが所望の形状となるよう、回折パターンなどを補正する。これにより、上層の回折パターンよりも微細な所望寸法のパターンを種々形成する。
図1は、回折パターンとレジスト層の構成を示す断面図である。ウェハなどの基板(図示せず)上には、パターン形成を行うパターン形成層4Xが積層され、パターン形成層4Xの上層にレジスト層3Xが積層される。さらに、レジスト層3Xの上層に回折格子として機能する回折パターン(イニシャルパターン)1Cが形成される。
本実施の形態では、パターン形成層4Xに所望パターンを形成する際に、回折パターン1Cの上層側から全面露光を行う。このとき、全面露光なのでフォトマスクなどは不要であり、露光用の照明をフォトマスクを介さず基板上(回折パターン1Cの上層側)に照射する。
また、全面露光として、回折現象が起きる条件にて露光する必要がある。回折現象が起こる条件とは、例えば、回折パターン1Cのパターンピッチpが、全面露光における露光光の波長λ/全面露光における露光光に対する回折パターンの屈折率nよりも大きいこと(p>λ/n)が条件である。ここで、屈折率nを略1と仮定することが可能であるので、回折パターン1Cのピッチの寸法よりも短い波長の露光光で全面露光を行なう。
さらに、回折パターン1Cのパターンピッチの最小値は、回折パターン1Cを形成する際に用いた露光光の波長に依存する。このため、全面露光に用いる露光光として、回折パターン1Cを形成する際に用いた露光光の波長よりも小さい波長を有する露光光を用いることが望ましい。例えば、回折パターン1Cを形成する際にi線(波長365nm)を用いた場合、このi線よりも波長の短いKrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、F2エキシマレーザ(波長157nm)、EUV(Extreme Ultraviolet Lithography)(波長13.6nm)などを用いて全面露光が行われる。なお、回折パターン1Cの形成や全面露光には、液浸露光や電子線を用いてもよい。本実施の形態では、ArFエキシマレーザを用いて回折パターン1Cを形成し、EUVを用いて全面露光を行う場合について説明する。
回折パターン1C上から全面露光を行うと、レジスト層3Xやパターン形成層4Xの膜中に結像する光学像の光強度分布(光学像強度分布)が表れる。図1では、光学像強度分布のうち、光学像強度分布の弱い領域を低強度領域A1で示し、光学像強度分布の強い領域を高強度領域B1で示している。低強度領域A1は、回折パターン1Cによる露光光の回折によって光の強度分布が弱くなる領域であり、高強度領域B1は、回折パターン1Cによる露光光の回折によって光の強度分布が強くなる領域である。
レジスト層3X、パターン形成層4Xのうち、露光後の現像処理によってレジストパターンが形成されるのはレジスト層3Xである。レジスト層3Xがポジレジストの場合、レジスト層3Xの低強度領域A1は、露光後の現像処理によってレジストパターンが残り、レジスト層3Xの高強度領域B1は、露光後の現像処理によってレジストパターンが除去される。レジスト層3Xを現像処理した後、現像後のレジスト層3X(レジストパターン)をマスクとしてパターン形成層4Xをエッチングすることにより、パターン形成層4Xに所望パターンが形成されることとなる。具体的には、パターン形成層4Xのうち低強度領域A1の下層部がラインパターンなどのパターン形成領域となり、パターン形成層4Xのうち高強度領域B1の下層部がスペース領域となる。
つぎに、パターン形成層4Xへのパターン形成方法について説明する。図2は、パターン形成層へのパターン形成処理手順を示す図である。図2の(a)〜(i)では、基板の断面を示している。
図2の(a)に示すように、基板(パターン形成層4X)を準備し、図2の(b)に示すようにパターン形成層4X上に第1のレジスト層3Xを積層する。この第1のレジスト層3Xは、この後、全面露光されるレジスト層である。なお、パターン形成層4Xは、半導体基板に限らず、金属層、絶縁層などいずれの層であってもよい。
パターン形成層4X上にレジスト層3Xを積層した後、図2の(c)に示すように、レジスト層3Xの上層にマスク材、例えば第2のレジスト層1Xを積層する。この第2のレジスト層1Xは、回折パターン1Cの形成に用いられるレジスト層である。
レジスト層3Xの上層に第2のレジスト層1Xを積層した後、図2の(d)に示すように、第2のレジスト層1Xへの露光(例えばArFエキシマレーザによる露光)を行う。この第2のレジスト層1Xへの露光は、フォトマスク、投影光学系を用いた露光である。これにより、第2のレジスト層1Xのうち、フォトマスクの遮光部に対応する位置(パターン1A)は露光されず、透光部の位置(パターン1B)が露光される。
第2のレジスト層1Xを露光した後、図2の(e)に示すように、現像が行われ、さらに図2の(f)に示すようにPEB(Post Exposure Bake)が行われる。現像によってパターン1Aのみが残り、パターン1Bは除去される。また、PEBによってパターン1Aは硬化し、回折パターン1Cとなる。なお、回折パターン1Cは、現像後のレジストパターンであってもよいし、現像後のレジストパターンを用いてエッチングされたマスク材パターン(エッチング後パターン)であってもよい。この場合、レジスト層3Xの上層にマスク材を形成し、さらに上層にレジストパターンを形成し、レジストパターンをマスクにマスク材をエッチングしてマスク材パターンを形成する。また、回折パターン1Cは、ナノインプリントによって形成されたパターンであってもよいし、側壁プロセスを用いて形成されたパターンであってもよい。なお、側壁プロセスを用いてマスク材パターンを作成する際は、リソグラフィにより芯材として形成した芯材パターンの側壁にマスク材パターンを形成するため、露光限界の倍以上のピッチのマスク材パターンを形成することができる。
この後、図2の(g)に示すように、回折パターン1Cの上面側から全面露光が行われる。このとき、第2のレジスト層1Xを露光する際に用いた波長よりも短い波長の露光光によって全面露光(例えばEUVによる全面露光)が行なわれる。これにより、第1のレジスト層3Xのうち、回折パターン1Cに応じた所定の位置(後述のレジストパターン3Aの位置)は露光されず、レジストパターン3A以外の位置(除去パターン3B)が露光される。すなわち、図1に示したレジスト層3Xのうち、低強度領域A1となる位置がレジストパターン3Aとなり、高強度領域B1となる位置が除去パターン3Bとなる。
回折パターン1Cの上面側から全面露光を行った後、回折パターン1Cの除去が行われる。さらに、現像やPEBが行われる。これにより、図2の(h)に示すように、レジストパターン3Aのみが残り、除去パターン3Bは除去される。この後、現像後のレジストパターン3Aをマスクとしてパターン形成層4Xのエッチングが行われ、図2の(i)に示すように、所望パターン(エッチング後パターン4A)が形成される。
なお、レジスト層3Xとレジスト層1Xの間に中間層を積層させてもよい。中間層は、レジスト層3Xと回折パターン1Cとの間の距離を制御(調整)するための膜である。レジスト層3Xとレジスト層1Xの間に中間層を積層させる場合、回折パターン1Cへの全面露光を行った後に、回折パターン1Cと中間層の除去が行われる。
本実施の形態では、回折パターン1Cを配置または形成するためのマスクに形成するマスクパターンを、マルチモード導波路解析またはフラクショナルFFTなどの近似モデルによって得られる全面露光光学像強度分布に基づいて補正する。具体的には、レジスト層3X内の光学像強度分布やレジストパターン3Aのパターン形状に基づいて、ウェハ上に配置する回折パターン1Cのパターン形状を定めておく。すなわち、回路レイアウトとウェハ上に形成するエッチング後パターン4Aの形状が対応するように回折パターン1Cの形状・寸法を定め、その回折パターン1Cをフォトリソグラフィ、インプリント法あるいは側壁プロセスにより形成できるようなマスクパターン(テンプレートパターンを含む)を補正する。
例えば、エッチング後パターン4Aは、レジストパターン3Aを形成するレジスト層3Xの上部あるいはレジスト層3Xよりも上層に形成されたレジスト膜(中間層など)、パターン形成層4Xの積層条件、全面露光に用いる露光光波長、露光光波長における積層膜(レジスト層3Xや中間層など)の光学定数などに依存する。また、エッチング後パターン4Aは、回折パターン1Cのパターン形状(後述のパターンピッチpなど)にも依存する。本実施の形態では、レジスト層3X内での光学像強度分布が、エッチング後パターン4A(所望のレイアウト)を形成することができる光学像強度分布となるよう、回折パターン1Cの形成に用いるマスクパターンを補正しておく。これにより、全面露光によって所望のエッチング後パターン4Aを形成することができる。この補正方法は、全面露光によって露光するウェハの上層に予め形成する回折パターン1Cに対応するマスクパターンを生成する場合や全面露光によって形成されるレジストパターン3Aの解像性を高める場合に適用することができる。
図3は、シミュレーション装置の構成を示すブロック図である。シミュレーション装置30は、回折パターン1C上から全面露光を行なった場合に形成されるレジストパターン3Aのパターン形状を、マルチモード導波路解析やフラクショナルFFTによってシミュレーションするコンピュータなどである。
シミュレーション装置30は、入力部31、記憶部32、シミュレーション部40、出力部37を有している。入力部31は、記憶部32に格納する種々の情報などを外部装置などから入力し、記憶部32に送る。記憶部32は、入力部31から送られてくる情報としてウェハ情報33、回折パターン情報34、全面露光情報36などを記憶するメモリなどである。
ウェハ情報33は、全面露光されるウェハに関する情報であり、レジスト層3Xの配置位置(回折パターン1Cからの厚さ方向の距離)に関する情報などである。回折パターン情報34は、回折パターン1Cに関する情報であり、回折パターン1Cのレイアウトや厚さなどである。全面露光情報36は、全面露光の条件に関する情報であり、例えば全面露光に用いる波長の値、この波長における上層膜の光学定数などである。
シミュレーション部40は、光強度分布算出部41とパターン形状算出部42を備えている。光強度分布算出部41は、記憶部32内のウェハ情報33、回折パターン情報34、全面露光情報36などを用いて、回折パターン1Cを用いて全面露光した場合のレジスト層3X内での光学像強度分布を算出する。本実施の形態の光強度分布算出部41は、マルチモード導波路解析方法やフラクショナルFFTを用いて、レジスト層3Xに形成される光学像強度分布を算出するのに必要な種々の式やパラメータを用いて光強度分布を算出する。パターン形状算出部42は、光学像強度分布の算出結果などを用いてレジストパターン3Aのパターン形状を導出(算出)する。なお、パターン形状算出部42は、算出したレジストパターン3Aのパターン形状などを用いてエッチング後パターン4Aのパターン形状を算出してもよい。出力部37は、シミュレーション部40が算出したレジストパターン3Aのパターン形状を外部出力する。
なお、シミュレーション装置30は、パターン形状算出部42を有していなくてもよい。この場合、シミュレーション装置30は、光強度分布算出部41によってレジスト層3Xに形成される光強度分布を算出する。そして、シミュレーション装置30以外の他の装置(パターン形状算出装置)で、光学像強度分布に対応するレジストパターン3Aのパターン形状を算出する。
つぎに、回折パターン1Cのパターン形成に用いるマスクパターンの補正処理手順について説明する。図4は、マスクパターンの補正処理手順を示すフローチャートである。マスクパターンの生成装置は、回折パターン1Cのパターンデータや回折パターン1Cの設計レイアウトデータなどを用いて、回折パターン1Cのパターン形成に用いるマスクパターンデータをマスクパターンXとして生成する(ステップS110)。このマスクパターンXは、マスクパターンの生成装置によって仮生成され、必要に応じて補正されるパターンデータである。
つぎに、マスクパターンXを用いて回折パターン1Cのパターン形状を算出する。回折パターン1Cのパターン形状は、投影露光のシミュレーションを行うシミュレーション装置などを用いて算出される(ステップS120)。
この後、シミュレーション装置30は、マルチモード導波路解析方法やフラクショナルFFTに回折パターン1Cのパターン形状を適用して、レジストパターン3Aのパターン形状をシミュレーションする(ステップS130)。具体的には、シミュレーション装置30の入力部31にウェハ情報33、回折パターン情報34、全面露光情報36などを入力する。ここでの回折パターン情報34は、シミュレーションによって算出されたレジストパターン3Aのパターン形状に関する情報である。シミュレーション装置30の入力部31にウェハ情報33、回折パターン情報34、全面露光情報36などは、それぞれ記憶部32によって記憶される。
シミュレーション部40の光強度分布算出部41は、記憶部32内のウェハ情報33、回折パターン情報34、全面露光情報36などを参照し、回折パターン1Cのパターンピッチpなどを用いて全面露光した場合のレジスト層3X内での光学像強度分布をシミュレーションする。本実施の形態の光強度分布算出部41は、マルチモード導波路解析方法またはフラクショナルFFTを用いて光学像強度分布を算出する。そして、パターン形状算出部42は、光学像強度分布の算出結果とウェハ情報33(レジスト層3Xの厚さ方向の配置位置)などを用いてレジストパターン3Aのパターン形状をシミュレーションする。
ここで、レジスト層3X内での光学像強度分布のシミュレーション方法について説明する。まず、フラクショナルFFTを用いたレジスト層3X内での光学像強度分布のシミュレーション方法について説明する。
ここでは、レジスト層3Xを一次元パターン(L/S)と仮定した場合のシミュレーション方法について説明する。なお、レジスト層3Xを二次元パターンとした場合であっても以下のシミュレーション方法を拡張することによって、光学像強度分布をシミュレーションすることができる。
全面露光プロセスでは、基板上に形成した1stパターン(回折パターン1C)に対して全面露光を行い、回折パターン1Cよりも下層に積層されているレジスト層3X中に、回折によって得られる回折像を形成する。例えば、基板上層の回折パターン1Cとレジスト層3Xとの間には、所望のパターンに対応する回折光分布を得るために必要となる予め定められた膜厚の中間膜が積層されている。
基板面内をx−y平面、回折パターン1Cなどの膜厚方向をz軸、基板上の回折パターン1Cが形成されている基板表面(回折パターン1Cの底面)をz=0とし、光学像が形成されるレジスト層3Xのイメージ形成面(レジスト層3Xの厚さ方向の所望位置)をz=z’とする。このとき、回折パターン1Cを全面露光した際に得られる回折光分布は、以下の式(1)の条件を満たす場合は、3次以上の高次成分を無視して近似することができる。このため、式(2)のフレネル回折の式によって回折光分布u’(x’)を求めることができる。なお、式(2)のx’は回折光の座標である。
Figure 0005479070
Figure 0005479070
ここでイメージ形成面の座標を式(3)、式(4)のように射影すると、式(2)の積分箇所は式(5)のように変換される。この変換後の積分式は、LohmannのtypeII光学系におけるフラクショナルFFTの式に対応しており、高速計算が可能である。
Figure 0005479070
Figure 0005479070
Figure 0005479070
つぎに、マルチモード導波路解析方法を用いたレジスト層3X内での光学像強度分布のシミュレーション方法について説明する。図5は、マルチモード導波路解析方法を用いた光学像強度分布のシミュレーション方法を説明するための図であり、マルチモード導波路解析方法を概念的に示している。
基板上の回折パターン1C直下の電場分布をマルチモード干渉結合器(MMI)として取り扱う。このとき、MMIでの導波路の幅wを、基板上パターンのパターンピッチpに対してw=pとして扱うことで、マルチモード導波路解析方法を適用することが可能となる。なお、中間膜の膜厚が前述の条件よりも薄い基板条件と中間膜が無い基板条件とでの光学像を両方計算するよう、マルチモード導波路解析方法を用いたシミュレーション方法を拡張してもよい。
パターンピッチpは、回折パターン1Cの基板上でのパターン間距離(スペースSの幅)とパターン幅(ラインLの幅)とを足し合わせた距離である。マルチモード導波路解析方法では、MMIであるマルチモード導波路10の導波路入射口51がスペースSに対応し、導波路出射口52での光学像強度分布がレジスト層3X内での光学像強度分布となる。
回折パターン1Cへ全面露光された露光光は、回折パターン1CのスペースSを通過して下層側(中間膜やレジスト層3X)に照射される。この現象は、マルチモード導波路解析方法において、導波路入射口51内(導波路の幅w)へ露光光が入射されること(ST1)に対応している。
回折パターン1Cのスペースを通過して下層側に照射された露光光は、下層側で干渉する。この現象は、マルチモード導波路解析方法において、マルチモード導波路10内で露光光が干渉すること(ST2)に対応している。
下層側で干渉した露光光は、レジスト層3X内で所定の光学像強度分布となるようレジスト層3Xに照射される。この現象は、マルチモード導波路解析方法において、導波路出射口52(導波路外)へ露光光が出射されること(ST3)に対応している。このため、導波路出射口52へ出射される露光光の光学像強度分布がレジスト層3X内での光学像強度分布となる。
本実施の形態では、上述した各現象をマルチモード導波路解析方法に適用して、レジスト層3X内での光学像強度分布を算出する。例えば、一次元パターン直下の光学像としてTE波を考慮すると、電場の成分は式(6)の関係を満たす。
Figure 0005479070
式(6)でのEyは、電場のy方向成分であり、k0は波数でる。また、式(6)でのnは、媒質の屈折率である。このとき、次数jのモードjφjにおけるz方向のモード伝播特性は、次数jにおけるモード伝播定数βjを用いてexp(−iβjz)であり、βjは近似的に式(7)として扱うことができる。
Figure 0005479070
また、モード間の伝播定数の差は、式(8)、式(9)によって示される。式(8)、式(9)でのLcは、0次の伝播モードと1次の伝播モードとの間の伝播定数の差の逆数である。
Figure 0005479070
Figure 0005479070
以上の式(6)〜式(9)を用いると、基板表面から深さzの位置における光学像は、式(10)の展開式によって算出することができる。
Figure 0005479070
このように、式(10)では、Ey(x,z)がLcを用いた式となっており、またLcは式(9)に示すように導波路の幅w(回折パターン1Cの基板上でのパターンピッチp)を用いた式となっている。したがって、マルチモード導波路解析方法を用いたレジスト層3X内での光学像強度分布のシミュレーション方法は、回折パターン1Cのパターンピッチpを用いたマルチモード導波路解析方法となっている。
出力部37は、パターン形状算出部42が算出したレジストパターン3Aのパターン形状を外部出力する。この後、コンピュータなどのパターン判定装置は、シミュレーション生成されたレジストパターン3Aのパターン形状と、所望のレジストパターン3Aとを比較する。これにより、パターン判定装置は、マスクパターンXを用いて生成したレジストパターン3Aのパターン形状が所望のパターン形状であるか否かを判定する(ステップS140)。ここでのパターン判定装置は、予めウェハ上に形成したいレジストパターン3Aのパターン形状を記憶しておく。そして、パターン判定装置は、記憶しておいたパターン形状と生成したレジストパターン3Aのパターン形状とを比較することによって、生成したレジストパターン3Aのパターン形状が所望のパターン形状であるか否かを判定する。
マスクパターンXを用いて生成したレジストパターン3Aのパターン形状が所望のパターン形状でない場合(ステップS140、NG)、パターン形状データの補正装置やパターン形状データの作成装置などによって、レジストパターン3Aのパターン形状を補正する(ステップS150)。
この後、マスクパターンXを用いて生成したレジストパターン3Aのパターン形状が所望のパターン形状となるまで、ステップS120〜S150の処理を繰り返す。すなわち、シミュレーション装置30は、回折パターン1Cの補正後のパターン形状を用いてレジストパターン3Aのパターン形状をシミュレーションする(ステップS130)。さらに、パターン判定装置は、補正後の回折パターン1Cを用いて生成したレジストパターン3Aのパターン形状が所望のパターン形状であるか否かを判定する(ステップS140)。
レジストパターン3Aの補正後のパターン形状が所望のパターン形状であれば(ステップS140、OK)、マスクパターンの生成装置は、レジストパターン3Aの補正後のパターン形状を用いて、回折パターン1Cのパターン形成に用いるマスクパターンをマスクパターンYとして生成する(ステップS160)。具体的には、所望どおりの回折パターン1C、レジストパターン3Aを形成できるよう、マスクパターンを補正する。
この後、シミュレーション装置30は、マスクパターンYを用いて回折パターン1Cのパターン形状をシミュレーションする(ステップS170)。さらに、パターン判定装置は、シミュレーション生成された回折パターン1Cのパターン形状が所望のパターン形状であるか否かを判定する(ステップS180)。
回折パターン1Cのパターン形状が所望のパターン形状でない場合(ステップS180、NG)、マスクパターンの生成装置は、マスクパターンYを再生成(補正)する(ステップS160)。そして、シミュレーション装置30が、補正後のマスクパターンYを用いて回折パターン1Cのパターン形状をシミュレーションし(ステップS170)、パターン判定装置が、シミュレーション生成された回折パターン1Cのパターン形状が所望のパターン形状であるか否かを判定する(ステップS180)。
この後、回折パターン1Cのパターン形状が所望のパターン形状となるまでステップS180、ステップS160,S170の処理が繰り返される。回折パターン1Cのパターン形状が所望のパターン形状になると判定されると(ステップS180、OK)、マスクパターンの生成処理を終了する。
シミュレーション装置30による光学像強度分布の算出処理やレジストパターン3Aのパターン形状算出処理は、例えばウェハプロセスのレイヤ毎に行われる。そして、各レイヤでは、必要に応じてマスクパターンが変更され、変更されたマスクパターンを用いてウェハへの露光処理が行われる。具体的には、マスクパターンが変更されたマスクを介して第2のレジスト層1X上からウェハに露光を行なって回折パターン1Cを形成する。そして回折パターン1C上からウェハに全面露光を行ない、その後現像処理を行ってレジストパターン3Aが形成される。さらに、レジストパターン3Aをマスクとして、レジストパターン3Aの下層側に配置された被加工膜を、加工(エッチング処理など)し、所望のエッチング後パターン4Aを形成する。半導体デバイスなどの半導体装置(半導体集積回路)を作製(製造)する際には、上述した光学像強度分布の算出処理、エッチング後パターン4Aのパターン形状算出処理、マスクパターンの補正処理、補正したマスクパターンを用いた回折パターン1Cの形成処理、回折パターン1Cを用いた全面露光処理、現像処理、レジストパターン3Aをマスクとしたエッチング処理などがレイヤ毎に繰り返される。
つぎに、シミュレーション装置30のハードウェア構成について説明する。図6は、シミュレーション装置のハードウェア構成を示す図である。シミュレーション装置30は、CPU(Central Processing Unit)91、ROM(Read Only Memory)92、RAM(Random Access Memory)93、表示部94、入力部95を有している。シミュレーション装置30では、これらのCPU91、ROM92、RAM93、表示部94、入力部95がバスラインを介して接続されている。
CPU91は、コンピュータプログラムである光強度分布算出プログラム97Aを用いてレジスト層3X内での光学像強度分布を算出する。また、CPU91は、コンピュータプログラムであるパターン形状算出プログラム97Bを用いて、光学像強度分布に対応するエッチング後パターン4Aのパターン形状を算出する。
表示部94は、液晶モニタなどの表示装置であり、CPU91からの指示に基づいて、ウェハ情報33、回折パターン情報34、全面露光情報36、光学像強度分布、光学像強度分布に対応するエッチング後パターン4Aのパターン形状などを表示する。入力部95は、マウスやキーボードを備えて構成され、使用者から外部入力される指示情報(光学像強度分布の算出に必要なパラメータ等)やウェハ情報33、回折パターン情報34、全面露光情報36を入力する。入力部95へ入力された指示情報は、CPU91へ送られる。ウェハ情報33、回折パターン情報34、全面露光情報36は、ROM92としてシミュレーション装置30内に記憶されるか又はRAM93内で記憶される。
光強度分布算出プログラム97Aやパターン形状算出プログラム97Bは、ROM92内に格納されており、バスラインを介してRAM93へロードされる。図6では、光強度分布算出プログラム97Aやパターン形状算出プログラム97BがRAM93へロードされた状態を示している。
CPU91はRAM93内にロードされた光強度分布算出プログラム97Aやパターン形状算出プログラム97Bを実行する。具体的には、シミュレーション装置30では、使用者による入力部95からの指示入力に従って、CPU91がROM92内から光強度分布算出プログラム97Aやパターン形状算出プログラム97Bを読み出してRAM93内のプログラム格納領域に展開して各種処理を実行する。CPU91は、この各種処理に際して生じる各種データをRAM93内に形成されるデータ格納領域に一時的に記憶させておく。
シミュレーション装置30で実行される光強度分布算出プログラム97Aやパターン形状算出プログラム97Bは、それぞれ光強度分布算出部41やパターン形状算出部42を含むモジュール構成となっており、これらが主記憶装置上にロードされ、これらが主記憶装置上に生成される。
なお、本実施の形態では、マスクパターンXを用いて生成したレジストパターン3Aのパターン形状が所望のパターン形状であるか否かを判定したが、マスクパターンXを用いて生成したエッチング後パターン4Aが所望のパターン形状であるか否かを判定してもよい。この場合、パターン判定装置は、レジストパターン3Aを用いてシミュレーション生成されたエッチング後パターン4Aのパターン形状と、所望のエッチング後パターン4Aとを比較する。そして、パターン判定装置は、マスクパターンXを用いて生成したエッチング後パターン4Aのパターン形状が所望のパターン形状であるか否かを判定する。
また、シミュレーション装置30がパターン判定装置やマスクパターンの生成装などの本実施の形態で説明した装置の機能を備える構成としてもよい。
なお、本実施の形態では、回折パターン1Cに対してマルチモード導波路解析モデルやフラクショナルFFTを用いてレジスト層3Xの光学像強度分布を算出する場合について説明したが、回折パターン1Cの設計パターンを用いて光学像強度分布を算出してもよい。また、回折パターン1Cをシミュレーションで一次的に求め、求めた回折パターン1Cを用いて光学像強度分布をシミュレーションしてもよい。
また、本実施の形態では、シミュレーション生成されたレジストパターン3Aのパターン形状が所望のパターン形状でない場合に、レジストパターン3Aのパターン形状を補正する場合について説明したが、補正対象はレジストパターン3Aのパターン形状に限らない。例えば、回折パターン1Cに対してマルチモード導波路解析モデル又はフラクショナルFFTを用いることにより算出された光学像強度分布が所望の条件を満たしているか否かを検証する。そして、検証の結果、所望の条件を満たしていないと判断した場合に、回折パターン1Cをリソグラフィまたはインプリント法を用いて形成する際に用いられるマスク又はテンプレートに形成されるパターンを補正してもよい。
このように実施の形態によれば、回折パターン上から全面露光を行なった場合にレジスト層に形成される光学像強度分布を、マルチモード導波路解析方法やフラクショナルFFTを用いて導出するので、全面露光を用いて形成されるパターンの形状を正確かつ短時間でシミュレーションすることが可能となる。
1C 回折パターン、3A レジストパターン、3X レジスト層、4A エッチング後パターン、4X パターン形成層、10 マルチモード導波路、30 シミュレーション装置、32 記憶部、40 シミュレーション部、41 光強度分布算出部、42 パターン形状算出部、97A 光強度分布算出プログラム。

Claims (5)

  1. 基板上に形成された回折パターンの上面側から全面露光を行なうことによって前記回折パターンの下層側に配置されたレジストに形成される光学像強度分布を、前記回折パターンに対してフラクショナルフーリエ変換を用いることにより算出することを特徴とする光学像強度算出方法。
  2. 前記光学像強度分布は、前記回折パターンのパターンピッチを用いて算出されることを特徴とする請求項1に記載の光学像強度算出方法。
  3. 基板上にリソグラフィまたはインプリント法を用いて形成された回折パターンの上面側から全面露光を行なうことによって前記回折パターンの下層側に配置されたレジストに形成される光学像強度分布を、前記回折パターンに対してフラクショナルフーリエ変換を用いることにより算出する工程と、
    前記算出された光学像強度分布が所望の条件を満たしているか否かを検証する工程と、
    前記検証の結果、所望の条件を満たしていないと判断する場合には、前記回折パターンをリソグラフィまたはインプリント法を用いて形成する際に用いられるマスク又はテンプレートに形成されるパターンを補正する工程と、
    を備えたことを特徴とするパターン生成方法。
  4. 請求項3記載のパターン生成方法により求められたパターンに基づいて製造されたマスク又はテンプレートを用いたリソグラフィまたはインプリント法により、基板上に回折パターンを形成する工程と、
    前記回折パターンの下層側に配置されたレジストに対して、前記回折パターンを介して、全面露光する工程と、
    前記レジストを現像してレジストパターンを形成する工程と、
    前記レジストパターンの下層側に配置された被加工膜を、前記レジストパターンをマスクにして加工する工程と、
    を備えたことを特徴とする半導体装置の製造方法。
  5. 基板上に形成された回折パターンの上面側から全面露光を行なうことによって前記回折パターンの下層側に配置されたレジストに形成される光学像強度分布を、前記回折パターンに対してフラクショナルフーリエ変換を用いることにより算出する工程をコンピュータに実行させることを特徴とする光学像強度分布算出プログラム。
JP2009286973A 2009-12-17 2009-12-17 光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラム Expired - Fee Related JP5479070B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009286973A JP5479070B2 (ja) 2009-12-17 2009-12-17 光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラム
US12/960,074 US8318393B2 (en) 2009-12-17 2010-12-03 Optical-image-intensity calculating method, pattern generating method, and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286973A JP5479070B2 (ja) 2009-12-17 2009-12-17 光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラム

Publications (2)

Publication Number Publication Date
JP2011129721A JP2011129721A (ja) 2011-06-30
JP5479070B2 true JP5479070B2 (ja) 2014-04-23

Family

ID=44151585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286973A Expired - Fee Related JP5479070B2 (ja) 2009-12-17 2009-12-17 光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラム

Country Status (2)

Country Link
US (1) US8318393B2 (ja)
JP (1) JP5479070B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8891080B2 (en) * 2010-07-08 2014-11-18 Canon Nanotechnologies, Inc. Contaminate detection and substrate cleaning

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888683B2 (ja) * 1991-06-07 1999-05-10 シャープ株式会社 光露光によるレジストマスクパターン形成方法
JP3091886B2 (ja) * 1991-07-25 2000-09-25 セイコーインスツルメンツ株式会社 レジストパターンの形成方法
JPH08248257A (ja) * 1995-03-07 1996-09-27 Fujitsu Ltd 光学素子結合方法及び屈折率像形成材料
JPH0777637A (ja) * 1993-09-08 1995-03-20 Fujitsu Ltd 光学素子結合方法及び屈折率像形成材料
JP2000077317A (ja) * 1998-09-03 2000-03-14 Sony Corp レジストパターン形成方法
EP1711854A4 (en) * 2003-10-17 2009-08-19 Explay Ltd OPTICAL SYSTEM AND METHOD FOR USE IN PROJECTION SYSTEMS
US7582413B2 (en) 2005-09-26 2009-09-01 Asml Netherlands B.V. Substrate, method of exposing a substrate, machine readable medium
JP4690946B2 (ja) 2006-06-02 2011-06-01 株式会社東芝 シミュレーションモデルの作成方法、プログラム及び半導体装置の製造方法
US8896808B2 (en) * 2006-06-21 2014-11-25 Asml Netherlands B.V. Lithographic apparatus and method
JP2008122929A (ja) 2006-10-20 2008-05-29 Toshiba Corp シミュレーションモデルの作成方法
US7709187B2 (en) * 2006-10-23 2010-05-04 International Business Machines Corporation High resolution imaging process using an in-situ image modifying layer
JP5038743B2 (ja) 2007-03-05 2012-10-03 株式会社東芝 リソグラフィシミュレーション方法及びプログラム

Also Published As

Publication number Publication date
US20110151361A1 (en) 2011-06-23
JP2011129721A (ja) 2011-06-30
US8318393B2 (en) 2012-11-27

Similar Documents

Publication Publication Date Title
US11461532B2 (en) Three-dimensional mask model for photolithography simulation
TWI519901B (zh) 用於三維抗蝕分佈模擬之微影模型
JP3992688B2 (ja) コンタクト・ホール・マスクの光学的近接補正設計の方法
US6223139B1 (en) Kernel-based fast aerial image computation for a large scale design of integrated circuit patterns
Banerjee et al. ICCAD-2013 CAD contest in mask optimization and benchmark suite
JP5235322B2 (ja) 原版データ作成方法及び原版データ作成プログラム
US20110222739A1 (en) Determining Calibration Parameters for a Lithographic Process
KR101001219B1 (ko) 마스크 데이터의 생성방법, 마스크 제작방법, 노광방법, 디바이스 제조방법 및 기억매체
TW200306456A (en) Method for fabricating mask pattern, computer program, method for manufacturing photomask, and method for manufacturing semiconductor device
US6794096B2 (en) Phase shifting mask topography effect correction based on near-field image properties
US6993455B2 (en) Method for determining the construction of a mask for the micropatterning of semiconductor substrates by means of photolithography
Cole et al. Using advanced simulation to aid microlithography development
JP5345235B2 (ja) 3dトポグラフィウェーハ用のリソグラフィモデル
JP2010186166A (ja) 原版データを生成する方法およびプログラム、ならびに、原版製作方法
US10067425B2 (en) Correcting EUV crosstalk effects for lithography simulation
JP4316026B2 (ja) マスクパターンの作製方法及びフォトマスク
JP2000232057A (ja) レジストパターンのシミュレーション方法およびパターン形成方法
US20110177437A1 (en) Compensating Masks, Multi-Optical Systems Using the Masks, and Methods of Compensating for 3-D Mask Effect Using the Same
US9798226B2 (en) Pattern optical similarity determination
JP5479070B2 (ja) 光学像強度算出方法、パターン生成方法、半導体装置の製造方法および光学像強度分布算出プログラム
US10496780B1 (en) Dynamic model generation for lithographic simulation
JP2008091721A (ja) レジストパターン予測システム、レジストパターン予測方法、及びマスクパターン補正方法
JP2005049460A (ja) レジストパターン作成方法、レジストパターン作成装置、フォトマスクの設計方法及びフォトマスク
Isoyan et al. Modeling of nanolithography processes
JP2010156849A (ja) 生成方法、原版の作成方法、露光方法、デバイスの製造方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

LAPS Cancellation because of no payment of annual fees