JP5471416B2 - 発電システム及びその制御方法 - Google Patents

発電システム及びその制御方法 Download PDF

Info

Publication number
JP5471416B2
JP5471416B2 JP2009289540A JP2009289540A JP5471416B2 JP 5471416 B2 JP5471416 B2 JP 5471416B2 JP 2009289540 A JP2009289540 A JP 2009289540A JP 2009289540 A JP2009289540 A JP 2009289540A JP 5471416 B2 JP5471416 B2 JP 5471416B2
Authority
JP
Japan
Prior art keywords
power generation
temperature
cell
unit
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009289540A
Other languages
English (en)
Other versions
JP2011129468A (ja
Inventor
一典 山中
和明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009289540A priority Critical patent/JP5471416B2/ja
Priority to US12/974,249 priority patent/US8524383B2/en
Publication of JP2011129468A publication Critical patent/JP2011129468A/ja
Application granted granted Critical
Publication of JP5471416B2 publication Critical patent/JP5471416B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04567Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、発電システム及びその制御方法に関する。
従来、燃料電池を用いた発電システムが検討されている。燃料電池の動作温度は、主に、電解質層がイオンを透過する温度によって決定される。電解質の中でも、固体酸化物を用いる燃料電池は、高い動作温度を有しており、高い発電効率が期待されている。
また、燃料電池では、多数の発電セルが直列又は並列接続して用いられる。各発電セルの発電特性にはばらつきがあるので、多数の発電セルが集合した状態で発電する場合には、各発電セルを最適の発電出力で安定して動作させるために、発電セルごとに発電動作温度が設定される。従って、燃料電池では、発電セルごとに、温度が制御されることが望まれる。
特開2005−228523号公報 特開2007−200710号公報
また、固体酸化物を用いる燃料電池の動作温度は、例えば、500℃〜1000℃という高温である。停止している燃料電池を発電させる場合には、燃料電池を起動させてから上述した動作温度に達するまでに要する時間を短くすることが望まれる。
従って、燃料電池を形成する各発電セルの温度を短い時間で上昇させること、又は各発電セルの温度を個別に制御することが求められている。
また、発熱反応を利用する燃料電池の発電では、発電の際に生じる熱エネルギーが有効に利用されることが望ましい。
大規模な燃料電池システムでは、発電の際に生じる熱エネルギーを有効に利用するために、水を加熱しお湯として利用する方法や、さらに電気エネルギーに変換する手段としてタービン等の機械的な熱機関を用いて発電機を動かすことが考えられる。しかし、このような機械的な手段は、多くの機械的な可動部を有するので、構造が複雑となり、また、保守が容易ではない。また、小規模な燃料電池システムでは、タービン等の機械的な手段を用いることは適当ではない場合がある。
本明細書では、発電システム及びその制御方法を開示する。
本明細書に開示する発電システムの制御方法の一形態によれば、燃料電池を形成し、電力を発生する複数のセルと、上記セルそれぞれに対応し、上記セルの温度を測定するセル温度測定部と、上記セルそれぞれに対応し、熱移送モード及び熱発電モードを有する熱電変換部と、複数の上記セルを加熱する加熱部と、上記加熱部を制御する第1制御部と、上記熱電変換部それぞれに対応し、上記熱電変換部を制御する第2制御部と、を備える発電システムの制御方法であって、上記第1制御部は、上記加熱部の温度が所定の制御温度範囲内に入るように、上記加熱部を制御し、上記第2制御部は、上記セルの温度が所定の動作温度範囲外であれば、上記熱電変換部を熱移送モードにして、上記セルの温度を所定の動作温度範囲内に入るように制御し、上記セルの温度が所定の動作温度範囲内であれば、上記熱電変換部を上記発電モードにする。
上述した本明細書に開示する発電システムの制御方法の一形態によれば、燃料電池を形成する各セルの温度を個別に制御することができる。
また、本明細書に開示する発電システムの制御方法の一形態によれば、燃料電池を形成する各セルの温度を短い時間で所要の動作温度範囲内に安定させることができる。
更に、本明細書に開示する発電システムの制御方法の一形態によれば、燃料電池の発電の際に生じる熱エネルギーを、機械的な可動部を用いずに電気エネルギーに変換することができる。
本明細書に開示する発電システムの第1実施形態を示すブロック図である。 図1の発電システムの要部を示す図である。 図2のX−X線断面図である。 図1の第2制御部を説明する図である。 図1の第1制御部が有するテーブルを説明する図である。 図3の発電セルの変形例を示す図である。 図3の熱電変換部を形成する熱電変換素子の電気接続構造を示す斜視図である。湾曲部を分かりやすくするため、平らに展開し表現している。 図3の熱電変換部の基本構造を説明する斜視図である。湾曲部を分かりやすくするため、平らに展開し表現している。 図3の熱電変換部と発電セルの変形例を示す図である。 図1の発電システムの起動時の温度制御を説明するフローチャートである。 熱移送モードにおける熱電変換部の動作を説明する図である。 図1の発電システムの起動後の温度制御を説明するフローチャートである。 本明細書に開示する発電システムの第2実施形態を示すブロック図である。 図12の発電システムの温度制御を説明するフローチャート(その1)である。 図12の発電システムの温度制御を説明するフローチャート(その2)である。 本明細書に開示する発電システムの第3実施形態を示すブロック図である。 図14の発電システムの要部を示す図である。 図14の発電システムの起動時の温度制御を説明するフローチャートである。
以下、本明細書で開示する発電システムの好ましい第1実施形態を、図面を参照して説明する。但し、本発明の技術範囲はそれらの実施形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
図1は、本明細書に開示する発電システムの第1実施形態を示すブロック図である。図2は、図1の発電システムの要部を示す図である。図3は、図2のX−X線断面図である。図4Aは、図1の第2制御部を説明する図である。図4Bは、図1の第1制御部が有するテーブルを説明する図である。
本実施形態の発電システム10は、燃料電池を形成する2つの発電セル11a、11bと、発電セル11a、11bそれぞれに対応し、対応する発電セル11a、11bの温度を測定するセル温度測定部12a、12bと、を備え得る。セル温度測定部12a、12bとしては、例えば、熱電対を用いることができる。
また、発電システム10は、発電セル11a、11bそれぞれに対応した熱電変換部13a、13bを備え得る。熱電変換部13a、13bは、対応する発電セル11a、11bを加熱又は冷却する熱移送モード、及び対応する発電セル11a、11bから熱エネルギーを受け取って発電する熱発電モードを有する。
熱移送モードでは、熱電変換部13a、13bがペルチエ素子として機能し、熱の移送を行う。熱電変換部13a、13bは、対応する発電セルに対向するセル側と、セル側とは反対側の加熱部14に向いた加熱部側とを有している。熱移送モードでは、熱電変換部は、電力が供給されて、セル側と加熱部側との間で熱の移送を行う。
一方、熱発電モードでは、熱電変換部13a、13bが、ゼーベック素子として機能して、発電セルによって加熱されたセル側と、このセル側よりも温度が低い加熱部側との温度差によって、熱発電を行う。
また、発電システム10は、2つの発電セル11a、11bを加熱する加熱部14と、加熱部14の温度に基づいて、加熱部14を制御する第1制御部15とを備え得る。
また、発電システム10は、熱電変換部13a、13bそれぞれに対応し、対応する熱電変換部13a、13bを制御する第2制御部16a、16bを備え得る。第2制御部16aは、セル温度測定部12aが測定した発電セル11aの温度に基づいて、熱電変換部13aを、熱移送モード又は熱発電モードに切り替える。同様に、第2制御部16bは、セル温度測定部12bが測定した発電セル11bの温度に基づいて、熱電変換部13bを、熱移送モード又は熱発電モードに切り替える。
発電システム10では、第1制御部15が加熱部14を制御するのと共に、第2制御部16a、16bそれぞれが対応する各熱電変換部13a、13bを制御して、発電セル11a、11bそれぞれの温度が制御される。
更に、発電システム10は、熱電変換部13aが発電した電力を取り出す電力端子19aと、熱電変換部13bが発電した電力を取り出す電力端子19bと、2つの発電セル11a、11bが発電した電力を取り出す電力端子19cと、を備え得る。
このように、発電システム10は、上述した発電セル11aとセル温度測定部12aと熱電変換部13aとを有する第1セル集合体Caと、発電セル11bとセル温度測定部12bと熱電変換部13bとを有する第2セル集合体Cbと、を備え得る。
発電システム10では、発電セル11aと発電セル11bとは、発電特性に個体差があるので、2つの発電セルを用いて同時に発電する場合には、各発電セルを最適の発電出力で安定して動作させるために、発電セルごとに独自の発電動作温度が設定されて制御されることが好ましい。なお、この発電動作温度には、後述するように所定の範囲があっても良い。
具体的には、発電システム10では、第1制御部15及び加熱部14を用いて、2つの発電セル11a、11bの全体が加熱される。更に、発電システム10では、第2制御部16a、16bを用いて、2つの発電セル11a、11bの温度が、個別に制御される。
第1セル集合体Caでは、第2制御部16aが、セル温度測定部12a及び熱電変換部13aを用いて、発電セル11aの温度を制御する。同様に、第2セル集合体Cbでは、第2制御部16bが、セル温度測定部12b及び熱電変換部13bを用いて、発電セル11bの温度を制御する。
次に、第1セル集合体Caを制御する第2制御部16aについて、図4Aを参照して、以下に説明する。
第2制御部16aは、熱移送モードにおいて熱電変換部13aに電力を供給するための2つの駆動増幅器41a、41bと、熱発電モードにおいて熱電変換部13aが発電した電力を取り出す電力端子19aと、を有し得る。また、第2制御部16aは、2回路2接点を有するスイッチ42a、42bと、別の2回路2接点を有するスイッチ43a、43bと、を有し得る。更に、第2制御部16aは、セル温度測定部12aから発電セル11aの温度を入力し、2つの駆動増幅器41a、41bと、スイッチ42a、42bと、スイッチ43a、43bと、を制御する演算部40を有し得る。
演算部40からの信号を入力したスイッチ42a、42bは、連動して開閉動作を行う。同様に、演算部40から信号を入力したスイッチ43a、43bは、連動して開閉動作を行う。スイッチ42a、42b又はスイッチ43a、43bとしては、トランジスタ等のスイッチング素子又は継電器等を用いることができる。
スイッチ42aの一方の端子とスイッチ43aの一方の端子とは電気的に接続しており、これらの端子は熱電変換部13aのN側の電極とも接続している。また、スイッチ42bの一方の端子とスイッチ43bの一方の端子とは電気的に接続しており、これらの端子は熱電変換部13aのP側の電極とも接続している。
スイッチ42aの他方の端子は、駆動増幅器41aの出力端子と接続している。スイッチ42bの他方の端子は、駆動増幅器41bの出力端子と接続している。スイッチ43aの他方の端子は、電力端子19aと接続している。スイッチ43bの他方の端子は、電力端子19aと接続している。
また、第1セル集合体Caを制御する第2制御部16aでは、スイッチ43aの他方の端子が、演算部40に接続している。スイッチ43bの他方の端子も、演算部40に接続している。熱発電をしている熱電変換部13aからの電力が、スイッチ43a、43bを介して、演算部40に入力され、演算部40は熱電変換部13aの熱発電による電圧値及び電流値を測定する。演算部40は、測定した電圧値及び電流値を第1制御部40に出力する。
本実施形態の発電システム10では、第2セル集合体Cbを制御する第2制御部16bは、熱電変換部13bが発電した電圧値及び電流値を測定する機能は有していない。その他の第2制御部16bの機能及び構造は、第2制御部16aと同じなので、第2制御部16aに関する上述した説明は、第2制御部16bに対しても適宜適用される。なお、第2セル集合体Cbを制御する第2制御部16bに、第1セル集合体Caを制御する第2制御部16aと同様に、熱電変換部13bが発電した電圧値及び電流値を測定する機能を設けても良い。
演算部40からの駆動増幅器41aへの出力信号は、非反転入力端子に入力される。駆動増幅器41aの反転入力端子はグラウンドに接続される。また、演算部40からの駆動増幅器41bへの出力信号は、反転入力端子に入力される。駆動増幅器41bの非反転入力端子はグラウンドに接続される。
演算部40からの出力信号を入力した2つの駆動増幅器41a、41bは、スイッチ42a、42bを介して、熱電変換部13aへ電力を供給する。演算部40は、2つの駆動増幅器41a、41bへの出力信号を制御することによって、熱電変換部13aに供給される電流の向きを反転できる。熱電変換部13aは、供給される電流の向きによって、発電セル11aを加熱又は冷却する。
演算部40は、セル温度測定部12aから発電セル11aの温度を入力し、入力した発電セル11aの温度に基づいて、熱電変換部13aを、熱移送モード又は熱発電モードに切り替える。本実施形態では、セル温度測定部12aは、2線式の温度センサであり、2本の検出線が演算部40に接続される。
熱移送モードでは、演算部40が、スイッチ43a、43bを開くと共にスイッチ42a、42bを閉じて、2つの駆動増幅器41a、41bから、熱電変換部13aに電力を供給する。
発電セル11aは発電動作温度Topaを有しており、熱移送モードでは、第2制御部16aの演算部40は、制御される発電セル11aの温度が発電動作温度Topaになるように、対応する熱電変換部13aを制御する。なお、発電セル11bも、発電動作温度Topbを有しており、熱移送モードでは、第2制御部16bは、制御される発電セル11bの温度が発電動作温度Topbになるように、対応する熱電変換部13bを制御する。
演算部40による熱電変換部13aの温度制御の方法としては、例えば、PID制御を用いることができる。
一方、熱発電モードでは、演算部40は、スイッチ42a、42bを開くと共にスイッチ43a、43bを閉じて、熱電変換部13aが発電した電力を電力端子19aへ出力させる。
演算部40は、CPUと、記憶部と、入出力部、A/D変換器等を用いて形成することができる。具体的には、演算部40は、マイクロプロセッサ、マイクロコントローラ、パーソナルコンピュータ、又はプログラマブルコントローラ等を用いて形成することができる。
次に、加熱部28について、図2及び図3を参照して、以下に説明する。
加熱部28は、断熱性を有し且つ密閉された反応容器28の内側に配置されて、第1セル集合体Ca及び第2セル集合体Cbを取り囲んでいる。加熱部14は、内部に配置された発電セル11a及び発電セル11bを加熱する。
加熱部28は、発電セル11a、11bを形成する電解質がイオン導電性を良好に示す温度まで、発電セル11a、11bを加熱する能力を有し得る。
次に、第1制御部15について、以下に説明する。
第1制御部15は、加熱部14の制御温度範囲Tconを有しており、制御温度範囲Tconよりも低い温度にある加熱部14を、制御温度範囲Tconに向けて制御して加熱し得る。
そして、発電システム10では、第1制御部15が加熱部14を制御するのと共に、第2制御部16a、16bが、対応する熱電変換部13a、13bを制御して、発電セル11a、11bそれぞれの温度が制御され得る。
第1制御部15による加熱部14の温度制御の方法としては、例えば、PID制御を用いることができる。
第1制御部15は、CPUと、記憶部と、入出力部と、A/D変換器等を用いて形成することができる。具体的には、第1制御部15は、マイクロプロセッサ、マイクロコントローラ、パーソナルコンピュータ、又はプログラマブルコントローラ等を用いて形成することができる。
発電システム10では、第1制御部15は、以下のようにして、加熱部14の温度を求め得る。
図4Bに示すように、第1制御部15は、第1セル集合体Caの発電セル11aの温度と、熱電変換部13aの発電した電圧値及び電流値と、熱電変換部13aの加熱部側の温度との関係を表すテーブルTを有している。第1制御部15は、テーブルTと、セル温度測定部12aが測定した発電セル11aの温度と、熱電変換部13aの発電した電圧値及び電流値とを用いて、加熱部14の温度を求める。
テーブルTは、例えば、以下に説明するようにして得られる。
まず、熱電変換部13aの加熱部側に温度センサを取り付ける。この温度センサは、熱電変換部13aの加熱部側の温度を測定する。次に、発電セル11aの内部に、例えば後述する燃料導入管25aの内部に、棒状ヒータを挿入する。
次に、棒状ヒータで発電セル11aを内部から加熱し、所定の温度範囲内で、セル温度測定部12aを用いて発電セル11aの温度を測定して、少なくとも3水準の第1温度水準を設定する。このようにして、セル温度測定部12aを用いて測定される発電セル11aの温度を、第1温度水準と呼ぶ。第1温度水準の温度範囲は、発電システム10の動作時に、発電セル11aが取り得る温度範囲とすることが好ましい。第1温度水準は、例えば、20℃〜700℃の間で、10℃間隔で設定される。
次に、各第1温度水準において、加熱部14で発電セル11aを加熱して、熱電変換部13aの加熱部側の温度を、上記温度センサを用いて測定する。このようにして、上記温度センサを用いて測定される熱電変換部13aの加熱部側の温度を、第2温度水準と呼ぶ。第2温度水準の温度範囲は、発電システム10の動作時に加熱部14が取り得る温度範囲とすることが好ましい。第2温度水準は、例えば、加熱部14が取り得る温度範囲として、第1温度水準よりも0℃〜300℃だけ小さい温度範囲とすることができる。この温度範囲は、発電セル11aの発電動作温度と発電セル11bの発電動作温度との差よりも大きくすることが好ましい。そして、各第2温度水準は、例えば、10℃間隔で設定され得る。
次に、各第1温度水準における第2温度水準それぞれにおいて、熱電変換部13aに負荷抵抗を接続して、熱電変換部13aで熱発電をさせて、熱電変換部13aの発電した電圧値及び電流値を測定する。
このようにして、第1セル集合体Caの発電セル11aの温度と、熱電変換部13aの加熱部側の温度と、熱電変換部13aの発電した電圧値及び電流値との関係を表すテーブルTが得られる。このテーブルTは、第1制御部15に記憶される。そして、熱電変換部13aの加熱部側の温度が、加熱部14の温度を示していると考える。
従って、第1制御部15は、テーブルTと、セル温度測定部12aが測定した発電セル11aの温度と、熱電変換部13aの発電した電圧値及び電流値とを用いて、加熱部14の温度を求めることができる。
次に、第1セル集合体Caの発電セル11aについて、図2及び図3を参照して、以下に説明する。第2セル集合体Cbの発電セル11bの構造は、発電セル11aと同じなので、発電セル11aに関する以下の説明は、発電セル11bに対しても適宜適用される。
発電セル11aは、円筒形のカソード電極層21aと、カソード電極層21aの内側に配置された円筒形の電解質層22aと、電解質層22aの内側に配置された円筒形のアノード電極層23aとを有している。カソード電極層21a、及び電解質層22a、及びアノード電極層23aは、上下が開放された円筒形である。アノード電極層23aの内径は、発電出力、用途に応じ0.1mm〜10cmの範囲にすることができる。
また、発電セル11aは、カソード電極層21aの外側に間隔をあけて配置された円筒形の空気排出管27aを有している。空気排出管27aの外面には、円筒形の熱電変換部13aが配置される。空気排出管27aは、上下が開放された円筒形である。
電解質層22aは、円筒形の排気管26aの下側の一部を形成する。排気管26aは、上側が開放されており、下側は閉じた円筒形である。排気管26aの内側には、間隔をあけて配置された燃料導入管25aが配置される。燃料導入管25aは、上下が開放された円筒形である。
セル温度測定部12aは、カソード電極層21aの外面に配置される。
また、カソード電極層21aには、発電した電力を取り出すためのリード線29aが、カソード電極端子Keを介して接続される。また、発電セル11bのアノード電極層23bには、発電した電力を取り出すためのリード線29cが、アノード電極端子Aeを介して接続される。また、発電セル11aのアノード電極層23aと、発電セル11bのカソード電極層21bとは、アノード電極端子Ae及びリード線29b及びカソード電極端子Keを介して、接続される。
発電セル11aを発電させる際には、空気が、反応容器28の外部から空気導入管24を通して、反応容器28の内部に導入される。空気の代わりに、酸素を用いても良い。
反応容器28の内部に導入された空気は、空気排出管27aの下側から、空気排出管27aの内部に導入され、空気排出管27aの内面とカソード電極層21aの外面との間を通った後、反応容器28の外へ排出される。
また、燃料ガスが、反応容器28の外部から燃料導入管25aを通して、発電セル11aの内部に導入される。発電セル11aの内部に導入された燃料ガスは、燃料導入管25aとアノード電極層23aの内側との間を通った後、排気管26aを通って排気ガスとして反応容器28の外へ排出される。燃料ガスとしては、H2、CO、CH4又はC及びHを含む化合物を用いることができる。
燃料導入管26a、又は排気管26a、又は空気排出管27aの形成材料としては、例えば、セラミックス、金属、又はガラス等を用いることができる。具体的には、窒化アルミニウム焼結材、アルミナ焼結材、またSiC焼結材、SUS304、SUS316、Ni、石英ガラス等が挙げられる。
発電セル11aの電解質層22aの形成材料としては、例えば、固体電解質、特に固体酸化物電解質を用いることが、発電効率の観点から好ましい。具体的には、電解質層22aの形成材料として、部分安定化ジルコニア(YSZなど),安定化ジルコニア(ScSZ),LaGaO3等が挙げられる。
アノード電極層23aの形成材料としては、例えば、NiO−CeO2系、NiO−YSZ系、NiO−ScZ系等を用いることができる。また、カソード電極層21aの形成材料としては、La−Sr−Mn−O系、La−Co−CeO2系、Sm−Sr−Co−O系、La−Sr−Co−O系等を用いることができる。
図5に、発電セル11aの変形例を示す。図3に示す発電セル11aは、断面が円筒形であったが、図5に示すように、発電セル11aの断面は、四角形であっても良い。発電セル11aが、このような形状を有すると、空気排出管27aも四角形にできるので、平らな熱電変換部13aを空気排出管27aの外面に容易に配置できる。
次に、第1セル集合体Caの熱電変換部13aについて、図6及び図7を参照して、以下に説明する。第2セル集合体Cbの熱電変換部13bの構造は、熱電変換部13aと同じなので、熱電変換部13aに関する以下の説明は、熱電変換部13bに対しても適宜適用される。
図6は、図3の熱電変換部13aを形成する熱電変換素子30を示す斜視図である。図7は、図3の熱電変換部13aを説明する斜視図である。
熱電変換部13aは、複数の熱電変換素子30が接続されて形成される。熱電変換素子30は、p型半導体素子31と、n型半導体素子32と、p型半導体素子31とn型半導体素子32とを直列に接続する電極33とを有する。
p型半導体素子又はn型半導体素子の形成材料としては、例えばペロブスカイト構造を有する酸化物を用いることが、500〜800℃程度の高温において動作が可能な観点から好ましい。ペロブスカイト構造を有する酸化物としては、具体的にはR−Co−O、R−Mn−O系、R−Ti−O系(R:アルカリ土類、アルカリ金属)が挙げられる。R−Co−O系としては、例えばCa3Co49がある。R−Mn−Oとしては、例えばCa−La−Mn−O系(Ca1-XLaXMnO3、X=0.1等)、Sr-La-Mn−O系がある。R−Ti−Oとしては、例えば、La0.1Nb0.1Sr0.8TiO3がある。
電極33の形成材料としては、例えば、Ag又はNi等のシートを用いることができる。電極33は、Agペースト又はAgにPdが10質量%添加されたペースト等を塗布及び焼付けて半導体素子に接合される。
熱電変換部13aを形成する熱電変換素子30の数は、求められる設計(動作温度、熱電変換部13aの温度差、半導体素子の形成材料、寸法、作製プロセス等)に基づいて決定され得る。例えば、熱電変換素子30の数として100〜1000個とすることができる。
図7は、8個の熱電変換素子30を直列に接続して形成された熱電変換部の一例を示す。8個の熱電変換素子30は、電気絶縁性の基板34b上に配置される。基板34b上に配置される電極は、例えば、Agペースト又はAgにPdが10質量%添加されたペースト等が、基板34b上に塗布及び焼付けて形成される。
熱発電モードにおける熱電変換部で発電した電力は、図7の実線の矢印に示すように、電力端子35a、35bから取り出される。電力端子35aは、p型半導体素子31に接続する。電力端子35bは、n型半導体素子32に接続する。また、熱移送モードでは、図7の点線で示した向きに電流が熱電変換部に対して供給される。
図3に示す発電システム10では、熱電変換部13aは、熱電変換素子30の上側に別の電気絶縁性の基板34aが配置される。また、図3に示す熱電変換部13aは、全体として円筒形を有しており、上下が開放されている。図3に示す熱電変換部13aでは、基板34a、34bは、同心の円筒形状を有しており、基板34aと基板34bとの間にp型半導体素子31及びn型半導体素子32が電極33を介して挟まれている。そして、内側の基板34bは、発電セル11aの空気排出管27aの外面に接合される。
熱移送モードにおいて発電セル11aを加熱する際には、熱電変換部13aは、加熱部側から吸熱して、吸熱した熱をセル側から発電セル11aに対して放熱する。また、熱移送モードにおいて、発電セル11aを冷却する際には、熱電変換部13aは、セル側から吸熱して、吸熱した熱を加熱部側から放熱する。
図3に示す熱電変換部13aについて、発電セル11aに対向するセル側の温度を500℃とし、セル側とは反対側の加熱部14を向いた加熱部側の温度を400℃とし、直列に接続された100個の熱電変換素子30を用いた。また、p型半導体素子の形成材料としてCa3Co49を用い、n型半導体素子の形成材料として、Ca1-XLaXMnO3(X=0.1)を用いた。この場合、熱電変換部13aの発電電圧として、約2Vが得られる。
図8は、図3の熱電変換部の変形例を示す図である。この変形例では、外側の基板34aは、円筒形状の母線方向にスリットが設けられている。このような基板34aを有する熱電変換部13aは、熱応力を緩和させやすいので、熱疲労に対する耐久性が向上する。また、基板34aの形成が容易になる。
次に、上述した発電システム10の動作について、図9〜図11を参照して、以下に説明する。図9は、図1の発電システムの起動時の温度制御を説明するフローチャートである。図10は、熱移送モードにおける熱電変換部の動作を説明する図である。図11は、図1の発電システムの起動後の温度制御を説明するフローチャートである。
まず、図9及び図10を用いて、発電システム10の起動時における温度制御の動作を説明する。
まず、発電システム10の起動時における第1制御部15の動作を以下に説明する。
図9に示すように、発電システム10が起動すると、ステップS10において、第1制御部15が動作を開始する。また、空気が空気導入管24に導入され、燃料ガスが燃料導入管25a、25bに導入される。
次に、ステップS11において、第1制御部15は、セル温度測定部12aを用いて、発電セル11aの温度を測定する。
次に、ステップS12において、第1制御部15は、第2制御部16aを介して、熱電変換部13aの発電による電圧値及び電流値を測定する。後述するように、熱電変換部13aが熱移送モードにある時には、第1制御部15は、熱電変換部13aが加熱又は冷却を行う間の発電を行っている時に電圧値及び電流値を測定する。また、熱電変換部13aが熱発電モードにある時には、第1制御部15は、いつでも熱電変換部13aの発電による電圧値及び電流値を測定できる。
次に、ステップS13において、第1制御部15は、テーブルTと、セル温度測定部12aが測定した発電セル11aの温度と、熱電変換部13aの発電した電圧値及び電流値とを用いて、加熱部14の温度Thを求める。本実施形態では、第1制御部15は、加熱部14の温度Thを求める際に、第2セル集合体Cbの発電セル11bの温度、及び熱電変換部13aの発電した電圧値及び電流値は用いない。
次に、ステップS14において、第1制御部15は、加熱部14の温度が制御温度範囲Tcon以内かを判断する。もし、加熱部14の温度が制御温度範囲Tcon以内であれば、図11のステップS30へ進む。一方、加熱部14の温度が制御温度範囲Tcon以内でなければ、ステップS15へ進む。
ステップS15に進んだ場合には、第1制御部15は、加熱部14の温度Thが、制御温度範囲Tcon以内になるように加熱部14を制御する。以下に、第1制御部15による加熱部14の制御方法の一例を説明する。
ここで、発電セル11aの発電動作温度Topaを650℃とし、発電セル11bの発電動作温度Topbを600℃とする。最も高い発電動作温度を有する発電セルの発電動作温度は、発電セル11aの発電動作温度Topaである。また、最も低い発電動作温度を有する発電セルの発電動作温度は、発電セル11bの発電動作温度Topbである。最も高い発電動作温度と最も低い発電動作温度との差Tdは50℃(=650℃−600℃)である。
加熱部14の制御温度範囲Tconの下限値及び上限値は、以下のように決定され得る。まず、制御温度範囲Tconの下限値は、最も高い発電動作温度TopaからTdを引いた値とされる。具体的には、制御温度範囲Tconの下限値は、Topa−Td=600℃(=650℃−50℃)となる。即ち、制御温度範囲Tconの下限値は、最も低い発電動作温度と同じ値とされる。
次に、加熱部14の制御温度範囲Tconの上限値は、安全性等の観点から適宜設定され得る。例えば、加熱部14の制御温度範囲Tconの上限値は、最も高い発電動作温度を有する発電セルの発電動作温度と同じ値にすることができる。
発電システム10の起動時には、第1制御部15は、テーブルTを用いて求められた加熱部14の温度Thを、制御温度範囲Tconの下限値、具体的にはTopa−Td=600℃以上になるように、加熱部14を制御する。
そして、ステップS11へ進む。
以上が、発電システム10の起動時における第1制御部15の動作の説明である。次に、発電システム10の起動時における第2制御部16aの動作の説明を以下に行う。
まず、ステップS20において、第2制御部16aが動作を開始する。
次に、ステップS21において、第2制御部16aは、第1セル集合体Caの熱電変換部12aを熱移送モードにする。熱移送モードでは、第2制御部16aは、制御される発電セル11aの温度が、後述する発電動作温度範囲になるように、対応する熱電変換部13aを制御する。
次に、ステップS22において、第2制御部16aは、発電セル11aの加熱又は冷却と、熱電変換部13aによる発電と、移送モードにおける熱電変換部13aに交互に行わせる。なお、発電システム10の起動時には、熱電変換部13aは、もっぱら発電セル11aの加熱を行うことになる。
熱電変換部13aは、図10に示すように、発電セル11aの加熱又は冷却と、熱電変換部13aによる発電と、を交互に行う。ここで、発電を行う時間は、発電セル11aの温度に影響与えない長さにすることが好ましい。発電を行う時間は、発電セル11aの熱容量、熱伝導又は比熱等に基づいて決定され得る。第2制御部16aは、熱電変換部13aに発電させる場合には、演算部40がスイッチ42a、42b、43a、43bを切り替える。そして、第1制御部15は、上述したステップS12において、熱電変換部13aの発電した電圧値及び電流値を用いて、加熱部14の温度Thを求める。
次に、ステップS23において、第2制御部16aは、第1セル集合体Caのセル温度測定部12aを用いて、発電セル11aの温度Tcaを測定する。
次に、ステップS24において、第2制御部16aは、発電セル11aの温度Tcaが、発電動作温度範囲以内かを判断する。ここで、発電動作温度範囲の下限値は、上述した発電セル11aの発電動作温度Topaとすることができる。また、発電動作温度範囲の上限値は、安全性等の観点から適宜設定され得る。例えば、発電動作温度範囲の上限値は、Topa+100℃とすることができる。
もし、発電セル11aの温度Tcaが、発電動作温度範囲以内であれば、ステップS26へ進む。一方、発電セル11aの温度Tcaが、発電動作温度範囲以内でなければ、ステップS25に進む。
ステップS25へ進んだ場合には、第2制御部16aは、発電セル11aの温度Tcaが、発電動作温度範囲以内になるように、熱電変換部13aを制御して、発電セル11aを加熱又は冷却する。なお、発電システム10の起動時には、熱電変換部13aは、もっぱら発電セル11aの加熱を行うことになる。具体的には、第2制御部16aは、発電セル11aの温度Tcaが、発電動作温度範囲の下限値、具体的には温度Topaとなるように、熱電変換部13aを制御する。そして、ステップS23に進む。
一方、ステップS26へ進んだ場合には、第2制御部16aは、第1セル集合体Caの熱電変換部13aを熱発電モードに切り替えた後、図11のステップS40へ進む。
同様に、第2セル集合体Cbにおける発電セル11bも、第2制御部16bによって、温度が制御される。ただし、第1制御部15は、加熱部15の温度を求める際に、発電セル11bの温度は用いないので、第2制御部16bは、熱移送モードにおいては、発電セル11bの加熱又は冷却のみを熱電変換部13bに実行させる。その他の第2制御部16bの動作は、第2制御部16aと同じなので、第2制御部16aに関する上述した説明は、第2制御部16bに対しても適宜適用される。
このように、発電システム10の起動時には、第1制御部15が、加熱部14の温度Thに基づいて、加熱部14を制御するのと共に、第2制御部16a、16bが、対応する熱電変換部13a、13bを制御して、発電セル11a、11bそれぞれの温度が制御される。
以上の説明は、発電システムの起動時に、第1制御部15及び第2制御部16aが同時に動作する場合のものである。なお、第1制御部15の制御によって加熱部14の温度が制御温度Tconに達した後に、はじめて、第2制御部16a、16bは、対応する熱電変換部13a、13bの制御を開始して、発電セル11a、11bそれぞれの温度が制御されても良い。
次に、図11を参照して、発電システム10の起動後における温度制御の動作を説明する。
発電システム10の起動後における第1制御部15の動作を、図11のステップS30〜ステップS33に示す。これらのステップS30〜ステップS33の動作は、図9におけるステップS11〜ステップS15の動作と同様である。
次に、発電システム10の起動後における第2制御部16aの動作を、以下に説明する。第2制御部16bの動作は、第2制御部16aと同じなので、第2制御部16aに関する以下の説明は、第2制御部16bに対しても適宜適用される。
まず、ステップS40において、第2制御部16aは、第1セル集合体Caのセル温度測定部12aを用いて、発電セル11aの温度を測定する。
次に、ステップS41において、第2制御部16aは、第1セル集合体Caの発電セル11aの温度Thが、発電動作温度範囲以内かを判断する。もし、発電セル11aの温度Thが、発電動作温度範囲以内であれば、ステップS42へ進む。一方、発電セル11aの温度Thが、発電動作温度範囲以内でなければ、ステップS43へ進む。
ステップS42へ進んだ場合には、第2制御部16aは、第1セル集合体Caの熱電変換部13aを熱発電モードに切り替える。熱電変換部13aは、発電セル11aから受け取った熱エネルギーを電気エネルギーに変換する。熱電変換部13aがすでに熱発電モードにある場合には、モードの切り替えは行われない。そして、ステップS40の前へ進む。
一方、ステップS43へ進んだ場合には、第2制御部16aは、第1セル集合体Caの熱電変換部13aを熱移送モードに切り替える。熱電変換部13aがすでに熱移送モードにある場合には、熱電変換部13aのモードの切り替えは行われない。
次に、ステップS44において、第2制御部16aは、発電セル11aの温度Thが、発電動作温度範囲よりも低いかを判断する。もし、発電セル11aの温度Thが、発電動作温度範囲よりも低ければ、ステップS45へ進む。一方、発電セル11aの温度Thが、発電動作温度範囲よりも低くなければ、発電セル11aの温度Thは、発電動作温度範囲よりも高いことになり、この場合にはステップS46へ進む。
ステップS45へ進んだ場合には、第2制御部16aは、熱電変換部13aを制御して、発電セル11aを加熱する。そして、ステップS40の前へ進む。
一方、ステップS46へ進んだ場合には、第2制御部16aは、熱電変換部13aを制御して、発電セル11aを冷却する。発電セル11aを冷却する場合には、第2制御部16aは、熱電変換部13aに供給する電流の向きを、加熱する場合とは反対の向きに変更する。そして、ステップS40の前へ進む。
このように、発電システム10の起動後における温度制御では、第1制御部15が、加熱部14の温度Thに基づいて、加熱部14を制御する。また、加熱部14が制御されるのと共に、第2制御部16a、16bが、対応する熱電変換部13a、13bを制御して、発電セル11a、11bそれぞれの温度が制御される。
上述した本実施形態の発電システム10によれば、加熱部と共に、熱電変換部による個別の加熱が行われるので、燃料電池を形成する各発電セルの温度を短い時間で上昇させることができる。
また、発電システム10によれば、熱電変換部を用いて、各発電セルの温度を個別に制御することができる。従って、発電セル間の反応特性のばらつきを発電セルごとに温度調整し補正できる。発電システム10では、燃料電池の起動時に、この補正機能により、発電セル間の動作温度のばらつきが数十℃あるときでも、より早く安定動作に移行させて、且つ発電出力が極大化できるように温度調整することができる。従って、複数の発電セルが集合した状態で発電する燃料電池に対して、各発電セルを最適の発電出力で安定して動作させることができる。
また、発電システム10によれば、燃料電池の発電の際に生じる熱エネルギーを、機械的な可動部を用いずに電気エネルギーに変換することができる。従って、発電システムのエネルギー変換効率を向上させることができる。また、機械的な可動部がないので、システムの保守性又は耐久性が向上する。
更に、発電システム10によれば、加熱部の温度が、熱電変換部を用いて求められるので、加熱部の温度を測定する測定部をあらたに設ける必要がない。
次に、本明細書に開示する第2及び第3実施形態の発電システムを、図面を参照しながら以下に説明する。第2及び第3実施形態について特に説明しない点については、上述の第1実施形態に関して詳述した説明が適宜適用される。また、図12、図14及び図15において、図1〜図3と同じ構成要素に同じ符号を付してある。
図12は、本明細書に開示する発電システムの第2実施形態を示すブロック図である。図13Aは、図12の発電システムの温度制御を説明するフローチャート(その1)である。図13Bは、図12の発電システムの温度制御を説明するフローチャート(その2)である。
本実施形態の発電システム10は、第1制御部15及び2つの第2制御部16a、16bを制御する第3制御部17を備えている。第3制御部17は、加熱部14の温度と発電セル11aの温度とに基づいて、第1制御部15及び第2制御部16a、16bそれぞれを制御する。
第3制御部17は、CPUと、記憶部と、入出力部等を用いて形成することができる。具体的には、第3制御部17は、マイクロプロッセッサ、マイクロコントローラ、パーソナルコンピュータ、又はプログラマブルコントローラ等を用いて形成することができる。
本実施形態の発電システム10の他の構造は、上述した第1実施形態と同様である。
次に、図13A及び図13Bを参照して、発電システム10の起動後における温度制御の動作を説明する。
まず、発電システム10の起動後には、ステップS50に進む。ステップS50では、第3制御部17は、加熱部14の温度Thを第1制御部15から入力する。
次に、ステップS51において、第3制御部17は、発電セル11aの温度Tcaを第2制御部11aから入力する。
次に、ステップS52において、第3制御部17は、発電セル11aの温度Tcaが、発電動作温度範囲Top以内かを判断する。発電動作温度範囲Topは、発電動作温度の下限値から上限値の範囲の温度を意味する。もし、発電セル11aの温度Tcaが、発電動作温度範囲Top以内であれば、ステップS63へ進む。一方、発電セル11aの温度Tcaが、発電動作温度範囲Top以内でなければ、ステップS53へ進む。
以下、ステップS53へ進んだ場合の動作を説明する。
ステップS53へ進んだ場合には、第2制御部16aは、熱電変換部13aを熱移送モードに切り替える。もし、熱電変換部13aがすでに熱移送モードにあれば、モードの切り替えは行われない。
次に、ステップS54において、第3制御部17は、加熱部14の温度Th<制御温度範囲Tcon且つ発電セル11aの温度Tca<発熱セル11aの発電動作温度範囲Top、であるかを判断する。もし、この条件が満たされるならば、ステップS55へ進む。一方、この条件が満たされないならば、ステップS56へ進む。
ステップS55へ進んだ場合には、第3制御部17は、第1制御部15に加熱部14を加熱させ、且つ第2制御部16aに熱電変換部13aを用いて、発電セル11aを加熱させる。そして、ステップS50へ進む。
一方、ステップS56へ進んだ場合には、第3制御部17は、加熱部14の温度Th>制御温度範囲Tcon且つ発電セル11aの温度Tca>発熱セル11aの発電動作温度範囲Top、であるかを判断する。もし、この条件が満たされるならば、ステップS57へ進む。一方、この条件が満たされないならば、ステップS58へ進む。
ステップS57へ進んだ場合には、第3制御部17は、第1制御部15に加熱部14の加熱を停止させ、且つ第2制御部16aに熱電変換部13aを用いて、発電セル11aを冷却させる。そして、ステップS50へ進む。
一方、ステップS58へ進んだ場合には、第3制御部17は、加熱部14の温度Th<制御温度範囲Tcon且つ発電セル11aの温度Tca>発熱セル11aの発電動作温度範囲Top、であるかを判断する。もし、この条件が満たされるならば、ステップS59へ進む。一方、この条件が満たされないならば、ステップS60へ進む。
ステップS59へ進んだ場合には、第3制御部17は、第1制御部15に加熱部14を加熱させ、且つ第2制御部16aに熱電変換部13aを用いて、発電セル11aを冷却させる。そして、ステップS50へ進む。
一方、ステップS60へ進んだ場合には、第3制御部17は、加熱部14の温度Th>制御温度範囲Tcon且つ発電セル11aの温度Tca<発熱セル11aの発電動作温度範囲Top、であるかを判断する。もし、この条件が満たされるならば、ステップS61へ進む。一方、この条件が満たされないならば、ステップS62へ進む。
ステップS61へ進んだ場合には、第3制御部17は、第1制御部に加熱部14の加熱を停止させ、且つ第2制御部16aに熱電変換部13aを用いて、発電セル11aを加熱させる。そして、ステップS50へ進む。
一方、ステップS62へ進んだ場合には、加熱部の温度Thは制御温度範囲Tcon以内にあるので、第3制御部17は、第1制御部15に加熱部14を制御させ、且つ、第2制御部16aに熱電変換部13aを制御させる。ここで、第1制御部15及び第2制御部16aの動作は、図11における動作と同様である。そして、ステップS50へ進む。
次に、ステップS52からステップS63へ進んだ場合の動作を以下に説明する。
ステップS63に進んだ場合には、第3制御部17は、第2制御部16aに、熱電変換部13aを熱発電モードに切り替えさせる。熱電変換部13aがすでに熱発電モードにある場合には、モードの切り替えは行われない。
次に、ステップS64において、第3制御部17は、第1制御部15に加熱部14を制御させ、且つ、第2制御部16aに熱電変換部13aを制御させる。ここで、第1制御部15及び第2制御部16aの動作は、図11における動作と同様である。そして、ステップS50へ進む。
上述した説明では、第1セル集合体Caの第2制御部16aの動作について説明したが、この説明は、第2セル集合体Cbの第2制御部16bの動作についても適用される。即ち、第2セル集合体Cbの発電セル11bの温度は、第3制御部17と、第2制御部16aとによって、同時に制御されても良い。
上述した本実施形態の発電システム10によれば、各発電セル11a、11bの温度が、加熱部14及び熱電変換部13a、13bを用いて、より精度良く制御される。
図14は、本明細書に開示する発電システムの第3実施形態を示すブロック図である。図15は、図14の発電システムの要部を示す図である。図16は、図14の発電システムの起動時の温度制御を説明するフローチャートである。
本実施形態の発電システム10は、加熱部14の温度を測定する加熱部温度測定部18を備えている。第1制御部15は、加熱部温度測定部18を用いて、加熱部14の温度を測定できる。
加熱部温度測定部18は、図15に示すように、加熱部14と第2セル集合体Cbとの間に配置されている。
従って本実施形態の発電システム10では、第1制御部15は、第1実施形態において説明したテーブルTを用いた加熱部14の温度の推定を行わなくても良い。
本実施形態の発電システム10の他の構造は、上述した第1実施形態と同様である。
次に、図16を参照して発電システム10の起動時における温度制御の動作を説明する。
図16に示すように、まず発電システム10が起動すると、ステップS70において、第1制御部15が動作を開始する。また、空気が空気導入管24に導入され、燃料ガスが燃料導入管25a、25bに導入される。
次にステップS71において、第1制御部15は、加熱部温度測定部18を用いて加熱部14の温度Thを測定する。
次にステップS72において、第1制御部15は、加熱部14の温度が制御温度範囲Tcon以内かを判断する。もし、加熱部14の温度が制御温度範囲Tcon以内であれば、図11のステップS30へ進む。一方、加熱部14の温度が制御温度範囲Tcon以内でなければ、ステップS73へ進む。
ステップS73へ進んだ場合には、第1制御部15は、加熱部14の温度Thが、制御温度範囲Tcon以内になるように加熱部を制御する。そして、ステップS70へ進む。
第2制御部16a、16bの動作については、上述した第1実施形態と同様である。
本発明では、上述した各実施形態の発電システム及びその制御方法は、本発明の趣旨を逸脱しない限り適宜変更が可能である。例えば、発電セルを有するセル集合体の数は、3個以上であっても良い。
ここで述べられた全ての例及び条件付きの言葉は、そのような具体的に述べられた例及び条件に限定されることなく解釈されるべきである。本発明の実施形態は詳細に説明されているが、その様々な変更、置き換え又は修正が本発明の精神及び範囲を逸脱しない限り行われ得ることが理解されるべきである。
以上の上述した各実施形態に関し、更に以下の付記を開示する。
(付記1)
燃料電池を形成し、電力を発生する複数のセルと、
前記セルそれぞれに対応し、前記セルの温度を測定するセル温度測定部と、
前記セルそれぞれに対応し、熱移送モード及び熱発電モードを有する熱電変換部と、
複数の前記セルを加熱する加熱部と、
前記加熱部を制御する第1制御部と、
前記熱電変換部それぞれに対応し、前記熱電変換部を制御する第2制御部と、
を備える発電システムの制御方法であって、
前記第1制御部は、前記加熱部の温度が所定の制御温度範囲内に入るように、前記加熱部を制御し、
前記第2制御部は、前記セルの温度が所定の動作温度範囲外であれば、前記熱電変換部を熱移送モードにして、前記セルの温度を所定の動作温度範囲内に入るように制御し、前記セルの温度が所定の動作温度範囲内であれば、前記熱電変換部を前記発電モードにする発電システムの制御方法。
(付記2)
前記第2制御部は、前記熱移送モードでは、前記セルの加熱又は冷却と、前記熱電変換部による発電とを、前記熱電変換部に交互に行わせ、
前記第1制御部は、前記熱電変換部の発電した電圧値を用いて、前記加熱部の温度を求める付記1に記載の発電システムの制御方法。
(付記3)
前記熱電変換部は、対応する前記セルに対向するセル側と、前記セル側とは反対側の前記加熱部を向いた加熱部側とを有しており、
前記第1制御部は、前記セルの温度と前記熱電変換部の発電した電圧値と前記熱電変換部の前記加熱部側の温度との関係を表すテーブルと、前記セル温度測定部が測定した前記セルの温度と、前記熱電変換部の発電した電圧値とを用いて、前記加熱部の温度を求める付記2に記載の発電システムの制御方法。
(付記4)
前記加熱部の温度と前記加熱部の所定の制御温度範囲との関係、及び前記セル温度測定部が測定した前記セルの温度と前記セルの所定の動作温度範囲との関係、に基づいて、
前記第1制御部が前記加熱部を制御すると共に、前記第2制御部が前記熱電変換部を制御する付記1〜3の何れか一項に記載の発電システムの制御方法。
(付記5)
燃料電池を形成し、電力を発生する複数のセルと、
前記セルそれぞれに対応し、前記セルの温度を測定するセル温度測定部と、
前記セルそれぞれに対応し、熱移送モード及び熱発電モードを有する熱電変換部と、
複数の前記セルを加熱する加熱部と、
前記加熱部を制御する第1制御部と、
前記熱電変換部それぞれに対応し、前記熱電変換部を制御する第2制御部と、
を備え、
前記第1制御部は、前記加熱部の温度が所定の制御温度範囲内に入るように、前記加熱部を制御し、
前記第2制御部は、前記セルの温度が所定の動作温度範囲外であれば、前記熱電変換部を熱移送モードにして、前記セルの温度を所定の動作温度範囲内に入るように制御し、前記セルの温度が所定の動作温度範囲内であれば、前記熱電変換部を前記発電モードにする発電システム。
(付記6)
前記加熱部は、複数の前記セルを取り囲んでいる付記5に記載の発電システム。
10 発電システム
11a、11b 発電セル
12a、12b セル温度測定部
13a、13b 熱電変換部
14 加熱部
15 第1制御部
16a、16b 第2制御部
17 第3制御部
18 加熱部温度測定部
19a、19b、19c 電力端子
21a、21b カソード電極層
22a、22b 電解質層
23a、23b アノード電極層
24 空気導入管
25a、25b 燃料導入管
26a、26b 排気管
27a、27b 空気排出管
28 反応容器
29a、29b、29c リード線
30 熱電変換素子
31 p型半導体素子
32 n型半導体素子
33 電極
34a、34b 電気絶縁板
35a、35b 電力端子
40 演算部
41a、41b 駆動増幅器
42a、42b スイッチ
43a、43b スイッチ
Ca、Cb セル集合体
Ke カソード電極端子
Ae アノード電極端子
T テーブル

Claims (4)

  1. 燃料電池を形成し、電力を発生する複数のセルと、
    前記セルそれぞれに対応し、前記セルの温度を測定するセル温度測定部と、
    前記セルそれぞれに対応し、熱移送モード及び熱発電モードを有する熱電変換部と、
    複数の前記セルを加熱する加熱部と、
    前記加熱部を制御する第1制御部と、
    前記熱電変換部それぞれに対応し、前記熱電変換部を制御する第2制御部と、
    を備える発電システムの制御方法であって、
    前記第1制御部は、前記加熱部の温度が所定の制御温度範囲内に入るように、前記加熱部を制御し、
    前記第2制御部は、前記セルの温度が所定の動作温度範囲外であれば、前記熱電変換部を熱移送モードにして、前記セルの温度を所定の動作温度範囲内に入るように制御し、前記セルの温度が所定の動作温度範囲内であれば、前記熱電変換部を前記発電モードにし、
    更に、
    前記第2制御部は、前記熱移送モードでは、前記セルの加熱又は冷却と、前記熱電変換部による発電とを、前記熱電変換部に交互に行わせ、
    前記第1制御部は、前記熱電変換部の発電した電圧値を用いて、前記加熱部の温度を求める発電システムの制御方法。
  2. 前記熱電変換部は、対応する前記セルに対向するセル側と、前記セル側とは反対側の前記加熱部を向いた加熱部側とを有しており、
    前記第1制御部は、前記セルの温度と前記熱電変換部の発電した電圧値と前記熱電変換部の前記加熱部側の温度との関係を表すテーブルと、前記セル温度測定部が測定した前記セルの温度と、前記熱電変換部の発電した電圧値とを用いて、前記加熱部の温度を求める請求項に記載の発電システムの制御方法。
  3. 前記加熱部の温度と前記加熱部の所定の制御温度範囲との関係、及び前記セル温度測定部が測定した前記セルの温度と前記セルの所定の動作温度範囲との関係、に基づいて、
    前記第1制御部が前記加熱部を制御すると共に、前記第2制御部が前記熱電変換部を制御する請求項1又は2に記載の発電システムの制御方法。
  4. 燃料電池を形成し、電力を発生する複数のセルと、
    前記セルそれぞれに対応し、前記セルの温度を測定するセル温度測定部と、
    前記セルそれぞれに対応し、熱移送モード及び熱発電モードを有する熱電変換部と、
    複数の前記セルを加熱する加熱部と、
    前記加熱部を制御する第1制御部と、
    前記熱電変換部それぞれに対応し、前記熱電変換部を制御する第2制御部と、
    を備え、
    前記第1制御部は、前記加熱部の温度が所定の制御温度範囲内に入るように、前記加熱部を制御し、
    前記第2制御部は、前記セルの温度が所定の動作温度範囲外であれば、前記熱電変換部を熱移送モードにして、前記セルの温度を所定の動作温度範囲内に入るように制御し、前記セルの温度が所定の動作温度範囲内であれば、前記熱電変換部を前記発電モードにし、
    更に、
    前記第2制御部は、前記熱移送モードでは、前記セルの加熱又は冷却と、前記熱電変換部による発電とを、前記熱電変換部に交互に行わせ、
    前記第1制御部は、前記熱電変換部の発電した電圧値を用いて、前記加熱部の温度を求める発電システム。
JP2009289540A 2009-12-21 2009-12-21 発電システム及びその制御方法 Expired - Fee Related JP5471416B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009289540A JP5471416B2 (ja) 2009-12-21 2009-12-21 発電システム及びその制御方法
US12/974,249 US8524383B2 (en) 2009-12-21 2010-12-21 Power generating system and control method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289540A JP5471416B2 (ja) 2009-12-21 2009-12-21 発電システム及びその制御方法

Publications (2)

Publication Number Publication Date
JP2011129468A JP2011129468A (ja) 2011-06-30
JP5471416B2 true JP5471416B2 (ja) 2014-04-16

Family

ID=44258787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289540A Expired - Fee Related JP5471416B2 (ja) 2009-12-21 2009-12-21 発電システム及びその制御方法

Country Status (2)

Country Link
US (1) US8524383B2 (ja)
JP (1) JP5471416B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9865793B2 (en) 2005-10-05 2018-01-09 Conceptual Werks Llc Method of forming a thermally enhanced energy generator
US9634217B2 (en) * 2005-10-05 2017-04-25 Conceptual Works LLC Thermally controllable energy generation system
JP6113480B2 (ja) * 2012-12-10 2017-04-12 三菱日立パワーシステムズ株式会社 燃料電池及びその運転方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205058A (ja) * 1987-02-20 1988-08-24 Mitsubishi Electric Corp 燃料電池装置
JP2891268B2 (ja) * 1991-03-08 1999-05-17 日本電信電話株式会社 固体電解質型燃料電池
FI110218B (fi) * 1993-12-30 2002-12-13 Fortum Oil & Gas Oy Menetelmiä ja laitteisto sähkökemiallisten laitteiden jäähtymisen estämiseksi
US5871859A (en) * 1997-05-09 1999-02-16 Parise; Ronald J. Quick charge battery with thermal management
JP3979057B2 (ja) * 2001-10-16 2007-09-19 日産自動車株式会社 燃料電池システムの制御装置
JP4590872B2 (ja) * 2004-01-27 2010-12-01 富士電機ホールディングス株式会社 燃料電池発電装置の運転方法
JP2005228523A (ja) * 2004-02-10 2005-08-25 Toyota Motor Corp 燃料電池
JP2007200710A (ja) 2006-01-26 2007-08-09 Nippon Oil Corp 固体酸化物形燃料電池スタック
JP2008140611A (ja) * 2006-11-30 2008-06-19 Suzuki Motor Corp 車両用燃料電池システムの温度制御装置
JP5315661B2 (ja) * 2007-10-17 2013-10-16 トヨタ自動車株式会社 燃料電池搭載車両、燃料電池の制御装置、制御方法

Also Published As

Publication number Publication date
US8524383B2 (en) 2013-09-03
US20110171500A1 (en) 2011-07-14
JP2011129468A (ja) 2011-06-30

Similar Documents

Publication Publication Date Title
US20160006047A1 (en) Sofc stack with integrated heater
US20080090111A1 (en) Fuel cell system and method of operating the same
JP2005518645A (ja) 燃料電池のスタッキングおよびシーリング
US10246787B2 (en) Control of a high temperature electrolyzer
JPH0443388B2 (ja)
JP5471416B2 (ja) 発電システム及びその制御方法
WO2007080958A1 (ja) 燃料電池システム及び燃料電池システムの運転方法
EP3282513B1 (en) Multi-stack fuel cell systems and heat exchanger assemblies
TW200402904A (en) Fuel-cell integral multifunction heater and methods
JP2007200710A (ja) 固体酸化物形燃料電池スタック
WO2012070487A1 (ja) 2次電池型燃料電池システム
KR102375635B1 (ko) 연료 전지 스택 조립체
JP5139850B2 (ja) 固体酸化物形燃料電池
NL1019397C2 (nl) Brandstofcelstapel in een drukvat.
KR20100045447A (ko) 발전장치
JP6041497B2 (ja) 燃料電池システム及びその運転方法
JP5315400B2 (ja) 固体酸化物形燃料電池スタック
PL220309B1 (pl) Bateria ogniw paliwowych
EP2139060A1 (en) Fuel battery system and its operating method
KR20130013644A (ko) 연료전지 시뮬레이터
KR101353839B1 (ko) 우수한 면압 균일성 및 내구성을 갖는 고체산화물 연료전지
JP2010153182A (ja) 燃料電池装置、導電部材及び燃料電池装置の制御部
JP4688263B2 (ja) 固体電解質形燃料電池セルおよびその起動方法
GB2390739A (en) A novel planar seal-less fuel cell stack
JP2016024950A (ja) 燃料電池システムの制御装置及び燃料電池システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees