JP5465828B2 - Substrate processing apparatus and semiconductor device manufacturing method - Google Patents

Substrate processing apparatus and semiconductor device manufacturing method Download PDF

Info

Publication number
JP5465828B2
JP5465828B2 JP2007257768A JP2007257768A JP5465828B2 JP 5465828 B2 JP5465828 B2 JP 5465828B2 JP 2007257768 A JP2007257768 A JP 2007257768A JP 2007257768 A JP2007257768 A JP 2007257768A JP 5465828 B2 JP5465828 B2 JP 5465828B2
Authority
JP
Japan
Prior art keywords
lamp
substrate
heating
heating unit
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007257768A
Other languages
Japanese (ja)
Other versions
JP2009088348A (en
JP2009088348A5 (en
Inventor
雅之 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2007257768A priority Critical patent/JP5465828B2/en
Publication of JP2009088348A publication Critical patent/JP2009088348A/en
Publication of JP2009088348A5 publication Critical patent/JP2009088348A5/ja
Application granted granted Critical
Publication of JP5465828B2 publication Critical patent/JP5465828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プラズマを発生させ、シリコンウェーハ等の基板表面に対して、酸化処理、不純物の拡散、薄膜の生成、エッチング等のプラズマ処理を施して半導体装置を製造する半導体製造装置に関するものである。   The present invention relates to a semiconductor manufacturing apparatus for manufacturing a semiconductor device by generating plasma and subjecting the surface of a substrate such as a silicon wafer to plasma processing such as oxidation, impurity diffusion, thin film generation, and etching. .

基板にプラズマ処理を施す半導体製造装置として、電界と磁界により高密度プラズマを生成できる変形マグネトロン型プラズマ処理装置(以下、MMT装置)がある(例えば、特許文献1参照)。   As a semiconductor manufacturing apparatus that performs plasma processing on a substrate, there is a modified magnetron type plasma processing apparatus (hereinafter referred to as MMT apparatus) that can generate high-density plasma by an electric field and a magnetic field (see, for example, Patent Document 1).

該MMT装置は、気密性を確保した反応室を有し、反応室に基板を収納し、所要の加熱手段で基板を加熱し、反応室の上部から処理ガスをシャワー状に供給し、反応室内を所定の処理圧に維持する。   The MMT apparatus has a reaction chamber in which airtightness is ensured, the substrate is accommodated in the reaction chamber, the substrate is heated by a required heating means, and a processing gas is supplied in a shower form from the upper part of the reaction chamber. Is maintained at a predetermined processing pressure.

反応室の外周に設けたリング状電極に高周波電力を供給して電界を形成すると共に、リング状電極の周囲に設けた磁石により磁界をかけてマグネトロン放電を起こす。リング状電極から放出された電子が、ドリフトしながらサイクロイド運動を続けて周回することにより長寿命となって電離生成率を高めるので、高密度プラズマを生成できる。このプラズマにより成膜用ガスを励起分解させて化学的反応を起こし、基板表面に薄膜を形成する等の基板処理を行う。   A high frequency power is supplied to a ring electrode provided on the outer periphery of the reaction chamber to form an electric field, and a magnetron discharge is generated by applying a magnetic field by a magnet provided around the ring electrode. The electrons emitted from the ring-shaped electrode continue to circulate in a cycloidal motion while drifting, so that the lifetime is increased and the ionization generation rate is increased, so that high-density plasma can be generated. Substrate processing such as forming a thin film on the surface of the substrate by performing chemical reaction by exciting and decomposing the deposition gas with this plasma is performed.

基板処理の過程で、基板は150℃〜850℃に加熱されるが、加熱手段の1つとして赤外光を発するハロゲンランプが用いられる。   In the course of substrate processing, the substrate is heated to 150 ° C. to 850 ° C. A halogen lamp that emits infrared light is used as one of the heating means.

又、複数のハロゲンランプが基板と対向する様に平面的に配置され、ハロゲンランプが発する赤外光による輻射加熱により基板が加熱されている。又、輻射加熱を効率よく行う様に、ハロゲンランプの反基板側には反射板、或は反射面が形成され、ハロゲンランプから基板と反対側に発せられる赤外光が基板に向けられる様になっている。   A plurality of halogen lamps are arranged in a plane so as to face the substrate, and the substrate is heated by radiant heating by infrared light emitted from the halogen lamp. In order to efficiently perform radiant heating, a reflection plate or reflection surface is formed on the opposite side of the halogen lamp so that infrared light emitted from the halogen lamp to the opposite side of the substrate is directed to the substrate. It has become.

図4は、ハロゲンランプの一例を示しており、図4で示されるハロゲンランプ1は基板と対向する加熱部2がリング状となっている。   FIG. 4 shows an example of a halogen lamp, and the halogen lamp 1 shown in FIG. 4 has a heating portion 2 facing the substrate in a ring shape.

前記ハロゲンランプ1は石英管3に発熱線4を収納した構造を有しており、前記石英管3はリング状部分5と該リング状部分5に連続し、該リング状部分5に対し垂直に屈曲した垂直端部6から成り、該垂直端部6が反射板、或は反応室の天井部を気密に貫通して上端が露出し、前記垂直端部6で前記ハロゲンランプ1が支持される様になっている。   The halogen lamp 1 has a structure in which a heating wire 4 is housed in a quartz tube 3, and the quartz tube 3 is continuous with the ring-shaped portion 5 and the ring-shaped portion 5, and is perpendicular to the ring-shaped portion 5. The vertical end 6 is bent, and the vertical end 6 airtightly penetrates the reflector or the ceiling of the reaction chamber to expose the upper end. The vertical end 6 supports the halogen lamp 1. It is like.

前記リング状部分5には前記発熱線4が収納され前記加熱部2を構成し、前記垂直端部6には非発熱体であるリード線8が収納される。又、前記垂直端部6の上端には絶縁端子部7が設けられ、前記リード線8が支持され、該リード線8は金属箔9を介して前記発熱線4に溶接され、前記リード線8より前記発熱線4に電力が供給される様になっている。   The heating portion 4 is accommodated in the ring-shaped portion 5 to constitute the heating portion 2, and the lead wire 8 that is a non-heating element is accommodated in the vertical end portion 6. An insulating terminal portion 7 is provided at the upper end of the vertical end portion 6 to support the lead wire 8, and the lead wire 8 is welded to the heating wire 4 through a metal foil 9. Further, electric power is supplied to the heating wire 4.

上記ハロゲンランプ1を発熱体とする加熱手段では、前記垂直端部6には非発熱体である前記リード線8が収納され、前記垂直端部6からは発熱しない様にされ、該垂直端部6からの熱で反射板、天井部、ランプ固定部等の構造部が加熱されない様に配慮されている。   In the heating means using the halogen lamp 1 as a heating element, the lead wire 8 which is a non-heating element is accommodated in the vertical end 6 so as not to generate heat from the vertical end 6. It is considered that the structural parts such as the reflector, the ceiling part, and the lamp fixing part are not heated by the heat from 6.

ところが、前記リング状部分5に対しては反射板が設けられているが、前記垂直端部6部分については、特に反射板等は設けられていないので、前記加熱部2からの輻射熱が前記垂直端部6を通して、天井部、ランプ固定部等の構造部を加熱する現象を生じていた。   However, a reflector is provided for the ring-shaped portion 5, but a reflector or the like is not particularly provided for the vertical end portion 6, so that radiant heat from the heating unit 2 is applied to the vertical portion 6. There has been a phenomenon in which structural parts such as a ceiling part and a lamp fixing part are heated through the end part 6.

この為、前記垂直端部6の支持部、或は貫通箇所について耐熱材料を用いる等耐熱対策、耐熱構造が必要となっていた。   For this reason, a heat-resistant measure and a heat-resistant structure are required, such as using a heat-resistant material for the support portion of the vertical end portion 6 or the penetration portion.

尚、前記ハロゲンランプ1が棒状のものである場合に於いても、両端には垂直端部6、即ち固定部が形成され、同様な問題を有していた。   Even when the halogen lamp 1 has a rod shape, vertical ends 6, that is, fixed portions are formed at both ends, which has a similar problem.

特開2005−276998号公報JP 2005-276998 A

本発明は斯かる実情に鑑み、ハロゲンランプの両端部、及び両端部の固定部、隣接する構造部が、加熱部からの熱輻射によって加熱されない様にしたものである。   In view of such a situation, the present invention is configured such that both ends of the halogen lamp, the fixed portions of the both ends, and the adjacent structure are not heated by heat radiation from the heating section.

本発明は、基板加熱手段としてランプ加熱ユニットを具備する半導体製造装置に於いて、前記ランプ加熱ユニットのランプが基板に対向する加熱部と該加熱部に連続する端部を具備し、該端部は該端部からの輻射熱を反射する端部カバーで覆われた半導体製造装置に係るものである。   The present invention provides a semiconductor manufacturing apparatus including a lamp heating unit as a substrate heating means, wherein the lamp of the lamp heating unit includes a heating portion facing the substrate and an end continuous to the heating portion. Is related to a semiconductor manufacturing apparatus covered with an end cover that reflects radiant heat from the end.

本発明によれば、基板加熱手段としてランプ加熱ユニットを具備する半導体製造装置に於いて、前記ランプ加熱ユニットのランプが基板に対向する加熱部と該加熱部に連続する端部を具備し、該端部は該端部からの輻射熱を反射する端部カバーで覆われたので、ランプの両端部、及び両端部の固定部、隣接する構造部が、加熱部からの熱輻射によって加熱されることが防止されるという優れた効果を発揮する。   According to the present invention, in a semiconductor manufacturing apparatus comprising a lamp heating unit as a substrate heating means, the lamp of the lamp heating unit comprises a heating part facing the substrate and an end continuous to the heating part, Since the end portion is covered with an end cover that reflects the radiant heat from the end portion, both end portions of the lamp, the fixed portions at both end portions, and the adjacent structure portion are heated by heat radiation from the heating portion. Demonstrate the excellent effect of preventing.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。尚、図1〜3中、図4と同等のものには同符号を付してある。   The best mode for carrying out the present invention will be described below with reference to the drawings. 1 to 3 that are the same as those in FIG.

先ず、図1により、本発明が実施されるプラズマを用いた半導体製造装置の一例であり、変形マグネトロン型プラズマ源(Modified Magnetron Typed Plasma Source)を用いてウェーハ等の基板をプラズマ処理するMMT装置11について説明する。   First, FIG. 1 shows an example of a semiconductor manufacturing apparatus using plasma in which the present invention is implemented, and an MMT apparatus 11 that performs plasma processing on a substrate such as a wafer using a modified magnetron type plasma source (Modified Magnetron Type Plasma Source). Will be described.

該MMT装置11は、処理容器12を有し、該処理容器12は、第1の容器であるドーム型の上側容器13と第2の容器である碗型の下側容器14により形成され、前記上側容器13は前記下側容器14の上に被せられ、該下側容器14と前記上側容器13によって気密な処理室15が画成される。   The MMT apparatus 11 includes a processing container 12, which is formed by a dome-shaped upper container 13 as a first container and a bowl-shaped lower container 14 as a second container, The upper container 13 is placed on the lower container 14, and an airtight processing chamber 15 is defined by the lower container 14 and the upper container 13.

前記上側容器13は酸化アルミニウム又は石英等の非金属材料で形成されており、前記下側容器14は金属材料、例えばアルミニウムで形成されている。又、前記処理容器12の天井面には光透過性窓部16が配設され、該光透過性窓部16に関して前記処理容器12外側に第2の加熱部であるランプ加熱ユニット17が設けられている。   The upper container 13 is made of a non-metallic material such as aluminum oxide or quartz, and the lower container 14 is made of a metal material such as aluminum. Further, a light transmissive window portion 16 is disposed on the ceiling surface of the processing container 12, and a lamp heating unit 17 as a second heating unit is provided outside the processing container 12 with respect to the light transmissive window portion 16. ing.

又、該ランプ加熱ユニット17に対峙して第1の加熱部を搭載するヒータ一体型の基板保持具(基板保持手段)であるサセプタ18が設けられ、該サセプタ18を窒化アルミニウムやセラミックス又は石英等の非金属材料で構成することによって、基板処理の際に膜中に取込まれる金属汚染を低減している。   Further, a susceptor 18 which is a heater-integrated substrate holder (substrate holding means) on which the first heating unit is mounted facing the lamp heating unit 17 is provided. The susceptor 18 is made of aluminum nitride, ceramics, quartz, or the like. By using this non-metallic material, metal contamination taken into the film during substrate processing is reduced.

シャワーヘッド19は、前記処理容器12の上部に設けられ、リング状の枠体21と、前記光透過性窓部16と、ガス導入口22と、バッファ室23と、開口24と、遮蔽プレート25と、ガス吹出口26とを備えている。前記バッファ室23は、前記ガス導入口22より導入されたガスを分散する為の分散空間として機能する。   The shower head 19 is provided in the upper part of the processing container 12, and has a ring-shaped frame 21, the light transmissive window portion 16, a gas introduction port 22, a buffer chamber 23, an opening 24, and a shielding plate 25. And a gas outlet 26. The buffer chamber 23 functions as a dispersion space for dispersing the gas introduced from the gas introduction port 22.

前記ガス導入口22には、ガスを供給するガス供給管27が接続されており、該ガス供給管27は、開閉弁であるバルブ28、流量制御器(流量制御手段)であるマスフローコントローラ29を介して反応ガス31のガスボンベ(図示せず)に繋がっている。   A gas supply pipe 27 for supplying gas is connected to the gas introduction port 22. The gas supply pipe 27 includes a valve 28 that is an on-off valve and a mass flow controller 29 that is a flow rate controller (flow rate control means). The reaction gas 31 is connected to a gas cylinder (not shown).

前記シャワーヘッド19から反応ガス31が前記処理室15に供給され、又、前記サセプタ18の周囲から前記処理室15の底方向へ基板処理後のガスが流れる様に前記下側容器14の側壁にガスを排気するガス排気口32が設けられている。該ガス排気口32にはガス排気管33が接続されており、該ガス排気管33は、圧力調整器であるAPC34、開閉弁であるバルブ35を介して排気装置である真空ポンプ36に接続されている。   The reaction gas 31 is supplied from the shower head 19 to the processing chamber 15, and the gas after the substrate processing flows from the periphery of the susceptor 18 toward the bottom of the processing chamber 15 to the side wall of the lower container 14. A gas exhaust port 32 for exhausting gas is provided. A gas exhaust pipe 33 is connected to the gas exhaust port 32. The gas exhaust pipe 33 is connected to a vacuum pump 36, which is an exhaust device, via an APC 34, which is a pressure regulator, and a valve 35, which is an on-off valve. ing.

供給される反応ガス31を励起させる放電機構(放電用電極)として、筒状、例えば円筒状に形成された第1の電極である筒状電極37が設けられる。該筒状電極37は前記処理容器12(上側容器13)の外周に設置されて前記処理室15のプラズマ生成領域38を囲んでいる。前記筒状電極37にはインピーダンスの整合を行う整合器39を介して高周波電力を印加する高周波電源41が接続されている。   As a discharge mechanism (discharge electrode) that excites the supplied reaction gas 31, a cylindrical electrode 37 that is a first electrode formed in a cylindrical shape, for example, a cylindrical shape, is provided. The cylindrical electrode 37 is installed on the outer periphery of the processing vessel 12 (upper vessel 13) and surrounds the plasma generation region 38 of the processing chamber 15. A high frequency power supply 41 for applying high frequency power is connected to the cylindrical electrode 37 via a matching unit 39 that performs impedance matching.

尚、前記筒状電極37、前記整合器39、前記高周波電源41等はプラズマ生成部を構成する。   The cylindrical electrode 37, the matching unit 39, the high-frequency power source 41, etc. constitute a plasma generation unit.

又、筒状、例えば円筒状に形成された磁界形成機構(磁界形成手段)である筒状磁石43は筒状の永久磁石となっている。該筒状磁石43は、前記筒状電極37の外表面の上下端近傍に配置される。上下の筒状磁石43,43は、前記処理室15の半径方向に沿った両端(内周端と外周端)に磁極を持ち、上下の筒状磁石43,43の磁極の向きが逆向きになる様設定されている。従って、内周部の磁極同士が異極となっており、これにより、前記筒状電極37の内周面に沿って円筒軸方向に磁力線を形成する様になっている。   Further, the cylindrical magnet 43 which is a cylindrical magnetic field forming mechanism (magnetic field forming means) formed in a cylindrical shape, for example, is a cylindrical permanent magnet. The cylindrical magnet 43 is disposed near the upper and lower ends of the outer surface of the cylindrical electrode 37. The upper and lower cylindrical magnets 43, 43 have magnetic poles at both ends (inner peripheral end and outer peripheral end) along the radial direction of the processing chamber 15, and the magnetic poles of the upper and lower cylindrical magnets 43, 43 are reversed. It is set to be. Therefore, the magnetic poles in the inner peripheral portion are different from each other, and thereby magnetic lines of force are formed in the cylindrical axial direction along the inner peripheral surface of the cylindrical electrode 37.

前記処理室15の底側中央には、基板であるウェーハ44を保持する為の基板保持具(基板保持手段)として前記サセプタ18が配置されている。該サセプタ18は、例えば窒化アルミニウムやセラミックス、又は石英等の非金属材料で形成され、内部に加熱機構(加熱手段)としてのヒータ(図示せず)が一体的に埋込まれており、ウェーハ44を加熱できる様になっている。ヒータは、電力が印加されてウェーハ44を700℃程度に迄加熱できる様になっている。   In the center of the bottom side of the processing chamber 15, the susceptor 18 is arranged as a substrate holder (substrate holding means) for holding a wafer 44 as a substrate. The susceptor 18 is formed of, for example, a non-metallic material such as aluminum nitride, ceramics, or quartz, and a heater (not shown) as a heating mechanism (heating means) is integrally embedded in the wafer 44. Can be heated. The heater is adapted to heat the wafer 44 to about 700 ° C. by applying electric power.

又、前記サセプタ18の内部には、更にインピーダンスを変化させる為の電極である第2の電極(図示せず)も装備されており、該第2の電極がインピーダンス可変機構45を介して接地されている。該インピーダンス可変機構45は、コイルや可変コンデンサから構成され、コイルのパターン数や可変コンデンサの容量値を制御することによって、上記電極及び前記サセプタ18を介してウェーハ44の電位を制御できる様になっている。   The susceptor 18 is also equipped with a second electrode (not shown) that is an electrode for changing impedance, and the second electrode is grounded via an impedance variable mechanism 45. ing. The variable impedance mechanism 45 is composed of a coil and a variable capacitor, and the potential of the wafer 44 can be controlled via the electrode and the susceptor 18 by controlling the number of coil patterns and the capacitance value of the variable capacitor. ing.

ウェーハ44をマグネトロン型プラズマ源でのマグネトロン放電により処理する為の処理炉46は、少なくとも前記処理室15、前記処理容器12、前記サセプタ18、前記筒状電極37、前記筒状磁石43、前記シャワーヘッド19、及び前記ガス排気口32から構成されており、前記処理室15でウェーハ44をプラズマ処理することが可能となっている。   The processing furnace 46 for processing the wafer 44 by magnetron discharge with a magnetron type plasma source includes at least the processing chamber 15, the processing container 12, the susceptor 18, the cylindrical electrode 37, the cylindrical magnet 43, and the shower. The head 19 and the gas exhaust port 32 are configured, and the wafer 44 can be subjected to plasma processing in the processing chamber 15.

前記筒状電極37及び前記筒状磁石43の周囲には、前記筒状電極37及び前記筒状磁石43で形成される電界や磁界を外部環境や他処理炉等の装置に悪影響を及ぼさない様に、電界や磁界を有効に遮蔽する遮蔽ケース47が設けられている。   Around the cylindrical electrode 37 and the cylindrical magnet 43, the electric field and magnetic field formed by the cylindrical electrode 37 and the cylindrical magnet 43 do not adversely affect the external environment and other processing furnaces. Further, a shielding case 47 that effectively shields an electric field and a magnetic field is provided.

前記サセプタ18は前記下側容器14と絶縁され、前記サセプタ18を昇降させるサセプタ昇降機構(昇降手段)48が設けられている。又前記サセプタ18には貫通孔49が設けられ、前記下側容器14底面にはウェーハ44を突上げる為のウェーハ突上げピン51が少なくとも3箇所に設けられている。前記サセプタ昇降機構48により前記サセプタ18が降下させられた時には前記ウェーハ突上げピン51が前記サセプタ18と非接触な状態で前記貫通孔49を突抜ける様な位置関係となる様、前記貫通孔49及び前記ウェーハ突上げピン51が配置される。   The susceptor 18 is insulated from the lower container 14 and is provided with a susceptor elevating mechanism (elevating means) 48 for elevating the susceptor 18. The susceptor 18 is provided with through holes 49, and on the bottom surface of the lower container 14, wafer push-up pins 51 for pushing up the wafer 44 are provided in at least three places. When the susceptor 18 is lowered by the susceptor elevating mechanism 48, the through hole 49 has a positional relationship such that the wafer push-up pin 51 protrudes through the through hole 49 without being in contact with the susceptor 18. The wafer push-up pins 51 are disposed.

前記下側容器14の側壁には仕切弁となるゲートバルブ52が設けられ、開いている時には搬送機構(搬送手段)(図示せず)により前記処理室15に対してウェーハ44を搬入、又は搬出することができ、閉まっている時には前記処理室15を気密に閉じることができる。   A gate valve 52 serving as a gate valve is provided on the side wall of the lower container 14. When the gate valve 52 is open, a wafer 44 is carried into or out of the processing chamber 15 by a transfer mechanism (transfer means) (not shown). The process chamber 15 can be hermetically closed when closed.

又、制御部(制御手段)としてのコントローラ53は信号線Aを通じて前記APC34、前記バルブ35、前記真空ポンプ36を、信号線Bを通じて前記サセプタ昇降機構48を、信号線Cを通じて前記ゲートバルブ52を、信号線Dを通じて前記整合器39、前記高周波電源41を、信号線Eを通じて前記マスフローコントローラ29、前記バルブ28を、更に図示しない信号線を通じて前記サセプタ18に埋込まれたヒータや前記インピーダンス可変機構45を、信号線Fを通じて前記ランプ加熱ユニット17をそれぞれ制御する様構成されている。   The controller 53 as a control unit (control means) includes the APC 34, the valve 35, and the vacuum pump 36 through the signal line A, the susceptor lifting mechanism 48 through the signal line B, and the gate valve 52 through the signal line C. The matching unit 39 and the high frequency power source 41 through the signal line D, the mass flow controller 29 and the valve 28 through the signal line E, and the heater and the impedance variable mechanism embedded in the susceptor 18 through the signal line (not shown). 45 is configured to control the lamp heating unit 17 through the signal line F, respectively.

次に上記の様な構成の処理炉を用いて、半導体デバイスの製造工程の一工程として、ウェーハ44表面に対し、又はウェーハ44上に形成された下地膜の表面に対し所定のプラズマ処理を施す方法について説明する。尚、以下の説明に於いて、MMT装置11を構成する各部の動作は前記コントローラ53により制御される。   Next, using the processing furnace having the above-described configuration, a predetermined plasma process is performed on the surface of the wafer 44 or the surface of the base film formed on the wafer 44 as one step of the semiconductor device manufacturing process. A method will be described. In the following description, the operation of each part constituting the MMT apparatus 11 is controlled by the controller 53.

ウェーハ44は前記処理室15の外部から搬送機構(図示せず)によって前記処理室15に搬入され、前記サセプタ18上に搬送される。この搬送動作の詳細は次の通りである。   The wafer 44 is transferred from the outside of the processing chamber 15 into the processing chamber 15 by a transfer mechanism (not shown) and transferred onto the susceptor 18. The details of this transport operation are as follows.

前記サセプタ18が基板搬送位置迄降下し、前記ウェーハ突上げピン51の先端が前記貫通孔49を貫通する。この時前記サセプタ18表面よりも所定の高さ分だけ前記突上げピン51が突出された状態となる。次に、前記ゲートバルブ52が開かれ搬送機構(図示せず)によってウェーハ44を前記ウェーハ突上げピン51の先端に載置する。   The susceptor 18 is lowered to the substrate transfer position, and the tip of the wafer push-up pin 51 passes through the through hole 49. At this time, the push-up pin 51 is projected by a predetermined height from the surface of the susceptor 18. Next, the gate valve 52 is opened, and the wafer 44 is placed on the tip of the wafer push-up pin 51 by a transfer mechanism (not shown).

前記搬送機構が前記処理室15外へ退避すると、前記ゲートバルブ52が閉じられる。前記サセプタ18が前記サセプタ昇降機構48により上昇すると、前記サセプタ18上面にウェーハ44を載置することができ、更にウェーハ44を処理する位置迄上昇させる。   When the transfer mechanism is retracted out of the processing chamber 15, the gate valve 52 is closed. When the susceptor 18 is raised by the susceptor elevating mechanism 48, the wafer 44 can be placed on the upper surface of the susceptor 18, and the wafer 44 is further raised to a processing position.

前記サセプタ18に埋込まれたヒータは予め加熱されており、搬入されたウェーハ44を150℃〜700℃の範囲の内、所定のウェーハ処理温度に加熱する。   The heater embedded in the susceptor 18 is preheated, and heats the loaded wafer 44 to a predetermined wafer processing temperature within a range of 150 ° C to 700 ° C.

前記真空ポンプ36、及び前記APC34を用いて前記処理室15の圧力を1Pa〜200Paの範囲の内、所定の圧力に維持する。   Using the vacuum pump 36 and the APC 34, the pressure of the processing chamber 15 is maintained at a predetermined pressure within a range of 1 Pa to 200 Pa.

ウェーハ44の温度が処理温度に達し、安定化したら、前記ガス導入口22から前記遮蔽プレート25の前記ガス吹出口26を介して、窒素含有ガスをウェーハ44の上面(処理面)に向けて導入する。この時のガス流量は所定の流量(例えば100sccm〜500sccm)とする。   When the temperature of the wafer 44 reaches the processing temperature and stabilizes, a nitrogen-containing gas is introduced from the gas inlet 22 toward the upper surface (processing surface) of the wafer 44 through the gas outlet 26 of the shielding plate 25. To do. The gas flow rate at this time is a predetermined flow rate (for example, 100 sccm to 500 sccm).

同時に前記筒状電極37に前記高周波電源41から前記整合器39を介して高周波電力を印加する。印加する電力は、100W〜1000Wの範囲の内、所定の出力値を投入する。この時前記インピーダンス可変機構45は予め所望のインピーダンス値となる様に制御しておく。   At the same time, high frequency power is applied to the cylindrical electrode 37 from the high frequency power supply 41 via the matching unit 39. The power to be applied is a predetermined output value within the range of 100W to 1000W. At this time, the impedance variable mechanism 45 is controlled in advance so as to have a desired impedance value.

前記筒状磁石43,43の磁界の影響を受けてマグネトロン放電が発生し、ウェーハ44の上方空間に電荷をトラップして前記プラズマ生成領域38に高密度プラズマが生成される。そして、生成された高密度プラズマにより、前記サセプタ18上のウェーハ44の表面にプラズマ処理が施される。   A magnetron discharge is generated under the influence of the magnetic field of the cylindrical magnets 43, 43, and charges are trapped in the upper space of the wafer 44 to generate high-density plasma in the plasma generation region 38. Then, the surface of the wafer 44 on the susceptor 18 is subjected to plasma processing by the generated high density plasma.

プラズマ処理が終わると、前記筒状電極37への電力供給を停止し、窒素含有ガスを前記処理室15から排気する。排気した後、ウェーハ44は、搬送機構(図示せず)を用いて、基板搬入と逆の手順で前記処理室15外へ搬送される。   When the plasma processing is finished, the power supply to the cylindrical electrode 37 is stopped, and the nitrogen-containing gas is exhausted from the processing chamber 15. After evacuation, the wafer 44 is transferred out of the processing chamber 15 by a transfer mechanism (not shown) in the reverse order of substrate loading.

次に、図2、図3により前記ランプ加熱ユニット17について説明する。尚、図2では、ハロゲンランプ1の垂直端部6の支持部について、支持構造を明確にする為、便宜的に位置と向きとを変更して示している。   Next, the lamp heating unit 17 will be described with reference to FIGS. In FIG. 2, the position and orientation of the support portion of the vertical end portion 6 of the halogen lamp 1 are changed for convenience in order to clarify the support structure.

アルミ製の反射ブロック55の下面には多重同心円上に複数のランプ収納溝56が刻設され、該ランプ収納溝56の内面は鏡面仕上げされ、前記反射ブロック55は輻射熱の反射板となっている。鏡面仕上げは、金メッキ、或は蒸着される等される。   A plurality of lamp storage grooves 56 are engraved on the lower surface of the aluminum reflection block 55 on multiple concentric circles, the inner surface of the lamp storage groove 56 is mirror-finished, and the reflection block 55 is a radiant heat reflection plate. . The mirror finish is gold-plated or vapor-deposited.

又、前記反射ブロック55の中間部、前記ランプ収納溝56の上側には、空冷空間57が形成され、該空冷空間57の上側には冷却管58が埋設され、該冷却管58は前記反射ブロック55の内部に冷却路を形成する。   Further, an air cooling space 57 is formed at an intermediate portion of the reflection block 55 and above the lamp housing groove 56, and a cooling pipe 58 is buried above the air cooling space 57, and the cooling pipe 58 is formed in the reflection block. A cooling path is formed inside 55.

前記ランプ収納溝56にはハロゲンランプ1(図4参照)の加熱部2が収納され、又前記ハロゲンランプ1の前記垂直端部6は前記反射ブロック55を貫通して上方に突出している。前記垂直端部6は断面が長円形の端部カバー59によって覆われている。該端部カバー59は、金属製、例えばアルミ製であり、少なくとも内面が鏡面仕上げされている。鏡面仕上げの方法としては、前記ランプ収納溝56と同様金の反射層を形成する等である。或は、ステンレス鋼板製とし、内面を鏡面研磨としてもよい。前記端部カバー59と前記垂直端部6との間隙、少なくとも間隙の上端部分は絶縁材60により、封止する。該絶縁材60により間隙を封止することで、間隙からの輻射熱の放射を防止できる。   The lamp housing groove 56 houses the heating unit 2 of the halogen lamp 1 (see FIG. 4), and the vertical end 6 of the halogen lamp 1 passes through the reflection block 55 and protrudes upward. The vertical end 6 is covered with an end cover 59 having an oval cross section. The end cover 59 is made of metal, for example, aluminum, and at least the inner surface is mirror-finished. As a mirror finishing method, a gold reflective layer is formed in the same manner as the lamp housing groove 56. Alternatively, it may be made of a stainless steel plate and the inner surface may be mirror polished. The gap between the end cover 59 and the vertical end 6, at least the upper end portion of the gap, is sealed with an insulating material 60. By sealing the gap with the insulating material 60, radiation of radiant heat from the gap can be prevented.

前記反射ブロック55の上面には、スペーサ61を介してランプ固定板62が設けられており、該ランプ固定板62にL字形のランプ支持部材63が固定され、該ランプ支持部材63を介して前記垂直端部6が前記ランプ固定板62に固定される様になっている。又、該ランプ固定板62には前記ハロゲンランプ1へ電力を供給する為の端子板(図示せず)等が取付けられている。   A lamp fixing plate 62 is provided on the upper surface of the reflection block 55 via a spacer 61, and an L-shaped lamp support member 63 is fixed to the lamp fixing plate 62. The vertical end 6 is fixed to the lamp fixing plate 62. A terminal plate (not shown) for supplying electric power to the halogen lamp 1 is attached to the lamp fixing plate 62.

前記空冷空間57には、冷却空気吐出ノズル64が設けられ、図示しない冷却空気供給源から供給された冷却空気が前記空冷空間57に吐出、流動することで、前記反射ブロック55が空冷される。更に、前記冷却管58に冷却水等の冷媒が流動されることで、前記反射ブロック55が水冷(液冷)される。従って、該反射ブロック55は、空冷、水冷により昇温が抑制され、特に前記ランプ固定板62の温度が低下し、該ランプ固定板62に設けられる端子板等の部材の焼損が防止でき、寿命が延長される。   The air cooling space 57 is provided with a cooling air discharge nozzle 64, and cooling air supplied from a cooling air supply source (not shown) is discharged and flows into the air cooling space 57, whereby the reflection block 55 is air cooled. Further, a coolant such as cooling water flows through the cooling pipe 58, whereby the reflection block 55 is cooled with water (liquid cooling). Therefore, the temperature rise of the reflection block 55 is suppressed by air cooling and water cooling, and particularly the temperature of the lamp fixing plate 62 is lowered, and it is possible to prevent the members such as the terminal plate provided on the lamp fixing plate 62 from being burned out. Is extended.

尚、図中、65は前記ランプ加熱ユニット17全体を覆う加熱ユニットカバーである。   In the figure, reference numeral 65 denotes a heating unit cover that covers the entire lamp heating unit 17.

絶縁端子部7を介して前記ハロゲンランプ1に電力を供給し、該ハロゲンランプ1を発熱させると、該ハロゲンランプ1からは例えば2700Kの赤外線が輻射され、対向するウェーハ44を加熱する。   When electric power is supplied to the halogen lamp 1 through the insulating terminal portion 7 to cause the halogen lamp 1 to generate heat, 2700 K of infrared rays, for example, are radiated from the halogen lamp 1 and the opposing wafer 44 is heated.

前記加熱部2のウェーハ44に対向する面から輻射される赤外線は、前記ランプ収納溝56の開口部から直接、ウェーハ44を加熱し、又前記ランプ収納溝56の残りの面から輻射される赤外線は反射面で反射され、ウェーハ44を加熱する。   Infrared radiation radiated from the surface of the heating unit 2 facing the wafer 44 directly heats the wafer 44 from the opening of the lamp housing groove 56 and radiates from the remaining surface of the lamp housing groove 56. Is reflected by the reflecting surface and heats the wafer 44.

又、前記加熱部2から輻射される一部は、前記垂直端部6に向うが前記端部カバー59の内面により反射され、又該端部カバー59と前記垂直端部6との間に充填された前記絶縁材60により遮断される。従って、赤外線が前記垂直端部6を介して周囲に放射されることはなく、該垂直端部6の周囲が加熱されることが防止される。   A part of the radiation emitted from the heating unit 2 is reflected by the inner surface of the end cover 59 toward the vertical end 6 and is filled between the end cover 59 and the vertical end 6. The insulating material 60 is cut off. Therefore, infrared rays are not radiated to the surroundings through the vertical end 6 and the surroundings of the vertical end 6 are prevented from being heated.

従って、該垂直端部6の支持部、或は貫通箇所の加熱が防止され、焼損が防止され、寿命が延びると共に耐熱構造が簡略化される。   Therefore, heating of the support portion of the vertical end portion 6 or the through portion is prevented, burnout is prevented, the life is extended, and the heat resistant structure is simplified.

(付記)
又、本発明は以下の実施の態様を含む。
(Appendix)
The present invention includes the following embodiments.

(付記1)基板加熱手段としてランプ加熱ユニットを具備する半導体製造装置に於いて、前記ランプ加熱ユニットのランプが基板に対向する加熱部と該加熱部に連続する端部を具備し、該端部は該端部からの輻射熱を反射する端部カバーで覆われたことを特徴とする半導体製造装置。   (Supplementary Note 1) In a semiconductor manufacturing apparatus including a lamp heating unit as a substrate heating means, the lamp of the lamp heating unit includes a heating portion facing the substrate and an end continuous to the heating portion, and the end Is covered with an end cover that reflects radiant heat from the end.

(付記2)前記端部と前記端部カバー間の間隙は、絶縁材によって封止され、該絶縁材は熱輻射を遮断する付記1の半導体製造装置。   (Supplementary note 2) The semiconductor manufacturing apparatus according to supplementary note 1, wherein a gap between the end portion and the end portion cover is sealed with an insulating material, and the insulating material blocks heat radiation.

(付記3)前記ランプ加熱ユニットは、ハロゲンランプの輻射熱を基板に向け反射する反射板を有し、該反射板には空冷空間が形成され、前記反射板が前記空冷空間に供給される空気により冷却される付記1の半導体製造装置。   (Additional remark 3) The said lamp heating unit has a reflecting plate which reflects the radiant heat of a halogen lamp toward a board | substrate, an air cooling space is formed in this reflecting plate, and the said reflecting plate is by the air supplied to the said air cooling space The semiconductor manufacturing apparatus of Supplementary note 1 to be cooled.

(付記4)前記ランプ加熱ユニットは、ハロゲンランプの輻射熱を基板に向け反射する反射板を有し、該反射板には冷却路が形成され、該冷却路に冷媒が流動されることで前記反射板が液冷される付記1の半導体製造装置。   (Additional remark 4) The said lamp heating unit has a reflecting plate which reflects the radiant heat of a halogen lamp toward a board | substrate, a cooling path is formed in this reflecting plate, and a said refrigerant | coolant flows into this cooling path, and the said reflection The semiconductor manufacturing apparatus according to appendix 1, wherein the plate is liquid-cooled.

本発明が実施される半導体製造装置の一例を示す断面図である。It is sectional drawing which shows an example of the semiconductor manufacturing apparatus with which this invention is implemented. 該半導体製造装置に於けるランプ加熱ユニットの断面図である。It is sectional drawing of the lamp heating unit in this semiconductor manufacturing apparatus. 図2のA−A矢視図である。It is an AA arrow line view of FIG. ハロゲンランプの一例を示す斜視図である。It is a perspective view which shows an example of a halogen lamp.

符号の説明Explanation of symbols

1 ハロゲンランプ
2 加熱部
4 発熱線
6 垂直端部
7 絶縁端子部
17 ランプ加熱ユニット
18 サセプタ
37 筒状電極
38 プラズマ生成領域
43 筒状磁石
55 反射ブロック
56 ランプ収納溝
57 空冷空間
58 冷却管
59 端部カバー
60 絶縁材
64 冷却空気吐出ノズル
DESCRIPTION OF SYMBOLS 1 Halogen lamp 2 Heating part 4 Heating wire 6 Vertical end part 7 Insulated terminal part 17 Lamp heating unit 18 Susceptor 37 Cylindrical electrode 38 Plasma generation area 43 Cylindrical magnet 55 Reflection block 56 Lamp storage groove 57 Air cooling space 58 Cooling pipe 59 End Cover 60 Insulating material 64 Cooling air discharge nozzle

Claims (3)

基板保持具を有する処理室と、前記基板保持具と対峙し、前記処理室の天井面に配された窓を介して設けられるランプ加熱ユニットとを有し、該ランプ加熱ユニットのランプが基板に対向する加熱部と該加熱部に連続する端部を具備し、該端部は該端部からの輻射熱を反射する端部カバーで覆われ、前記端部と前記端部カバー間の間隙は絶縁材によって封止される基板処理装置。   A processing chamber having a substrate holder; and a lamp heating unit facing the substrate holder and provided through a window disposed on a ceiling surface of the processing chamber, the lamp of the lamp heating unit being attached to the substrate It has an opposite heating part and an end continuous to the heating part, and the end is covered with an end cover that reflects radiant heat from the end, and the gap between the end and the end cover is insulated. A substrate processing apparatus sealed with a material. 前記ランプ加熱ユニットは、前記処理室側にランプ収納溝が設けられた反射ブロックを有し、前記加熱部は前記ランプ収納溝に配され、前記端部は前記反射ブロックを貫通して該反射ブロックの上方に突出される請求項1の基板処理装置。 The lamp heating unit has a reflection block the lamp receiving groove on the processing chamber side is provided, wherein the heating portion is disposed in the lamp housing groove, the said end portion through said reflector block reflecting block The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus projects upward. 基板保持具を有する処理室に基板が搬送される工程と、前記基板保持具と対峙し、前記処理室の天井面に配された窓を介して設けられるランプ加熱ユニットであって、該ランプ加熱ユニットのランプが基板に対向する加熱部と該加熱部に連続する端部を具備し、該端部は該端部からの輻射熱を反射する端部カバーで覆われ、前記端部と前記端部カバー間の間隙が絶縁材によって封止される前記ランプ加熱ユニットによって基板が加熱される工程とを有する半導体デバイスの製造方法。   A step of transporting a substrate to a processing chamber having a substrate holder; and a lamp heating unit that is provided through a window disposed on a ceiling surface of the processing chamber so as to face the substrate holder. The lamp of the unit includes a heating portion facing the substrate and an end continuous to the heating portion, and the end is covered with an end cover that reflects radiant heat from the end, and the end and the end And a step of heating the substrate by the lamp heating unit in which a gap between the covers is sealed with an insulating material.
JP2007257768A 2007-10-01 2007-10-01 Substrate processing apparatus and semiconductor device manufacturing method Active JP5465828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007257768A JP5465828B2 (en) 2007-10-01 2007-10-01 Substrate processing apparatus and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257768A JP5465828B2 (en) 2007-10-01 2007-10-01 Substrate processing apparatus and semiconductor device manufacturing method

Publications (3)

Publication Number Publication Date
JP2009088348A JP2009088348A (en) 2009-04-23
JP2009088348A5 JP2009088348A5 (en) 2010-11-18
JP5465828B2 true JP5465828B2 (en) 2014-04-09

Family

ID=40661355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257768A Active JP5465828B2 (en) 2007-10-01 2007-10-01 Substrate processing apparatus and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5465828B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012933B2 (en) * 2011-04-26 2016-10-25 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
KR101331420B1 (en) 2011-03-04 2013-11-21 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus and method of manufacturing semiconductor device
JP7227350B2 (en) * 2019-03-20 2023-02-21 株式会社Kokusai Electric Substrate processing apparatus, processing vessel, reflector, and method for manufacturing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154618A (en) * 1985-12-26 1987-07-09 Matsushita Electric Ind Co Ltd Vapor growth apparatus
JPH0532956Y2 (en) * 1987-09-24 1993-08-23
JPH08292667A (en) * 1995-04-21 1996-11-05 Tec Corp Heat and fixing device
JP2000114196A (en) * 1998-08-06 2000-04-21 Ushio Inc Cooling structure of light projecting heating apparatus
JP3733811B2 (en) * 1999-02-16 2006-01-11 ウシオ電機株式会社 Light irradiation type heat treatment equipment
JP4004765B2 (en) * 2000-10-10 2007-11-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2009088348A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP6073256B2 (en) Off-angle heating of the underside of the substrate using a lamp assembly
KR100747957B1 (en) Semiconductor producing device and semiconductor producing method
KR100509085B1 (en) Thermal processing system
JP5320171B2 (en) Substrate processing equipment
KR101111612B1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR100380213B1 (en) A semiconductor processing system and substrate processing apparatus
JP2001308084A (en) Heat-treating apparatus and method of heat treating work
JPWO2019053807A1 (en) Substrate processing apparatus, heater apparatus, and semiconductor device manufacturing method
JP5465828B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US20220005678A1 (en) Substrate processing apparatus, reflector and method of manufacturing semiconductor device
JP2011204819A (en) Substrate processing apparatus and substrate processing method
JP2011091389A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2008053489A (en) Substrate processing apparatus
JP2007266595A (en) Plasma treatment apparatus and substrate heating mechanism used therefor
JP4995579B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP4861208B2 (en) Substrate mounting table and substrate processing apparatus
JP2010080706A (en) Substrate processing apparatus
JP5171584B2 (en) Substrate mounting table for substrate processing apparatus, substrate processing apparatus, and method for manufacturing semiconductor device
JP5525174B2 (en) Heat treatment equipment
JP2008294104A (en) Substrate treating apparatus
JP2005259902A (en) Substrate processor
JP2011187637A (en) Semiconductor manufacturing device
US20220122859A1 (en) Method of manufacturing semiconductor device and apparatus for manufacturing semiconductor device
JP5235934B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2009059845A (en) Substrate treatment equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5465828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250