JPS62154618A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS62154618A
JPS62154618A JP29379585A JP29379585A JPS62154618A JP S62154618 A JPS62154618 A JP S62154618A JP 29379585 A JP29379585 A JP 29379585A JP 29379585 A JP29379585 A JP 29379585A JP S62154618 A JPS62154618 A JP S62154618A
Authority
JP
Japan
Prior art keywords
susceptor
gas
semiconductor wafer
reaction chamber
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29379585A
Other languages
Japanese (ja)
Inventor
Kazuhiro Karatsu
唐津 和裕
Mikio Takebayashi
幹男 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29379585A priority Critical patent/JPS62154618A/en
Publication of JPS62154618A publication Critical patent/JPS62154618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a film having uniform thickness on a semiconductor wafer by emitting stronger light from an infrared ray lamp than a center to the periphery of a susceptor to obtain a uniform temperature distribution on a semiconductor wafer. CONSTITUTION:A semiconductor wafer 16 is placed on a susceptor 27, and an electric power is supplied through a power regulation unit to infrared ray lamps 19 to heat the wafer 16 to a predetermined temperature. At this time, mixture gas of helium base is supplied through a gas supply port 14, a reaction chamber 9 is evacuated from a gas outlet 15 by a rotary pump to hold a reduced pressure state, and reaction gas is decomposed and precipitated from gas phase contacted with the wafer 16 to form a polycrystalline silicon film on the wafer 16. The quantity of heat radiated perpendicularly with respect to the lamps 19 is controlled by an electric power supplied to respective zones in the process of the vapor-phase growth, and the light emitted from the lamps 19 can be collected to the periphery of the susceptor 17 by bent projection 20a of a reflecting plate 20 with respect to the longitudinal direction of the lamps 19.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体製造工程において利用される気相成長装
置、特に赤外線ランプを加熱源とする気相成長装置に関
するものである3゜ 従来の技術 半導体工業において用いられる気相成長装置は、モノシ
ラン等の反応ガス分子が半導体ウェハ表面で分解析出し
て多結晶シリコン等の薄膜を形成させるものであるが、
こうして形成された薄膜の膜厚、および比抵抗の均一性
は、半導体ウェハの表面温度で大きく変わってくる。従
って、良質な気相成艮膜をイ4+るためには、半導++
ウェハ衣面を全面にわたって均一な温度分布に保持する
ことが必要である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vapor phase growth apparatus used in a semiconductor manufacturing process, particularly a vapor phase growth apparatus using an infrared lamp as a heating source. The vapor phase growth apparatus used in this technology separates reactive gas molecules such as monosilane on the surface of a semiconductor wafer to form a thin film of polycrystalline silicon or the like.
The thickness and uniformity of resistivity of the thin film thus formed vary greatly depending on the surface temperature of the semiconductor wafer. Therefore, in order to produce a high-quality vapor-deposited film, it is necessary to
It is necessary to maintain a uniform temperature distribution over the entire surface of the wafer.

従来の赤外線加熱方式を使用した気相成長装置は、例え
ば特公昭57−44009号公報に示されているように
、第4図のような構成になっている。反応室は、石英ベ
ルジャ1とベース板2によって、完全に外気と遮断でき
るようになっており、ベース板2には反応ガスを供給す
るためのガス供給口3と反応ガスを排出するためのガス
排出口4が取り付けられている。また、ベース板2上に
は、半導体ウェハ6を載置するサセプタ6が設置されて
いる。また石英ベルジャ1の外側には、半導体ウェハ5
を加熱するための赤外線ランプ7と、赤外線ランプ了の
反射光線が効率よく半導体ウエノ・6に照射するように
反対板8が取り付けられている。
A conventional vapor phase growth apparatus using an infrared heating method has a configuration as shown in FIG. 4, as shown in Japanese Patent Publication No. 57-44009, for example. The reaction chamber can be completely isolated from the outside air by a quartz belljar 1 and a base plate 2, and the base plate 2 has a gas supply port 3 for supplying the reaction gas and a gas supply port 3 for discharging the reaction gas. A discharge port 4 is attached. Furthermore, a susceptor 6 on which a semiconductor wafer 6 is placed is installed on the base plate 2 . Furthermore, a semiconductor wafer 5 is placed on the outside of the quartz belljar 1.
An infrared lamp 7 for heating the semiconductor substrate 6 and an opposite plate 8 are attached so that the reflected light from the infrared lamp efficiently irradiates the semiconductor substrate 6.

発明が解決しようとする問題点 しかしながら上記のように構成された従来の気相成長装
置では、半導体ウェハ5表面の温度分布は赤外線ランプ
7から供給される熱エネルギーと、半導体ワエハ5およ
びサセプタ6からの対流、輻射等による熱の放出量によ
り決定され、サセプタ6の上面は、赤外線ランプ7から
の一定の輻射熱を受け、一方、外周面についてはその表
面温度に対応した大量の熱が放出される。従ってサセプ
タ6の表面の温度分布は中央部が高く外周はど低いとい
う分布になってしまう。また赤外線ランプ了自体も、端
部に比べて中央部がより発熱体温度が商い傾向にある。
Problems to be Solved by the Invention However, in the conventional vapor phase growth apparatus configured as described above, the temperature distribution on the surface of the semiconductor wafer 5 is determined by the thermal energy supplied from the infrared lamp 7 and from the semiconductor wafer 5 and the susceptor 6. The upper surface of the susceptor 6 receives a certain amount of radiant heat from the infrared lamp 7, while the outer peripheral surface releases a large amount of heat corresponding to its surface temperature. . Therefore, the temperature distribution on the surface of the susceptor 6 is high at the center and low at the outer periphery. Also, in the case of infrared lamps themselves, the temperature of the heating element tends to be higher at the center than at the ends.

これらの結果、半導体ウエノ\5上に気相成長させた薄
膜は、中央に比べて端の方が薄くなるという欠点を有し
ていた。この対策として、各赤外線ランプの夫々に印加
する電力を制御する方法がとられているが、サセプタ6
上の各赤外線ランプの長手方向における温度分布むらは
解消されない。更に、サセプタを回転する方法が考えら
れるが、機構が複雑となり、ダスト発生の要因となシか
ねないし、温度分布むらが充分に解消されるものではな
い。
As a result, the thin film grown in vapor phase on the semiconductor Ueno\5 had the drawback that it was thinner at the edges than at the center. As a countermeasure against this, a method has been taken to control the power applied to each infrared lamp, but the susceptor 6
The temperature distribution unevenness in the longitudinal direction of each of the above infrared lamps cannot be eliminated. Furthermore, a method of rotating the susceptor has been considered, but the mechanism would be complicated, which could cause dust generation, and the unevenness of temperature distribution would not be sufficiently eliminated.

そこで本発明は、サセプタすなわち半導体ウェハ表面の
温度分布ならを解消し均一性のすぐれた良質の気相成長
膜を形成する気相成長装置を提供するものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a vapor phase growth apparatus that eliminates the uneven temperature distribution on the surface of a susceptor, that is, a semiconductor wafer, and forms a high quality vapor phase growth film with excellent uniformity.

問題点を解決するだめの手段 本発明は、前記問題点を解決するために一部が赤外光を
透過する部材でできた気密保持可能な反応室と、該反応
室の内部にあって半導体ウェハを保持するサセプタと、
前記反応室に反応ガスを供給するガス供給手段と、前記
反応室に接続しその内部を排気する真空排気手段と、前
記反応室の外部にあって前記赤外光を透過する部材を透
したサセプタに保持される半導体ウェハを加熱する赤外
線ランプと、該赤外線ランプの背部にあって赤外線ラン
プからの照射光をサセプタ側に反射させる反射板とを備
え、前記赤外線ランプからの直接照射光および反射板か
らの反射光によるサセプタの照射をサセプタの中央部に
対するよシもサセプタの周辺部で強くする照射制御手段
を設けたことを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a reaction chamber that can be kept airtight, a part of which is made of a member that transmits infrared light, and a semiconductor inside the reaction chamber. a susceptor that holds the wafer;
a gas supply means for supplying a reaction gas to the reaction chamber; a vacuum evacuation means connected to the reaction chamber and evacuating the inside thereof; and a susceptor that is located outside the reaction chamber and is transparent to the infrared light. an infrared lamp that heats a semiconductor wafer held in the susceptor, and a reflector located at the back of the infrared lamp that reflects the irradiated light from the infrared lamp toward the susceptor, and the reflector that directs the irradiated light from the infrared lamp and the reflector. The susceptor is characterized by being provided with an irradiation control means that makes the susceptor irradiated with light reflected from the susceptor stronger at the periphery of the susceptor than at the center of the susceptor.

作  用 本発明は上記した構成であって、サセプタ上に向けられ
る赤外線ランプからの照射光および反射板からの反射光
は、照射制御手段によって、サセプタの中央部よシ周辺
部に強く当てられ、放熱により温度低下を来し易い半導
体ウェハあるいはサセプタの周辺部を中央部よりも強く
加熱するから半導体ウェハ表面の温度均一化をはかるこ
とができる。
Function The present invention has the above-described configuration, in which the irradiation light from the infrared lamp directed onto the susceptor and the reflected light from the reflection plate are strongly applied to the central part and the peripheral part of the susceptor by the irradiation control means, Since the periphery of the semiconductor wafer or susceptor, which tends to drop in temperature due to heat radiation, is heated more strongly than the center, the temperature of the semiconductor wafer surface can be made uniform.

実施例 第1図、第2図に示す本発明の一実施例について説明す
る。
Embodiment An embodiment of the present invention shown in FIGS. 1 and 2 will be described.

第2図は装置全体の断面図である。図において、反応室
9は、内部に水冷路10が施されたステンレスより成る
壁面部材11と、上部に設けた赤外光を透過する部材と
しての透明石英プレート12から構成されている。この
透明石英プレート12は0リング等の既知のガスシール
手段を介して。
FIG. 2 is a sectional view of the entire device. In the figure, a reaction chamber 9 is composed of a wall member 11 made of stainless steel and having a water cooling passage 10 therein, and a transparent quartz plate 12 provided above as a member that transmits infrared light. This transparent quartz plate 12 is sealed via a known gas sealing means such as an O-ring.

上記壁面部材11に固定されている。反応室9の側壁の
一端に、図示しないガス供給装置から伸びたガス供給管
13が結合したガス供給口14を有し、他端には図示し
ないロータリポンプなどの真空排気装置と連結した排気
口15が設けられている。また、前記反応室9の内部に
は半導体ウェハ16を載置するSiCでコーティングさ
れたグラファイトより成るサセプタ17が設置されてお
り、反応室9の外部上方には、透明石英ブ+/−1−1
2をはさんでサセプタ17に対面した位置に加熱プ′ロ
ック18が取り付けである。この加熱ブロック18は、
水平な棒状の赤外線ランプ19が前記ガス供給口14か
らガス排出口15に流れる反応ガスの流れ方向と直交す
るように等間隔で6本配列されその背部に反射板2oが
設置されている。
It is fixed to the wall member 11. One end of the side wall of the reaction chamber 9 has a gas supply port 14 connected to a gas supply pipe 13 extending from a gas supply device (not shown), and the other end has an exhaust port connected to a vacuum evacuation device such as a rotary pump (not shown). 15 are provided. Furthermore, a susceptor 17 made of graphite coated with SiC is installed inside the reaction chamber 9 on which a semiconductor wafer 16 is placed, and a transparent quartz plate +/-1- 1
A heating block 18 is attached at a position facing the susceptor 17 across the susceptor 2. This heating block 18 is
Six horizontal rod-shaped infrared lamps 19 are arranged at equal intervals so as to be perpendicular to the flow direction of the reaction gas flowing from the gas supply port 14 to the gas discharge port 15, and a reflecting plate 2o is installed behind the lamps.

これらの赤外線ランプ19は、ガス供給側、中央。These infrared lamps 19 are located on the gas supply side, in the center.

ガス排出側そtぞれ2本づつ3つのゾーンに分かれてお
り、それぞれ図示しないソケットを介して、電力調整ユ
ニットに電気的に接続され、各赤外線ランプと直交方向
(ガス流れ方向)の温度制御を可能にしている。そして
、これらの赤外線ランプ19の上方に設けた反射板2o
により赤外線ランプ19からの輻射光が効果よく、透明
石英プレート12を透過して反応室9内のサセプタ17
を照射するように114成さfl、ている。
The gas discharge side is divided into three zones, each with two lamps, each electrically connected to a power adjustment unit via a socket (not shown), which controls the temperature in the direction perpendicular to each infrared lamp (gas flow direction). is possible. Reflector plates 2o provided above these infrared lamps 19
As a result, the radiant light from the infrared lamp 19 is effectively transmitted through the transparent quartz plate 12 to the susceptor 17 in the reaction chamber 9.
It is made up of 114 fl, so as to irradiate it.

そして本究明では、サセプタ周辺部の温度の低下を防止
するため、反射板2Qの中央部に、赤外線ランプ19か
らの照射光をサセプタの周辺部に向ける湾曲面凸部20
aが第1図、第2図に示すように赤外線ランプ19の長
手方向に湾曲して形成されている。これによって各赤外
線ランプ19からの照射光がこのランプ19の両端部方
向にjQ中するようにしている。。
In this investigation, in order to prevent the temperature from decreasing around the susceptor, a curved convex portion 20 is provided in the center of the reflector 2Q to direct the irradiated light from the infrared lamp 19 toward the susceptor's periphery.
A is curved in the longitudinal direction of the infrared lamp 19, as shown in FIGS. 1 and 2. This allows the irradiation light from each infrared lamp 19 to radiate in the direction of both ends of the lamp 19. .

上記構成による気相成長装置において、その動作を多結
晶シリコンの成長を例にとり説明すると、まず半導体ウ
ェハ16をサセプタ17の上面に載置し、各赤外線ラン
プ19に、図示しない電力調整ユニットを介して電力を
供給し、半導体ウエノ・16を600 ’C以上の所定
温度に加熱する。、この時ガス供給口14全通してモノ
シラン等の反応ガスを適当な濃度で含有したヘリウムベ
ースの混合ガスを供給すると共に、図示しないロータリ
ーポンプ等によりガス排出口16から反応室9内のガス
を吸引して10 Torr以下の減圧状態に保持すると
半導体ウニ/・16に接したガス相から反応ガスが分解
析出し、半導体ウニ・・16表面に多結晶シリコン膜が
形成される。この気相成長過程において、各赤外線ラン
プ16と直交方向(ガス流れ方向)に輻射される熱量は
、各ゾーンに供給する電力で制御し、各赤外線ランプ1
9の長手方向に関しては上述の反射板2oの湾曲突部2
0aによりサセプタ17周辺部に赤外線ランプ19の照
射光を集めることができ、半導体ウェハ16表面の温度
分布むらが生じるのを抑制でき、ひいては半導体ウェハ
内の膜厚のばらつきを改善できる。
The operation of the vapor phase growth apparatus with the above configuration will be explained using the growth of polycrystalline silicon as an example. First, the semiconductor wafer 16 is placed on the upper surface of the susceptor 17, and each infrared lamp 19 is connected to the infrared lamp 19 via a power adjustment unit (not shown). The semiconductor wafer 16 is heated to a predetermined temperature of 600'C or higher. At this time, a helium-based mixed gas containing a reaction gas such as monosilane at an appropriate concentration is supplied through the entire gas supply port 14, and the gas in the reaction chamber 9 is discharged from the gas discharge port 16 using a rotary pump (not shown) or the like. When it is sucked and maintained at a reduced pressure of 10 Torr or less, a reaction gas is separated out from the gas phase in contact with the semiconductor sea urchin 16, and a polycrystalline silicon film is formed on the surface of the semiconductor sea urchin 16. In this vapor phase growth process, the amount of heat radiated in the direction perpendicular to each infrared lamp 16 (gas flow direction) is controlled by the electric power supplied to each zone.
Regarding the longitudinal direction of 9, the curved protrusion 2 of the above-mentioned reflector 2o
Oa allows the irradiation light of the infrared lamp 19 to be focused around the susceptor 17, suppressing uneven temperature distribution on the surface of the semiconductor wafer 16, and improving film thickness variations within the semiconductor wafer.

第3図は、本発明の他の実施例の加熱ブロックを示した
ものである13この実施例では、各赤外線ランプ19の
背部に、各赤外線ランプ19の軸線まわりの断面が放物
線状を有するアルミニウム材質の反射板21を設けて、
赤外線ランプからの照射光が平行光線として効率的にサ
セプタに照射するようにしである。さらに、中央に位置
する4本の赤外線ランプ背部の各反射板21は、両端部
弓づつを赤外線の反射率の高い金でコーティングし、端
にri′l置する2本の赤外線ランプ背部の反射板21
は全面を金でコーティングして、反射板21群の周辺に
枠状の高反射部22を形成し、加熱ブロックの周辺部が
その枠状の高反射部22で反射光を効率よく反射するよ
うにし2である。これにより、サセプタ周辺部への照射
率を中央部よりも高めて加熱lを増加させ、サセプタ周
辺部と中央部との温度分布むらを低減できる。
FIG. 3 shows a heating block according to another embodiment of the invention.13 In this embodiment, the back of each infrared lamp 19 is made of aluminum having a parabolic cross section around the axis of each infrared lamp 19. A reflective plate 21 made of material is provided,
This allows the irradiation light from the infrared lamp to efficiently irradiate the susceptor as parallel light beams. Furthermore, each of the reflectors 21 on the backs of the four infrared lamps located at the center has both ends coated with gold, which has a high reflectance of infrared rays, and reflects the backs of the two infrared lamps placed at the ends. Board 21
The entire surface of the heating block is coated with gold to form a frame-shaped high reflection part 22 around the group of reflection plates 21, so that the peripheral part of the heating block efficiently reflects reflected light from the frame-shaped high reflection part 22. It is Nishi 2. This makes it possible to increase the irradiation rate to the periphery of the susceptor compared to the center, increase the heating l, and reduce unevenness in temperature distribution between the susceptor periphery and the center.

なお第2の実施例では、反射板21の断面形状を放物線
状としたが、他の形状、例えば円弧状。
In the second embodiment, the reflection plate 21 has a parabolic cross-sectional shape, but it may have another shape, for example, an arc shape.

平板状であっても良い、。It may be flat.

まだ、上述した例では、反射板の周辺部に反射効率の高
い材質をコーティングしたが、逆に、中央部に反射効率
の低いものを付けても良いし、透明石英プレート等照射
光分透過させる部分の中央部に照射光の透過を制限する
塗料を塗る等して、周辺部と中央部との透過率に差を持
たせるようにしてもよい。
In the above example, the periphery of the reflector was coated with a material with high reflection efficiency, but conversely, a material with low reflection efficiency could be coated in the center, or a material such as a transparent quartz plate could be used to transmit the irradiated light. A difference in transmittance between the peripheral portion and the central portion may be created by applying a paint that restricts the transmission of irradiated light to the central portion of the portion.

また本実施例では、多結晶シリコンの気相成長を例にと
り説明したが、他の気相成長、またアニ−ル装置等にも
適用できる。
Furthermore, although this embodiment has been explained by taking the vapor phase growth of polycrystalline silicon as an example, it can be applied to other vapor phase growth, annealing equipment, etc.

発明の効果 本発明によれば、赤外線ランプの照射光がサセプタの周
辺部に中央部よりも強く照射するようにしたから半導体
ウニ・・表面の均一な温度分布を得ることができ、この
ため半導体ウェハ上に均一な膜を成長させることができ
る。
Effects of the Invention According to the present invention, since the irradiation light of the infrared lamp is made to irradiate the periphery of the susceptor more strongly than the central part, it is possible to obtain a uniform temperature distribution on the surface of the semiconductor sea urchin. A uniform film can be grown on the wafer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に用いる気相成長装置の加熱
ブロックの断面図、第2図は本発明の一実施例の気相成
長装置の断面図、第3図は本発明の他の実施例に用いる
気相成長装置の加熱ブロックの概略図、第4図は従来の
気相成長装置の断面図である。 16・・・・・・半導体ウェハ、17・・・・・・サセ
プタ、18・・・・・・加熱ブロック、19・・・・・
・赤外線ランプ、20゜21・・・・・・反射板、20
a・・・・・・湾曲凸部、22・・・・・・高反射部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 19−、V!!東シウシラン フ0−−4り深 rocb
FIG. 1 is a sectional view of a heating block of a vapor phase growth apparatus used in an embodiment of the present invention, FIG. 2 is a sectional view of a vapor phase growth apparatus of an embodiment of the present invention, and FIG. FIG. 4 is a schematic diagram of a heating block of a vapor phase growth apparatus used in the embodiment, and FIG. 4 is a sectional view of a conventional vapor phase growth apparatus. 16... Semiconductor wafer, 17... Susceptor, 18... Heating block, 19...
・Infrared lamp, 20゜21・・・Reflector, 20
a... Curved convex portion, 22... Highly reflective portion. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 19-, V! ! Higashi Shiushi Lumph 0--4 deep rocb

Claims (4)

【特許請求の範囲】[Claims] (1)一部が赤外光を透過する部材でできた気密保持可
能な反応室と、該反応室の内部にあって半導体ウェハを
保持するサセプタと、前記反応室に反応ガスを供給する
ガス供給手段と、前記反応室に接続しその内部を排気す
る真空排気手段と、前記反応室の外部にあって前記赤外
光を透過する部材を透したサセプタに保持される半導体
ウェハを加熱する赤外線ランプと、該赤外線ランプの背
部にあって赤外線ランプからの照射光をサセプタ側に反
射させる反射板とを備え、前記赤外線ランプからの直接
照射光および反射板からの反射光によるサセプタの照射
をサセプタの中央部に対するよりもサセプタの周辺部で
強くする照射制御手段を設けたことを特徴とする気相成
長装置。
(1) A reaction chamber that is partially made of a material that transmits infrared light and can be kept airtight, a susceptor that is located inside the reaction chamber and holds a semiconductor wafer, and a gas that supplies a reaction gas to the reaction chamber. a supply means, a vacuum evacuation means connected to the reaction chamber and evacuating the inside thereof, and an infrared ray that heats a semiconductor wafer held in a susceptor that is passed through a member that is outside the reaction chamber and that transmits the infrared light. The susceptor is provided with a lamp and a reflector located at the back of the infrared lamp to reflect the irradiated light from the infrared lamp toward the susceptor, the susceptor being irradiated with the susceptor by the direct irradiated light from the infrared lamp and the reflected light from the reflector. 1. A vapor phase growth apparatus comprising: a means for controlling irradiation to make the irradiation stronger at the periphery of the susceptor than at the center of the susceptor.
(2)照射制御手段は、反射板の反射面中央部に、赤外
線ランプからの照射光をサセプタの周辺部に向けるよう
形成された凸部である特許請求の範囲第1項記載の気相
成長装置。
(2) The vapor phase growth according to claim 1, wherein the irradiation control means is a convex portion formed in the center of the reflective surface of the reflector so as to direct the irradiated light from the infrared lamp toward the peripheral portion of the susceptor. Device.
(3)照射制御手段は、反射板の反射面中央部と周辺部
とで反射率を異ならせるものである特許請求の範囲第1
項記載の気相成長装置。
(3) The irradiation control means is for making the reflectance different between the central part and the peripheral part of the reflecting surface of the reflecting plate.
Vapor phase growth apparatus described in Section 1.
(4)反射率を異ならせるのはコーティング材である特
許請求の範囲第3項記載の気相成長装置。
(4) The vapor phase growth apparatus according to claim 3, wherein the material that makes the reflectance different is a coating material.
JP29379585A 1985-12-26 1985-12-26 Vapor growth apparatus Pending JPS62154618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29379585A JPS62154618A (en) 1985-12-26 1985-12-26 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29379585A JPS62154618A (en) 1985-12-26 1985-12-26 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS62154618A true JPS62154618A (en) 1987-07-09

Family

ID=17799255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29379585A Pending JPS62154618A (en) 1985-12-26 1985-12-26 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS62154618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088348A (en) * 2007-10-01 2009-04-23 Hitachi Kokusai Electric Inc Semiconductor manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088348A (en) * 2007-10-01 2009-04-23 Hitachi Kokusai Electric Inc Semiconductor manufacturing device

Similar Documents

Publication Publication Date Title
JP4108748B2 (en) Cold wall vapor deposition
US6720531B1 (en) Light scattering process chamber walls
US8338809B2 (en) Ultraviolet reflector with coolant gas holes and method
KR100286325B1 (en) Heating device of cvd(chemical vapor deposition) system
JPH10241844A (en) Heating device and heating method
CN116190266A (en) Multi-zone lamp control and individual lamp control in a lamphead
JPS60161616A (en) Infrared heating unit for semiconductor wafer
US4500565A (en) Deposition process
JPS62154618A (en) Vapor growth apparatus
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JPH08316154A (en) Simulated hot wall reaction chamber
JPS60189927A (en) Vapor phase reactor
JP2697250B2 (en) Thermal CVD equipment
TW202245105A (en) Reflecting plate set, lamp set module, substrate processing equipment and adjusting method of reflecting plate set
US4719122A (en) CVD method and apparatus for forming a film
JPH05267183A (en) Semiconductor manufacturing device
JPH01256118A (en) Vapor phase reaction equipment
JPH0544825B2 (en)
JPH0545052B2 (en)
EP0162111A1 (en) Method and apparatus for chemical vapor deposition
JP2608456B2 (en) Thin film forming equipment
JPS62101021A (en) Semiconductor manufacturing equipment
JPH04325686A (en) Heater for heating cvd device
JPS61187326A (en) Vapor growth apparatus
JPS62154616A (en) Vapor growth apparatus