JPS61187326A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS61187326A
JPS61187326A JP2870285A JP2870285A JPS61187326A JP S61187326 A JPS61187326 A JP S61187326A JP 2870285 A JP2870285 A JP 2870285A JP 2870285 A JP2870285 A JP 2870285A JP S61187326 A JPS61187326 A JP S61187326A
Authority
JP
Japan
Prior art keywords
wafer
infrared lamp
vapor phase
growth apparatus
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2870285A
Other languages
Japanese (ja)
Inventor
Kazuhiro Karatsu
唐津 和裕
Yukio Maeda
幸男 前田
Junichi Nozaki
野崎 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2870285A priority Critical patent/JPS61187326A/en
Publication of JPS61187326A publication Critical patent/JPS61187326A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To make the temperature on wafer surface even by a method wherein the winding pitch of heat element in infrared ray lamps for heating wafer and wafer holder is changed. CONSTITUTION:Each infrared lamp 13 is supplied with regulated power to heat a wafer 10 mounted on a wafer holder 11 up to specified temperature while He base reaction gas is fed 8 and exhausted 9 making the pressure in the reaction chamber 3 10Torr or less to form a poly Si film on the wafer 10. At this time, three each of infrared ray lamps at the central part change the winding pitch of heat element 2 to reduce the radiant heat quantity toward the central part of wafer holder 11 limiting the dispersion of temperature distribution on wafer surface to 10 deg.C or less.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体工業に広く使用されている気相成長装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth apparatus widely used in the semiconductor industry.

従来の技術 半導体工業において用いられる気相成長装置は、反応ガ
ス分子が半導体ウェハ表面で熱により分解析出して多結
晶シリコン等の薄膜を形成させるものであるが、こうし
て形成された薄膜の膜厚、および比抵抗の均一性は、半
導体ウェハの表面温度に大きく影響される。従って、良
質な気相成長膜を得るためには、半導体ウェハを全面に
わたって均一な温度分布に保持することが必要である。
Conventional technology In the vapor phase growth equipment used in the semiconductor industry, reactive gas molecules are thermally decomposed on the surface of a semiconductor wafer to form a thin film such as polycrystalline silicon, but the thickness of the thin film formed in this way is , and the uniformity of resistivity are greatly influenced by the surface temperature of the semiconductor wafer. Therefore, in order to obtain a high quality vapor phase grown film, it is necessary to maintain a uniform temperature distribution over the entire surface of the semiconductor wafer.

従来の赤外線加熱方式を使用した気相成長装置は、例え
ば特公昭57−44009号公報に示されているように
、第3図のような構造になっていた。反応室は、石英ベ
ルジャ15とベース板16によって、完全に外気と遮断
できるようになっており、ベース板16には反応ガスを
供給するためのガス供給口17と、反応ガスを排出する
ためのガス排出口22が取り付けられている。また、ペ
ース板16上には、半導体ウェハ18を載置するウェハ
支持台19が設置されている。また石英ベルジャ15の
外側には、半導体ウェハ18を加熱するための赤外線ラ
ンプ21と、赤外線ランプ210反射光線が効率よく半
導体ウェハ18に照射するように反射鏡2oが取り付け
られている。
A conventional vapor phase growth apparatus using an infrared heating method has a structure as shown in FIG. 3, as shown in Japanese Patent Publication No. 57-44009, for example. The reaction chamber can be completely isolated from the outside air by a quartz belljar 15 and a base plate 16, and the base plate 16 has a gas supply port 17 for supplying the reaction gas and a gas supply port 17 for discharging the reaction gas. A gas outlet 22 is attached. Furthermore, a wafer support stand 19 on which a semiconductor wafer 18 is placed is installed on the pace plate 16 . Further, on the outside of the quartz belljar 15, an infrared lamp 21 for heating the semiconductor wafer 18 and a reflecting mirror 2o are attached so that the reflected light from the infrared lamp 210 efficiently irradiates the semiconductor wafer 18.

発明が解決しようとする問題点 しかしながら上記のように構成された従来の気相成長装
置では、半導体ウェハ18表面の温度分布は、赤外線ラ
ンプ21から供給される熱エネルギーと、半導体ウエノ
・18およびウニ・・支持台19からの対流、輻射等に
よる熱の放出量により決定され、ウェハ支持台の上面は
、赤外線ランプからの一定の輻射熱を受け、一方、外周
面については遮熱されておらず、その表面温度に対応し
た大量の熱が放出される。従って、ウエノ・支持台19
の表面、即ち半導体ウエノ・18の温度分布は、中央部
が高く外周はど低いという分布になってしまう。また赤
外線ランプ自体も、端部に比べて中央部がより発熱体温
度が高い傾向にある。これらの結果、半導体ウェハ18
上に気相成長させた薄膜は、中央に比べて端の方が薄く
なるという欠点を有していた。これらの事態を回避する
ため、各赤外線ランプの夫々に印加する電力を制御する
方法がとられているが、各赤外線ランプと平行に位置す
る部分の温度分布むらは解消されない。更に、ウェハ支
持台全回転する方法が考えられるが、機構が複雑となり
、ダスト発生の要因となりかねず問題が残る。
Problems to be Solved by the Invention However, in the conventional vapor phase growth apparatus configured as described above, the temperature distribution on the surface of the semiconductor wafer 18 is dependent on the thermal energy supplied from the infrared lamp 21 and the semiconductor wafer 18 and sea urchin. ...Determined by the amount of heat released by convection, radiation, etc. from the support table 19, the upper surface of the wafer support table receives a certain amount of radiant heat from the infrared lamp, while the outer peripheral surface is not shielded from heat, A large amount of heat corresponding to the surface temperature is released. Therefore, Ueno/support stand 19
The temperature distribution on the surface of the semiconductor substrate 18 is high at the center and low at the outer periphery. Also, in the infrared lamp itself, the temperature of the heating element tends to be higher in the center than at the ends. As a result, semiconductor wafer 18
The thin film grown in a vapor phase on top had the disadvantage that it was thinner at the edges than at the center. In order to avoid these situations, methods have been taken to control the power applied to each infrared lamp, but this does not solve the problem of uneven temperature distribution in the portions located parallel to each infrared lamp. Furthermore, a method in which the wafer support table is rotated completely is considered, but the mechanism is complicated and may cause dust generation, which leaves problems.

そこで本発明は、赤外線ランプと平行に位置する部分の
温度分布むらをも解消し、半導体ウェハ上の温度均一化
をはかり、均一性のすぐれた良質の気相成長膜を形成す
る気相成長装置を提供するものである。
Therefore, the present invention has developed a vapor phase growth apparatus that eliminates the unevenness of temperature distribution in the part located parallel to the infrared lamp, makes the temperature uniform on the semiconductor wafer, and forms a high quality vapor phase growth film with excellent uniformity. It provides:

問題点を解決するための手段 そして上記問題点を解決する本発明の技術的な手段は、
半導体ウェハおよびウェハ支持台を加熱するための赤外
線ランプの発熱体の巻線ピッチに変化をもたせたもので
ある。
Means for solving the problems and technical means of the present invention for solving the above problems are as follows:
The winding pitch of the heating element of an infrared lamp for heating a semiconductor wafer and a wafer support is varied.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

すなわち、加熱される半導体ウェハ中心部の温度が端部
に比べて高い場合、その上部に位置する赤外線ランプの
発熱体の中央部の巻線ピッチを端部に比べて広くするこ
とにより、ウェハ中心部への輻射熱量を低下させ、ウェ
ハ表面の温度均−化金はかることができる。
In other words, if the temperature at the center of a semiconductor wafer to be heated is higher than that at the edges, by making the winding pitch at the center of the heating element of the infrared lamp located above the wafer wider than at the edges, By reducing the amount of radiant heat to the wafer surface, it is possible to equalize the temperature of the wafer surface.

実施例 以下、本発明の一実施例として赤外線加熱方式の気相成
長装置について図面を参照しながら説明する。
EXAMPLE Hereinafter, as an example of the present invention, an infrared heating type vapor phase growth apparatus will be described with reference to the drawings.

第2図は、本発明の気相成長装置の断面図である。図に
おいて、反応室3は、内部に水冷溝4が施されたステン
レスより成る壁面部材5と、上部に設けた透明石英プレ
ート6から構成されている。
FIG. 2 is a sectional view of the vapor phase growth apparatus of the present invention. In the figure, the reaction chamber 3 is composed of a wall member 5 made of stainless steel and having a water cooling groove 4 therein, and a transparent quartz plate 6 provided on the upper part.

この透明石英プレート6は、0リング等の既知のガスシ
ール手段を介して、上記壁面部材5に固定されている。
This transparent quartz plate 6 is fixed to the wall member 5 via a known gas sealing means such as an O-ring.

反応室3の側壁の一端に、図示しないガス供給装置から
伸びたガス供給管7が結合したガス供給口8と、他端に
は図示しないロータリーポンプなどの真空排気装置と連
結した排気口9が設けである。また、前記反応室3の内
部には、ウェハ10を載置するSiCでコーティングさ
れたグラファイトより成るウエノ・支持台11が設置さ
れており、反応室3の外部上方には、透明石英プレート
θをはさんでウェハ支持台11に対面した位置に加熱ブ
ロック12が取り付けである。この加熱ブロック12は
、水平な棒状の赤外線ランプ13が前記ガス供給口8か
らガス排出口9に流れる反応ガスの流れ方向と直交する
ように等間隔で複数本(7本)配列され、それらの上部
には反射鏡14が配置された構造になっている。そして
、赤外線ランプ13は、ガス供給側2本、中央3本、ガ
ス排出側2本づつ3つのゾーンに分け、それぞれ図示し
ないソケッ)?介して、電力調整ユニットに電気的に接
続され、各赤外線ランプと直交方向(ガス流れ方向)の
温度制御を可能にしている。
At one end of the side wall of the reaction chamber 3, there is a gas supply port 8 connected to a gas supply pipe 7 extending from a gas supply device (not shown), and at the other end there is an exhaust port 9 connected to a vacuum evacuation device such as a rotary pump (not shown). It is a provision. Further, inside the reaction chamber 3, a wafer support 11 made of graphite coated with SiC is installed on which the wafer 10 is placed, and a transparent quartz plate θ is installed above the outside of the reaction chamber 3. A heating block 12 is attached at a position facing the wafer support stand 11 across the wafer. This heating block 12 has a plurality (7) of horizontal rod-shaped infrared lamps 13 arranged at equal intervals so as to be perpendicular to the flow direction of the reaction gas flowing from the gas supply port 8 to the gas discharge port 9. It has a structure in which a reflecting mirror 14 is placed at the top. The infrared lamp 13 is divided into three zones: two on the gas supply side, three in the center, and two on the gas discharge side, each with a socket (not shown). It is electrically connected to the power conditioning unit through the infrared lamp, allowing temperature control in the direction perpendicular to each infrared lamp (gas flow direction).

更に中央3本の赤外線ランプは、第1図に示すように透
明石英ガラス1内の発熱体(タングステン・フィラメン
ト)2のうち中心部100flの巻線ピッチを両端部に
比べて1.3倍広くしたものを使用した。
Furthermore, as shown in Fig. 1, the central three infrared lamps have a winding pitch of 100 fl in the center of the heating element (tungsten filament) 2 inside the transparent quartz glass 1, which is 1.3 times wider than that at both ends. I used the one I made.

上記構成による気相成長装置において、その動作を多結
晶シリコンの成長を例にとり説明すると、まず、ウェハ
10をウェハ支持台11の上面に載置し、各赤外線ラン
プ13に、図示しない電力調整ユニットを介して電力を
供給し、ウェハ温度をeoo″C以上の所定温度に加熱
する。この時ガス供給口8全通してモノシラン等の反応
ガスを適当な濃度で含有したヘリウムベースの混合ガス
を供給すると共に、図示しないロータリーポンプ等によ
り排出口9から反応室3内のガスを吸引して10 to
rr以下の減圧状態に保持するとウェハ10に接したガ
ス相から反応ガスが分解析出し、ウェハ1o表面に多結
晶シリコン膜が形成される。この気相成長過程において
、中央のゾーンに位置する3本の赤外線ランプに発熱体
の巻線ピッチを変えたものを使用することによって、ウ
ェハ支持台中心部へ輻射される熱量を低減させウェハ表
面に温度分布むらが生じるのを抑制でき、ひいてはウェ
ハ内の膜厚のばらつきを改善できた。事実、従来の発熱
体の巻線ピッチが均一な赤外線ランプを取り付けた気相
成長装置では、ウェハ中心部に比較し端部の温度が20
°C以上低く、形成された多結晶シリコンの膜厚均一性
が110%以上であった。
The operation of the vapor phase growth apparatus having the above configuration will be explained using the growth of polycrystalline silicon as an example. First, the wafer 10 is placed on the upper surface of the wafer support 11, and each infrared lamp 13 is connected to a power adjustment unit (not shown). Electric power is supplied through the wafer to heat the wafer to a predetermined temperature of eoo''C or higher.At this time, a helium-based mixed gas containing a reactive gas such as monosilane at an appropriate concentration is supplied through the entire gas supply port 8. At the same time, the gas in the reaction chamber 3 is sucked through the exhaust port 9 using a rotary pump (not shown), etc.
When the pressure is maintained at a reduced pressure below rr, a reactive gas is separated out from the gas phase in contact with the wafer 10, and a polycrystalline silicon film is formed on the surface of the wafer 1o. In this vapor phase growth process, by using three infrared lamps located in the center zone with heating elements with different winding pitches, the amount of heat radiated to the center of the wafer support is reduced and the wafer surface is It was possible to suppress the occurrence of uneven temperature distribution in the wafer, and in turn, it was possible to improve the variation in film thickness within the wafer. In fact, in a conventional vapor phase growth apparatus equipped with an infrared lamp with a uniform heating element winding pitch, the temperature at the edge of the wafer is 20 degrees lower than that at the center of the wafer.
℃ or more, and the film thickness uniformity of the formed polycrystalline silicon was 110% or more.

一方、本発明の発熱体の巻線ピッチを変えた赤外線ラン
プを使用した気相成長装置においては、ウェハの温度分
布むらi10’C以内に低減でき、その結果、形成した
多結晶シリコンの膜厚均一性は士6%以内に改善するこ
とができた。
On the other hand, in the vapor phase growth apparatus using an infrared lamp in which the winding pitch of the heating element of the present invention is changed, the temperature distribution unevenness of the wafer can be reduced to within i10'C, and as a result, the film thickness of the formed polycrystalline silicon can be reduced. The uniformity could be improved to within 6%.

なお、本実施例において、赤外線ランプの発熱体の巻線
ピッチを中心部10o1alが端部に比べて1.3倍広
くしたものを使用したが、ウェハ支持台の形状等によっ
てそれらの割合は任意に選べることは言うまでもない。
In this example, the winding pitch of the heating element of the infrared lamp was used such that the center part 10o1al was 1.3 times wider than the end part, but the ratio can be adjusted arbitrarily depending on the shape of the wafer support, etc. Needless to say, you can choose.

また、加熱ブロックの中央部3本を発熱体の巻線ピッチ
を変えた赤外線ランプを用いたが、取り付けられる赤外
線ランプの数は上記実施例に限定されないことは勿論で
ある。
In addition, although three infrared lamps in the central part of the heating block were used with different winding pitches of the heating elements, it goes without saying that the number of infrared lamps that can be attached is not limited to the above example.

また本実施例では、多結晶シリコンの気相成長装置に適
用したものであるが、他の気相成長、またアニール装置
等にも適用できる。
Furthermore, although this embodiment is applied to a polycrystalline silicon vapor phase growth apparatus, it can also be applied to other vapor phase growth or annealing apparatuses.

発明の効果 以上のように本発明は、赤外線ランプの発熱体の巻線ピ
ッチを変化させることによって、半導体ウェハ表面の均
一な温度分布を得ることができるため、半導体ウェハ上
に均一な膜を成長させることができ、その実用的効果は
大なるものがある。
Effects of the Invention As described above, the present invention makes it possible to obtain a uniform temperature distribution on the surface of a semiconductor wafer by changing the winding pitch of the heating element of an infrared lamp, thereby making it possible to grow a uniform film on the semiconductor wafer. The practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いる赤外線ランプの概略
図、第2図は本発明の一実施例における気相成長装置の
断面図、第3図は従来の気相成長装置の一例の断面図で
ある。 2・・・・・・発熱体、3・・・・・・反応室、10・
・・・・・半導体ウェハ、11・・・・・・ウェハ支持
台、13・・・・・・赤外線ランプ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名’ 
” I!l            z−−−x体第 
2 図                10−m−半
導体つエ△/1−−− ウェハ支N臼
Fig. 1 is a schematic diagram of an infrared lamp used in an embodiment of the present invention, Fig. 2 is a sectional view of a vapor phase growth apparatus in an embodiment of the invention, and Fig. 3 is an example of a conventional vapor phase growth apparatus. FIG. 2... Heating element, 3... Reaction chamber, 10.
... Semiconductor wafer, 11 ... Wafer support stand, 13 ... Infrared lamp. Name of agent: Patent attorney Toshio Nakao and one other person
”I!l z---x body number
2 Figure 10-m-Semiconductor die △/1--Wafer support N mill

Claims (1)

【特許請求の範囲】[Claims]  半導体ウエハを載置するウエハ支持台と、前記半導体
ウエハおよびウエハ支持台を加熱するための巻線形状の
発熱体を有する赤外線ランプと、前記ウエハ支持台が内
設され、ガス供給口およびガス排気口を有する反応室と
を備え、前記赤外線ランプの発熱体の巻線ピッチに変化
をもたせた気相成長装置。
A wafer support stand on which a semiconductor wafer is placed, an infrared lamp having a winding-shaped heating element for heating the semiconductor wafer and the wafer support stand, and the wafer support stand are installed, and a gas supply port and a gas exhaust port are installed inside the wafer support stand. 1. A vapor phase growth apparatus comprising a reaction chamber having an opening, and having a winding pitch of a heating element of the infrared lamp varied.
JP2870285A 1985-02-15 1985-02-15 Vapor growth apparatus Pending JPS61187326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2870285A JPS61187326A (en) 1985-02-15 1985-02-15 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2870285A JPS61187326A (en) 1985-02-15 1985-02-15 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS61187326A true JPS61187326A (en) 1986-08-21

Family

ID=12255790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2870285A Pending JPS61187326A (en) 1985-02-15 1985-02-15 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS61187326A (en)

Similar Documents

Publication Publication Date Title
JP4108748B2 (en) Cold wall vapor deposition
KR100216740B1 (en) Surface processing apparatus
US4846102A (en) Reaction chambers for CVD systems
JP4219441B2 (en) Method and apparatus for depositing film
US6617247B2 (en) Method of processing a semiconductor wafer in a reaction chamber with a rotating component
US4081313A (en) Process for preparing semiconductor wafers with substantially no crystallographic slip
KR20100114037A (en) Thermal reactor with improved gas flow distribution
US6262393B1 (en) Epitaxial growth furnace
US5244694A (en) Apparatus for improving the reactant gas flow in a reaction chamber
US5096534A (en) Method for improving the reactant gas flow in a reaction chamber
US6051823A (en) Method and apparatus to compensate for non-uniform film growth during chemical vapor deposition
US5044315A (en) Apparatus for improving the reactant gas flow in a reaction chamber
JPS61187326A (en) Vapor growth apparatus
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JPH08316154A (en) Simulated hot wall reaction chamber
JP2697250B2 (en) Thermal CVD equipment
JPS61232612A (en) Gaseous phase reaction device
JPH08333681A (en) Apparatus for surface chemical treatment of flat sample by using active gas
JPH05144757A (en) Apparatus and method for heat treatment
JPH0530351Y2 (en)
JPS62154618A (en) Vapor growth apparatus
JP2678462B2 (en) Semiconductor manufacturing equipment
JPS62154616A (en) Vapor growth apparatus
JPH11147787A (en) Epitaxial growth furnace
JPS622524A (en) Vapor-phase growth device