JP4995579B2 - Substrate processing apparatus and semiconductor device manufacturing method - Google Patents

Substrate processing apparatus and semiconductor device manufacturing method Download PDF

Info

Publication number
JP4995579B2
JP4995579B2 JP2007000370A JP2007000370A JP4995579B2 JP 4995579 B2 JP4995579 B2 JP 4995579B2 JP 2007000370 A JP2007000370 A JP 2007000370A JP 2007000370 A JP2007000370 A JP 2007000370A JP 4995579 B2 JP4995579 B2 JP 4995579B2
Authority
JP
Japan
Prior art keywords
processing chamber
light transmissive
heating device
transmissive window
lamp heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007000370A
Other languages
Japanese (ja)
Other versions
JP2008166653A (en
Inventor
幸一郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2007000370A priority Critical patent/JP4995579B2/en
Publication of JP2008166653A publication Critical patent/JP2008166653A/en
Application granted granted Critical
Publication of JP4995579B2 publication Critical patent/JP4995579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate processing apparatus for maintaining the life of a seal member or the like, and for improving high-temperature processing capability by increasing the heating temperature of a substrate. <P>SOLUTION: An MMT processing furnace 100 includes a processing chamber 201 with a light transmission window part 278 at least on the upper face, a cylindrical electrode 215 arranged in the outer periphery of the processing chamber 201, a cylindrical magnet 216 arranged in the outer periphery of the cylindrical electrode 215, and a lamp heating device 280 arranged outside the processing chamber 201 corresponding to the light transmission window part 278. At least part of the light transmission window part 278 is provided with an opaque member 290 for reducing the transmissivity of the rays of light to be emitted from the lamp heating device 280, and a resin member 286 is formed at the upper part of the opaque member 290. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、半導体ウエハやガラス基板等の基板を処理するための基板処理装置及び半導体デバイスの製造方法に関する。 The present invention relates to a substrate processing apparatus and a semiconductor device manufacturing method for processing a substrate such as a semiconductor wafer or a glass substrate.

この種の基板処理装置の処理炉として、例えば電界と磁界とによりプラズマを生成し、このプラズマを用いて基板を処理する変形マグネトロン型プラズマ処理炉(MMT:Modified Magnetron Typed Plasma Source)が知られている。このMMT装置は、基板を保持するサセプタ内に加熱源であるヒータを有しており、このヒータにより基板を加熱する際の温度限界は、処理室内の圧力が1〜200Pa下で、400〜700℃程度である。しかしながら、厚膜を形成するためには基板温度を750℃以上とする必要がある。そこで、処理室外部に第2の熱源(光源)を設け、基板温度を750℃以上に加熱することを可能としたMMT装置が知られている(例えば特許文献1)。   As a processing furnace of this type of substrate processing apparatus, for example, a modified magnetron type plasma processing furnace (MMT) that generates plasma by using an electric field and a magnetic field and processes the substrate using this plasma is known. Yes. This MMT apparatus has a heater as a heating source in a susceptor that holds a substrate, and the temperature limit when the substrate is heated by this heater is 400 to 700 under a pressure of 1 to 200 Pa under the processing chamber. It is about ℃. However, in order to form a thick film, the substrate temperature needs to be 750 ° C. or higher. Therefore, an MMT apparatus is known in which a second heat source (light source) is provided outside the processing chamber and the substrate temperature can be heated to 750 ° C. or higher (for example, Patent Document 1).

特開2005−276998号公報JP 2005-276998 A

しかしながら、上記第2の熱源(光源)を用いたMMT装置においては、処理室周辺部が高温化し、処理室内を気密にシールするシール部材の寿命を縮めるおそれがあった。   However, in the MMT apparatus using the second heat source (light source), there is a risk that the peripheral portion of the processing chamber is heated to shorten the life of the sealing member that hermetically seals the processing chamber.

本発明は、上記従来の問題を解消し、基板の加熱温度を上げて高温処理能力を向上させることが可能な基板処理装置及び半導体デバイスの製造方法を提供することを目的とする。 An object of the present invention is to provide a substrate processing apparatus and a semiconductor device manufacturing method capable of solving the above-described conventional problems and increasing the heating temperature of the substrate to improve the high-temperature processing capability.

本発明の特徴とするところは、少なくとも上面に光透過性窓部を設けた処理室と、前記処理室内にプラズマを生成する放電用電極と、前記光透過性窓部に対応する処理室外側に配置されるランプ加熱装置と、前記ランプ加熱装置を支持する支持部材と、前記光透過性窓部と前記支持部材の間に設けられ、該光透過性窓部の破損を防止する破損防止部材と、前記処理室を気密にシールするシール部材と、を有し、前記ランプ加熱装置から前記シール部材に対して放出される輻射熱を遮蔽する位置であって、前記光透過性窓部の外縁部には、前記ランプ加熱装置から照射される光の透過率を低減させる透過率低減部が設けられ、さらに該透過率低減部は、前記処理室に晒されないよう構成されている基板処理装置にある。
また、少なくとも上面に光透過性窓部を設けた処理室と、前記処理室内にプラズマを生成する放電用電極と、前記光透過性窓部に対応する処理室外側に配置されるランプ加熱装置と、前記ランプ加熱装置を支持する支持部材と、前記光透過性窓部と前記支持部材の間に設けられ、該光透過性窓部の破損を防止する破損防止部材と、前記処理室を気密にシールするシール部材と、を有し、前記ランプ加熱装置から前記シール部材に対して放出される輻射熱を遮蔽する位置であって、前記光透過性窓部の外縁部には、前記ランプ加熱装置から照射される光の透過率を低減させる透過率低減部が設けられ、さらに該透過率低減部は、前記処理室に晒されないように構成されている基板処理装置を用いた半導体デバイスの製造方法であって、前記処理室に搬送された基板を前記ランプ加熱装置によって加熱する工程と、前記処理室内で前記基板にプラズマ処理を施す工程と、を有する半導体デバイスの製造方法にある。
A feature of the present invention is that a processing chamber provided with a light transmissive window at least on an upper surface, a discharge electrode for generating plasma in the processing chamber, and an outer side of the processing chamber corresponding to the light transmissive window. A lamp heating device disposed; a support member that supports the lamp heating device; a breakage prevention member that is provided between the light transmissive window portion and the support member and prevents breakage of the light transmissive window portion; A sealing member that hermetically seals the processing chamber, and is a position that shields radiant heat emitted from the lamp heating device to the sealing member, and is disposed at an outer edge portion of the light transmissive window portion. The substrate processing apparatus is provided with a transmittance reducing unit that reduces the transmittance of light emitted from the lamp heating device , and the transmittance reducing unit is configured not to be exposed to the processing chamber .
A processing chamber provided with a light transmissive window at least on the upper surface; a discharge electrode for generating plasma in the processing chamber; and a lamp heating device disposed outside the processing chamber corresponding to the light transmissive window. A support member that supports the lamp heating device, a breakage prevention member that is provided between the light transmissive window portion and the support member and prevents breakage of the light transmissive window portion, and the processing chamber is hermetically sealed. A sealing member that seals, and is a position that shields radiant heat emitted from the lamp heating device to the sealing member, and an outer edge portion of the light transmissive window is provided from the lamp heating device. A method for manufacturing a semiconductor device using a substrate processing apparatus is provided, wherein a transmittance reduction unit for reducing the transmittance of irradiated light is provided, and the transmittance reduction unit is configured not to be exposed to the processing chamber. And said processing In a method of manufacturing a semiconductor device having a step of heating the transported substrate by the lamp heating device, and a step of performing a plasma process on the substrate in the processing chamber.

好適には、前記透過率低減部は前記光透過性窓部の上面及び下面の少なくとも一方に形成されている。   Preferably, the transmittance reducing portion is formed on at least one of the upper surface and the lower surface of the light transmissive window portion.

好適には、前記処理室内を気密にシールするシール部材と、このシール部材に対して前記ランプ加熱装置からの輻射熱を遮蔽する遮蔽部材とを有する。   Preferably, a sealing member that hermetically seals the processing chamber and a shielding member that shields radiant heat from the lamp heating device against the sealing member.

好適には、前記シール部材の周辺部を冷却する冷却手段を有する。   Preferably, a cooling means for cooling the peripheral portion of the seal member is provided.

本発明によれば、光透過性窓部の少なくとも一部にランプ加熱装置から照射される光の透過率を低減させる透過率低減部を有するので、シール部材周辺の温度上昇を抑制することができ、もって基板の加熱温度を上げて高温処理能力を向上させることができる。   According to the present invention, since at least a part of the light transmissive window portion has the transmittance reduction portion that reduces the transmittance of the light irradiated from the lamp heating device, it is possible to suppress the temperature rise around the seal member. Thus, the heating temperature of the substrate can be raised to improve the high temperature processing capability.

以下に本発明の実施の形態を説明する。本発明のプラズマ処理炉は、電界と磁界により高密度プラズマを生成できる変形マグネトロン型プラズマ源(Modified Magnetron Typed Plasma Source)を用いてウエハ等の基板をプラズマ処理する基板処理炉(以下、MMT装置と称する)である。このMMT装置は、気密性を確保した処理室に基板を設置し、シャワーヘッドを介して反応ガスを処理室に導入し、処理室をある一定の圧力に保ち、放電用電極に高周波電力を供給して電界を形成するとともに磁界を形成し、マグネトロン放電を起こす。放電用電極から放出された電子がドリフトしながらサイクロイド運動を続けて周回することにより長寿命となって電離生成率を高めるので高密度プラズマを生成できる。このように反応ガスを励起分解させて基板表面を酸化または窒化等の拡散処理、または基板表面に薄膜を形成する、または基板表面をエッチングする等、基板へ各種のプラズマ処理を施すことができる。   Embodiments of the present invention will be described below. The plasma processing furnace of the present invention is a substrate processing furnace (hereinafter referred to as an MMT apparatus) for plasma processing a substrate such as a wafer using a modified magnetron type plasma source that can generate high-density plasma by an electric field and a magnetic field. Called). In this MMT apparatus, a substrate is installed in a processing chamber that ensures airtightness, a reaction gas is introduced into the processing chamber via a shower head, the processing chamber is maintained at a certain pressure, and high-frequency power is supplied to the discharge electrode. As a result, an electric field and a magnetic field are formed, causing magnetron discharge. Since the electrons emitted from the discharge electrode continue to circulate while continuing the cycloid motion while drifting, the lifetime becomes longer and the ionization rate is increased, so that high-density plasma can be generated. In this way, the substrate can be subjected to various plasma treatments such as diffusion treatment such as oxidation or nitridation by exciting and decomposing the reaction gas, or forming a thin film on the substrate surface, or etching the substrate surface.

図1に、基板処理装置としてのMMT装置100の概略構成図を示す。MMT装置100は、処理容器203を有し、この処理容器203は、第1の容器であるドーム型の上側容器210と第2の容器である碗型の下側容器211により形成され、上側容器210は下側容器211の上に被せられている。上側容器210は酸化アルミニウム又は石英等の非金属材料で形成されており、下側容器211は例えばアルミニウムで形成されている。また、処理容器203の上面には後述する光透過性窓部278が配設され、この光透過性窓部278に対応する反応容器203外側にランプ加熱装置(光源)280が設けられている。また後述するヒータ一体型の基板保持具(基板保持手段)であるサセプタ217を窒化アルミニウムやセラミックス又は石英等の非金属材料で構成することによって、処理の際に膜中に取り込まれる金属汚染を低減している。   FIG. 1 shows a schematic configuration diagram of an MMT apparatus 100 as a substrate processing apparatus. The MMT apparatus 100 includes a processing container 203, which is formed by a dome-shaped upper container 210 that is a first container and a bowl-shaped lower container 211 that is a second container. 210 is placed on the lower container 211. The upper container 210 is made of a nonmetallic material such as aluminum oxide or quartz, and the lower container 211 is made of aluminum, for example. Further, a light transmissive window 278 described later is disposed on the upper surface of the processing vessel 203, and a lamp heating device (light source) 280 is provided outside the reaction vessel 203 corresponding to the light transmissive window 278. Further, by configuring the susceptor 217, which is a heater-integrated substrate holder (substrate holding means), which will be described later, with a non-metallic material such as aluminum nitride, ceramics, or quartz, metal contamination taken into the film during processing is reduced. is doing.

シャワーヘッド236は、処理室(反応室)201の上部に設けられ、リング状の枠体233と、後述する光透過性窓部278と、ガス導入口234と、バッファ室237と、開口238と、遮蔽プレート240と、ガス吹出口239とを備えている。バッファ室237は、ガス導入口234より導入されたガスを分散するための分散空間として設けられる。   The shower head 236 is provided in the upper part of the processing chamber (reaction chamber) 201, and has a ring-shaped frame 233, a light transmissive window 278, a gas inlet 234, a buffer chamber 237, and an opening 238. , A shielding plate 240 and a gas outlet 239 are provided. The buffer chamber 237 is provided as a dispersion space for dispersing the gas introduced from the gas introduction port 234.

ガス導入口234には、ガスを供給するガス供給管232が接続されており、ガス供給管232は、開閉弁であるバルブ243a、流量制御器(流量制御手段)であるマスフローコントローラ241を介して図中省略の反応ガス230のガスボンベに繋がっている。シャワーヘッド236から反応ガス230が処理室201に供給され、また、サセプタ217の周囲から処理室201の底方向へ基板処理後のガスが流れるように下側容器211の側壁にガスを排気するガス排気口235が設けられている。ガス排気口235にはガスを排気するガス排気管231が接続されており、ガス排気管231は、圧力調整器であるAPC242、開閉弁であるバルブ243bを介して排気装置である真空ポンプ246に接続されている。   A gas supply pipe 232 for supplying gas is connected to the gas inlet 234. The gas supply pipe 232 is connected via a valve 243a as an on-off valve and a mass flow controller 241 as a flow rate controller (flow rate control means). It is connected to the gas cylinder of the reaction gas 230 not shown in the figure. A reaction gas 230 is supplied from the shower head 236 to the processing chamber 201, and a gas is exhausted to the side wall of the lower container 211 so that the gas after the substrate processing flows from the periphery of the susceptor 217 toward the bottom of the processing chamber 201. An exhaust port 235 is provided. A gas exhaust pipe 231 for exhausting gas is connected to the gas exhaust port 235. The gas exhaust pipe 231 is connected to a vacuum pump 246 which is an exhaust device via an APC 242 which is a pressure regulator and a valve 243b which is an on-off valve. It is connected.

供給される反応ガス230を励起させる放電機構(放電用電極)として、筒状、例えば円筒状に形成された第1の電極である筒状電極215が設けられる。筒状電極215は処理容器203(上側容器210)の外周に設置されて処理室201内のプラズマ生成領域224を囲んでいる。筒状電極215にはインピーダンスの整合を行う整合器272を介して高周波電力を印加する高周波電源273が接続されている。   As a discharge mechanism (discharge electrode) that excites the supplied reaction gas 230, a cylindrical electrode 215 that is a first electrode formed in a cylindrical shape, for example, a cylindrical shape, is provided. The cylindrical electrode 215 is installed on the outer periphery of the processing vessel 203 (upper vessel 210) and surrounds the plasma generation region 224 in the processing chamber 201. The cylindrical electrode 215 is connected to a high frequency power source 273 that applies high frequency power via a matching unit 272 that performs impedance matching.

また、筒状、例えば円筒状に形成された磁界形成機構(磁界形成手段)である筒状磁石216は筒状の永久磁石となっている。筒状磁石216は、筒状電極215の外表面の上下端近傍に配置される。上下の筒状磁石216、216は、処理室201の半径方向に沿った両端(内周端と外周端)に磁極を持ち、上下の筒状磁石216、216の磁極の向きが逆向きに設定されている。従って、内周部の磁極同士が異極となっており、これにより、筒状電極215の内周面に沿って円筒軸方向に磁力線を形成するようになっている。   Moreover, the cylindrical magnet 216 which is a cylinder, for example, the magnetic field formation mechanism (magnetic field formation means) formed in the shape of a cylinder is a cylindrical permanent magnet. The cylindrical magnet 216 is disposed near the upper and lower ends of the outer surface of the cylindrical electrode 215. The upper and lower cylindrical magnets 216 and 216 have magnetic poles at both ends (inner and outer peripheral ends) along the radial direction of the processing chamber 201, and the magnetic poles of the upper and lower cylindrical magnets 216 and 216 are set in opposite directions. Has been. Therefore, the magnetic poles in the inner peripheral portion are different from each other, and thereby magnetic field lines are formed in the cylindrical axis direction along the inner peripheral surface of the cylindrical electrode 215.

処理室201の底側中央には、基板であるウエハ200を保持するための基板保持具(基板保持手段)としてサセプタ217が配置されている。サセプタ217は、例えば窒化アルミニウムやセラミックス、又は石英等の非金属材料で形成され、内部に加熱機構(加熱手段)としてのヒータ(図中省略)が一体的に埋め込まれており、ウエハ200を加熱できるようになっている。ヒータは、電力が印加されてウエハ200を500℃程度にまで加熱できるようになっている。   A susceptor 217 is disposed in the center of the bottom side of the processing chamber 201 as a substrate holder (substrate holding means) for holding the wafer 200 as a substrate. The susceptor 217 is formed of a non-metallic material such as aluminum nitride, ceramics, or quartz, for example, and a heater (not shown) as a heating mechanism (heating means) is integrally embedded therein to heat the wafer 200. It can be done. The heater is configured to heat the wafer 200 to about 500 ° C. by applying electric power.

また、サセプタ217の内部には、さらにインピーダンスを変化させるための電極である第2の電極も装備されており、この第2の電極がインピーダンス可変機構274を介して接地されている。インピーダンス可変機構274は、コイルや可変コンデンサから構成され、コイルのパターン数や可変コンデンサの容量値を制御することによって、上記電極及びサセプタ217を介してウエハ200の電位を制御できるようになっている。   The susceptor 217 is also equipped with a second electrode that is an electrode for changing the impedance, and the second electrode is grounded via the impedance variable mechanism 274. The impedance variable mechanism 274 is composed of a coil and a variable capacitor, and the potential of the wafer 200 can be controlled via the electrode and the susceptor 217 by controlling the number of coil patterns and the capacitance value of the variable capacitor. .

ウエハ200をマグネトロン型プラズマ源でのマグネトロン放電により処理するための処理炉202は、少なくとも処理室201、処理容器203、サセプタ217、筒状電極215、筒状磁石216、シャワーヘッド236、及び排気口235から構成されており、処理室201でウエハ200をプラズマ処理することが可能となっている。   A processing furnace 202 for processing the wafer 200 by magnetron discharge with a magnetron plasma source includes at least a processing chamber 201, a processing vessel 203, a susceptor 217, a cylindrical electrode 215, a cylindrical magnet 216, a shower head 236, and an exhaust port. The wafer 200 can be plasma-processed in the processing chamber 201.

筒状電極215及び筒状磁石216の周囲には、この筒状電極215及び筒状磁石216で形成される電界や磁界を外部環境や他処理炉等の装置に悪影響を及ぼさないように、電界や磁界を有効に遮蔽する遮蔽板223が設けられている。   Around the cylindrical electrode 215 and the cylindrical magnet 216, an electric field and magnetic field formed by the cylindrical electrode 215 and the cylindrical magnet 216 are arranged so as not to adversely affect the external environment and other processing furnaces. And a shielding plate 223 that effectively shields the magnetic field.

サセプタ217は下側容器211と絶縁され、サセプタ217を昇降させるサセプタ昇降機構(昇降手段)268が設けられている。またサセプタ217には貫通孔217aが設けられ、下側容器211底面にはウエハ200を突上げるためのウエハ突上げピン266が少なくとも3箇所に設けられている。そして、サセプタ昇降機構268によりサセプタ217が下降させられた時にはウエハ突上げピン266がサセプタ217と非接触な状態で貫通孔217aを突き抜けるような位置関係となるよう、貫通孔217a及びウエハ突上げピン266が配置される。   The susceptor 217 is insulated from the lower container 211 and is provided with a susceptor elevating mechanism (elevating means) 268 for elevating and lowering the susceptor 217. The susceptor 217 is provided with through holes 217a, and at the bottom of the lower container 211, wafer push-up pins 266 for pushing up the wafer 200 are provided in at least three places. Then, when the susceptor 217 is lowered by the susceptor raising / lowering mechanism 268, the through hole 217 a and the wafer up pin are arranged such that the wafer push-up pin 266 penetrates the through-hole 217 a in a non-contact state with the susceptor 217. 266 is arranged.

また、下側容器211の側壁には仕切弁となるゲートバルブ244が設けられ、開いている時には図中省略の搬送機構(搬送手段)により処理室201に対してウエハ200を搬入、または搬出することができ、閉まっている時には処理室201を気密に閉じることができる。   Further, a gate valve 244 serving as a gate valve is provided on the side wall of the lower container 211. When the gate valve 244 is open, the wafer 200 is loaded into or unloaded from the processing chamber 201 by a transfer mechanism (transfer means) not shown in the drawing. The process chamber 201 can be hermetically closed when closed.

また、制御部(制御手段)としてのコントローラ121は信号線Aを通じてAPC242、バルブ243b、真空ポンプ246を、信号線Bを通じてサセプタ昇降機構268を、信号線Cを通じてゲートバルブ244を、信号線Dを通じて整合器272、高周波電源273を、信号線Eを通じてマスフローコントローラ241、バルブ243aを、さらに図示しない信号線を通じてサセプタに埋め込まれたヒータやインピーダンス可変機構274をそれぞれ制御するよう構成されている。   Further, the controller 121 as a control unit (control means) includes the APC 242, the valve 243b, and the vacuum pump 246 through the signal line A, the susceptor lifting mechanism 268 through the signal line B, the gate valve 244 through the signal line C, and the signal line D. The matching device 272, the high-frequency power source 273, the mass flow controller 241 and the valve 243a are controlled through the signal line E, and the heater and the impedance variable mechanism 274 embedded in the susceptor are controlled through the signal line (not shown).

次に上記のような構成の処理炉を用いて、半導体デバイスの製造工程の一工程として、ウエハ200表面に対し、又はウエハ200上に形成された下地膜の表面に対し所定のプラズマ処理を施す方法について説明する。尚、以下の説明において、MMT装置100を構成する各部の動作は制御部121により制御される。   Next, using the processing furnace having the above-described configuration, a predetermined plasma process is performed on the surface of the wafer 200 or the surface of the base film formed on the wafer 200 as one step of the semiconductor device manufacturing process. A method will be described. In the following description, the operation of each unit constituting the MMT apparatus 100 is controlled by the control unit 121.

ウエハ200は処理炉202を構成する処理室201の外部からウエハを搬送する図中省略の搬送機構によって処理室201に搬入され、サセプタ217上に搬送される。この搬送動作の詳細は次の通りである。サセプタ217が基板搬送位置まで下降し、ウエハ突上げピン266の先端がサセプタ217の貫通孔217aを通過する。このときサセプタ217表面よりも所定の高さ分だけ突き上げピン266が突き出された状態となる。次に、下側容器211に設けられたゲートバルブ244が開かれ、図中省略の搬送機構によってウエハ200をウエハ突上げピン266の先端に載置する。搬送機構が処理室201外へ退避すると、ゲートバルブ244が閉じられる。サセプタ217がサセプタ昇降機構268により上昇すると、サセプタ217上面にウエハ200を載置することができ、更にウエハ200を処理する位置まで上昇する。   The wafer 200 is loaded into the processing chamber 201 by a transfer mechanism (not shown) that transfers the wafer from the outside of the processing chamber 201 constituting the processing furnace 202, and is transferred onto the susceptor 217. The details of this transport operation are as follows. The susceptor 217 is lowered to the substrate transfer position, and the tip of the wafer push-up pin 266 passes through the through hole 217a of the susceptor 217. At this time, the push-up pin 266 is protruded by a predetermined height from the surface of the susceptor 217. Next, the gate valve 244 provided in the lower container 211 is opened, and the wafer 200 is placed on the tip of the wafer push-up pin 266 by a transfer mechanism (not shown). When the transfer mechanism is retracted out of the processing chamber 201, the gate valve 244 is closed. When the susceptor 217 is raised by the susceptor lifting mechanism 268, the wafer 200 can be placed on the upper surface of the susceptor 217, and further raised to a position where the wafer 200 is processed.

サセプタ217に埋め込まれたヒータ及びランプ過熱装置は予め加熱されており、搬入されたウエハ200を室温〜700℃の範囲の内、所定のウエハ処理温度に加熱する。真空ポンプ246、及びAPC242を用いて処理室201の圧力を1〜200Paの範囲の内、所定の圧力に維持する。   The heater and lamp superheater embedded in the susceptor 217 are preheated, and heat the loaded wafer 200 to a predetermined wafer processing temperature within a range of room temperature to 700 ° C. The pressure of the processing chamber 201 is maintained at a predetermined pressure within the range of 1 to 200 Pa using the vacuum pump 246 and the APC 242.

ウエハ200の温度が処理温度に達し、安定化したら、ガス導入口234から遮蔽プレート240のガス噴出孔239を介して、反応ガスを処理室201に配置されているウエハ200の上面(処理面)に向けて導入する。このときのガス流量は所定の流量(例えば0〜500sccm)とする。同時に筒状電極215に高周波電源273から整合器272を介して高周波電力を印加する。印加する電力は、150〜200Wの範囲の内、所定の出力値を投入する。このときインピーダンス可変機構274は予め所望のインピーダンス値となるように制御しておく。   When the temperature of the wafer 200 reaches the processing temperature and stabilizes, the upper surface (processing surface) of the wafer 200 disposed in the processing chamber 201 from the gas introduction port 234 through the gas ejection hole 239 of the shielding plate 240. Introduce towards. The gas flow rate at this time is a predetermined flow rate (for example, 0 to 500 sccm). At the same time, high frequency power is applied to the cylindrical electrode 215 from the high frequency power supply 273 via the matching unit 272. The power to be applied is a predetermined output value within the range of 150 to 200W. At this time, the impedance variable mechanism 274 is controlled in advance so as to have a desired impedance value.

筒状磁石216、216の磁界の影響を受けてマグネトロン放電が発生し、ウエハ200の上方空間に電荷をトラップしてプラズマ生成領域224に高密度プラズマが生成される。そして、生成された高密度プラズマにより、サセプタ217上のウエハ200の表面にプラズマ処理が施される。プラズマ処理が終わったウエハ200は、図示略の搬送機構を用いて、基板搬入と逆の手順で処理室201外へ搬送される。   Magnetron discharge is generated under the influence of the magnetic field of the cylindrical magnets 216 and 216, charges are trapped in the upper space of the wafer 200, and high-density plasma is generated in the plasma generation region 224. Then, the surface of the wafer 200 on the susceptor 217 is subjected to plasma processing by the generated high density plasma. The wafer 200 that has been subjected to the plasma processing is transferred outside the processing chamber 201 using a transfer mechanism (not shown) in the reverse order of substrate loading.

次にランプ加熱装置280の周辺構造を図2に基づいて説明する。
ランプ加熱装置280は、枠体233上に載置された支持部材282上に配設され、少なくとも1つ(本実施形態においては4つ)の加熱ランプを有する。第1のシール部材284aは、枠体233上面と光透過性窓部203下面との間をバッファ室237を気密にシールしており、第2のシール部材284bは、処理容器203(上側容器210)上面と枠体233下面との間に配設され、処理室201内を気密にシールしている。樹脂製部材286は、光透過性窓部278と支持部材282との間に配設されており、光透過性窓部278と支持部材282との接触を防止し、該光透過性窓部278の破損を防止する破損防止部材として用いられる。光透過性窓部278は、円柱状に形成されており、第2のシール部材284bを介して枠体233に支持されている。この光透過性窓部278は、ランプ加熱装置280から照射された光や熱を透過させる透過性部材から構成されている。
Next, the peripheral structure of the lamp heating device 280 will be described with reference to FIG.
The lamp heating device 280 is disposed on the support member 282 placed on the frame body 233, and has at least one (four in the present embodiment) heating lamp. The first seal member 284a hermetically seals the buffer chamber 237 between the upper surface of the frame 233 and the lower surface of the light transmissive window 203, and the second seal member 284b includes the processing container 203 (the upper container 210). ) It is disposed between the upper surface and the lower surface of the frame body 233 and hermetically seals the inside of the processing chamber 201. The resin member 286 is disposed between the light transmissive window portion 278 and the support member 282, prevents contact between the light transmissive window portion 278 and the support member 282, and the light transmissive window portion 278. It is used as a breakage prevention member that prevents breakage. The light transmissive window portion 278 is formed in a columnar shape and is supported by the frame body 233 via the second seal member 284b. The light transmissive window 278 is made of a transmissive member that transmits light and heat emitted from the lamp heating device 280.

支持部材282は、ランプ加熱装置280から照射される光を遮光する遮光板282aを有している。この遮光板282aは、ランプ加熱装置280から照射される光を遮光するとともに該ランプ加熱装置280から放出される輻射熱(熱エネルギー)を遮蔽(吸収)する遮蔽部材として用いられる。すなわち、この遮光板282aは、第2のシール部材284に対してランプ加熱装置280から照射される光を遮光する位置に設けられている。したがって、ランプ加熱装置280から放出される輻射熱が遮光板282aにより吸収され、第2のシール部材284の高温化が抑制される。   The support member 282 includes a light shielding plate 282 a that shields light emitted from the lamp heating device 280. The light shielding plate 282a is used as a shielding member that shields light irradiated from the lamp heating device 280 and shields (absorbs) radiant heat (thermal energy) emitted from the lamp heating device 280. That is, the light shielding plate 282a is provided at a position where the second seal member 284 is shielded from the light emitted from the lamp heating device 280. Therefore, the radiant heat emitted from the lamp heating device 280 is absorbed by the light shielding plate 282a, and the high temperature of the second seal member 284 is suppressed.

冷却手段としての冷却路288は、枠体233内に設けられている。この冷却路288に冷却液(例えば水)を流通させることにより、第1のシール部材284a及び第2のシール部材284b周辺の環境温度を低下させるようになっている。   A cooling path 288 as a cooling means is provided in the frame 233. By circulating a coolant (for example, water) through the cooling path 288, the ambient temperature around the first seal member 284a and the second seal member 284b is lowered.

次に本発明の第2の実施形態におけるMMT装置100を図3に基づいて説明する。   Next, an MMT apparatus 100 according to the second embodiment of the present invention will be described with reference to FIG.

本実施形態における光透過性窓部278は、第1の実施形態における光透過性窓部と比較し、外径が大きく形成されている。また、本実施形態における枠体233は、第1の枠体233a、第2の枠体233b及び第3の枠体233cを有する。第3の枠体233cは、第2のシール部材284bを介して処理容器203に支持されており、第2の冷却路288bを有する。第2の枠体233bは、第3の枠体233cに支持されており、光透過性窓部278の外周部を囲うように配設されている。第1の枠体233aは、第2の枠体233bに支持されており、第1の冷却路288aを有する。第1の枠体233aの下面は光透過性窓部278上面の外縁部に載置された破損防止材としての樹脂製部材286と接触するようになっている。第1の冷却炉288aに冷却液(例えば水)を流通させることにより、樹脂製部材286周辺の環境温度を低下させ、第2の冷却路288bに冷却液を流通させることにより、第1のシール部材284a及び第2のシール部材284b周辺の環境温度を低下させるようになっている。   The light transmissive window portion 278 in the present embodiment has a larger outer diameter than the light transmissive window portion in the first embodiment. In addition, the frame body 233 in the present embodiment includes a first frame body 233a, a second frame body 233b, and a third frame body 233c. The third frame 233c is supported by the processing container 203 via the second seal member 284b and has a second cooling path 288b. The second frame 233b is supported by the third frame 233c and is disposed so as to surround the outer peripheral portion of the light transmissive window portion 278. The first frame 233a is supported by the second frame 233b, and has a first cooling path 288a. The lower surface of the first frame 233a is in contact with a resin member 286 as an anti-damage material placed on the outer edge of the upper surface of the light transmissive window 278. By circulating a cooling liquid (for example, water) through the first cooling furnace 288a, the environmental temperature around the resin member 286 is lowered, and the cooling liquid is circulated through the second cooling path 288b, thereby the first seal. The ambient temperature around the member 284a and the second seal member 284b is lowered.

上述したように、光透過性窓部278の外径を大きくしたことにより、第1のシール部材284aは、ランプ加熱装置280から遠ざけて配置されている。より具体的には、本実施形態におけるランプ加熱装置280から第1のシール部材284aまでの距離(図3(a)のL2)は、第1の実施形態におけるランプ加熱装置280から第1のシール部材284aまでの距離(図2(a)のL1)よりも長くなっている。これにより、第1のシール部材284a周辺の環境温度の高温化が抑制された。より具体的には、第2の加熱源であるランプ加熱装置を有さないMMT装置のシール部材周辺温度が124℃程度であったのに対し、本実施形態におけるMMT装置100の同一箇所の温度は132℃程度であり、温度の上昇率を6%程度に抑制することができた。
なお、本発明の第2の実施形態の説明においては、本発明の第1の実施形態と同一部分について図面に同一番号を付してその説明を省略した。
As described above, the first seal member 284a is disposed away from the lamp heating device 280 by increasing the outer diameter of the light transmissive window 278. More specifically, the distance (L2 in FIG. 3A) from the lamp heating device 280 to the first seal member 284a in the present embodiment is the first seal from the lamp heating device 280 in the first embodiment. It is longer than the distance to the member 284a (L1 in FIG. 2A). Thereby, the increase in the environmental temperature around the first seal member 284a was suppressed. More specifically, the temperature around the sealing member of the MMT apparatus that does not have the lamp heating apparatus as the second heating source was about 124 ° C., whereas the temperature at the same location of the MMT apparatus 100 in the present embodiment. Was about 132 ° C., and the temperature increase rate could be suppressed to about 6%.
In the description of the second embodiment of the present invention, the same parts as those in the first embodiment of the present invention are denoted by the same reference numerals and the description thereof is omitted.

次に本発明の第3の実施形態におけるMMT装置100を図4に基づいて説明する。   Next, an MMT apparatus 100 according to a third embodiment of the present invention will be described with reference to FIG.

本実施形態における光透過性窓部278には、該光透過性窓部278下面の外縁部に凹部278aが形成されており、この凹部278aには不透明部材290が嵌め込まれている。この不透明部材290は、ランプ加熱装置280から照射される光の透過率を低減させる部材(例えばすりガラス等)からなり、透過率低減部として用いられる。この不透明部材290は、第1のシール部材284a及び第2のシール部材284bに対してランプ加熱装置280から照射される光を遮光、すなわちランプ加熱装置280から放出される輻射熱(熱エネルギー)を遮蔽する位置に設けられている。したがって、ランプ加熱装置280から第1のシール部材284a及び第2のシール部材284bに対して放出される輻射熱が不透明部材290により遮蔽され、第1のシール部材284a及び第2のシール部材284bの高温化が抑制される。
なお、本発明の第3の実施形態の説明においては、本発明の第2の実施形態と同一部分について図面に同一番号を付してその説明を省略した。
In the light transmissive window portion 278 in this embodiment, a concave portion 278a is formed on the outer edge portion of the lower surface of the light transmissive window portion 278, and an opaque member 290 is fitted in the concave portion 278a. The opaque member 290 is made of a member (for example, ground glass) that reduces the transmittance of light emitted from the lamp heating device 280, and is used as a transmittance reducing unit. The opaque member 290 blocks the light emitted from the lamp heating device 280 with respect to the first seal member 284a and the second seal member 284b, that is, shields the radiant heat (heat energy) emitted from the lamp heating device 280. It is provided in the position to do. Therefore, the radiant heat emitted from the lamp heating device 280 to the first seal member 284a and the second seal member 284b is shielded by the opaque member 290, and the high temperature of the first seal member 284a and the second seal member 284b. Is suppressed.
In the description of the third embodiment of the present invention, the same parts as those of the second embodiment of the present invention are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

次に本発明の第4の実施形態におけるMMT装置100を図5に基づいて説明する。   Next, the MMT apparatus 100 in the 4th Embodiment of this invention is demonstrated based on FIG.

本実施形態における光透過性窓部278には、該光透過性窓部278上面の外縁部に凹部278bが形成されており、この凹部278bには不透明部材290が嵌め込まれている。この不透明部材290は、第1のシール部材284a及び第2のシール部材284bに対してランプ加熱装置280から放出される輻射熱(熱エネルギー)を遮蔽する位置に設けられている。したがって、ランプ加熱装置280から第1のシール部材284a及び第2のシール部材284bに対して放出される輻射熱が不透明部材290により遮蔽され、第1のシール部材284a及び第2のシール部材284bの高温化が抑制される。また、本実施形態においては光透過性窓部278の不透明部材290が処理室201(バッファ室237)に晒されていないので、該不透明部材278がプラズマにより削られることにより発生するパーティクルを抑制することができる。
なお、本発明の第4の実施形態の説明においては、本発明の第3の実施形態と同一部分について図面に同一番号を付してその説明を省略した。
In the light transmissive window portion 278 in the present embodiment, a concave portion 278b is formed on the outer edge portion of the upper surface of the light transmissive window portion 278, and an opaque member 290 is fitted in the concave portion 278b. The opaque member 290 is provided at a position that shields radiant heat (heat energy) emitted from the lamp heating device 280 with respect to the first seal member 284a and the second seal member 284b. Therefore, the radiant heat emitted from the lamp heating device 280 to the first seal member 284a and the second seal member 284b is shielded by the opaque member 290, and the high temperature of the first seal member 284a and the second seal member 284b. Is suppressed. In this embodiment, since the opaque member 290 of the light transmissive window 278 is not exposed to the processing chamber 201 (buffer chamber 237), particles generated when the opaque member 278 is scraped by plasma are suppressed. be able to.
In the description of the fourth embodiment of the present invention, the same parts as those of the third embodiment of the present invention are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

本発明は、導体ウエハやガラス基板等の基板を処理するための基板処理装置において、基板の加熱温度を上げて高温処理能力を向上させる必要があるものに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a substrate processing apparatus for processing a substrate such as a conductor wafer or a glass substrate that needs to increase the heating temperature of the substrate to improve the high-temperature processing capability.

本発明の実施形態に係る基板処理装置に用いられる処理炉を示す縦断面図である。It is a longitudinal section showing a processing furnace used for a substrate processing apparatus concerning an embodiment of the present invention. 第1の実施形態に係る処理炉のランプ加熱装置の周辺構造を示し、(a)は部分断面図、(b)は光透過性窓部の部分拡大図である。The peripheral structure of the lamp heating apparatus of the processing furnace which concerns on 1st Embodiment is shown, (a) is a fragmentary sectional view, (b) is the elements on larger scale of the light transmissive window part. 第2の実施形態に係る処理炉のランプ加熱装置の周辺構造を示し、(a)は部分断面図、(b)は光透過性窓部の部分拡大図である。The peripheral structure of the lamp heating apparatus of the processing furnace which concerns on 2nd Embodiment is shown, (a) is a fragmentary sectional view, (b) is the elements on larger scale of the light transmissive window part. 第3の実施形態に係る処理炉のランプ加熱装置の周辺構造を示し、(a)は部分断面図、(b)は光透過性窓部の部分拡大図である。The peripheral structure of the lamp heating apparatus of the processing furnace which concerns on 3rd Embodiment is shown, (a) is a fragmentary sectional view, (b) is the elements on larger scale of the light transmissive window part. 第4の実施形態に係る処理炉のランプ加熱装置の周辺構造を示し、(a)は部分断面図、(b)は光透過性窓部の部分拡大図である。The peripheral structure of the lamp heating apparatus of the processing furnace which concerns on 4th Embodiment is shown, (a) is a fragmentary sectional view, (b) is the elements on larger scale of the light transmissive window part.

符号の説明Explanation of symbols

100 MMT処理炉
200 ウエハ
201 処理室
215 筒状電極
216 筒状磁石
278 光透過性窓部
280 ランプ加熱装置
282a 遮光板
286 樹脂製部材
288 冷却路
290 不透明部材
100 MMT processing furnace 200 Wafer 201 Processing chamber 215 Tubular electrode 216 Tubular magnet 278 Light transmissive window portion 280 Lamp heating device 282a Light shielding plate 286 Resin member 288 Cooling path 290 Opaque member

Claims (2)

少なくとも上面に光透過性窓部を設けた処理室と、
前記処理室内にプラズマを生成する放電用電極と、
前記光透過性窓部に対応する処理室外側に配置されるランプ加熱装置と、
前記ランプ加熱装置を支持する支持部材と、
前記光透過性窓部と前記支持部材の間に設けられ、該光透過性窓部の破損を防止する破損防止部材と、
前記処理室を気密にシールするシール部材と、
を有し、
前記ランプ加熱装置から前記シール部材に対して放出される輻射熱を遮蔽する位置であって、前記光透過性窓部の外縁部には、前記ランプ加熱装置から照射される光の透過率を低減させる透過率低減部が設けられ、
さらに該透過率低減部は、前記処理室に晒されないよう構成されている
基板処理装置。
A treatment chamber provided with a light transmissive window at least on the upper surface;
A discharge electrode for generating plasma in the processing chamber ;
A lamp heating device disposed outside the processing chamber corresponding to the light transmissive window,
A support member for supporting the lamp heating device;
A breakage preventing member provided between the light transmissive window portion and the support member to prevent breakage of the light transmissive window portion;
A sealing member for hermetically sealing the processing chamber;
Have
It is a position that shields radiant heat emitted from the lamp heating device to the sealing member, and reduces the transmittance of light emitted from the lamp heating device at the outer edge of the light transmissive window. A transmittance reduction unit is provided,
Further, the transmittance reducing unit is configured to prevent exposure to the processing chamber .
少なくとも上面に光透過性窓部を設けた処理室と、A treatment chamber provided with a light transmissive window at least on the upper surface;
前記処理室内にプラズマを生成する放電用電極と、A discharge electrode for generating plasma in the processing chamber;
前記光透過性窓部に対応する処理室外側に配置されるランプ加熱装置と、A lamp heating device disposed outside the processing chamber corresponding to the light transmissive window,
前記ランプ加熱装置を支持する支持部材と、A support member for supporting the lamp heating device;
前記光透過性窓部と前記支持部材の間に設けられ、該光透過性窓部の破損を防止する破損防止部材と、A breakage preventing member provided between the light transmissive window portion and the support member to prevent breakage of the light transmissive window portion;
前記処理室を気密にシールするシール部材と、A sealing member for hermetically sealing the processing chamber;
を有し、Have
前記ランプ加熱装置から前記シール部材に対して放出される輻射熱を遮蔽する位置であって、前記光透過性窓部の外縁部には、前記ランプ加熱装置から照射される光の透過率を低減させる透過率低減部が設けられ、It is a position that shields radiant heat emitted from the lamp heating device to the sealing member, and reduces the transmittance of light emitted from the lamp heating device at the outer edge of the light transmissive window. A transmittance reduction unit is provided,
さらに該透過率低減部は、前記処理室に晒されないように構成されている基板処理装置を用いた半導体デバイスの製造方法であって、Further, the transmittance reduction unit is a method for manufacturing a semiconductor device using a substrate processing apparatus configured not to be exposed to the processing chamber,
前記処理室に搬送された基板を前記ランプ加熱装置によって加熱する工程と、Heating the substrate transported to the processing chamber by the lamp heating device;
前記処理室内で前記基板にプラズマ処理を施す工程と、Applying plasma treatment to the substrate in the processing chamber;
を有する半導体デバイスの製造方法。A method of manufacturing a semiconductor device having
JP2007000370A 2007-01-05 2007-01-05 Substrate processing apparatus and semiconductor device manufacturing method Active JP4995579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000370A JP4995579B2 (en) 2007-01-05 2007-01-05 Substrate processing apparatus and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000370A JP4995579B2 (en) 2007-01-05 2007-01-05 Substrate processing apparatus and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2008166653A JP2008166653A (en) 2008-07-17
JP4995579B2 true JP4995579B2 (en) 2012-08-08

Family

ID=39695704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000370A Active JP4995579B2 (en) 2007-01-05 2007-01-05 Substrate processing apparatus and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4995579B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120054636A (en) * 2009-08-18 2012-05-30 도쿄엘렉트론가부시키가이샤 Heat treatment apparatus
KR200486353Y1 (en) * 2013-03-12 2018-05-09 어플라이드 머티어리얼스, 인코포레이티드 Window assembly for substrate processing system
JP6625891B2 (en) * 2016-02-10 2019-12-25 株式会社日立ハイテクノロジーズ Vacuum processing equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120330U (en) * 1988-02-05 1989-08-15
JP3725612B2 (en) * 1996-06-06 2005-12-14 大日本スクリーン製造株式会社 Substrate processing equipment
JP2002075901A (en) * 2000-08-31 2002-03-15 Tokyo Electron Ltd Annealer, plating system, and method of manufacturing semiconductor device
JP4401753B2 (en) * 2003-05-19 2010-01-20 大日本スクリーン製造株式会社 Heat treatment equipment
JP4563760B2 (en) * 2004-09-24 2010-10-13 株式会社日立国際電気 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2008166653A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5982758B2 (en) Microwave irradiation device
US20100227478A1 (en) Substrate processing apparatus and method of manufacturing semiconductor
JP2012054399A (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor
JP4995579B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2011091389A (en) Substrate processing apparatus and method of manufacturing semiconductor device
TWI754208B (en) Substrate processing apparatus, processing container, reflector, and manufacturing method of semiconductor device
JP5465828B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2008053489A (en) Substrate processing apparatus
JP4861208B2 (en) Substrate mounting table and substrate processing apparatus
JP5171584B2 (en) Substrate mounting table for substrate processing apparatus, substrate processing apparatus, and method for manufacturing semiconductor device
JP2010080706A (en) Substrate processing apparatus
JP2010073751A (en) Plasma processing apparatus, and substrate placing table
JP2009010144A (en) Substrate treating apparatus
JPWO2006118215A1 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2007103697A (en) Substrate processing device
JP5725911B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2011187637A (en) Semiconductor manufacturing device
JP2009059845A (en) Substrate treatment equipment
JP6066571B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2009152233A (en) Semiconductor fabrication equipment
JP4436098B2 (en) Semiconductor manufacturing equipment
JP2005093886A (en) Semiconductor manufacturing device
JP2008294104A (en) Substrate treating apparatus
JP5430295B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP2005276998A (en) Semiconductor device manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4995579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250