JP5235934B2 - Semiconductor manufacturing apparatus and semiconductor device manufacturing method - Google Patents

Semiconductor manufacturing apparatus and semiconductor device manufacturing method Download PDF

Info

Publication number
JP5235934B2
JP5235934B2 JP2010097745A JP2010097745A JP5235934B2 JP 5235934 B2 JP5235934 B2 JP 5235934B2 JP 2010097745 A JP2010097745 A JP 2010097745A JP 2010097745 A JP2010097745 A JP 2010097745A JP 5235934 B2 JP5235934 B2 JP 5235934B2
Authority
JP
Japan
Prior art keywords
window
light
reaction chamber
substrate
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010097745A
Other languages
Japanese (ja)
Other versions
JP2010219542A (en
Inventor
幸一郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2010097745A priority Critical patent/JP5235934B2/en
Publication of JP2010219542A publication Critical patent/JP2010219542A/en
Application granted granted Critical
Publication of JP5235934B2 publication Critical patent/JP5235934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プラズマを用いて基板を処理する半導体製造装置に係り、特にその基板加熱能力を改善する構造に関するものである。   The present invention relates to a semiconductor manufacturing apparatus for processing a substrate using plasma, and more particularly to a structure for improving the substrate heating capability.

一般に、半導体製造装置を構成するプラズマ処理炉、例えば変形マグネトロン型プラズマ源(Modified Magnetron Typed Plasma Source)を用いたプラズマ処理炉は、気密性を確保した反応室である処理室に半導体ウェハなどの被処理基板を設置し、反応ガスを処理室に導入する。処理室をある一定の圧力に保ち、放電用電極に高周波電力を供給して電界を形成するとともに、磁界をかけてマグネトロン放電を起こしてプラズマを発生させ、このプラズマを用いて基板を処理するようになっている。   In general, a plasma processing furnace that constitutes a semiconductor manufacturing apparatus, for example, a plasma processing furnace using a modified magnetron type plasma source, is a process chamber that is a gas-tight reaction chamber. A processing substrate is installed and a reaction gas is introduced into the processing chamber. Maintaining the processing chamber at a certain pressure, supplying high frequency power to the discharge electrode to form an electric field, applying a magnetic field to generate a magnetron discharge to generate plasma, and processing the substrate using this plasma It has become.

このようなプラズマ処理炉として、従来、多数の孔を有するシャワープレートから処理室(反応室)にガスをシャワー状に供給するものがある。   As such a plasma processing furnace, conventionally, there is one that supplies gas in a shower shape from a shower plate having a large number of holes to a processing chamber (reaction chamber).

これは、図6に示すように、基板6を収容する反応室20と、反応室20にガス導入口(ガス供給管)12より放電用ガスを供給するシャワーヘッド11と、反応室20を排気するガス排気口(排気管)14と、ガスを用いて反応室20内にプラズマを生成するプラズマ生成手段17とを有する。   As shown in FIG. 6, this is because the reaction chamber 20 that accommodates the substrate 6, the shower head 11 that supplies discharge gas to the reaction chamber 20 from the gas inlet (gas supply pipe) 12, and the reaction chamber 20 are exhausted. A gas exhaust port (exhaust pipe) 14 and plasma generating means 17 for generating plasma in the reaction chamber 20 using gas.

反応室20のチャンバを形成する処理容器10は、金属製の下容器1と、絶縁材(ここではアルミナ)から成るドーム状の上容器2とから構成され、内部の部品交換や洗浄のため開閉できる構造となっている。   The processing container 10 forming the chamber of the reaction chamber 20 is composed of a metal lower container 1 and a dome-shaped upper container 2 made of an insulating material (alumina in this case), and is opened and closed for internal component replacement and cleaning. It has a structure that can be done.

上容器2は、その上部に、反応ガスをシャワー状に供給するシャワー板3を備えており、この上容器2の上にOリング9を介して、金属製の上蓋4が設置される。上容器2のシャワー板3と上蓋4の間には、ガスを導入するバッファ室つまりガス分散室13が形成されており、ここでガスが混合できる。シャワー板3は、金属製の円板全面に、ガス吹出口となる多数の丸孔を格子状もしくは同心円上に設けたものである。したがって、丸孔は反応室20内に露出するようになっている。   The upper container 2 is provided with a shower plate 3 for supplying the reaction gas in a shower shape at the upper part thereof, and a metal upper lid 4 is installed on the upper container 2 via an O-ring 9. Between the shower plate 3 and the upper lid 4 of the upper container 2, a buffer chamber for introducing gas, that is, a gas dispersion chamber 13, is formed, and gas can be mixed here. The shower plate 3 is provided with a large number of round holes serving as gas outlets in a lattice shape or concentric circles on the entire surface of a metal disc. Therefore, the round hole is exposed in the reaction chamber 20.

プラズマ処理炉では、プラズマを安定化させるために、反応室20の上蓋4を接地する。シャワー板3が金属製であると、上蓋4を介してシャワー板3も接地される。シャワー板3が接地されていると、プラズマ生成手段17によって形成される電界が、基板6のみならずシャワー板3にも向かう。したがって、シャワー板3が直接イオンの衝撃によってスパッタされる。   In the plasma processing furnace, the upper cover 4 of the reaction chamber 20 is grounded in order to stabilize the plasma. If the shower plate 3 is made of metal, the shower plate 3 is also grounded via the upper lid 4. When the shower plate 3 is grounded, the electric field formed by the plasma generation means 17 is directed not only to the substrate 6 but also to the shower plate 3. Therefore, the shower plate 3 is sputtered by direct ion impact.

また、プラズマ雰囲気にさらされるシャワー板3に、電界の集中しやすい金属の角部をもつガス吹出口があると、シャワー板3に向かう電界はシャワー板3に設けたガス吹出口の丸孔の角部に集中するため、プラズマ中のイオンが丸孔の角部に衝突し、角部がイオンによりスパッタされやすくなる。スパッタによりはじきだされた物質がパーティクルとしてウェハ上に降って来る。このパーティクルが有害な金属汚染源となり、ウェハを金属汚染することになる。 そこで、シャワープレートを、金属ではなく、石英等の誘電体で構成して、ガス吹出口のスパッタを軽減することも考えられている(例えば、特許文献1参照)。   In addition, if the shower plate 3 exposed to the plasma atmosphere has a gas outlet having a metal corner portion where the electric field tends to concentrate, the electric field directed to the shower plate 3 is generated by the round hole of the gas outlet provided in the shower plate 3. Since the ions concentrate in the corners, ions in the plasma collide with the corners of the round hole, and the corners are easily sputtered by the ions. Substances repelled by sputtering fall on the wafer as particles. This particle becomes a harmful metal contamination source, and the wafer is contaminated with metal. In view of this, it has been considered that the shower plate is made of a dielectric material such as quartz instead of metal to reduce spatter at the gas outlet (for example, see Patent Document 1).

反応室20内には、シリコンウェハなどの被処理基板6を設置する載置部を有する基板載置台たるサセプタ5、基板搬送時に貫通孔5aを突き抜けて基板6をサセプタ5から離間させるリフトピン(基板昇降ピン)8、これらのリフトピン8を下容器1に固定するためのブロック7が配置されている。サセプタ5はセラミックヒータ内臓のものとなっており、基板を処理する場合400〜500℃程度の温度になっている。   In the reaction chamber 20, a susceptor 5 serving as a substrate mounting table having a mounting portion for setting a substrate 6 to be processed such as a silicon wafer, and lift pins (substrates) that penetrate the through holes 5 a and separate the substrate 6 from the susceptor 5 during substrate transfer. Elevating pins) 8 and a block 7 for fixing these lift pins 8 to the lower container 1 are arranged. The susceptor 5 has a built-in ceramic heater, and has a temperature of about 400 to 500 ° C. when the substrate is processed.

特開2001−196354号公報(図1、図5、図6、図8、図10)JP 2001-196354 A (FIGS. 1, 5, 6, 8, and 10)

しかしながら、基板載置台を介して基板をヒータ加熱する従来の半導体製造装置では、ヒータによる基板加熱温度が最高でも400℃〜500℃程度であるため、高温処理に対応できなかった。   However, in a conventional semiconductor manufacturing apparatus that heats a substrate via a substrate mounting table, the substrate heating temperature by the heater is at most about 400 ° C. to 500 ° C., and thus cannot cope with high temperature processing.

そこで、本発明の目的は、従来技術の問題点を解消して、基板の加熱温度を上げて高温処理能力を向上させることが可能な半導体製造装置を提供することにある。   Accordingly, an object of the present invention is to provide a semiconductor manufacturing apparatus capable of solving the problems of the prior art and increasing the heating temperature of the substrate to improve the high-temperature processing capability.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

本発明に係る半導体製造装置は、少なくとも上面に光透過性窓を設けた反応室と、前記反応室の外周囲に配置される放電用電極と、前記放電用電極の外周囲に配置される磁界形成手段と、前記光透過性窓に対応する反応室外側に配置されたランプ加熱装置と、前記反応室内の前記ランプ加熱装置に対向させて被処理基板をランプ加熱装置からの光照射を受けるように載置する基板載置台と、前記反応室に放電用ガスを供給するガス供給管と、前記反応室内の雰囲気を排気する排気管とを有し、前記反応室内に前記排気管により排気しつつ前記ガス供給管から放電用ガスを供給し、該放電用ガスが前記放電用電極からの電界と前記磁界形成手段による磁界との相互作用によりプラズマ放電し、前記基板載置台上に載置され前記ランプ加熱装置からの光照射を受けて加熱される被処理基板にプラズマ処理を施すように構成したものである。   A semiconductor manufacturing apparatus according to the present invention includes a reaction chamber provided with a light transmissive window on at least an upper surface, a discharge electrode disposed on the outer periphery of the reaction chamber, and a magnetic field disposed on the outer periphery of the discharge electrode. A forming means; a lamp heating device disposed outside the reaction chamber corresponding to the light-transmitting window; and a substrate to be processed to receive light from the lamp heating device facing the lamp heating device in the reaction chamber. A substrate mounting table placed on the substrate, a gas supply pipe for supplying a discharge gas to the reaction chamber, and an exhaust pipe for exhausting the atmosphere in the reaction chamber, while exhausting the reaction chamber with the exhaust pipe A discharge gas is supplied from the gas supply tube, and the discharge gas is plasma-discharged by an interaction between an electric field from the discharge electrode and a magnetic field by the magnetic field forming means, and is placed on the substrate mounting table and Lamp heating device The substrate to be processed is heated by the light irradiation is obtained by configured to perform a plasma treatment.

上記発明において、さらに反応室のランプ加熱装置周辺部材の温度上昇を低減させる手段を設けることが好ましい。また、上記発明において、さらに前記光透過性窓に対向する前記反応室内に光透過性のシャワー板を設けて前記光透過性窓との間でガス分散室を形成し、前記シャワー板には前記被処理基板の外周囲位置にガス供給部が設けられることが好ましい。   In the above invention, it is preferable to further provide means for reducing the temperature rise of the peripheral member of the lamp heating device in the reaction chamber. In the above invention, a light-transmitting shower plate is further provided in the reaction chamber facing the light-transmitting window to form a gas dispersion chamber with the light-transmitting window, and the shower plate has the above-mentioned It is preferable that a gas supply unit is provided at an outer peripheral position of the substrate to be processed.

上記反応室のランプ加熱装置周辺部材の温度上昇を低減させる手段には、次のような形態が含まれる。   The means for reducing the temperature rise of the peripheral member of the lamp heating device in the reaction chamber includes the following modes.

第一は、ランプ加熱装置を反応室外側に配置する取付部材を、耐熱性を確保しつつ、熱伝導率の低い材料で構成する形態である。   The first is a form in which the mounting member for arranging the lamp heating device outside the reaction chamber is made of a material having low thermal conductivity while ensuring heat resistance.

第二は、反応室のランプ加熱装置周辺部材に、水冷機構の如き放熱機構を設け、ランプ加熱装置の熱を伝熱部材を介してこれに吸収させる形態である。具体的構成としては、反応室の上蓋に冷却液の通路を形成し、この冷却液の通路より熱を汲み出す形態である。ここで冷却液の通路を形成し得る、反応室のランプ加熱装置周辺部材としては、上蓋の上蓋
縁部材や光透過性窓部材等がある。
The second is a mode in which a heat dissipating mechanism such as a water cooling mechanism is provided on the peripheral member of the lamp heating device in the reaction chamber, and the heat of the lamp heating device is absorbed by this through the heat transfer member. As a specific configuration, a cooling liquid passage is formed in the upper lid of the reaction chamber, and heat is pumped out from the cooling liquid passage. Here, examples of the peripheral member of the lamp heating device in the reaction chamber that can form the coolant passage include an upper cover edge member and a light-transmitting window member.

第三は、ランプ加熱装置を反応室外側に配置する取付部材を、耐熱性を確保しつつ、熱伝導率の低い材料で構成するのみならず、ピン等により隙間を作るなどの断熱機構として作用するように構成する形態である。この形態においても、追加的に、反応室の上蓋に、水冷機構として冷却液の通路を形成しておくことができる。   Thirdly, the mounting member that arranges the lamp heating device outside the reaction chamber is not only composed of a material with low thermal conductivity while ensuring heat resistance, but also acts as a heat insulation mechanism such as creating a gap with pins etc. It is the form comprised so that it may do. Also in this embodiment, a coolant passage can be formed in the upper lid of the reaction chamber as a water cooling mechanism.

本発明に係る半導体製造装置によれば、反応室の上面に光透過性窓を設け、その光透過性窓に対応する反応室外側にランプ加熱装置を配置したので、ランプ加熱装置の光を光透過性窓を通して反応室内に入れ、被処理基板に光照射して加熱することができる。   According to the semiconductor manufacturing apparatus of the present invention, the light transmissive window is provided on the upper surface of the reaction chamber, and the lamp heating device is disposed outside the reaction chamber corresponding to the light transmissive window. The substrate to be processed can be heated by being irradiated with light through a transmissive window.

また、反応室のランプ加熱装置周辺部材にその温度上昇を低減させる手段を設けたので、反応室のランプ加熱装置周辺部材であるところの、例えば上蓋縁部材や光透過性窓部材等の温度上昇を抑え、Oリング等のシール部材の寿命を高めることができる。結果として、基板載置台上に載置されランプ加熱装置からの光照射を受けて加熱される被処理基板の処理温度を高めることができる。よって、半導体製造装置の処理可能な温度範囲が広がり、より広範な用途に適用することができる。   In addition, since the means for reducing the temperature rise is provided in the peripheral member of the lamp heating device in the reaction chamber, the temperature rise in the peripheral member of the lamp heating device in the reaction chamber, for example, the upper lid edge member or the light transmissive window member, etc. And the life of a sealing member such as an O-ring can be increased. As a result, it is possible to increase the processing temperature of the substrate to be processed that is mounted on the substrate mounting table and heated by receiving the light irradiation from the lamp heating device. Therefore, the processable temperature range of the semiconductor manufacturing apparatus is widened and can be applied to a wider range of uses.

ランプ加熱装置を構成する加熱ランプの数については特に制約はなく、反応ガスの導入口及び排気口を有する真空保持された処理容器内で、基板に薄膜を形成するプラズマ処理装置において、処理容器外部大気側に基板を加熱するための光源としての加熱ランプを、少なくとも1個設ければよい。   The number of heating lamps constituting the lamp heating device is not particularly limited, and in a plasma processing device for forming a thin film on a substrate in a vacuum-held processing vessel having a reaction gas introduction port and an exhaust port, the outside of the processing vessel At least one heating lamp as a light source for heating the substrate may be provided on the atmosphere side.

本発明の第一の実施形態に係る基板処理炉(MMT装置)に窓及びランプ加熱装置を設けた構造を示した図である。It is the figure which showed the structure which provided the window and the lamp heating apparatus in the substrate processing furnace (MMT apparatus) which concerns on 1st embodiment of this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 本発明の実施の形態に係る遮蔽プレートの構成を示したもので、(a)は平面図、(b)は要部斜視図である。The structure of the shielding plate which concerns on embodiment of this invention is shown, (a) is a top view, (b) is a principal part perspective view. 本発明の第二の実施形態に係る基板処理炉(MMT装置)に窓及びランプ加熱装置を設けた構造を示した図である。It is the figure which showed the structure which provided the window and the lamp heating apparatus in the substrate processing furnace (MMT apparatus) which concerns on 2nd embodiment of this invention. 図4の部分拡大図である。It is the elements on larger scale of FIG. 従来の基板処理炉(MMT装置)の構造を示した図である。It is the figure which showed the structure of the conventional substrate processing furnace (MMT apparatus).

以下に本発明の実施の形態を説明する。実施の形態の半導体製造装置を構成するプラズマ処理炉は、電界と磁界により高密度プラズマを生成できる変形マグネトロン型プラズマ源を用いて、ウェハ等の基板をプラズマ処理する基板処理炉(以下、MMT装置と称する)である。このMMT装置は、気密性を確保した反応室たる処理室に基板を設置し、シャワー板を介して反応ガスを処理室に導入し、処理室をある一定の圧力に保ち、放電用電極に高周波電力を供給して電界を形成するとともに磁界をかけてマグネトロン放電を起こす。放電用電極近傍の電子がドリフトしながらサイクロイド運動を続けて周回し、磁界に捕捉されるため電離生成率が高くなり高密度プラズマ生成が可能となる。この高密度プラズマによって反応ガスを励起分解させる。励起分解させた反応ガスにより、基板表面を酸化または窒化等の拡散処理をしたり、または基板表面に薄膜を形成したり、または基板表面をエッチングしたりする等、基板へ各種のプラズマ処理を施すことができる。   Embodiments of the present invention will be described below. The plasma processing furnace constituting the semiconductor manufacturing apparatus according to the embodiment is a substrate processing furnace (hereinafter referred to as an MMT apparatus) that performs plasma processing on a substrate such as a wafer using a modified magnetron type plasma source capable of generating high-density plasma by an electric field and a magnetic field. Called). In this MMT apparatus, a substrate is installed in a processing chamber that is a reaction chamber ensuring airtightness, a reaction gas is introduced into the processing chamber through a shower plate, the processing chamber is maintained at a certain pressure, and a high frequency is applied to a discharge electrode. Electric power is supplied to form an electric field, and a magnetic field is applied to cause magnetron discharge. The electrons in the vicinity of the discharge electrode continue to circulate around the cycloid while drifting and are captured by the magnetic field, so that the ionization generation rate is increased and high-density plasma generation is possible. The reactive gas is excited and decomposed by the high-density plasma. Various plasma treatments are performed on the substrate, such as by performing diffusion treatment such as oxidation or nitridation on the substrate surface, forming a thin film on the substrate surface, or etching the substrate surface by the reaction gas that has been excited and decomposed be able to.

[実施形態1]
本発明の実施形態1の構成を、図1に示す。このMMT装置は、シャワー板3、上蓋4
及びその上方の構造を除き、基本的に図6の装置と同じ構成となっている。
[Embodiment 1]
The configuration of Embodiment 1 of the present invention is shown in FIG. This MMT apparatus includes a shower plate 3 and an upper lid 4
The configuration is basically the same as that of the apparatus shown in FIG.

このMMT装置は、第1の容器と第2の容器とから構成された処理容器10を備える。第2の容器である下容器1と、該下容器1の上に被せられる第1の容器である上容器2とから内部に基板6を処理する反応室(処理室)20が形成されている。上容器2は窒化アルミニウムや酸化アルミニウム又は石英の誘電体でドーム型をして形成されており、下容器1はアルミニウムで形成されている。また後述するヒーター体型の基板保持手段であるサセプタ5を、窒化アルミニウムや、セラミックス又は石英で構成することによって、処理の際に膜中に取り込まれる金属汚染を低減している。   The MMT apparatus includes a processing container 10 composed of a first container and a second container. A reaction chamber (processing chamber) 20 for processing the substrate 6 is formed from the lower container 1 as the second container and the upper container 2 as the first container placed on the lower container 1. . The upper container 2 is formed in a dome shape with a dielectric of aluminum nitride, aluminum oxide or quartz, and the lower container 1 is formed of aluminum. Further, the susceptor 5 which is a heater-type substrate holding means described later is made of aluminum nitride, ceramics or quartz, thereby reducing metal contamination taken into the film during processing.

図1において、上容器2の上部には開口2aが設けられており、この開口2aを被って、光透過性窓を備えた金属製の上蓋4が、Oリング9を介して設置されている。この上蓋4は、開口を有するアルミニウム合金製の上蓋縁部材41と、この開口を気密に被う光透過性窓部材42とから構成されている。   In FIG. 1, an opening 2 a is provided in the upper part of the upper container 2, and a metal upper lid 4 that covers the opening 2 a and is provided with a light transmissive window is installed via an O-ring 9. . The upper lid 4 includes an upper lid edge member 41 made of an aluminum alloy having an opening, and a light transmissive window member 42 that covers the opening in an airtight manner.

図2に拡大して示すように、上蓋縁部材41の上面には、その内側縁に段差部43が形成され、ここに光透過性窓部材41の周縁が、シール部材たるテフロン(登録商標)製シール材44及びOリング45を介して支持されている。なお上蓋縁部材41は電極としても使用でき、高周波電力が供給できる。   As shown in an enlarged view in FIG. 2, a stepped portion 43 is formed on the inner edge of the upper lid edge member 41, and the periphery of the light transmissive window member 41 is a Teflon (registered trademark) serving as a seal member. It is supported via a sealing material 44 and an O-ring 45. The upper lid edge member 41 can also be used as an electrode and can supply high-frequency power.

一方、金属製の上蓋4の下面には、上容器2の上部開口2aを被って、反応ガスを側方よりシャワー状に供給するシャワー板として機能する遮蔽プレート240が配設されている。この遮蔽プレート240は、図3に示すように、円板状の部材から成り、その外周の上下面に、貫通しない一対の切欠き凹所301を有する。上面の切欠き凹所301は、遮蔽プレート240の上面に沿って径方向外方に流れて来たガスを溜めるようになっている。下面の切欠き凹所301は、上面の切欠き凹所301に溜まって、遮蔽プレート240の側面を通って流下して来たガスを開口2aから処理室20内に吹き出すようになっている。   On the other hand, a shielding plate 240 that functions as a shower plate that covers the upper opening 2a of the upper container 2 and supplies the reaction gas in a shower form from the side is disposed on the lower surface of the metal upper lid 4. As shown in FIG. 3, the shielding plate 240 is made of a disk-shaped member, and has a pair of notch recesses 301 that do not penetrate on the upper and lower surfaces of the outer periphery. The notch recess 301 on the upper surface is configured to collect gas that has flowed radially outward along the upper surface of the shielding plate 240. The notch recess 301 on the lower surface is accumulated in the notch recess 301 on the upper surface, and the gas flowing down through the side surface of the shielding plate 240 is blown out into the processing chamber 20 from the opening 2a.

一対の切欠き凹所301は遮蔽プレート240の周方向に等間隔に複数設ける。切欠き形状は、図示例では略半円状をしているが、これに限定されない。ガス吹出口が形成されるガス流路が形成されれば、切欠きの形状は任意である。なお、切欠き凹所301は、図示例では、上面と下面の両方に一対設けているが、下面だけに設けるようにしてもよい。また切欠き凹所301は、上面と下面とで周方向の位置を相互にずらせて設けても良い。   A plurality of notch recesses 301 are provided at equal intervals in the circumferential direction of the shielding plate 240. The notch shape is substantially semicircular in the illustrated example, but is not limited thereto. If the gas flow path in which the gas outlet is formed is formed, the shape of the notch is arbitrary. In the illustrated example, a pair of notch recesses 301 is provided on both the upper surface and the lower surface, but may be provided only on the lower surface. Further, the notch recess 301 may be provided by shifting the circumferential position between the upper surface and the lower surface.

上記において、光透過性窓部材42と遮蔽プレート240(シャワー板)との間にはガス分散室(バッファ室)13が形成され、2種類以上のガスを使用する場合はこのガス分散室13でガスが混合できる。   In the above description, the gas dispersion chamber (buffer chamber) 13 is formed between the light transmissive window member 42 and the shielding plate 240 (shower plate). When two or more kinds of gases are used, the gas dispersion chamber 13 Gas can be mixed.

一方、図1に示すように、プラズマ生成手段17として、処理容器10の外側壁には、マグネトロン放電用の高周波電界を形成して、処理容器10内に給気されるガスを放電させる筒状の放電用電極15が設けられる。この放電用電極15は高周波電源に接続されており、電極に高周波が供給されるようになっている。   On the other hand, as shown in FIG. 1, as the plasma generation means 17, a cylindrical shape that forms a high-frequency electric field for magnetron discharge on the outer wall of the processing vessel 10 and discharges the gas supplied into the processing vessel 10. The discharge electrode 15 is provided. The discharge electrode 15 is connected to a high frequency power source so that a high frequency is supplied to the electrode.

同じく処理容器10の外側壁には筒状に形成された磁界形成手段16が設けられる。この磁界形成手段16は、筒状放電用電極15を囲むように筒状に配設される。これにより、筒状の放電用電極15の軸方向にほぼ平行な成分の磁界を有するような磁力線を、筒状放電用電極15内面に沿って筒軸方向に形成するようになっている。   Similarly, a magnetic field forming means 16 formed in a cylindrical shape is provided on the outer wall of the processing vessel 10. The magnetic field forming means 16 is arranged in a cylindrical shape so as to surround the cylindrical discharge electrode 15. Thereby, magnetic lines of force having a magnetic field having a component substantially parallel to the axial direction of the cylindrical discharge electrode 15 are formed along the inner surface of the cylindrical discharge electrode 15 in the cylindrical axis direction.

上記構成の装置により、チャンバ内真空状態で所定のガスを導入し筒状の電極15に高
周波を印加することで、ドーム状の上容器2内部にプラズマができる。図6に示す如く、下容器1内には基板載置台たるサセプタ5が配置され、この上にシリコンウェハなどの被処理基板6が設置される。上容器2内部に生成されたプラズマは拡散され、被処理基板6上においてほぼ均一なプラズマ密度となり、均一な処理が可能となる。
Plasma can be generated inside the dome-shaped upper container 2 by introducing a predetermined gas in a vacuum state in the chamber and applying a high frequency to the cylindrical electrode 15 by the apparatus having the above configuration. As shown in FIG. 6, a susceptor 5 serving as a substrate mounting table is disposed in the lower container 1, and a substrate 6 to be processed such as a silicon wafer is placed thereon. The plasma generated inside the upper container 2 is diffused to obtain a substantially uniform plasma density on the substrate 6 to be processed, so that uniform processing is possible.

通常、この処理を促進するため、被処理基板6はサセプタ5の下側からヒータ加熱され、500℃程度まで加温することが可能となる。しかし、シリコン酸化膜を厚く形成したいような場合には、より高温に加熱することが有利となる。   Usually, in order to accelerate this process, the substrate 6 to be processed is heated from below the susceptor 5 and can be heated to about 500 ° C. However, when it is desired to form a thick silicon oxide film, it is advantageous to heat to a higher temperature.

そこで、本発明では、上記のように上蓋4に光透過性窓(正確には光透過性窓部材42)を設け、その上方、つまり光透過性窓に対応する反応室外側にランプ加熱装置50を配置し、反応室外から光透過性窓を通して被処理基板6をランプ加熱する構造とする。   Therefore, in the present invention, as described above, the upper lid 4 is provided with the light transmissive window (more precisely, the light transmissive window member 42), and the lamp heating device 50 is provided above, that is, outside the reaction chamber corresponding to the light transmissive window. The substrate to be processed 6 is heated by a lamp from the outside of the reaction chamber through a light transmissive window.

図1の実施形態では、上蓋縁部材41と共に窓枠を構成するステンレス製の取付部材51を介して、光透過性窓部材42の上方に少なくとも1個の加熱ランプから成るランプ加熱装置50を取り付ける。すなわち、取付部材51の下面内縁に段差部52を形成し、上蓋縁部材41の段差部43と共に窓枠を構成し、これに光透過性窓部材42の縁部を嵌め込む。その際、光透過性窓部材42の上面と取付部材51の段差部下面との間には、テフロン(登録商標)製シール材44を設けて、光透過性窓部材42の縁部を押さえ込む。光透過性窓部材42は下面側のOリング45で完全にシールされるため、上面側にOリング45は特には設けない。   In the embodiment of FIG. 1, a lamp heating device 50 composed of at least one heating lamp is mounted above the light transmissive window member 42 through a stainless steel mounting member 51 that constitutes a window frame together with the upper lid edge member 41. . That is, a stepped portion 52 is formed on the inner edge of the lower surface of the mounting member 51, a window frame is formed together with the stepped portion 43 of the upper lid edge member 41, and the edge portion of the light transmissive window member 42 is fitted therein. At that time, a seal material 44 made of Teflon (registered trademark) is provided between the upper surface of the light transmissive window member 42 and the lower surface of the stepped portion of the mounting member 51, and the edge of the light transmissive window member 42 is pressed down. Since the light transmissive window member 42 is completely sealed by the O-ring 45 on the lower surface side, the O-ring 45 is not particularly provided on the upper surface side.

このように構成することで、ランプ加熱装置50をからの加熱光53を、光透過性窓を通して反応室内に導き入れ、被処理基板を光照射して高温に加熱することができた。   With this configuration, the heating light 53 from the lamp heating device 50 was introduced into the reaction chamber through the light transmissive window, and the substrate to be processed was irradiated with light to be heated to a high temperature.

しかし、加熱温度を高くすると、反応室のランプ加熱装置周辺部材、つまり上蓋縁部材41や光透過性窓部材42といったランプ加熱装置周辺部材の温度が上昇し、処理容器10の密閉構造に寄与しているOリング9やOリング45にダメージを与え、そのシール機能の寿命を縮める。   However, when the heating temperature is increased, the temperature of the lamp heating device peripheral members in the reaction chamber, that is, the temperature of the lamp heating device peripheral members such as the upper lid edge member 41 and the light transmissive window member 42 increases, and contributes to the sealing structure of the processing vessel 10. The O-ring 9 and the O-ring 45 are damaged, and the life of the sealing function is shortened.

そこで、図2に示すように、反応室のランプ加熱装置周辺部材の温度上昇を低減させる手段として、取付部材51を熱伝導率が低く耐熱性のある材料であるステンレスで構成する。また、反応室の上蓋における光透過性窓の窓枠部分、つまり上蓋縁部材41内に冷却液の通路(この実施形態では水路)61を形成し、ランプ加熱装置50により加熱されたランプ加熱装置周辺部材(上蓋縁部材41や光透過性窓部材42や遮蔽プレート240等)の熱を、この冷却液に吸収させて、装置外に汲み出す。これらの手段によりランプ加熱装置周辺部材の温度上昇を低減させることができる。また、上蓋縁部材41の材質を、熱伝導率の高いアルミニウムとしているので、より効率よく冷却することができる。   Therefore, as shown in FIG. 2, the mounting member 51 is made of stainless steel, which is a material having low thermal conductivity and heat resistance, as means for reducing the temperature rise of the peripheral member of the lamp heating device in the reaction chamber. In addition, a lamp heating device that is heated by the lamp heating device 50 is formed with a coolant channel (water channel in this embodiment) 61 in the window frame portion of the light transmissive window in the upper lid of the reaction chamber, that is, in the upper lid edge member 41. The heat of the peripheral members (the upper lid edge member 41, the light transmissive window member 42, the shielding plate 240, etc.) is absorbed by this cooling liquid and pumped out of the apparatus. By these means, the temperature rise of the lamp heating device peripheral member can be reduced. Further, since the material of the upper lid edge member 41 is aluminum having high thermal conductivity, it can be cooled more efficiently.

アルミニウムとステンレスは溶接ができない。そこで実際には、上蓋縁部材41の上面にステンレス製のフランジ板60を設け、これにステンレス製の冷却液通路61及びそのキャップ62の部分を形成し、さらにステンレス製の取付部材51と一体の構造として、フランジ板60の部分においてアルミニウム製の上蓋縁部材41にボルト止している。   Aluminum and stainless steel cannot be welded. Therefore, in actuality, a stainless steel flange plate 60 is provided on the upper surface of the upper lid edge member 41, a stainless steel coolant passage 61 and a cap 62 portion are formed on the stainless steel flange plate 60, and the stainless steel mounting member 51 is integrated. As a structure, the upper lid edge member 41 made of aluminum is bolted to the flange plate 60.

上記第一の実施形態では、反応室のランプ加熱装置周辺部材の温度上昇を低減させる手段として、取付部材51を熱伝導率が低く耐熱性のある材料であるステンレスで構成すると共に、ランプ加熱装置周辺部材の一つである上蓋縁部材41に冷却水を流して熱を積極的に汲み出す構造とした。   In the first embodiment, as a means for reducing the temperature rise of the peripheral member of the lamp heating device in the reaction chamber, the mounting member 51 is made of stainless steel having a low thermal conductivity and heat resistance, and the lamp heating device. A structure is adopted in which cooling water is allowed to flow through the upper lid edge member 41, which is one of the peripheral members, to actively pump out heat.

かかる構造を採用した場合の効果は、熱・光が集中する部分は光源たるランプ加熱装置
50の周囲であるため、その局所的な部分に冷却水を流すことで、上蓋縁部材41を中心とする周辺部材の温度上昇を低減させることができる点にある。光源から放射された光(熱)を冷却水へ多く吸収させるために、上蓋縁部材41の材質は熱伝導率の高い材質、例えばアルミニウムを用いる。
The effect of adopting such a structure is that the portion where heat and light are concentrated is around the lamp heating device 50 as a light source, and therefore, by flowing cooling water to the local portion, the upper lid edge member 41 is centered. It is in the point which can reduce the temperature rise of the peripheral member to do. In order to absorb much light (heat) emitted from the light source into the cooling water, the material of the upper lid edge member 41 is a material having high thermal conductivity, for example, aluminum.

[実施形態2]
図4に本発明の第二の実施形態の構成を、また図5にその一部を拡大して示す。この第二の実施形態は、ランプ加熱装置50を上蓋12に取り付ける構造が熱の消散が良好なピン構造(ピン74)と成っている点において、図2の場合と異なっている。
[Embodiment 2]
FIG. 4 shows the configuration of the second embodiment of the present invention, and FIG. This second embodiment is different from the case of FIG. 2 in that the structure for attaching the lamp heating device 50 to the upper lid 12 has a pin structure (pin 74) with good heat dissipation.

すなわち、図5に拡大して示すように、ランプ加熱装置50の取付部材71は、上蓋縁部材41の上面に設けられたステンレス製のフランジ板60の内周縁より、一体的にステンレス製の縦板状の取付部材71を起立させ、その上端にステンレス製の内向フランジ部72を設ける。すなわち、下端に外向フランジ(フランジ板60)を有し、上端に内向フランジ(内向フランジ部72)を有するステンレス製の縦板状の取付部材71を、光透過性窓部材42の外周囲に設ける。一方、ランプ加熱装置50の底面に、ステンレス製の横板状の取付部材73を設け、これにステンレス製のピン74を溶接より固定して垂下しておく。そして、このピン74の下端を取付部材71の上端の内向フランジ部72に溶接により固定する。   That is, as shown in an enlarged view in FIG. 5, the attachment member 71 of the lamp heating device 50 is integrally formed with a vertical stainless steel plate from the inner peripheral edge of the stainless steel flange plate 60 provided on the upper surface of the upper lid edge member 41. A plate-like attachment member 71 is erected, and an inward flange portion 72 made of stainless steel is provided at the upper end thereof. That is, a vertical plate-shaped mounting member 71 made of stainless steel having an outward flange (flange plate 60) at the lower end and an inward flange (inward flange portion 72) at the upper end is provided on the outer periphery of the light transmissive window member 42. . On the other hand, a horizontal plate-like attachment member 73 made of stainless steel is provided on the bottom surface of the lamp heating device 50, and a stainless steel pin 74 is fixed to this by welding and suspended. And the lower end of this pin 74 is fixed to the inward flange part 72 of the upper end of the attachment member 71 by welding.

このように反応室20のランプ加熱装置周辺部材の温度上昇を低減させる手段として、処理容器10の外部に、突起(ピン)の付いた板(取付部材71、取付部材73、ピン74)を介して光源たるランプ加熱装置50を支持する構造を採用し、板の材質として、できるだけ熱伝導率の低い材料で且つ耐熱のある材料であるステンレス鋼を用いる。   As a means for reducing the temperature rise of the peripheral members of the lamp heating device in the reaction chamber 20 as described above, a plate (attachment member 71, attachment member 73, pin 74) with protrusions (pins) is provided outside the processing vessel 10. A structure that supports the lamp heating device 50 that is a light source is adopted, and stainless steel, which is a material having a low thermal conductivity and a heat resistance as much as possible, is used as a material of the plate.

かかる構造を採用した場合、突起(ピン)の付いた板(取付部材71、取付部材73、ピン74)により、熱伝導による表面積を小さくする事ができ、ランプ加熱装置50からの熱を処理容器の上蓋4に直接伝導させないため、反応室20のランプ加熱装置周辺部材(上蓋縁部材41や光透過性窓部材42)の温度上昇を低減させ、処理容器外部の材料(Oリング9、45等)に掛かる熱による負荷を低減することができる。   When such a structure is adopted, the surface (the mounting member 71, the mounting member 73, and the pin 74) with protrusions (pins) can reduce the surface area due to heat conduction, and heat from the lamp heating device 50 can be processed. Since it is not directly conducted to the upper lid 4, the temperature rise of the lamp heating device peripheral members (the upper lid edge member 41 and the light transmissive window member 42) in the reaction chamber 20 is reduced, and materials outside the processing vessel (O-rings 9, 45, etc.) ) Can be reduced due to heat.

上記実施形態では、ランプ加熱およびプラズマ処理を同時に行うようにしたが、プラズマ処理してからランプ加熱する、またはランプ加熱してからプラズマ処理することも可能である。   In the above embodiment, the lamp heating and the plasma treatment are performed at the same time. However, the lamp treatment may be performed after the plasma treatment, or the plasma treatment may be performed after the lamp heating.

上記実施形態では、放電用電極の電界形成に関して、接地電位の上蓋4の中央に光透過性窓部材42を設けているため、全面が金属ではなくなっており、いわば図6において上蓋を省略した構造に近いものとなっている。このため電界の形成状況が従来と変わるが、主に放電用電極と基板載置台(サセプタ)の間、および放電用電極と接地電位の下容器との間に電界が形成されることになる。   In the above embodiment, the light transmission window member 42 is provided at the center of the upper lid 4 of the ground potential for forming the electric field of the discharge electrode, so that the entire surface is not metal, so to speak, a structure in which the upper lid is omitted in FIG. It is close to. For this reason, although the formation state of the electric field is different from the conventional one, an electric field is mainly formed between the discharge electrode and the substrate mounting table (susceptor), and between the discharge electrode and the container under the ground potential.

4 上蓋(金属製)
5 サセプタ
6 被処理基板
9 Oリング
10 処理容器
17 プラズマ生成手段
20 反応室(処理室)
41 上蓋縁部材
42 光透過性窓部材
43 段差部
44 テフロン(登録商標)製シール材
45 Oリング
50 ランプ加熱装置
51 取付部材
52 段差部
60 フランジ板
61 冷却液の通路
62 キャップ
71 取付部材
72 内向フランジ部
73 取付部材
74 ピン
4 Top cover (made of metal)
5 Susceptor 6 Substrate 9 O-ring 10 Processing vessel 17 Plasma generating means 20 Reaction chamber (processing chamber)
41 Upper lid edge member 42 Light transmissive window member 43 Stepped portion 44 Teflon (registered trademark) sealing material 45 O-ring 50 Lamp heating device 51 Mounting member 52 Stepped portion 60 Flange plate 61 Coolant passage 62 Cap 71 Mounting member 72 Inward Flange part 73 Mounting member 74 pin

Claims (2)

少なくとも上面に光透過性窓を設けた反応室と、
前記光透過性窓に対応する反応室外側に配置されたランプ加熱装置と、
前記ランプ加熱装置と前記光透過性窓との間に設けられ、前記光透過性窓の窓枠の上部を構成する耐熱性取付部材と、
前記反応室と前記光透過性窓との間に設けられ、前記窓枠の下部を構成するとともに、前記耐熱性取付部材よりも熱伝導率が高い材質で構成され、冷却流路が設けられた上蓋縁部材と、
前記耐熱性取付部材と前記光透過性窓の間、および、前記上蓋縁部材と前記光透過性窓との間にそれぞれ設けられた窓押さえ込み部と、
前記反応室内の前記ランプ加熱装置に対向させて被処理基板をランプ加熱装置からの光照射を受けるように載置する基板載置台と、
を有する半導体製造装置。
A reaction chamber provided with a light transmissive window on at least the upper surface;
A lamp heating device disposed outside the reaction chamber corresponding to the light transmissive window;
A heat-resistant mounting member provided between the lamp heating device and the light transmissive window, and constituting an upper part of a window frame of the light transmissive window;
Provided between the reaction chamber and the light-transmitting window, constituting the lower part of the window frame, made of a material having higher thermal conductivity than the heat-resistant mounting member, and provided with a cooling channel An upper lid edge member;
A window pressing portion provided between the heat-resistant mounting member and the light-transmitting window and between the upper lid edge member and the light-transmitting window ;
A substrate mounting table for mounting the substrate to be processed so as to receive light irradiation from the lamp heating device so as to face the lamp heating device in the reaction chamber;
A semiconductor manufacturing apparatus.
少なくとも上面に光透過性窓を有する反応室内に設けられた基板載置台上に被処理基板を載置する工程と、Placing a substrate to be processed on a substrate placement table provided in a reaction chamber having a light transmissive window on at least the upper surface;
前記反応室外に設けられ前記基板載置台に対向するランプ加熱装置から前記光透過性窓を介して光を照射することで前記被処理基板を加熱する工程と、Heating the substrate to be processed by irradiating light through the light transmitting window from a lamp heating device provided outside the reaction chamber and facing the substrate mounting table;
前記ランプ加熱装置と前記光透過性窓との間に設けられ、前記光透過性窓の窓枠の上部を構成する耐熱性取付部材と、前記反応室と前記光透過性窓との間に設けられ、前記窓枠の下部を構成するとともに、前記耐熱性取付部材よりも熱伝導率が高い材質で構成され、冷却流路が設けられた上蓋縁部材と、前記耐熱性取付部材と前記光透過性窓との間、および、前記上蓋縁部材と前記光透過性窓との間にそれぞれ設けられた窓押さえ込み部と、により前記光透過性窓を保持しつつ、前記冷却流路内に冷却液を流すことで前記窓枠を冷却する工程と、Provided between the lamp heating device and the light transmissive window, and provided between the reaction chamber and the light transmissive window, a heat resistant mounting member constituting an upper part of the window frame of the light transmissive window. An upper lid edge member which is formed of a material having a lower thermal conductivity than the heat resistant mounting member and provided with a cooling channel, and which constitutes a lower portion of the window frame, the heat resistant mounting member, and the light transmitting member. A cooling liquid in the cooling channel while holding the light-transmitting window by a window pressing portion provided between the transparent window and between the upper lid edge member and the light-transmitting window. Cooling the window frame by flowing
を有する半導体装置の製造方法。A method for manufacturing a semiconductor device comprising:
JP2010097745A 2010-04-21 2010-04-21 Semiconductor manufacturing apparatus and semiconductor device manufacturing method Active JP5235934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097745A JP5235934B2 (en) 2010-04-21 2010-04-21 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097745A JP5235934B2 (en) 2010-04-21 2010-04-21 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004277479A Division JP4563760B2 (en) 2004-09-24 2004-09-24 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2010219542A JP2010219542A (en) 2010-09-30
JP5235934B2 true JP5235934B2 (en) 2013-07-10

Family

ID=42977980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097745A Active JP5235934B2 (en) 2010-04-21 2010-04-21 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5235934B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772117B2 (en) * 2017-08-23 2020-10-21 株式会社日立ハイテク Etching method and etching equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154616A (en) * 1985-12-26 1987-07-09 Matsushita Electric Ind Co Ltd Vapor growth apparatus
US5085887A (en) * 1990-09-07 1992-02-04 Applied Materials, Inc. Wafer reactor vessel window with pressure-thermal compensation
JP3130009B2 (en) * 1998-10-12 2001-01-31 東京エレクトロン株式会社 Single wafer heat treatment equipment

Also Published As

Publication number Publication date
JP2010219542A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
KR101187544B1 (en) Mounting table structure and plasma film forming apparatus
US7554103B2 (en) Increased tool utilization/reduction in MWBC for UV curing chamber
JP5320171B2 (en) Substrate processing equipment
JP2017208562A (en) Method and device for preventing erosion of esc adhesive
KR100574116B1 (en) Single-substrate-treating apparatus for semiconductor processing system
KR20120080544A (en) Focus ring and substrate processing apparatus having same
KR20120054636A (en) Heat treatment apparatus
JP2001196354A (en) Plasma treatment device
JP2006324023A (en) Plasma treatment device
JP2008171996A (en) Conveyance tray and vacuum treatment apparatus using the same
TW201101403A (en) Substrate processing device and the manufacturing method of semiconductor device
KR102190954B1 (en) High temperature faceplate with thermal choke and cooling
JP6068849B2 (en) Upper electrode and plasma processing apparatus
JP2014036142A (en) Cleaning method of microwave processor
JP4563760B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP5235934B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2004014752A (en) Electrostatic chuck, work piece placement table, and plasma treating apparatus
KR102296914B1 (en) Heated ceramic faceplate
KR102597416B1 (en) vacuum processing device
KR102096985B1 (en) Substrate processing apparatus
JP5465828B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2011091389A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP4861208B2 (en) Substrate mounting table and substrate processing apparatus
JP4995579B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
CN111386599B (en) Vacuum processing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250