JP5457193B2 - ガス流を処理する方法 - Google Patents

ガス流を処理する方法 Download PDF

Info

Publication number
JP5457193B2
JP5457193B2 JP2009540872A JP2009540872A JP5457193B2 JP 5457193 B2 JP5457193 B2 JP 5457193B2 JP 2009540872 A JP2009540872 A JP 2009540872A JP 2009540872 A JP2009540872 A JP 2009540872A JP 5457193 B2 JP5457193 B2 JP 5457193B2
Authority
JP
Japan
Prior art keywords
liquid
acidity
unit
closed loop
scrubbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009540872A
Other languages
English (en)
Other versions
JP2010512989A (ja
Inventor
フィリップ チャンドラー
クリストファー ピーター ジョーンズ
パトリック フレッチャー
クリストファー ジャーメイン
Original Assignee
エドワーズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ リミテッド filed Critical エドワーズ リミテッド
Publication of JP2010512989A publication Critical patent/JP2010512989A/ja
Application granted granted Critical
Publication of JP5457193B2 publication Critical patent/JP5457193B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Lasers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Particles Using Liquids (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、ガス流を処理する方法及び装置に関する。
化学気相成長(CVD)法は、蒸着チャンバ内に配置された基板又はウェーハの表面に薄膜又は層を被着又は蒸着させるために用いられる。この方法は、多くの場合、キャリヤガスを用いて、1種類又は2種類以上の反応性ガスをチャンバに供給し、そして基板表面に、この基板表面のところで化学反応が生じるようにする条件下で供給することによって行われる。例えば、TEOS並びに酸素及びオゾンのうちの一方を、基板上への酸化珪素層の形成のために蒸着チャンバに供給してもよく、シラン及びアンモニアを窒化珪素層の形成のために供給してもよい。多結晶シリコン又はポリシリコンを熱によるシラン又はクロロシランの分解によって基板上に被着させる。
例えば半導体デバイスの電極並びにソース及びドレイン領域の形成中、蒸着された層の領域の選択的エッチングを行うために、ガスはエッチングチャンバにも供給される。エッチングガスとしては、ペルフッ化(PFC)ガス、例えばCF4、C26、C38及びC48が挙げられる。ただし、他の適当なエッチング剤としては、フッ素、NF3、SF6及びヒドロフルオロカーボンガス、例えばCHF3、C2HF5及びCH22が挙げられる。かかるガスは一般に、ポリシリコン層上に形成された窒化物又は酸化物層の領域に開口部を形成するために用いられ、この開口部は、フォトレジスト層によって露出される。一般に、アルゴンも又、エッチングガスと共にチャンバに運ばれてプロセスがエッチングチャンバ内で実施されるのを促進するガスを生じさせる。
かかるエッチングプロセス中、典型的には、真空ポンプによりエッチングチャンバから引き出された排ガス中には、エッチングプロセスからの副生成物、例えばSiF4及びCOF2並びに不活性ガス、例えばArと共に、エッチングチャンバに供給されたガスの残留量が含まれる。追加の窒素が真空ポンプのためのパージガスとして排ガスに追加される場合が多い。上述のペルフッ化ガスは、地球温暖化ガスであり、したがって、排ガスを大気中に逃がす前に、PFCガスを水溶性フッ化水素に変換すると共にSiF4をSiO2に変換するために除害装置、例えば熱処理ユニット(TPU)又はプラズマ除害装置が提供される。次に、ガス流をスクラビングユニットに運び、ここで、HFは、スクラビングユニットの供給された水に溶かされる。
本出願人の同時係属中の米国特許出願公開第2006/0101995(A1)号明細書は、スクラビングユニット内で生じた酸性HF溶液をその後に処理する装置を記載している。なお、この特許文献を参照により引用し、その記載内容を本明細書の一部とする。HF溶液を好ましくは電気化学セルの形態をした酸除去ユニットに送ってHFを酸性溶液から除去する。酸除去ユニットは、水をスクラビングユニットに戻し、HFを濃厚HF溶液の状態で排出する。次に、カルシウム塩を用いてこの溶液を処理してCaF2を沈澱させるのが良く、このCaF2を次に使用するために押し固めて乾燥させるのが良い。
スクラビングユニットに流入するガス流中に同伴された固体粒子、例えばSiO2粒子をスクラビングユニット中を通る水に移送する。SiO2粒子のうちの何割か、例えば、約30〜60ppmが、スクラビングユニットを通過している水の中に溶け、残部は、水中に固体粒子として残る。これら粒子が電気化学セル及び(又は)スクラビングユニット内に蓄積するのを阻止するため、これら粒子をスクラビングユニットから排出されたHF溶液から除去するために1つ又は2つ以上のフィルタカートリッジ又はこれに類似した装置がセルから見て上流側に設けられる。
米国特許出願公開第2006/0101995(A1)号明細書
プロセスチャンバ内で行われるプロセスに応じて、ガス流中に同伴される固体粒子の量は、様々な場合があり、典型的には、70〜200ppmである。本発明者は、固体粒子の量が比較的高い場合、フィルタカートリッジは、短時間で充填状態になる場合のあることを発見した。例えば、各々が約4〜5kgの容量を備えた4つのフィルタカートリッジは、ガス流が200ppmのSiO2粒子を含んでいる場合、1週間以内に充填状態になる場合がある。各カートリッジを交換する費用は、現在約200米国ドルなので、これは、処理装置の所有費を著しく増大させる場合がある。
本発明は、酸及び固体粒子を含有したガス流を処理する方法であって、水性スクラビング液(リカー)を、この液体の酸性度を減少させる酸除去ユニットを有する本質的に閉じられたループ中に循環させるステップと、循環中の液体の少なくとも一部分をガススクラビングユニットに供給するステップと、ガス流をスクラビングユニットに供給するステップと、スクラビングユニットに供給されるべき液体の酸性度をモニタするステップと、モニタした酸性度に応じて液体の酸性度の減少度を制御して循環中の液体の少なくとも一部分中のガス流の固体成分の溶解度を制御するステップとを有することを特徴とする方法を提供する。
本発明は又、酸及び固体粒子を含有したガス流を処理する方法であって、水性スクラビング液を、この液体の酸性度を減少させる酸除去ユニットを有する本質的に閉じられたループ中に循環させるステップと、循環中の液体の一部を閉ループからガススクラビングユニットにそらすステップと、ガス流をそらされた液体中に溶かすためにスクラビングユニットに供給するステップと、そらされた液体を閉ループに戻すステップと、閉ループ内の所与の場所における循環中の液体の酸性度をモニタするステップと、モニタした酸性度に応じて液体の酸性度の減少度を制御してそらされた液体中のガス流の固体成分の溶解度を制御するステップとを有することを特徴とする方法を提供する。
スクラビングユニットに流入するスクラビング液の酸性度及び特にガス流中に含まれている酸の結果として生じる酸性度を制御することにより、スクラビング液中の固体粒子の溶解度を著しく増大させることができる。酸性度が高ければ高いほど、粒子がスクラビング液中で溶解可能な度合いがそれだけ一層高くなる。例えば、HFを含むガス流中の珪化物粒子、例えばSiO2粒子は、フッ化水素酸溶液中で溶解してフルオロ珪酸塩が生じる場合がある。次に、このフルオロ珪酸塩を酸のうちの何割かと一緒に、電気化学セルによってスクラビング液から除去するのが良い。その結果、固体粒子をスクラビング液から除去するために閉ループ中に設けられたフィルタカートリッジ又は他の装置の寿命を著しく延ばすことができる。本発明の利点は、任意の酸について実現できるが、HFは、珪酸よりもむしろフルオロ珪酸塩の生成によりSiO2の溶解度に最も大きな影響を及ぼす。
そらされた液体の酸性度は、好ましくは、所定値以上に維持される。一例を挙げると、ガス流中の酸がHFである場合、そらされた液体中のHFの濃度は、400ppm以上に維持されるのが良く、その結果、約200ppmのSiO2の濃度を液体中に実質的に完全に溶解させることができる。
循環中の液体の酸性度を任意の都合の良い場所でモニタすることができる。例えば、酸性度を循環中の液体の一部がスクラビングユニットにそらされる場所から見てすぐ上流側又はすぐ下流側でモニタすることができる。そらされた液体は、閉ループ内に配置された貯蔵容器に戻され、そらされた液体は、貯蔵容器内で、電気化学ユニットから排出された液体と混ざり合う。この場合、貯蔵容器内に蓄えられている液体の酸性度をモニタすることができる。貯蔵容器は、水が閉ループに流入するようにする流体入口ポートを備えるのが良い。
液体の導電率を測定することにより液体の酸性度をモニタすることができる。ガス流の組成についての知識によって、液体の導電率への酸性ガスの寄与の度合いを推定することができ、したがって液体の導電率は、液体の酸性度の指標を提供することができる。変形例として、オンライン型酸性度分析器を用いて溶液の酸性度のより正確な測定値を得ることができ、このオンライン型酸性度分析器は、ガス流中に含まれる酸がHF又はHCLの場合、好ましくはハロゲン化物分析器である。
好ましい実施形態では、電気化学ユニットは、電気化学的再生型イオン交換ユニットから成る。電気化学ユニットは、液体からの選択されたイオンを吸収するイオン交換物質を有し、電界をイオン交換物質にかけて吸収されたイオンがイオン交換物質を通って別の溶液中に移動するようにし、磁界の強度は、モニタされた濃度に応じて調節される。濃厚溶液を電気化学ユニット中に循環させるのが良い。定期的に、濃厚溶液の一部を反応ユニットに送り、この反応ユニット内において、溶液中のイオン種、例えば酸及びフルオロ珪酸塩を不溶性にする。
イオン交換物質は、関心のあるイオンを捕捉するのに役立ち、このイオン交換物質は、好ましくは、粒子又はビーズの形態をしたイオン交換樹脂又は透水性媒体、イオン吸着媒体及びイオン伝導媒体を提供することができる他の物質であり、それにより濃厚溶液中にかけられた磁界によってイオンを移動させることができる。樹脂の粒子又はビーズは、イオンを含む溶液に対して透過性であるようばらばらであると共に2つのメンブレンと入口及び出口シンタ(sinter)との間を定位置に保持されるのが良い。変形例として、粒子又はビーズは、結合剤で互いに結合された凝集形態であっても良い。例えばイオン交換物質の厚さを横切って印加される電位は、イオン交換物質を通って捕捉状態のイオンを電位が印加された一対の電極のうちの一方又は他方に向かって駆動するのに役立つ。電極相互間の電位の大きさ又は電流の大きさを調節することにより、捕捉状態のイオンがイオン交換物質を通って濃厚溶液中に移動する量を調節することができ、それにより、スクラビング液からのイオンの吸着量及びかくして電気化学ユニットから閉ループ中に排出される溶液の酸性度が制御される。
本発明の方法は、多種多様な酸、例えばHF、HCL、HNO3、H2SO4、H3BO3及びH3PO4のうちの少なくとも1つを含むガス流の処理に利用可能である。
本発明は又、酸及び固体粒子を含有したガス流を処理する装置であって、ガススクラビングユニットと、本質的に閉じられたループの循環システムとを有し、閉ループ循環システムは、水性スクラビング液を閉ループ周りに循環させるポンプ、循環中の液体の酸性度を減少させる電気化学ユニット、及び循環中の液体の一部を閉ループからガススクラビングユニットにそらす出口ポートを有し、ガススクラビングユニットは、そらされた液体を受け入れる第1の入口、そらされた液体中に溶かすようガス流を受け取る第2の入口、及びそらされた液体をスクラビングユニットから排出させる出口を有し、閉ループは、スクラビングユニットから排出された液体を受け入れる入口ポートを有し、ガス流処理装置は、閉ループ内の所与の場所における液体の酸性度をモニタする装置と、モニタした濃度に応じて液体の酸性度の減少度を制御してそらされた液体中のガス流の固体成分の溶解度を制御するコントローラとを更に有することを特徴とする装置を提供する。
本発明の方法の観点に関連して上述した特徴は、装置の観点に同様に利用でき、又その逆の関係が成り立つ。
次に、添付の図面を参照して本発明の好ましい特徴について説明する。
ガス流を処理する装置を概略的に示す図である。 図1の装置に用いられるのに適した酸除去ユニットを概略的に示す図である。
図1は、半導体製造設備のプロセスチャンバから排出されたガス流を処理する装置を示している。この装置は、導管14からガス流を受け入れるガス入口ポート12を備えた少なくとも1つのスクラビングユニット10を有している。実際には、この装置は、好ましくは、ガス流を受け入れるために並列に配置された1つ又は5つ以上のスクラビングユニット10を有し、したがって、1つのスクラビングユニット10が何らかの理由でオフライン状態にあるときでも、ガス流は引き続き他のスクラビングユニット10によって受け入れられる。しかしながら、分かりやすくする目的でのみ、図1は、2つのスクラビングユニット10を示している。
この例では、ガス流は、プラズマエッチング反応器のプロセスチャンバから排出され、このプロセスチャンバには、エッチング剤(エッチング液)及び酸素を含むプロセスガスがプロセスチャンバ内で行われているプロセスのための反応体として供給される。適当なエッチング剤の例としては、一般式がCxyzのペルフッ化化合物が挙げられ、この場合、x≧1、y≧1及びz≧0であり、かかる化合物は、例えば、CF4、C26、C38、C48、CHF3、C2HF5及びCH22である。他の適当なエッチング剤としては、NF3及びSF6が挙げられる。アルゴンも又、プロセスチャンバ内で行われているプロセスのための促進ガスとして供給される場合がある。
エッチングプロセス中、反応体のほんの一部分が消費され、その結果、プロセスチャンバから排出されるガス流は、反応体、チャンバに供給された非反応性貴ガス及びエッチングプロセスからの副生成物の混合物を含むようになる。例えば、ガス流は、Cxyz、O2、Ar、SiF4及びCOF2の混合物を含む場合がある。上述のペルフッ化ガスは、水不溶性であり、したがって、ガス流をスクラビングユニット10まで運ぶ前に、このペルフッ化ガスを除去装置(図示せず)、例えば熱処理ユニット(TPU)又はプラズマ除去装置に通してペルフッ化ガスを水溶性酸HFに変換する。ガス流中のSiF4は、SiO2に変換され、このSiO2は、固体粒子の形態でガス流中に同伴されるようになる。変形例として、スクラビングユニット10をTPUと湿式スクラバの組み合わせによって提供しても良く、したがって、別個の除去装置を不要にすることができる。
水性スクラビング液(リカー)(以下、単に「液体」という場合がある)が、供給導管18によって各スクラビングユニット10の流体入口ポート16に供給される。図1に示されているように、装置は、スクラビング液がポンプ22によって連続的に循環する本質的に閉じられたループ20を有する。閉ループ20は、循環中の液体の一部を供給導管18中にそらすことができるようにする出口ポート24及びそらされた水性スクラビング液を次に、各スクラビングユニット10の流体出口ポート30に連結された戻し導管28によって閉ループに戻すようにする入口ポート26を有している。この例では、循環中のスクラビング液は、供給導管18と対応の流体入口ポート16との間に設けられた供給弁32の作動によって供給導管18中にそらされる。
閉ループ20は、3つの流体入口ポートを備えた流体貯蔵容器又はタンク34を有している。第1の流体入口ポート36は、当初、閉ループ20中を循環するスクラビング液を構成するために水供給導管37から水を受け入れる。第2の流体入口ポート38は、閉ループ20から循環中の液体を受け入れる。閉ループ20の入口ポート26は、第3の流体入口ポートとなる。タンク34は、流体出口ポート40を更に有し、液体は、この流体出口ポートを通って閉ループ20に戻される。
タンク34から閉ループに流入した液体は、液体を閉ループ20内で循環させるポンプ22、粒子を液体から除去する1つ又は2つ以上のフィルタユニット42、熱交換器44、流体分析器46及び液体の酸性度を減少させる酸除去ユニット48を通って流れ、その後タンク34に戻される。
流体分析器46は、出口ポート24を通って供給導管18にそらされた循環中の液体の酸性度をモニタする。この例では、流体分析器46は、出口ポート24から見てすぐ下流側に配置され、その結果、流体分析器46を通過する液体の酸性度は、出口ポート24を通ってそらされる液体の酸性度と同一であるようになっている。変形例として、流体分析器46は、出口ポート24から見てすぐ上流側に配置されても良く、その結果、この場合も又、流体分析器46を通過した液体の酸性度は、出口ポート24を通ってそらされた液体の酸性度と同一であるようになっている。この例では、オンライン型ハロゲン化物分析器が、流体分析器46となっている。流体分析器46は、これを通った液体の酸性度を表す信号50を出力し、この信号50は、コントローラ52によって受け取られる。
流体分析器46を用いて循環中の液体の酸性度をモニタする手段の代替手段として、タンク34内に貯蔵されている液体の導電率及びかくしてポンプ22によりタンクの流体出口40から送り出された液体の導電率をモニタするための導電率センサ54をタンク34内に設けても良い。センサ54は、タンク34内の液体の導電率を表す信号56をコントローラ56に出力することができる。液体の導電率は、スクラビングユニット10に流入したガス流の組成及びかくして循環中の液体の組成が分かっている場合、液体の酸性度の指標を提供することができる。コントローラ52は、信号50又は56に含まれている情報を用いて制御信号58を出力し、この制御信号は、酸除去ユニット48に送られて循環中の液体の酸性度の減少度を制御する。
作用を説明すると、水供給導管37に設けられている弁60を先ず最初に開いて所与の量、例えば160リットルの水をタンク34内に供給する。当初、供給弁32は、閉じられている。タンク34に所要量の水をいったん供給すると、弁60は、閉じられ、ポンプ22は、水を閉ループ20内で循環させるよう作動される。それ故、当初閉ループ20中を循環しているスクラビング液は、水である。
次に、供給弁32を開いて循環中のスクラビング液の一部、例えば約10リットル分が出口ポート24を通って供給導管18内にそらされ、そして各スクラビングユニット10内に送り込まれるようにする。各供給弁32は、所要量のスクラビング液がその対応のスクラビングユニット10に流入すると、閉じられる。例えば、第1のレベルスイッチ(図示せず)をスクラビングユニット10内に設けるのが良く、この第1のレベルスイッチは、スクラビングユニット10内のスクラビング液のレベル(液位)がこのスイッチに達すると、作動信号を供給弁32に出力するようになっており、これに応答して、供給弁32が閉じる。
除去装置(図示せず)から排出されたガス流は、ガス導管14を通って運ばれ、ガス入口ポート12を通ってスクラビングユニット10に入る。ガスは、スクラビングユニット10内のスクラビング液に接触し、酸性HFは、スクラビング液中に溶ける。当初、スクラビング液の酸性度が比較的低いので、ガス流中のSiO2粒子は、スクラビング液に移される。非溶解状態のガスは、ガス出口ポート62を通ってスクラビングユニット10から大気中に放出される。
スクラビングユニット10内のスクラビング液は、定期的に閉ループ20に送り戻され、閉ループ20からの新鮮なスクラビング液で置き換えられる。図1に示されているように、戻し弁64が、各スクラビングユニット10からのスクラビング液の排出を制御するために設けられている。各戻し弁64の開放は、タイマ(図示せず)を用いて制御でき、その結果、各戻し弁64は、定期的に、例えば100〜700秒の頻度で開かれるようになっている。戻し弁64が開かれると、スクラビング液(今や比較的酸性のスクラビング液)は、戻し導管28に入り、入口ポート26を通ってタンク34に戻される。戻し弁64は、所要量の、例えば約10リットルのスクラビング液がスクラビングユニット10から排出されると、閉じられる。例えば、第2のレベルスイッチ(図示せず)を第1のレベルスイッチの下でスクラビングユニット10内に配置するのが良く、この第2のレベルスイッチは、スクラビングユニット10内の液体のレベルがこの第2のレベルスイッチまで下がると、作動信号を戻し弁64に出力するようになっており、この作動信号に応答して、戻し弁64が閉じる。戻し弁64が閉じると、そのスクラビングユニット32と関連した供給弁32が開かれ、その結果、新鮮なスクラビング液が閉ループ20からスクラビングユニット10内にそらされ、ついには、スクラビングユニット10内の液体のレベルがこの第1のレベルスイッチに達し、次に、供給弁32が閉じる。
スクラビングユニット10の供給弁32の動作と戻し弁64の動作を同期させて、任意所与の時点で、1つのスクラビングユニット10の供給弁32が開き、別のスクラビングユニット10の戻し弁64が開くようにするのが良い。このように弁32,64が作動された状態で、スクラビング液は出口ポート24を通って連続的にそらされると共にスクラビング液は、入口ポート26を通って連続的に戻されるようになる。変形例として、スクラビング液がスクラビングユニット10にそらされていない又はこのスクラビングユニットから戻されていない期間が生じる場合がある。
スクラビングユニット10から排出された比較的酸性のスクラビング液は、タンク34の入口ポート26を通って閉ループ20に流入し、この中で、このスクラビング液は、第2の流体入口ポート38を通ってタンク34に流入した循環中の液体と混ざり合う。その結果、タンク34の流体出口ポート40を通って閉ループに流入した液体の酸性度は、液体がスクラビングユニット10から排出されるにつれて次第に増大する。
循環中の液体の酸性度は、流体分析器46によってモニタされ、この流体分析器は、閉ループ20の出口ポート24のところの液体の酸性度を表す信号50をコントローラ52に送る。受け取った信号に応答して、コントローラ52は、適当な制御信号58を酸除去ユニット48に出すことにより、酸除去ユニット48による循環中の液体の酸性度の減少度を制御する。酸除去ユニット48のこの制御の目的は、スクラビングユニット10内に入っている液体中の固体SiO2粒子、即ち、スクラビングユニット10に流入するガス流中に同伴されている固体SiO2粒子の溶解度を制御することにある。
上述したように、スクラビングユニット10内のスクラビング液の酸性度は、当初、比較的低く、したがって、液体中におけるSiO2粒子の溶解度も又、比較的低いであろう。その結果、スクラビングユニット10から排出されるスクラビング液の固体含有率は、当初、比較的高いであろう。これら固体は、閉ループ20に入り、フィルタユニット42によって捕捉されるようになる。この段階では、酸除去ユニット48による循環中の液体の酸性度の減少率は、比較的低いであろう。
循環中の液体の酸性度が、スクラビングユニットから排出された比較的酸性のスクラビング液の閉ループ20内への流入に起因して増大するので、スクラビングユニット10にそらされる液体中のSiO2粒子の溶解度も又、増大するであろう。その結果、スクラビングユニット10から次に排出されるスクラビング液は、次第に増加する量の溶解状態のフルオロ珪酸塩を含むと共に次第に減少する量のSiO2粒子を含むであろう。これにより、フィルタユニット42の寿命を著しく延ばすことができる。
循環中の液体の酸性度が増大し続けると、酸除去ユニット48による循環中の液体の酸性度の減少率は、流体分析器を通過した液体の酸性度が比較的安定したレベルで選択された酸性度に又はこれを超えて維持される定常状態に達するまで調節される。この酸性度は、スクラビングユニット10内における液体中のSiO2粒子の溶解度が比較的高くなると共に酸性度が装置の有効寿命を著しく減少させるほど高すぎないように選択される。例えば、ガス流中のSiO2の濃度が約200ppmである場合、そらされた液体中のHFの濃度は、好ましくは、400ppm以上に維持される。
次に、装置に用いられる適当な酸除去ユニット48の一例の構造及び作用について図2を参照して説明する。適当な酸除去ユニットの他の例は、本出願人の同時係属中の米国特許出願公開第2006/0101995(A1)号明細書に記載されており、この特許文献を参照により引用し、その記載内容を本明細書の一部とする。
酸除去ユニット48は、電気化学ユニットの形態をしており、この例では、電気化学的再生型イオン交換ユニットである。ユニット48は、ユニット48の互いに反対側に設けられたアノード80とカソード82を有している。これら電極80,82は、ユニット48の2つの反対側の電極チャネル84内に送り込まれる電解液中に浸されている。図1を参照すると、電解液は、電解液閉ループ86から電極チャネル84内に送り込まれ、この電解液閉ループは、電解液貯蔵タンク88及び電解液を電解液閉ループ86中を連続的に循環させる電解液ポンプ90を有している。電解液は、カソード82の腐食を阻止するために0.25%リン酸を含む水溶液から成るのが良い。
ユニット84は、電極チャネル84相互間に、イオン除去チャネル92と濃縮物チャネル94を交互に配置して形成されたアレイを有している。イオン除去チャネル92は、スクラビング液を閉ループ20から受け取ったりスクラビング液を、酸性度を減少させた状態で閉ループ20に戻したりするよう内部がマニホルドになっている。イオン除去チャネル92の各々は、イオン交換物質96を有し、かかるイオン交換物質は、イオン交換樹脂ビーズの密な混合物から成るのが良い。この例では、イオン交換樹脂のビーズは、イオン除去チャネル92を通過したスクラビング液中に含まれている選択された陰イオンを引き付ける陰イオン交換部位を有し、これら陰イオンは、この例では、フッ化物イオン及びフルオロ珪酸イオンを含む。しかしながら、陰イオンビーズと陽イオンビーズの混合物を設けても良い。
イオン除去物質96がカソード82の最も近くに位置していることを除き、イオン交換物質96は、一方の側が陰イオン透過性メンブレン98によって画定され、他方の側が陽イオン透過性メンブレン100によって画定されている。これらメンブレン98,100は、比較的薄く、選択されたイオンが1つのイオン交換部位から別のイオン交換部位に移動することによりメンブレンを通過することができるが、水及び他の非イオン性分子がメンブレンを通過するのを阻止するように動作する。カソード82の最も近くに位置するイオン除去物質96は、一方の側が陰イオン透過性メンブレン98により画定されると共に他方の側が双極透過性メンブレン101によって画定されている。
濃縮物チャネル94は、同様に、内部がマニホルドになっており、これら濃縮物チャネルは、濃縮物閉ループ102から水性濃厚溶液を受け取り、この濃縮物閉ループは、濃縮物貯蔵容器104及び濃厚溶液を濃縮物閉ループ102内で連続的に循環させる濃縮物ポンプ106を有している。イオン除去チャネル92を通過したスクラビング液の圧力は、濃縮物チャネル94を通過した濃厚溶液の圧力よりも高く、その結果、濃縮物チャネル94中への、更に電解液チャネル84中へのスクラビング液の比較的僅かな漏れが生じる場合がある。これは、濃厚溶液及び電解液がメンブレン98,100を通過してスクラビング液中に入るのを阻止するのに役立つ。浸透現象も又、幾分かの水がスクラビング液から濃厚溶液中に移るようにする傾向がある。
使用にあたり、イオン交換チャネル92内のイオン交換物質96は、ユニット48に流入したスクラビング液中に含まれているフッ化物イオン及びフルオロ珪酸イオンを吸収する。コントローラ58は、電極80,82相互間に電位差を加えて各イオン除去チャネル92内のイオン交換物質96の厚さを横切って電界を発生させる。電界の影響下で、水は、解離されて水素イオン及び水酸化物イオンを生じ、かかる水素イオンは、加えられた電界によってチャネルのアレイを通ってカソード82に向かって駆動され、かかる水酸化物イオンは、加えた電界によりチャネルのアレイを通ってカソード80に向かって駆動される。
これら生じたイオンは、抵抗の最も低い経路に沿ってイオン交換物質を通って移動し、生じたイオンは、スクラビング液から吸収されたイオンを押し退け又は移動する。換言すると、生じた水酸化物イオンは、各イオン除去チャネル92内において、吸収されたフッ化物イオン及びフルオロ珪酸イオンを押し退けてイオン交換物質を再生させる。押し退けられた陰イオンは、イオン交換物質96の厚さを通って移動し、陽イオン透過性メンブレン98を通って濃縮物チャネル94中に入る。これら陰イオンは、濃縮物チャネル94を画定している陽イオン透過性メンブレン100によりアレイを通ってそれ以上移動するのが阻止され、したがって、濃縮物チャネル94を通過している濃厚溶液に含まれる状態でユニット48から運び出される。
陰イオンがイオン除去チャネル92から濃縮物チャネル94中に移動する速度及びしたがってスクラビング液の酸性度がユニット48によって減少する程度は、とりわけ、陰イオンがイオン交換物質96を通って移動するようにする電気化学的駆動力で決まる。それ故、コントローラ58は、ユニット48を通過する溶液の酸性度の減少度を制御するために、電極80,82相互間で生じる電界の大きさを調節することができる。
酸除去ユニット48が循環中のスクラビング液から酸を除去するよう動作するので、濃縮物タンク104内に入っている濃厚溶液の酸性度は、次第に増大するであろう。濃厚溶液の酸性度を制御するため、所与の量の濃厚溶液が、定期的に閉ループ102から排出される。図1を参照すると、スクラビング液が循環する閉ループ20は、分析器46と酸除去ユニット48との間に配置された第2の出口ポート110を有している。溶液供給導管112が、第2の出口ポート110と濃縮物タンク104の入口ポート114との間に延びている。濃縮物閉ループ102は、濃縮物タンク104と濃縮物ポンプ106との間に設けられた出口ポート116を有している。濃縮物排出導管118が、出口ポート116から延びており、この導管は、排出弁120及び排出ポンプ122を有している。排出弁120の作動は、濃縮物タンク104に設けられた高レベルスイッチ及び低レベルスイッチによって制御され、濃縮物タンク104中の濃厚溶液のレベルは、通常、高レベルスイッチと低レベルスイッチとの間に維持される。
スクラビングユニット10から排出されたスクラビング液の全量が或る特定の値、例えば100リットルに達すると、溶液供給導管112内に設けられている弁124は開かれ、その結果、スクラビング液は、閉ループ20から濃縮物タンク104中にそらされるようになる。濃縮物タンク104中の濃厚領域のレベルがタンク104内の高レベルスイッチに達すると、弁124が閉じられ、排出弁120が開かれて濃厚溶液が濃縮物閉ループ104から排出導管120を通って送り出されるようになる。濃縮物タンク104内の濃厚溶液のレベルが低レベルスイッチまで下がると、例えば、約10リットルの濃厚溶液が排出導管118を通って排出された後、弁120が閉じられる。排出された濃厚溶液を次の処理のために装置から除去するのが良い。
濃厚溶液をこのように定期的に排出することにより、閉ループ20中を循環するスクラビング液の量が次第に減少することになる。これを考慮して、タンク34も又、高レベルスイッチ及び低レベルスイッチを備えている。タンク34内のスクラビング液のレベルが低レベルスイッチまで低下すると、弁60は、第1の流体入口ポート36を通って水をタンク内に供給することができるよう開かれる。弁60は、タンク34内のスクラビング液のレベルが高レベルスイッチに達すると、閉じられる。

Claims (24)

  1. 酸及び固体粒子を含有したガス流を処理する方法であって、
    水性スクラビング液を、該液体の酸性度を減少させる酸除去ユニットを有する本質的に閉じられたループ中に循環させるステップと、
    前記循環中の液体の少なくとも一部分をガススクラビングユニットに供給するステップと、
    前記ガス流を前記スクラビングユニットに供給するステップと、
    前記スクラビングユニットに供給されるべき前記液体の酸性度をモニタするステップと、
    モニタした酸性度に応じて前記液体の酸性度の減少度を制御して、前記循環中の液体の前記少なくとも一部分中の前記ガス流の固体成分の溶解度を制御するステップとを有する、方法。
  2. 前記循環中の液体の前記少なくとも一部分は、前記閉ループからそらされ、次に前記閉ループに戻される、請求項1記載の方法。
  3. 前記酸除去ユニットは、電気化学ユニットである、請求項1又は2記載の方法。
  4. 酸及び固体粒子を含有したガス流を処理する方法であって、
    水性スクラビング液を、該液体の酸性度を減少させる酸除去ユニットを有する本質的に閉じられたループ中に循環させるステップと、
    前記循環中の液体の一部を前記閉ループからガススクラビングユニットにそらすステップと、
    前記ガス流を前記そらされた液体中に溶かすために前記スクラビングユニットに供給するステップと、
    前記そらされた液体を前記閉ループに戻すステップと、
    前記閉ループ内の所与の場所における前記循環中の液体の酸性度をモニタするステップと、
    モニタした酸性度に応じて前記液体の酸性度の減少度を制御して、前記そらされた液体中の前記ガス流の固体成分の溶解度を制御するステップとを有する、方法。
  5. 前記そらされた液体の酸性度は、所定値以上に維持される、請求項4記載の方法。
  6. 前記酸は、HFであり、前記そらされた液体中のHFの濃度は、400ppm以上に維持される、請求項5記載の方法。
  7. 前記液体の酸性度は、前記そらされる場所を通過してから前記酸除去ユニットに到達するまでの間にモニタされる、請求項4〜6のうちいずれか一に記載の方法。
  8. 前記そらされた液体は、前記閉ループ内に配置された貯蔵容器に戻され、前記そらされた液体は、前記貯蔵容器内で、前記酸除去ユニットから排出された液体と混ざり合う、請求項4〜7のうちいずれか一に記載の方法。
  9. 前記電気化学ユニットは、電気化学的再生型イオン交換ユニットで構成される、請求項3〜8のうちいずれか一に記載の方法。
  10. 前記電気化学ユニットは、前記液体から選択されたイオンを吸収するイオン交換物質を有し、電界を前記イオン交換物質にかけて前記吸収されたイオンが前記イオン交換物質を通って別の溶液中に移動するようにし、前記電界の強度は、前記モニタされた濃度に応じて調節される、請求項3〜9のうちいずれか一に記載の方法。
  11. 前記ガス流の前記固体成分は、前記ガス流の珪素含有成分である、請求項1〜10のうちいずれか一に記載の方法。
  12. 前記ガス流の前記固体成分は、二酸化珪素である、請求項1〜11のうちいずれか一に記載の方法。
  13. 前記液体の酸性度は、前記液体の導電率を測定することによりモニタされる、請求項1〜12のうちいずれか一に記載の方法。
  14. 前記酸は、ハロゲン化物を含み、前記液体の酸性度は、オンライン型酸性度分析器を用いてモニタされる、請求項1〜12のうちいずれか一に記載の方法。
  15. 前記酸は、HF、HCL、HNO3、H2SO4、H3BO3、及びH3PO4から成る群から選択された少なくとも1種類の酸を含む、請求項1〜14のうちいずれか一に記載の方法。
  16. 酸及び固体粒子を含有したガス流を処理する装置であって、
    ガススクラビングユニットを有し、
    本質的に閉じられたループの循環システムを有し、前記閉ループ循環システムは、水性スクラビング液を閉ループ周りに循環させるポンプと、前記循環中の液体の酸性度を減少させる電気化学ユニットと、前記循環中の液体の一部を前記閉ループから前記ガススクラビングユニットにそらす出口ポートとを有し、
    前記ガススクラビングユニットは、前記そらされた液体を受け入れる第1の入口と、前記そらされた液体中に溶かすよう前記ガス流を受け取る第2の入口と、前記そらされた液体を前記スクラビングユニットから排出させる出口とを有し、前記閉ループは、前記スクラビングユニットから排出された液体を受け入れる入口ポートを有し、
    前記閉ループ内の所与の場所における前記液体の酸性度をモニタする装置を有し、
    前記モニタした濃度に応じて前記液体の酸性度の減少度を制御して、前記そらされた液体中の前記ガス流の固体成分の溶解度を制御するコントローラを有する、装置。
  17. 前記コントローラは、前記そらされた液体の酸性度を所定値以上に維持するよう構成されている、請求項16記載の装置。
  18. 前記コントローラは、前記そらされた液体中のHFの濃度を400ppm以上に維持するよう構成されている、請求項17記載の装置。
  19. 前記液体の酸性度をモニタする装置は、前記液体が前記出口ポートでそらされた後、且つ前記液体が前記電気化学ユニットに到達する前に前記液体の酸性度をモニタできる位置で前記閉ループ内に配置されている、請求項16〜18のうちいずれか一に記載の装置。
  20. 前記入口ポートは、前記閉ループ内に設けられた貯蔵容器内に設けられ、前記スクラビングユニットから排出された前記液体は、前記貯蔵容器内で、前記電気化学ユニットから排出された液体と混ざり合う、請求項16〜19のうちいずれか一に記載の装置。
  21. 前記装置は、前記液体の導電率を測定するよう構成されている、請求項16〜20のうちいずれか一に記載の装置。
  22. 前記装置は、オンライン型酸性度分析器である、請求項16〜20のうちいずれか一に記載の装置。
  23. 前記電気化学ユニットは、電気化学的再生型イオン交換ユニットで構成される、請求項16〜22のうちいずれか一に記載の装置。
  24. 前記電気化学ユニットは、前記液体から選択されたイオンを吸収するイオン交換物質を有し、電界を前記イオン交換物質にかけて前記吸収されたイオンが前記イオン交換物質を通って別の溶液中に移動するようにし、前記コントローラは、前記モニタされた濃度に応じて前記電界の強度を調節するよう構成されている、請求項16〜23のうちいずれか一に記載の装置。
JP2009540872A 2006-12-14 2007-11-28 ガス流を処理する方法 Expired - Fee Related JP5457193B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0624931.2A GB0624931D0 (en) 2006-12-14 2006-12-14 Method of treating a gas stream
GB0624931.2 2006-12-14
PCT/GB2007/050726 WO2008072006A1 (en) 2006-12-14 2007-11-28 Method of treating a gas stream

Publications (2)

Publication Number Publication Date
JP2010512989A JP2010512989A (ja) 2010-04-30
JP5457193B2 true JP5457193B2 (ja) 2014-04-02

Family

ID=37712109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009540872A Expired - Fee Related JP5457193B2 (ja) 2006-12-14 2007-11-28 ガス流を処理する方法

Country Status (14)

Country Link
US (1) US8475563B2 (ja)
EP (1) EP2094373B1 (ja)
JP (1) JP5457193B2 (ja)
KR (1) KR101454940B1 (ja)
CN (1) CN101610831B (ja)
AT (1) ATE481153T1 (ja)
AU (1) AU2007331291B2 (ja)
BR (1) BRPI0720033A2 (ja)
DE (1) DE602007009301D1 (ja)
GB (1) GB0624931D0 (ja)
RU (1) RU2444398C2 (ja)
TW (1) TWI404564B (ja)
WO (1) WO2008072006A1 (ja)
ZA (1) ZA200904082B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076190A1 (ja) * 2014-11-14 2016-05-19 エドワーズ株式会社 除害装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9740214B2 (en) 2012-07-23 2017-08-22 General Electric Technology Gmbh Nonlinear model predictive control for chemical looping process
CN110043807B (zh) * 2019-05-23 2021-02-26 中国核电工程有限公司 一种uf6管道泄漏应急处理系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475122A (en) * 1967-03-22 1969-10-28 Ionics Recovery of sulfur dioxide from gas streams
DE3533577A1 (de) * 1985-09-20 1987-03-26 Wacker Chemitronic Verfahren zur aufarbeitung von chlorsilan- und chlorwasserstoffhaltigen abgasen
US4643886A (en) * 1985-12-06 1987-02-17 The Dow Chemical Company Automatic pH control in a process for removal of hydrogen sulfide from a gas
US4795565A (en) * 1987-10-28 1989-01-03 Mobil Oil Corporation Clean up of ethanolamine to improve performance and control corrosion of ethanolamine units
US5011520A (en) * 1989-12-15 1991-04-30 Vector Technical Group, Inc. Hydrodynamic fume scrubber
DE4117382A1 (de) * 1991-05-28 1992-12-03 Metallgesellschaft Ag Verfahren zum regeln des ph-wertes einer sauren waschfluessigkeit
DE69522035T2 (de) * 1994-05-06 2002-06-06 Accentus Plc Didcot Elektrochemische Deionisation
US5649985A (en) * 1995-11-29 1997-07-22 Kanken Techno Co., Ltd. Apparatus for removing harmful substances of exhaust gas discharged from semiconductor manufacturing process
JP3584146B2 (ja) * 1997-05-12 2004-11-04 高砂熱学工業株式会社 空気中可溶性ガス除去装置
DE69841726D1 (de) * 1997-06-20 2010-07-29 Hitachi Ltd Verfahren, Katalysator und Vorrichtung zur Zersetzung fluorierter Verbindungen
JP3698559B2 (ja) 1998-09-07 2005-09-21 高砂熱学工業株式会社 気中不純物除去装置
WO2001008786A1 (en) 1999-07-28 2001-02-08 Applied Materials, Inc. Method and apparatus for catalytic conversion of fluorinated compounds in gases
WO2001040117A1 (en) * 1999-12-03 2001-06-07 Juzer Jangbarwala Fluorine removal by ion exchange
US6306197B1 (en) * 2000-04-19 2001-10-23 Seh America, Inc. Isopropyl alcohol scrubbing system
US20010048902A1 (en) * 2000-05-01 2001-12-06 Christopher Hertzler Treatment system for removing hazardous substances from a semiconductor process waste gas stream
JP2002066256A (ja) * 2000-08-31 2002-03-05 Shin Etsu Handotai Co Ltd 排気ガス処理装置及び排気ガス処理方法
JP3973353B2 (ja) * 2000-09-06 2007-09-12 大阪市 電気透析方法およびその装置
EP1583720A1 (en) * 2003-01-14 2005-10-12 The BOC Group plc Treatment of chemical waste
JP2005013788A (ja) 2003-06-24 2005-01-20 Ricoh Elemex Corp 空気清浄機および処理液pH値制御方法
JP2005334729A (ja) * 2004-05-25 2005-12-08 Canon Inc ガス処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076190A1 (ja) * 2014-11-14 2016-05-19 エドワーズ株式会社 除害装置
JP2016093792A (ja) * 2014-11-14 2016-05-26 エドワーズ株式会社 除害装置
KR20170083538A (ko) 2014-11-14 2017-07-18 에드워즈 가부시키가이샤 제해 장치
US10618004B2 (en) 2014-11-14 2020-04-14 Edwards Japan Limited Abatement device

Also Published As

Publication number Publication date
AU2007331291A1 (en) 2008-06-19
EP2094373B1 (en) 2010-09-15
TW200838599A (en) 2008-10-01
DE602007009301D1 (de) 2010-10-28
ATE481153T1 (de) 2010-10-15
AU2007331291B2 (en) 2012-10-04
CN101610831A (zh) 2009-12-23
KR20090088955A (ko) 2009-08-20
JP2010512989A (ja) 2010-04-30
EP2094373A1 (en) 2009-09-02
TWI404564B (zh) 2013-08-11
WO2008072006A1 (en) 2008-06-19
KR101454940B1 (ko) 2014-10-27
US8475563B2 (en) 2013-07-02
ZA200904082B (en) 2010-04-28
US20100139481A1 (en) 2010-06-10
RU2009126765A (ru) 2011-01-20
CN101610831B (zh) 2012-08-08
BRPI0720033A2 (pt) 2013-12-17
RU2444398C2 (ru) 2012-03-10
GB0624931D0 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US8999069B2 (en) Method for producing cleaning water for an electronic material
KR101962587B1 (ko) 작업물 가공 장치 및 작업물 가공 방법
JP2830733B2 (ja) 電解水生成方法および電解水生成機構
JP4112659B2 (ja) 希ガスの回収方法及び装置
JPS63153825A (ja) 硫酸液の純粋化方法及び装置
KR20160140483A (ko) 전해액 전달 및 생성 장비
WO2007037193A1 (ja) イオン濃度調整方法およびイオン濃度調整装置
EP2039657A1 (en) Hydrofluoric acid treatment apparatus
KR101551049B1 (ko) 황산 전해 장치 및 황산 전해 방법
US20140076355A1 (en) Treatment apparatus, method for manufacturing treatment liquid, and method for manufacturing electronic device
JPWO2008087902A1 (ja) 硫酸の電解装置、電解方法及び基板の処理装置
JP5457193B2 (ja) ガス流を処理する方法
CN114797403A (zh) 利用水蒸气和氧试剂的等离子体减量技术
JP6430772B2 (ja) 炭酸ガス溶解水供給システム、炭酸ガス溶解水供給方法、およびイオン交換装置
KR20150079580A (ko) 오존 가스 용해수의 제조 방법, 및 전자 재료의 세정 방법
JP2013128063A5 (ja)
JP6427378B2 (ja) アンモニア溶解水供給システム、アンモニア溶解水供給方法、およびイオン交換装置
WO2016114188A1 (ja) 酸化剤濃度の測定方法および測定装置、並びに電子材料洗浄装置
EP0674026B1 (en) Electrolytic processing apparatus
WO2016076190A1 (ja) 除害装置
JPH11293479A (ja) エッチング液の再生処理装置及びそれを用いたエッチング装置
JP5979328B2 (ja) 酸化剤濃度の測定方法および測定装置、並びに電子材料洗浄装置
CN109966820A (zh) 处理气体物流的方法
JP5556047B2 (ja) フッ素ガス生成装置
JP2010104871A (ja) 排水処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120123

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120427

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120522

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130520

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130820

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140109

R150 Certificate of patent or registration of utility model

Ref document number: 5457193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees