JP5453902B2 - 静電チャックおよび静電チャックの製造方法 - Google Patents

静電チャックおよび静電チャックの製造方法 Download PDF

Info

Publication number
JP5453902B2
JP5453902B2 JP2009107930A JP2009107930A JP5453902B2 JP 5453902 B2 JP5453902 B2 JP 5453902B2 JP 2009107930 A JP2009107930 A JP 2009107930A JP 2009107930 A JP2009107930 A JP 2009107930A JP 5453902 B2 JP5453902 B2 JP 5453902B2
Authority
JP
Japan
Prior art keywords
resin layer
electrostatic chuck
main surface
chamfered portion
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009107930A
Other languages
English (en)
Other versions
JP2010258280A (ja
Inventor
裕明 堀
健志 内村
宏樹 松井
佳津子 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2009107930A priority Critical patent/JP5453902B2/ja
Publication of JP2010258280A publication Critical patent/JP2010258280A/ja
Application granted granted Critical
Publication of JP5453902B2 publication Critical patent/JP5453902B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明の態様は、一般に、静電チャックに関する。
エッチング、CVD(Chemical Vapor Deposition)、スパッタリング、イオン注入、アッシング、露光、検査などを行う基板処理装置において、被処理物である半導体ウェーハやガラス基板などを吸着保持する手段として静電チャックが用いられている。また、静電チャックとしては、クーロン力を生じさせて被処理物を吸着するクーロン型静電チャックや、ジョンセン−ラーベック力を生じさせて強い吸着力を発現させるジョンセン−ラーベック型静電チャックなどが知られている。
ここで、静電チャックの載置面と被処理物とが擦れ合うとパーティクルが発生するおそれがある。この場合、ジョンセン−ラーベック型静電チャックなどのように強い吸着力を発現可能な静電チャックほどパーティクルが発生するおそれが高くなる。また、被処理物の吸着脱離応答性も悪くなるおそれがある。
そのため、静電チャックの載置面側に突起部を設けることで接触面積を小さくし、パーティクル汚染の抑制と被処理物の吸着脱離応答性の向上とを図った静電チャックが提案されている。また、この静電チャックの載置面を樹脂層で覆うことによりパーティクルやスクラッチの発生をさらに抑制する技術も提案されている(特許文献1を参照)。
しかしながら、特許文献1に開示された技術においては、樹脂層の剥離抑制に関する考慮がされていなかった。例えば、静電チャックの誘電体基板の外縁部分、誘電体基板に設けられた貫通孔などの開口部分においては、その境界部分で樹脂層が切断、除去される場合がある。しかしながら、特許文献1に開示された技術においては、この様な場合における考慮がされておらず、樹脂層の周端などにおいて剥離が発生、進展しやすくなるおそれがあった。
また、2種以上の原料モノマーを蒸発させ、基体に原料モノマーを蒸着重合させることで絶縁材料の被膜を形成させる静電チャック部品の製造方法が提案されている(特許文献2を参照)。
しかしながら、特許文献2に開示された技術においても樹脂層の剥離抑制に関する考慮がされておらず、特許文献1に開示された技術と同様に樹脂層の剥離やその進展が生じやすくなるおそれがあった。
特開2006−287210号公報 特開昭63−181345号公報
本発明の態様は、かかる課題の認識に基づいてなされたものであり、被処理物を載置する側に形成された樹脂層の剥離抑制効果を向上させることができる静電チャックおよび静電チャックの製造方法を提供する。
本発明の一態様によれば、セラミック焼結体からなる誘電体基板と、前記誘電体基板の第1の主面に開口する貫通孔の開口部分に形成された第1の面取り加工部と、前記第1の主面に形成され、前記貫通孔が開口する位置に開口部を有する樹脂層と、を備え、前記樹脂層の開口部の周端は、前記第1の面取り加工部に形成されており、前記貫通孔の直径寸法D1(mm)と、前記第1の主面と前記第1の面取り加工部とが交わる部分の直径寸法D2(mm)と、前記樹脂層の開口部の直径寸法Dh(mm)と、が、以下の関係を満足すること、を特徴とする静電チャックが提供される。
D1(mm)+0.1(mm)≦Dh(mm)≦D2(mm)−0.1(mm)
また、本発明の他の一態様によれば、セラミック焼結体からなる誘電体基板の第1の主面に開口する貫通孔を形成する工程と、前記第1の主面を研磨する工程と、前記貫通孔の開口部分に第1の面取り加工部を形成する工程と、前記誘電体基板の第1の主面の外縁部分に第2の面取り加工部を形成する工程と、前記第1の主面に所望の形状のマスクを設け、サンドブラスト法を用いて前記マスクにより覆われていない部分を除去することで平面部を形成するとともに突起部を形成する工程と、前記突起部と、前記平面部と、を覆うように樹脂を被覆することで樹脂層を形成する工程と、前記第1の面取り加工部において、前記貫通孔が開口するように樹脂層を除去する第1の除去工程と、前記第2の面取り加工部において、樹脂層を除去する第2の除去工程と、前記突起部の頂面に形成された前記樹脂層の表面をポリッシュ加工する工程と、を備え、前記第1の除去工程において、前記貫通孔の直径寸法D1(mm)と、前記第1の主面と前記第1の面取り加工部とが交わる部分の直径寸法D2(mm)と、前記樹脂層の開口部の直径寸法Dh(mm)と、が、以下の関係を満足するように前記樹脂層が除去されることを特徴とする静電チャックの製造方法が提供される。
D1(mm)+0.1(mm)≦Dh(mm)≦D2(mm)−0.1(mm)
本発明の態様によれば、被処理物を載置する側に形成された樹脂層の剥離抑制効果を向上させることができる静電チャックおよび静電チャックの製造方法が提供される。
本発明の実施の形態に係る静電チャックを例示するための模式断面図である。 下地の表面粗さと密着力との関係を例示するためのグラフ図である。 静電チャックの製造方法を例示するためのフローチャートである。 他の実施形態に係る静電チャックを例示するための模式断面図である。 図4に例示をした静電チャックの製造方法を例示するためのフローチャートである。
第1の発明の実施形態は、セラミック焼結体からなる誘電体基板と、前記誘電体基板の第1の主面に開口する貫通孔の開口部分に形成された第1の面取り加工部と、前記第1の主面に形成され、前記貫通孔が開口する位置に開口部を有する樹脂層と、を備え、前記樹脂層の開口部の周端は、前記第1の面取り加工部に形成されており、前記貫通孔の直径寸法D1(mm)と、前記第1の主面と前記第1の面取り加工部とが交わる部分の直径寸法D2(mm)と、前記樹脂層の開口部の直径寸法Dh(mm)と、が、以下の関係を満足すること、を特徴とする静電チャックである。
D1(mm)+0.1(mm)≦Dh(mm)≦D2(mm)−0.1(mm)
この静電チャックによれば、被処理物を載置する側に形成された樹脂層の剥離抑制効果を向上させることができる。
また、この静電チャックによれば、貫通孔側または主面側から樹脂層を上方に引き上げる力がかかりにくくなるので、樹脂層の剥離抑制効果を向上させることができる。
また、第の発明の実施形態は、第1発明の実施形態において、前記第1の面取り加工部は、前記第1の主面とのなす角度θが30度以上、60度以下、 前記第1の主面からの深さ寸法が0.3mm以上、1mm以下となるように形成されていること、を特徴とする静電チャックである。
この静電チャックによれば、樹脂層の剥離抑制効果を向上させることができるとともに、加工費用の増大を抑制したり、電極との干渉を抑制したりすることができる。
また、第の発明の実施形態は、第1または第2の発明の実施形態において、前記誘電体基板の第1の主面の外縁部分に形成された第2の面取り加工部をさらに備え、前記樹脂層の周端は、前記第2の面取り加工部に形成されていること、を特徴とする静電チャックである。
この静電チャックによれば、被処理物を載置する側に形成された樹脂層の剥離抑制効果を向上させることができる。
また、第の発明の実施形態は、第の発明の実施形態において、前記誘電体基板の直径寸法D3(mm)と、前記第1の主面と前記第2の面取り加工部とが交わる部分の直径寸法D4(mm)と、前記樹脂層の周端の直径寸法Do(mm)と、が、以下の関係を満足すること、を特徴とする静電チャックである。
D4(mm)+0.2(mm)≦Do(mm)≦D3(mm)−0.05(mm)
この静電チャックによれば、誘電体基板の外縁部側または主面側から樹脂層を上方に引き上げる力がかかりにくくなるので、樹脂層の剥離抑制効果を向上させることができる。
また、第の発明の実施形態は、第または第の発明の実施形態において、前記第2の面取り加工部は、前記第1の主面とのなす角度θが30度以上、60度以下、前記第1の主面からの深さ寸法が0.3mm以上、1mm以下となるように形成されていること、を特徴とする記載の静電チャックである。
この静電チャックによれば、樹脂層の剥離抑制効果を向上させることができるとともに、加工費用の増大を抑制したり、電極との干渉を抑制したりすることができる。
また、第の発明の実施形態は、第または第の発明の実施形態において、前記第2の面取り加工部は、凸状の曲面を有し、前記曲面の半径寸法が0.3mm以上、1mm以下となるように形成されていること、を特徴とする静電チャックである。
この静電チャックによれば、樹脂層の剥離抑制効果を向上させることができるとともに、加工費用の増大を抑制したり、電極との干渉を抑制したりすることができる。
また、第の発明の実施形態は、第1〜第のいずれか1つの発明の実施形態において、静電チャックの使用温度領域における前記誘電体基板の体積抵抗率は、10Ωcm以上、1011Ωcm以下であること、を特徴とする静電チャックである。
この静電チャックによれば、電圧印加時の電流値が大きくなりすぎることを抑制することができる。また、吸着脱離応答性が悪化することを抑制することができる。
また、第の発明の実施形態は、第1〜第のいずれか1つの発明の実施形態において、前記樹脂層の25℃における体積抵抗率は、1014Ωcm以上であること、を特徴とする静電チャックである。
この静電チャックによれば、樹脂層を介して被処理物に電流が流れジョンセン−ラーベック力が増加することを抑制することができる。その結果、残留吸着力が増大して吸着脱離応答性が悪化することを抑制することができる。
また、第の発明の実施形態は、第1〜第のいずれか1つの発明の実施形態において、前記樹脂層は、ポリイミド系樹脂を含むこと、を特徴とする静電チャックである。
この静電チャックによれば、耐食性に優れ、また、蒸着重合法などにより被覆特性に優れた樹脂層を有するものとすることができる。
また、第10の発明の実施形態は、第1〜第のいずれか1つの発明の実施形態において、前記樹脂層は、蒸着重合法を用いて形成されること、を特徴とする静電チャックである。
この静電チャックによれば、被覆特性に優れた樹脂層を有するものとすることができる。
また、第11の発明の実施形態は、第1〜第10のいずれか1つの発明の実施形態において、前記誘電体基板の第1の主面の側に形成された複数の突起部と、前記複数の突起部の周辺に形成された平面部と、を有し、前記樹脂層は、前記複数の突起部と、前記平面部と、を覆うように形成されていること、を特徴とする静電チャックである。
この静電チャックによれば、パーティクル汚染の発生を抑制することができる。また、吸着脱離応答性を向上させることができる。
また、第12の発明の実施形態は、セラミック焼結体からなる誘電体基板の第1の主面に開口する貫通孔を形成する工程と、前記第1の主面を研磨する工程と、前記貫通孔の開口部分に第1の面取り加工部を形成する工程と、前記誘電体基板の第1の主面の外縁部分に第2の面取り加工部を形成する工程と、前記第1の主面に所望の形状のマスクを設け、サンドブラスト法を用いて前記マスクにより覆われていない部分を除去することで平面部を形成するとともに突起部を形成する工程と、前記突起部と、前記平面部と、を覆うように樹脂を被覆することで樹脂層を形成する工程と、前記第1の面取り加工部において、前記貫通孔が開口するように樹脂層を除去する第1の除去工程と、前記第2の面取り加工部において、樹脂層を除去する第2の除去工程と、前記突起部の頂面に形成された前記樹脂層の表面をポリッシュ加工する工程と、を備え、前記第1の除去工程において、前記貫通孔の直径寸法D1(mm)と、前記第1の主面と前記第1の面取り加工部とが交わる部分の直径寸法D2(mm)と、前記樹脂層の開口部の直径寸法Dh(mm)と、が、以下の関係を満足するように前記樹脂層が除去されることを特徴とする静電チャックの製造方法である。
D1(mm)+0.1(mm)≦Dh(mm)≦D2(mm)−0.1(mm)
この静電チャックの製造方法によれば、被処理物を載置する側に形成された樹脂層の剥離抑制効果を向上させることができる。
また、この静電チャックの製造方法によれば、貫通孔側または主面側から樹脂層を上方に引き上げる力がかかりにくくなるので、樹脂層が剥離するのを抑制することができる。
また、第13の発明の実施形態は、第12の発明の実施形態であって、前記第1の面取り加工部を形成する工程において、前記第1の面取り加工部は、前記第1の主面とのなす角度θが30度以上、60度以下、前記第1の主面からの深さ寸法が0.3mm以上、1mm以下となるように形成されること、を特徴とする静電チャックの製造方法である。
この静電チャックの製造方法によれば、樹脂層の剥離抑制効果を向上させることができるとともに、加工費用の増大を抑制したり、電極との干渉を抑制したりすることができる。
また、第14の発明の実施形態は、第12または13の発明の実施形態であって、前記第2の除去工程において、前記誘電体基板の直径寸法D3(mm)と、前記第1の主面と前記第2の面取り加工部とが交わる部分の直径寸法D4(mm)と、前記樹脂層の周端の直径寸法Do(mm)と、が、以下の関係を満足するように前記樹脂層が除去されること、を特徴とする静電チャックの製造方法である。
D4(mm)+0.2(mm)≦Do(mm)≦D3(mm)−0.05(mm)
この静電チャックの製造方法によれば、誘電体基板の外縁部側または主面側から樹脂層を上方に引き上げる力がかかりにくくなるので、樹脂層が剥離するのを抑制することができる。
また、第15の発明の実施形態は、第12〜第14のいずれか1つの発明の実施形態であって、前記第2の面取り加工部を形成する工程において、前記第2の面取り加工部は、前記第1の主面とのなす角度θが30度以上、60度以下、前記第1の主面からの深さ寸法が0.3mm以上、1mm以下となるように形成されること、を特徴とする静電チャックの製造方法である。
この静電チャックの製造方法によれば、樹脂層の剥離抑制効果を向上させることができるとともに、加工費用の増大を抑制したり、電極との干渉を抑制したりすることができる。
また、第16の発明の実施形態は、第12〜第15のいずれか1つの発明の実施形態であって、前記第2の面取り加工部を形成する工程において、前記第2の面取り加工部は、凸状の曲面を有し、前記曲面の半径寸法が0.3mm以上、1mm以下となるように形成されること、を特徴とする静電チャックの製造方法である。
この静電チャックの製造方法によれば、樹脂層の剥離抑制効果を向上させることができるとともに、加工費用の増大を抑制したり、電極との干渉を抑制したりすることができる。
また、第17の発明の実施形態は、第12〜第16のいずれか1つの発明の実施形態であって、前記樹脂層を形成する工程において、前記樹脂層は、蒸着重合法を用いて形成されること、を特徴とする静電チャックの製造方法である。
この静電チャックの製造方法によれば、被覆特性に優れた樹脂層を形成することができる。
以下、図面を参照しつつ、本発明の実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
図1は、本発明の実施の形態に係る静電チャックを例示するための模式断面図である。 また、図1(a)は静電チャックを例示するための模式断面図、図1(b)は図1(a)におけるA部の模式拡大図、図1(c)は図1(a)におけるB部の模式拡大図、図1(d)、(e)は図1(a)におけるC部の模式拡大図である。
なお、図1(d)、(e)は、誘電体基板3の被処理物を載置する側の外縁部近傍の模式拡大図であり、図1(d)はいわゆる「C面取り加工」が施された場合、図1(e)はいわゆる「R面取り加工」が施された場合を表している。
図1に示すように、静電チャック1には、基台2、誘電体基板3、電極4が設けられている。
基台2の一方の主面(電極4の側の表面)には、無機材料からなる絶縁体層5が形成されている。また、誘電体基板3は、被処理物を載置する側の主面(載置面側)に形成された突起部3aと、突起部3aの周辺に形成された平面部3bと、を有している。また、突起部3aと、平面部3bとを覆うように樹脂層7が形成されている。この突起部3aの頂面における樹脂層7の表面が、半導体ウェーハ等の被処理物を載置する際に載置面となる。なお、樹脂層7の下地となる突起部3aや平面部3bの表面粗さなどに関しては後述する。また、電極4が設けられた誘電体基板3の主面と、絶縁体層5が設けられた基台2の主面とが絶縁性接着剤で接着されている。この絶縁性接着剤が硬化したものが接合層6となる。
電極4と電源10a、電源10bとは、電線9で接続されている。なお、電線9は基台2を貫通するようにして設けられているが、電線9と基台2とは絶縁されている。図1に例示をしたものは、正極、負極の電極を互いに隣接させるようにして誘電体基板3に形成させたいわゆる双極型静電チャックである。ただし、これに限定されるわけではなく、1つの電極を誘電体基板3に形成させたいわゆる単極型静電チャックであってもよいし、三極型、その他多極型であってもよい。また、電極の数や配置も適宜変更することができる。
また、静電チャック1を貫通するように貫通孔11が設けられている。貫通孔11の一端は、平面部3bに開口し、他端は図示しない圧力制御手段や流量制御手段を介して、これも図示しないガス供給手段と接続されている。
また、図1(c)に示すように、貫通孔11の平面部3b側の開口部分には面取り加工が施され、面取り加工部3b1において樹脂層7が切断、除去されている。すなわち、誘電体基板3の主面に開口する貫通孔11の開口部分には面取り加工部3b1が形成されている。また、誘電体基板3の主面に形成された樹脂層7は、貫通孔11が開口する位置に開口部を有している。そして、樹脂層7の開口部の周端は、面取り加工部3b1に形成されている。
また、図1(d)、(e)に示すように誘電体基板3の被処理物を載置する側の外縁部分には面取り加工が施され、面取り加工部3b2において樹脂層7が切断、除去されている。すなわち、誘電体基板3の主面の外縁部分には面取り加工部3b2が形成されている。また、誘電体基板3の主面には樹脂層7が形成され、樹脂層7の周端は、面取り加工部3b2に形成されている。
この場合、図1(d)はいわゆる「C面取り加工」が施された場合、図1(e)はいわゆる「R面取り加工」が施された場合を表しており、いずれか一方の形態の面取り加工を施すようにすることができる。また、図1(c)は、いわゆる「C面取り加工」が施された場合を表しているが、「R面取り加工」を施すようにすることもできる。
なお、面取り加工が施された部分に形成された樹脂層7に関しては後述する。
図示しない圧力制御手段や流量制御手段を介して貫通孔11に接続された図示しないガス供給手段は、ヘリウムガスやアルゴンガスなどを供給する。そして、半導体ウェーハ等の被処理物を載置した際に、被処理物と平面部3bとで形成される空間3cが供給されたガスの流路となる。空間3c同士はそれぞれ連通し、供給されたガスが全体にいきわたるようになっている。
また、半導体ウェーハ等の被処理物を載置した際に被処理物の外周部を支持する位置に図示しないリング状の突起部を配設し、前述のガスが漏出しないようにすることもできる。また、前述したガス供給用の貫通孔11以外の貫通孔が設けられている場合には、その貫通孔の周囲に図示しないリング状の突起部を配設し、前述のガスが漏出しないようにすることもできる。このようなリング状突起部にも、突起部3aと同様にして樹脂層7を形成することができる。なお、貫通孔11以外の貫通孔を設ける場合にも、貫通孔11の場合と同様に開口部分に面取り加工を施し、面取り加工部において樹脂層7が切断、除去されているようにすることができる。
さらに、平面部3bに放射状や同心円状に設けられ、貫通孔11と連通する図示しないガス分配溝(凹状の溝)を設けることができる。ガス分配溝を設けるようにすれば、ガス分配速度を早めることができる。そして、このガス分配溝にも樹脂層7を形成するようにすることができる。
基台2は、例えば、アルミニウム合金や銅などのような熱伝導率の高い金属で形成することができる。そして、その内部には冷却液または加熱液が流れる流路8を設けることができる。なお、流路8は必ずしも必要ではないが、被処理物の温度制御の観点からは設けられていた方が好ましい。
また、基台2の一方の主面に設けられる絶縁体層5は、例えば、アルミナ(Al)やイットリア(Y)等の多結晶体で形成することができる。また、絶縁体層5は、接合層6よりも熱伝導率が大きい方が好ましく、熱伝導率を2W/mK以上にすることがより好ましい。そのようにすれば、接合層単独の場合よりも熱伝達性が良好となり、被処理物の温度制御性と面内温度分布の均一性をより向上させることができる。
接合層6においては、その熱伝導率を高くすることが好ましい。例えば、熱伝導率を1W/mK以上とすることが好ましく、1.6W/mK以上とすればより好ましい。このような熱伝導率は、例えば、シリコーン樹脂等にアルミナや窒化アルミニウムをフィラーとして添加することで得ることができる。また、添加の割合で熱伝導率を調整することもできる。
接合層6の厚みは、熱伝達性を考慮すればできるだけ薄い方が好ましい。一方、基台2と誘電体基板3との間における熱膨張率の差に起因する熱せん断応力により、接合層6が剥離することなどを考慮すれば、接合層6の厚みはできるだけ厚い方が好ましい。そのため、接合層6の厚みはこれらを考慮して0.1mm以上、0.3mm以下とすることが好ましい。
誘電体基板3の材料としては、静電チャックに求められる様々な要求により種々の材料を用いることができる。この場合、熱伝導率、電気絶縁の信頼性を考慮すると、セラミック焼結体を用いることが好ましい。セラミック焼結体の具体例を例示すれば、アルミナ、イットリア、窒化アルミニウム、炭化珪素などを挙げることができる。
この誘電体基板3の材料の体積抵抗率は、静電チャックの使用温度領域で10Ωcm以上であることが好ましい。
この場合、体積抵抗率が静電チャックの使用温度領域で10Ωcm以上、1011Ωcm以下となるようにすることがより好ましい。10Ωcm未満とすれば、電圧印加時に電流値が大きくなりすぎるおそれがあるからである。また、1011Ωcmを超えるものとすれば吸着脱離応答性が悪化するおそれがあるからである。
また、誘電体基板3は、平均粒子径が2μm以下のセラミック焼結体で形成するようにすることが好ましい。平均粒子径が2μm以下のセラミック焼結体で形成するようにすれば、仮に樹脂層7の一部が侵食されたり、剥離したりすることがあっても、誘電体基板3から大きなサイズの粒子が脱粒することを抑制することができるからである。
誘電体基板3の材料の体積抵抗率が使用温度領域で10Ωcm以上、1011Ωcm以下である静電チャックの場合、実用的な電圧範囲(±500V〜±2000V)で使用するためには、誘電体基板3の厚みを1.5mm以下にすることが好ましい。また、製作の容易さを考慮すれば誘電体基板3の厚みは0.2mm以上(より好ましくは0.3mm以上)とすることが好ましい。
なお、誘電体基板3と樹脂層7とのトータル厚みは、0.5mm以上、2.0mm以下であることが好ましい。このような厚みにすることで、被処理物と電極4との間の電気絶縁性を確保することができる。また、被処理物から基台2ヘの熱伝達性が良好な静電チャック1とすることができる。
電極4の材料としては、酸化チタン、チタンの単体あるいはチタンと酸化チタンの混合体、窒化チタン、炭化チタン、タングステン、金、銀、銅、アルミニウム、クロム、ニッケル、金−白金合金などを例示することができる。
ここで、樹脂層7の材料、体積抵抗率、厚み寸法やそのばらつき、表面粗さなどは、耐食性、パーティクル汚染の発生、吸着脱離応答性などに大きな影響を及ぼす。そのため、樹脂層7の体積抵抗率、厚み寸法やそのばらつき、表面粗さなどを所定の範囲内に収めることが重要となる。以下、樹脂層7に関して本発明者らの得た知見について例示をする。
樹脂層7の材料としては、ポリイミド系樹脂、ポリ尿素系樹脂、フッ素系樹脂等の耐食性を有する樹脂とすることが好ましい。特に、ポリイミド系樹脂とすれば耐食性、耐熱性、及び絶縁性に優れ、また、後述する蒸着重合法などにより段差、凹凸の存在する面であっても被覆特性に優れた成膜を行うことが可能となるのでより好ましい。この場合、少なくともポリイミド系樹脂を含むものとすることもできる。
樹脂層7の材料の25℃における体積抵抗率は、1014Ωcm以上とすることが好ましい。1014Ωcm未満とすれば、樹脂層7を介して被処理物に電流が流れてしまうのでジョンセン−ラーベック力が増加するおそれがある。その結果、残留吸着力が増大してしまい吸着脱離応答性が悪化するおそれがあるからである。
樹脂層7の厚み寸法は、5μm以上、15μm以下とすることが好ましい。ここで、下地の表面形状はその上に形成される樹脂層7の表面に転写され、樹脂層7の厚み寸法が薄くなるほどその影響を受けやすくなる。そのため、樹脂層7の厚み寸法を5μm未満とすれば、下地の影響を大きく受けることになるので、樹脂層7の形成後のポリッシュ加工(仕上げ加工)において表面粗さを小さくすることが困難となる場合があるからである。一方、樹脂層7の厚み寸法が15μmを超えるものとすれば、吸着力が小さくなりすぎるおそれがあるからである。
樹脂層7の厚み寸法のばらつきは、−10%以上、+10%以下とすることが好ましい。樹脂層7の厚み寸法のばらつきが、−10%未満もしくは+10%を超えるものとすれば、吸着力のばらつきが大きくなりすぎたり、吸着力の面内分布が大きくなりすぎたりするからである。なお、厚み寸法のばらつきが−10%以上、+10%以下となるような樹脂層7は、例えば、蒸着重合法やCVD(Chemical Vapor Deposition)法などにより形成することができる。
突起部3aの頂面に形成された樹脂層7の表面粗さは、算術平均粗さRaで0.01μm以上、0.1μm以下となるようにすることが好ましい。突起部3aの頂面に形成された樹脂層7の表面粗さが、算術平均粗さRaで0.01μm未満となるようにするためには、樹脂層7の形成後のポリッシュ加工(仕上げ加工)に多くの時間を必要とするため生産性が著しく低下するからである。一方、突起部3aの頂面に形成された樹脂層7の表面粗さが、算術平均粗さRaで0.1μmを超えるものとすれば、この部分にチップポケット(微細な凹部)が形成されるおそれがある。そして、ポリッシュ加工(仕上げ加工)をした際にこのチップポケット内に微細な粒子が入り込み、後にこの粒子が放出されることでパーティクル汚染が発生するおそれがあるからである。または、このチップポケット内に入り込んだ粒子が被処理物に直接吸着転写されることで、パーティクル汚染が発生するおそれがあるからである。なお、本明細書における「表面粗さ」は、「JIS B0601:2001」に基づくものである。
また、平面部3bの表面に形成された樹脂層7の表面粗さは、算術平均粗さRaで1μm以下となるようにすることが好ましい。平面部3bの表面に形成された樹脂層7の表面粗さが、算術平均粗さRaで1μmを超えるものとすれば、この部分にチップポケットが形成されるおそれがある。そして、突起部3aの頂面に形成された樹脂層7をポリッシュ加工した際に発生した微細な粒子がこのチップポケット内に入り込み、後にこの粒子が放出されることでパーティクル汚染が発生するおそれがあるからである。
次に、突起部3aに関してさらに例示をする。
突起部3aの水平方向断面は、任意の形状とすることができる。ただし、円などのように角部のない形状とすれば、割れや欠けなどを抑制することができる。
突起部3aの水平方向断面の形状を円形とすれば、その直径寸法が0.1mm以上、1.0mm以下となるようにすることが好ましい。直径寸法が0.1mm未満となれば、突起部3aの形成加工が困難となるからである。一方、直径寸法が1.0mmを超えるものとなれば、被処理物との総接触面積が大きくなりすぎるため、擦れによるパーティクル汚染の増大と吸着脱離応答性の悪化が生じるおそれがあるからである。
突起部3aの高さ寸法は、2μm以上、15μm以下となるようにすることが好ましい。突起部3aの高さ寸法が2μm未満となれば、吸着された被処理物が撓んだ際に、被処理物の表面と、平面部3bの表面に形成された樹脂層7の表面とが接触するおそれがあるからである。一方、突起部3aの高さ寸法が15μmを超えるものとなれば、後述する空間クーロン力が弱まるため吸着力が不足するおそれがあるからである。
突起部3aの配設ピッチ寸法は、2mm以上、15mm以下となるようにすることが好ましい。配設ピッチ寸法が2mm未満となれば、被処理物との総接触面積が大きくなりすぎるため、擦れによるパーティクル汚染の増大と吸着脱離応答性の悪化が生じるおそれがあるからである。一方、配設ピッチ寸法が15mmを超えるものとなれば、吸着された被処理物が撓んだ際に、被処理物の表面と、平面部3bの表面に形成された樹脂層7の表面とが接触するおそれがあるからである。
突起部3aと被処理物との接触面積比は、0.005%以上、1.5%以下となるようにすることが好ましい。接触面積比が0.005%未満となれば、突起部3aの形成加工が困難となるおそれがあるからである。また、吸着された被処理物が撓んだ際に、被処理物の表面と、平面部3bの表面に形成された樹脂層7の表面とが接触するおそれがあるからである。一方、接触面積比が1.5%を超えるものとなれば、被処理物との総接触面積が大きくなりすぎるため、擦れによるパーティクル汚染の増大と吸着脱離応答性の悪化が生じるおそれがあるからである。
この場合、突起部3aと被処理物との接触面積比の計算には、前述したリング状突起部の接触面積を含めないこととする。
次に、樹脂層7の下地に関して例示をする。
樹脂層7の下地の表面粗さ、すなわち、突起部3aと平面部3bとの表面粗さは、これらの上に形成される樹脂層7の表面粗さや、樹脂層7と下地との密着力(耐剥離性)に大きな影響を及ぼす。そのため、突起部3aと平面部3bとの表面粗さが所定の範囲内に収まるようにすることが重要となる。
以下、樹脂層7の下地の表面粗さに関して本発明者らが得た知見について例示をする。 図2は、下地の表面粗さと密着力との関係を例示するためのグラフ図である。なお、横軸は下地の表面粗さ(算術平均粗さRa)を表し、縦軸は樹脂層7と下地との密着力を表している。また、下地が前述した誘電体基板3の形成に用いられるセラミック焼結体からなり、樹脂層7が蒸着重合法を用いて形成されたポリイミド系樹脂からなるものの場合である。
また、表1は、図2に例示をした下地の表面粗さと密着力との関係を示す表である。
Figure 0005453902

ここで、下地と樹脂層7との間の密着力の測定には、引き倒し法を用いた。具体的には、樹脂層7に対して垂直に円筒棒を接着し、円筒棒の所定の位置に樹脂層7に対して平行な方向に力を加え、円筒棒が倒れたときの力を測定した。この場合、加えた力をF(N)、円筒棒の半径寸法をR(m)、樹脂層7から力の作用点までの高さ寸法をh(m)とすると、密着力f(Pa)は、以下の(1)式で表すことができる。
Figure 0005453902

そして、次のようにして密着力の測定を行った。
円筒棒としては、材料が高炭素クロム軸受け鋼材(SUJ材)、ロックウェル硬さがHRC58以上、半径寸法Rが3mm、長さ寸法が50mmのものを用いた。また、円筒棒と樹脂層7との接着には、エポキシ接着剤(エポキシレジン XD911、ナガセケムテックス製)を用いた。そして、接着乾燥の後、樹脂層7からの高さ寸法hが40mmの位置において、樹脂層7に対して平行な方向に力Fを加えた。
ここで、アンカー効果を考慮すると、下地の表面粗さが大きくなれば密着力が高くなるように思える。そのため、従来は、下地の表面粗さがなるべく大きくなるようにしていた。例えば、特許文献1(特開2006−287210号公報)の[0066]段落にあるように下地の表面粗さを算術平均粗さRaで1.1μm程度としていた。
しかしながら、本発明者らの検討の結果、下地の表面粗さを大きくしすぎるとかえって密着力が低下してしまうことが判明した。すなわち、図2から分かるように、下地の表面粗さを大きくすれば密着力が高くなるが、一定の値を超えると密着力が低下することが判明した。
この場合、耐剥離性を考慮すれば、密着力が40MPa以上となるようにすることが好ましい。密着力が40MPa以上であれば、樹脂層7を形成した後にポリッシュ加工(仕上げ加工)を行う場合であっても樹脂層7が剥離するおそれが少ないからである。そのため、下地の表面粗さ(算術平均粗さRa)は、図2、表1から分かるように0.06μm以上、0.7μm以下とすることが好ましい。
また、耐久性をも考慮すれば、密着力が60MPa以上となるようにすることが好ましい。本発明者らの検討の結果、密着力が60MPa以上であれば、樹脂層7を形成した後のポリッシュ加工(仕上げ加工)などを安定して行うことができる。そのため、下地の表面粗さは、図2、表1から分かるように算術平均粗さRaで0.1μmを超え、0.7μm以下とすることがより好ましい。
また、下地の表面粗さを算術平均粗さRaで0.17μmを超え、0.7μm以下とすれば、80MPa以上の密着力を得ることができる。そのため、耐剥離性や耐久性などをさらに向上させることができる。
また、下地の表面粗さを算術平均粗さRaで0.32μm以上、0.41μm以下とすれば、110MPa以上という非常に高い密着力を得ることができる。そのため、耐剥離性や耐久性などを大幅に向上させることができる。
以上は、密着力を高める観点から好ましいとされる下地の表面粗さであるが、下地の表面形状はその上に形成される樹脂層7の表面に転写される。そのため、下地の表面形状が転写されることをも考慮することが好ましい場合もある。
前述したように、突起部3aの頂面に形成された樹脂層7の場合には、その表面粗さが算術平均粗さRaで0.01μm以上、0.1μm以下となるようにすることが好ましい。そのため、転写された凹凸が余り大きくなると、この様な表面粗さ(算術平均粗さRa)とするための加工時間(仕上げのためのポリッシュ加工時間など)が長くなり、生産性が著しく低下するおそれがある。
そのため、これらを考慮すれば、突起部3aの頂面の表面粗さは、算術平均粗さRaで0.06μm以上、0.3μm以下となるようにすることが好ましい。突起部3aの頂面の表面粗さが算術平均粗さRaで0.06μm未満となれば、前述したように密着力が小さくなりすぎるので、突起部3aの頂面に形成された樹脂層7が剥離するおそれがあるからである。また、突起部3aの頂面の表面粗さが算術平均粗さRaで0.3μmを超えるものとなれば、樹脂層7の表面に形成される凹凸もその分大きくなる。その結果、前述した表面粗さ(算術平均粗さRa)を有する面を得るために要する時間(仕上げのためのポリッシュ加工時間など)が長くなり、生産性が著しく低下するおそれがあるからである。
平面部3bにおける密着力の高さは、突起部3aにおける耐剥離性にも影響を及ぼす。すなわち、平面部3bにおける密着力が高ければ、突起部3aにおいて樹脂層7が剥離することを抑制することができる。また、前述したように、平面部3bに形成された樹脂層7の場合には、その表面粗さが算術平均粗さRaで1μm以下となるようにすればよい。そのため、平面部3bの表面粗さ(例えば、算術平均粗さRa)に関しては、前述した密着力を高める観点から好ましいとされる表面粗さ(例えば、算術平均粗さRa)とすればよい。
その結果、平面部3bの表面粗さは、算術平均粗さRaで、0.06μm以上、0.7μm以下とすることが好ましく、0.1μmを超え、0.7μm以下とすることがより好ましい。また、平面部3bの表面粗さを算術平均粗さRaで0.32μm以上、0.41μm以下とすることがさらに好ましい。この場合、平面部3bの表面粗さが算術平均粗さRaで0.7μm以下となるので、転写により樹脂層7の表面粗さRaが1μmを超えることが抑制される。
なお、平面部3bの表面粗さが算術平均粗さRaで1.0μmを超えるような形成加工を行えば、突起部3aの寸法精度が悪化するおそれがある。例えば、後述するサンドブラスト法を用いて平面部3bを形成するとともに、その表面粗さが算術平均粗さRaで1.0μmを超えるようにするためには、通常より大きな粒子径の研磨材を使用する必要がある。そのため、突起部3a部分の寸法制御が困難となり高さ寸法精度が悪化するおそれがある。従って、平面部3bの形成加工を考慮する場合においても平面部3bの表面粗さが算術平均粗さRaで1.0μm以下となるようにすることが好ましい。
以上は、突起部3aの頂面、平面部3bのそれぞれにおいて好ましいとされる表面粗さである。
この場合、突起部3aの頂面の表面粗さ(例えば、算術平均粗さRa)が、平面部3bの表面粗さ(例えば、算術平均粗さRa)よりも小さくなるようにすることが好ましい。この様にすれば、突起部3aの頂面に形成された樹脂層7の表面(被処理物と接触する部分)をパーティクル発生の少ない平滑面とすることが容易となる。一方、樹脂層7と下地との密着力(耐剥離性)は、平面部3bにおいて確保することができる。この場合、突起部3aの頂面の総面積よりも平面部3bの総面積の方がはるかに大きい。そのため、密着力のより高い部分が多くなるような構造とすることができるので、樹脂層7が剥離することを効果的に抑制することができる。
次に、面取り加工が施された部分に形成された樹脂層7に関して例示をする。
誘電体基板3の外縁部分や誘電体基板3に設けられた貫通孔などの加工面は、主面と異なり、加工面の表面粗さを小さくすることが難しく、また、加工面の表面粗さを小さくするのにはコストもかかる。よって、製造における経済性を考えた場合には、外縁部分や貫通孔の加工面の表面粗さが大きい状態のままで樹脂層を形成する場合がある。そのため、前述したように、外縁部分や貫通孔の加工面における樹脂層の密着力が、主面における樹脂層の密着力より低くなり剥離を生じやすくなるおそれがある。
また、誘電体基板3の外縁部分や誘電体基板3に設けられた貫通孔などには、製造過程において加工治具、位置決め治具、寸法測定治具などが当接されたり挿入されたりする場合がある。そのため、誘電体基板3の外縁部分や貫通孔などの境界部分(エッヂ部分)に樹脂層7の端部があると、端部を起点とした剥離が発生しやすく、また、発生した剥離が進展しやすくなる。また、この様な部分に樹脂層7の端部があると、樹脂層7の形成後のポリッシュ加工(仕上げ加工)を行う際にも端部を起点とした剥離が発生しやすく、また、発生した剥離が進展しやすくなる。
本発明者らは検討の結果、誘電体基板3の外縁部分や貫通孔などの境界部分(エッヂ部分)に面取り加工部を形成し、樹脂層7の端部が面取り加工部(面取り加工された領域)にあるようにすれば剥離抑制効果を向上させることができるとの知見を得た。
以下、本発明者らの得た知見について例示をする。
図1(c)に示すように、主面(平面部3b)に貫通孔などの開口部が設けられている場合には、主面(平面部3b)と貫通孔などの開口部が交わる境界部分(エッヂ部分)に面取り加工を施し、樹脂層7の端部が面取り加工部(面取り加工された領域)にあるようにすることが好ましい。
この場合、貫通孔の直径寸法をD1(mm)、主面(平面部3b)と面取り加工部3b1とが交わる部分の直径寸法をD2(mm)、樹脂層7の端部位置の直径寸法(樹脂層7の開口部の直径寸法)をDh(mm)とすると、樹脂層7の端部位置、すなわち、直径寸法Dhが以下の(2)式を満足するようにすることが好ましい。
その様にすれば、貫通孔側または主面(平面部3b)側から樹脂層7を上方に引き上げる力がかかりにくくなるので、樹脂層7の剥離抑制効果を向上させることができる。
Figure 0005453902

面取り加工部3b1は、主面(平面部3b)とのなす角度θが30度以上、60度以下、主面(平面部3b)からの深さ寸法h1が0.3mm以上、1mm以下となるようにすることが好ましい。この場合、平面部3bとのなす角度θを30度以上、60度以下とすれば、貫通孔側及び主面(平面部3b)側からの剥離の発生やその進展を少なくすることができる。また、深さ寸法h1を0.3mm未満とすれば剥離の発生やその進展を抑制する効果が少なくなり、1mmを超えるものとすれば面取り加工部3b1の加工費用の増大を招いたり、電極4との干渉を生じたりするなどの様々な問題が発生しやすくなる。
表2は、剥離抑制効果を例示するためのものである。
Figure 0005453902

なお、誘電体基板3は前述したセラミック焼結体からなり、樹脂層7はポリイミド系樹脂からなるものの場合である。また、表中の「×」は剥離が発生したことを表し、「○」は剥離が発生しなかったことを表している。また、面取り加工部の表面粗さは前述した平面部3bの表面粗さと同等としている。
ここで、Dh=D1とすれば、貫通孔などの内部に形成された樹脂層7を切断、除去する際に、樹脂層7の端部を上方に引き上げるような力がかかりやすくなる。そのため、表2に示すように、樹脂層7の端部において剥離が発生しやすく、また、発生した剥離が進展しやすくなる。
また、Dh=D2とすれば、樹脂層7の形成後にポリッシュ加工(仕上げ加工)を行う際に樹脂層7の端部を上方に引き上げるような力がかかりやすくなる。そのため、表2に示すように、樹脂層7の端部において剥離が発生しやすく、また、発生した剥離が進展しやすくなる。
一方、直径寸法Dhが(2)式を満足するようにすれば、貫通孔などの内部に形成された樹脂層7を切断、除去する際、樹脂層7の形成後にポリッシュ加工(仕上げ加工)を行う際などにおいても樹脂層7の端部を上方に引き上げるような力がかかり難くなる。また、静電チャック1の使用時に加えられ得る外力などに対しても同様の効果を生じさせることができる。その結果、表2に示すように、樹脂層7の剥離抑制効果を向上させることができる。
なお、図1(c)に例示をしたものは、「C面取り加工」が施された場合であるが、(2)式の関係は「R面取り加工」が施された場合であっても同様とすることができる。また、R面取り加工の寸法などは後述する図1(e)の場合と同様とすることができる。
また、図1(d)、(e)に示すように、誘電体基板3の被処理物を載置する側の外縁部分には面取り加工を施し、樹脂層7の端部が面取り加工部(面取り加工された領域)にあるようにすることが好ましい。
この場合、誘電体基板3の直径寸法をD3(mm)、主面(平面部3b)と面取り加工部3b2とが交わる部分の直径寸法をD4(mm)、樹脂層7の端部位置の直径寸法(樹脂層7の周端の直径寸法)をDo(mm)とすると、樹脂層7の端部位置、すなわち、直径寸法Doが以下の(3)式を満足するようにすることが好ましい。
その様にすれば、誘電体基板3の外縁部側または主面(平面部3b)側から樹脂層7を上方に引き上げる力がかかりにくくなるので、樹脂層7の剥離抑制効果を向上させることができる。
Figure 0005453902

面取り加工部3b2が、「C面取り加工」が施されたものである場合には、主面(平面部3b)とのなす角度θが30度以上、60度以下、主面(平面部3b)からの深さ寸法h1が0.3mm以上、1mm以下となるようにすることが好ましい。この場合、主面(平面部3b)とのなす角度θを30度以上、60度以下とすれば、誘電体基板3の外周端側及び主面(平面部3b)側からの剥離の発生やその進展を少なくすることができる。また、深さ寸法h1を0.3mm未満とすれば剥離の発生やその進展を抑制する効果が少なくなり、1mmを超えるものとすれば面取り加工部3b2の加工費用の増大を招いたり、電極4との干渉を生じたりするなどの様々な問題が発生しやすくなるからである。
面取り加工部3b2が、「R面取り加工」が施されたものである場合には、凸状の曲面を有し、曲面の半径寸法Rが0.3mm以上、1mm以下となるようにすることが好ましい。「C面取り加工」が施されたものと同様に、半径寸法Rを0.3mm未満とすれば剥離の発生やその進展を抑制する効果が少なくなり、1mmを超えるものとすれば面取り加工部3b2の加工費用の増大を招いたり、電極4との干渉を生じたりするなどの様々な問題が発生しやすくなるからである。
表3は、剥離抑制効果を例示するためのものである。
Figure 0005453902

なお、誘電体基板3は前述したセラミック焼結体からなり、樹脂層7はポリイミド系樹脂からなるものの場合である。また、表中の「×」は剥離が発生したことを表し、「○」は剥離が発生しなかったことを表している。また、面取り加工部の表面粗さは前述した平面部3bの表面粗さと同等としている。
ここで、Do=D3とすれば、誘電体基板3の外縁部分に形成された樹脂層7を切断、除去する際に、樹脂層7の端部を上方に引き上げるような力がかかりやすくなる。そのため、表3に示すように、樹脂層7の端部において剥離が発生しやすく、また、発生した剥離が進展しやすくなる。
また、Do=D4とすれば、樹脂層7の形成後にポリッシュ加工(仕上げ加工)を行う際に樹脂層7の端部を上方に引き上げるような力がかかりやすくなる。そのため、表3に示すように、樹脂層7の端部において剥離が発生しやすく、また、発生した剥離が進展しやすくなる。
一方、直径寸法Doが(3)式を満足するようにすれば、誘電体基板3の外縁部分に形成された樹脂層7を切断、除去する際、樹脂層7の形成後にポリッシュ加工(仕上げ加工)を行う際などにおいても樹脂層7の端部を上方に引き上げるような力がかかり難くなる。また、静電チャック1の使用時に加えられ得る外力などに対しても同様の効果を生じさせることができる。その結果、表3に示すように、樹脂層7の剥離抑制効果を向上させることができる。また、耐剥離性の高い樹脂層7とすることができる。
以上例示をしたように、樹脂層7の端部は面取り加工部(面取り加工された領域)にあるようにされるが、端部の位置は主面(平面部3b)からより離れるようにすることが好ましい。すなわち、面取り加工部(面取り加工された領域)にある樹脂層7がなるべく多くなるようにすることが好ましい。樹脂層7の切断、除去後、何らかの理由で樹脂層7の端部に剥離が生じる場合がある。その様な場合、樹脂層7の端部の位置が主面(平面部3b)から離れた位置にあれば、樹脂層7の再切断と除去を行うことで剥離が生じた部分の修復を図ることが容易となる。すなわち、面取り加工部(面取り加工された領域)にある樹脂層7が多く再切断加工のための加工しろを充分にとることができるので、剥離が生じた部分の修復を図ることが容易となる。そのため、製品歩留まりやメンテナンス性を向上させることができる。
次に、本実施の形態に係る静電チャック1の作用について例示をする。
突起部3aの頂面に形成された樹脂層7の表面(載置面)に、被処理物(例えば、半導体ウェーハ等)を載置し、電源10a、電源10bにより電極4に電圧を印加する。このとき、被処理物と突起部3aの頂面近傍とにそれぞれ異なる極性の電荷が発生し、この電荷間に働くクーロン力によって被処理物が吸着固定される。また、平面部3bの上方には空間3cが形成されるため、平面部3bとその上方に保持された被処理物とにもそれぞれ異なる極性の電荷が発生し、この電荷間に働くクーロン力(空間クーロン力)によって被処理物が吸着固定される。すなわち、静電チャック1は、突起部3a部分に生じるクーロン力と、平面部3b部分に生じる空間クーロン力とによって被処理物を吸着固定する。
この場合、クーロン力が発生する部分(突起部3a部分)においては被処理物と樹脂層7とが接触するためパーティクルが発生するおそれがある。しかしながら、前述したような樹脂層7の表面粗さとなっているのでパーティクルの発生を抑制することができる。また、樹脂層7の厚み寸法が前述した所定の範囲内に収まるようになっているので、吸着力のばらつきが低減される。
また、空間クーロン力が発生する部分(平面部3b部分)においては被処理物と樹脂層7とが接触することがないため、擦れにともなうパーティクルの発生がない。そのため、空間クーロン力が発生する部分を多くすることでパーティクル汚染の発生を大幅に低減させることができる。本実施の形態に係る静電チャック1においては、前述したような突起部3aの高さ寸法、配設ピッチ寸法、直径寸法、突起部3aと被処理物との接触面積比などとなっている。そのため、空間クーロン力が発生する部分を多くすることができる。また、被処理物が撓むなどした場合であっても、平面部3bに形成された樹脂層7と被処理物とが接触することを抑制することができる。また、突起部3aに関するこれらの条件は、空間クーロン力が発生する部分を多くしても適正な吸着力が得られるような条件でもある。なお、パーティクル汚染の低減効果については後述する(表4を参照)。
また、樹脂層7の下地の表面粗さ、すなわち、突起部3aと平面部3bとの表面粗さが前述した範囲内となっている。そのため、パーティクル汚染の抑制のみならず樹脂層7が剥離することを抑制することができる。また、誘電体基板3の外縁部分や貫通孔などの境界部分(エッヂ部分)に面取り加工を施し、樹脂層7の端部が面取り加工部(面取り加工された領域)にあるようになっている。そのため、剥離の発生とその進展がしやすい樹脂層7の端部においても剥離を抑制することができる。
被処理物の処理においては、静電チャック1により被処理物の温度制御が行われる場合がある。本実施の形態に係る静電チャック1においては、流路8に冷却液や加熱液を流すことで被処理物の温度制御を行うことができる。なお、一例として、冷却液や加熱液を用いて温度制御を行う場合を例示したが、ヒータなどの他の温度制御手段を設けて被処理物の温度制御を行うようにすることもできる。
また、図示しないガス供給手段から供給されたガス(例えば、ヘリウムガスなど)は、図示しない圧力制御手段や流量制御手段により圧力や流量が調整された後、貫通孔11を介して空間3cに導入される。導入されたガスは空間3cを通り、互いに連通された空間3c全体にいきわたる。そして、導入されたガスにより熱伝導率が著しく高められるので、被処理物の加熱や冷却が効果的に行われる。
また、半導体ウェーハ等の被処理物を載置した際に被処理物の外周部を支持する位置に図示しないリング状の突起部が配設されている場合には、前述のガスが静電チャック1の外部に漏出することが抑制される。また、前述した貫通孔11以外の貫通孔の周囲に図示しないリング状の突起部が配設されている場合には、この貫通孔を介して前述のガスが静電チャック1の外部に漏出することが抑制される。また、貫通孔11と連通する図示しないガス分配溝(凹状の溝)が設けられている場合には、ガス分配速度を早めることができるので、被処理物の温度制御を迅速に行うことができる。
次に、本発明者らが行った他の測定に関して例示をする。
表4は、パーティクルの発生数の測定結果を例示するための表である。
Figure 0005453902

ここで、パーティクルの発生数の測定を行った際に用いた測定方法について説明をする。
まず、直径200mmのシリコンベアウェーハ(モニターグレード)を用意する。そして、静電チャック1への吸着前に、ウェーハ裏面のパーティクル数をパーティクルカウンターで測定する。ここで、パーティクルカウンターには、KLA−Tencor社製、SFS−6220を用いた。また、レーザのゲインを4、ヘイズ測定をOFFとし、測定レンジとしては、0.16μm以上、10μm以下を5カラムに分け、10μmを超えるものについては、巨大欠陥のカウント数として転記することにした。
また、測定には、外径寸法が300mm、双極電極タイプ、突起部の直径寸法が0.5mm、突起部の配設ピッチ寸法が略5mm、突起部の高さ寸法が10μm、ポリイミド系樹脂からなる樹脂層7の厚み寸法が10μmの静電チャック1を用いた。
シリコンベアウェーハの吸着条件としては、印可電圧を±800VDCとし、減圧雰囲気(10−2Pa以下)中において30秒間の静電吸着を行なうものとした。
そして、静電吸着の後、ウェーハ裏面のパーティクル数を再度測定し、吸着前のパーティクル数を差し引いたものをパーティクルの発生数として表4にまとめた。
表4からわかるように、本実施の形態に係る静電チャック1においては、パーティクルの発生数を大幅に低減させることができた。例えば、特許文献1(特開2006−287210号公報)において開示がされた静電チャックにおいては1000個〜5000個(特許文献1の[0074]段落を参照)であったパーティクルの発生数を94個と大幅に低減させることができた。
表5は、サンドブラスト法を用いて形成した平面部3bの表面粗さを例示するための表である。
Figure 0005453902
表5からわかるように、サンドブラスト法を用いて平面部3bを形成するようにすれば、平面部3bの表面粗さを前述した範囲内(算術平均粗さRaで0.06μm以上、0.7μm以下)に収めることができる。
表6は、突起部3aの頂面に形成された樹脂層7の成膜直後(樹脂層7の形成直後)の表面粗さ(算術平均粗さRa)と、ポリッシュ加工後の表面粗さ(算術平均粗さRa)とを例示するための表である。
Figure 0005453902

表6からわかるように、ポリッシュ加工を行えば、突起部3aの頂面に形成された樹脂層7表面(被処理物との接触面)の表面粗さ(算術平均粗さRa)を前述した範囲内(0.01μm以上、0.1μm以下)に収めることができる。
表7は、突起部3aの配設ピッチを変えた場合における、吸着力と被処理物(半導体ウェーハ)の撓みとの関係を例示するための表である。
Figure 0005453902

表7からわかるように、突起部3aの配設ピッチを前述した範囲内(2mm以上、15mm以下)に収めれば、吸着力が大きい場合であっても被処理物(半導体ウェーハ)の撓み量(1.55μm以下)を前述した突起部3aの高さ寸法(2μm以上、15μm以下)より小さくすることができる。そのため、被処理物の表面と平面部3bの上方に形成された樹脂層7の表面との接触を防止することができる。
次に、本実施の形態に係る静電チャック1の製造方法について例示をする。
図3は、静電チャックの製造方法を例示するためのフローチャートである。
最初に誘電体基板3の形成方法を例示する。
誘電体基板3の形成に用いられる原材料(顆粒粉)は、以下のようにして製造することができる。
例えば、原材料(顆粒粉)の製造においては、まず、原料として平均粒子径0.1μm、純度99.99%以上のアルミナ原料粉末を用い、これに0.2wt%を超え、0.6wt%以下の酸化チタン(TiO)を混合する。次に、混合したものを粉砕し、アクリル系バインダーを添加する。そして、調整後にスプレードライヤーで造粒し、顆粒粉を製造する。
次に、前述した原材料(顆粒粉)を用い、CIP(ラバープレス)またはメカプレスにより成形を行う。その後、所定の形状に加工し、1150℃〜1350℃の還元雰囲気下で焼成する。そして、焼成がされたものをHIP処理(熱間等方圧加圧)することで誘電体基板3を形成する。(ステップS1)
HIP処理の条件は、Arガス1000気圧以上とし、温度は焼成温度と同じ1150℃〜1350℃とする。このような条件とすれば、相対密度が99%以上、構成粒子の平均粒子径が2μm以下、20±3℃のときの体積抵抗率が10〜1011Ωcm、熱伝導率が30W/mK以上の誘電体基板3が得られる。
なお、ここにいう平均粒子径とは、以下のプラニメトリック法で求められた粒子径である。
プラニメトリック法により粒子径を求める場合には、まず、走査型電子顕微鏡(SEM;scanning electron microscope)で誘電体基板3の写真を撮る。次に、この写真上に、既知の面積Sの円を描く。そして、円内の粒子数ncと円周にかかった粒子数niとを算出し、下記の(4)式によって単位面積当たりの粒子数NGを求める。
Figure 0005453902

ここで、mは写真の倍率である。
1/NGが1個の粒子の占める面積であるから、平均粒子径を円相当径として下記の(5)式により求めることができる。
Figure 0005453902

次に、誘電体基板3の一方の主面を研削加工する。そして、研削加工がされた面に前述のチタンまたはチタン化合物などからなる導電膜を形成する。導電膜の形成には、CVD(Chemical Vapor Deposition)法やPVD(Physical Vapor Deposition)法などを用いることができる。この形成された導電膜を所定の形状に加工することで、所望の形状の電極4を形成する。導電膜の加工には、サンドブラスト法やエッチング法などを用いることができる。(ステップS2)
なお、電極4には電線9が適宜配線される。
次に、誘電体基板3の被処理物を載置する側となる主面に開口する貫通孔などを形成する。(ステップS3)
次に、誘電体基板3の被処理物を載置する側となる主面を研磨する。(ステップS4)主面を研磨する際には、その表面粗さを算術平均粗さRaで0.06μm以上、0.3μm以下にする。
次に、貫通孔の開口部分に面取り加工部3b1を形成する。(ステップS5)
次に、誘電体基板3の主面の外縁部分に面取り加工部3b2を形成する。(ステップS6)
次に、誘電体基板3の被処理物を載置する側となる主面(電極4が形成された面と対向する面)に、サンドブラスト法を用いて突起部3aと平面部3bとを形成する。(ステップS7)
すなわち、誘電体基板3の被処理物を載置する側となる主面に所望の形状のマスクを設け、サンドブラスト法を用いてマスクにより覆われていない部分を除去することで平面部3bを形成するとともに突起部3aを形成する。
なお、後述するように平面部3bを形成することで、突起部3aが形成されることになる。
突起部3aと平面部3bとの形成においては、研磨された面にレジストフィルムを貼り付け、感光、除去を行い所望の形状のマスクを形成する。(ステップS7a)
すなわち、平面部3bが形成される部分にはマスクがなく露出した状態とされ、突起部3aが形成される部分はマスクにより覆われるようにする。マスクにより覆われる部分が突起部3aの頂面となるので、突起部3aの頂面の表面粗さが前述した範囲内(算術平均粗さRaで0.06μm以上、0.3μm以下)となる。
次に、サンドブラスト法を用いて誘電体基板3の被処理物を載置する側となる主面のうちマスクにより覆われていない部分を除去する。(ステップS7b)
この場合、除去が行われた部分が平面部3bとなる。
このようにサンドブラスト法により突起部3aと平面部3bとの形成を行うようにすれば、突起部3aの高さの寸法精度を向上させることができる。そのため、平面部3bの表面から被処理物までの寸法のばらつきを抑えることができるので、発現させる静電気力(空間クーロン力)のばらつきを抑制することができる。
なお、平面部3bの形成をサンドブラスト法により行うことで、表5に示すように、その表面粗さが前述した範囲内(算術平均粗さRaで0.06μm以上、0.7μm以下)となるようにすることができる。
次に、マスクを除去する。(ステップS7c)
なお、必要に応じて、突起部3aの頂部のエッヂを除去するようにしてもよい。
次に、突起部3aと平面部3bとを覆うように樹脂を被覆することで樹脂層7を形成する。(ステップS8)
樹脂層7の材料は、例えば、ポリイミド系樹脂とすることができる。なお、少なくともポリイミド系樹脂を含むものとすることもできる。また、樹脂層7の厚み寸法を5μm以上、15μm以下とする。この場合、樹脂層7の形成には、蒸着重合法、CVD(Chemical Vapor Deposition)法、スピンコート法などの各種の成膜法を用いることができる。この場合、樹脂層7の厚み寸法のばらつきを−10%以上、+10%以下とするためには、蒸着重合法、CVD(Chemical Vapor Deposition)法を用いるようにすることが好ましい。
次に、誘電体基板3の外縁部分や貫通孔などにおける余分な樹脂層7を切断、除去する。(ステップS9)
すなわち、面取り加工部3b1において、貫通孔が開口するように樹脂層7を除去する。また、面取り加工部3b2において、樹脂層7を除去する。
この場合、除去に先立ち、面取り加工部の規定の位置において樹脂層7を切断する。すなわち、樹脂層7の端部の位置が面取り加工部(面取り加工された領域)にあり、前述した(2)式や(3)式の関係を満たすようにする。この際、樹脂層7の端部の位置は平面部3bからより離れるようにすることが好ましい。すなわち、面取り加工部(面取り加工された領域)にある樹脂層7がなるべく多くなるようにすることが好ましい。
また、切断の方法は、カッター等の刃物を用いる方法、レーザ加工またはウォータージェット加工等のエネルギービームによる方法等を適宜選択することができる。この場合、樹脂層7の浮き上りを生じないような加工方法を選択することが好ましい。
そして、切断の後、余分な樹脂層7を除去する。
面取り加工部の形状寸法や樹脂層7の端部の位置が不適切であると、樹脂層7の除去中や後述するポリッシュ加工中、洗浄中、洗浄後のエアブロー時、あるいは静電チャックの使用時などにおいて剥離が発生しやすくなるおそれがある。
本実施の形態においては、面取り加工部の形状寸法や樹脂層7の端部の位置を前述した範囲内に収め、樹脂層7を浮き上りなく切断し、除去するようにしている。そのため、製造過程における樹脂層7の剥離を抑制することができるとともに、耐剥離性の高い静電チャックを得ることができる。
次に、突起部3aの頂面に形成された樹脂層7の表面(被処理物との接触面)が滑らかとなるように仕上げる。(ステップS10)
この際、突起部3aの頂面に形成された樹脂層7の表面粗さが前述した範囲内(算術平均粗さRaで0.01μm以上、0.1μm以下)に収まるようにする。例えば、ポリッシュ加工を行うことによりそのような表面粗さとすることができる。
一方、切削加工などにより流路8を備えた基台2を作成し、基台2の一方の主面に絶縁体層5を形成する。(ステップS11)
この場合、基台2の全面に絶縁体層5を形成するようにすることもできる。また、流路8は、必要に応じて設けるようにすればよい。
絶縁体層5は、溶射法やエアロゾルデポジション法などを用いて形成することができる。
次に、誘電体基板3の電極4が設けられた主面と、基台2の絶縁体層5が設けられた主面と、を絶縁性接着剤を用いて接合する。(ステップS12)
この際、電極4と電源10a、電源10bとが、電線9で接続できるように、基台2を貫通するようにして電線9を通しておく。絶縁性接着剤が硬化したものが接合層6となる。
次に、必要に応じて樹脂層7の表面などの洗浄を行う。(ステップS13)
この場合、例えば、中性洗剤を用いた洗浄が行われた後にIPA(Isopropyl Alcohol)を用いた超音波洗浄が行われ、その後に超純水を用いた超音波洗浄が行われるようにすることができる。
以上のようにして本実施の形態に係る静電チャック1を製造することができる。
図4は、他の実施形態に係る静電チャック1aを例示するための模式断面図である。なお、図4(a)は静電チャックを例示するための模式断面図、図4(b)は図4(a)におけるD部の模式拡大図である。図4(c)は図4(a)におけるE部の模式拡大図、図4(d)、(e)は図4(a)におけるF部の模式拡大図である。
図5は、図4に例示をした静電チャック1aの製造方法を例示するためのフローチャートである。
なお、静電チャック1aは、基台2が設けられていない点を除いては、図1において例示をした静電チャック1と同様であるため、その構成の説明は省略する。
図3に例示をした静電チャックの製造方法とは、突起部3a、平面部3bの形成手順が異なる。すなわち、絶縁体層5と誘電体基板3の接合後に、サンドブラスト法により誘電体基板3の表面(被処理物を載置する側となる主面)に突起部3aと平面部3bとを形成するようにしている。
すなわち、まず、図3のステップS1と同様にして、原材料から成形、焼成、HIP処理を経て誘電体基板3を形成する。(ステップS21)
次に、図3のステップS2と同様にして、誘電体基板3の一方の主面に電極を形成する。(ステップS22)
また一方で、絶縁体層5を形成する。(ステップS23)
そして、図3のステップS12と同様にして、誘電体基板3の電極4が設けられた主面と、絶縁体層5の主面と、を絶縁性接着剤を用いて接合する。(ステップS24)
次に、図3のステップS3と同様にして、誘電体基板3の被処理物を載置する側となる主面に開口する貫通孔などを形成する。(ステップS25)
次に、図3のステップS4と同様にして、誘電体基板3の被処理物を載置する側となる主面を研磨する。(ステップS26)
次に、図3のステップS5と同様にして、貫通孔の開口部分に面取り加工部3b1を形成する。(ステップS27)
次に、図3のステップS6と同様にして、誘電体基板3の主面の外縁部分に面取り加工部3b2を形成する。(ステップS28)
次に、図3のステップS7aと同様にして、研磨された面にレジストフィルムを貼り付け、感光、除去を行い所望の形状のマスクを形成する。(ステップS29a)
次に、図3のステップS7bと同様にして、サンドブラスト法を用いてマスクにより覆われていない部分を除去する。(ステップS29b)
次に、図3のステップS7cと同様にして、マスクを除去する。(ステップS29c)
次に、図3のステップS8と同様にして、突起部3aと平面部3bとを覆うように樹脂を被覆することで樹脂層7を形成する。(ステップS30)
次に、図3のステップS9と同様にして、誘電体基板3の外縁部分や貫通孔などにおける余分な樹脂層7を切断、除去する。(ステップS31)
次に、図3のステップS10と同様にして、突起部3aの頂面に形成された樹脂層7の表面(被処理物との接触面)が滑らかとなるように仕上げる。(ステップS32)
次に、図3のステップS13と同様にして、必要に応じて樹脂層7の表面などの洗浄を行う。(ステップS33)
なお、各ステップにおける内容は、図3において例示をしたものと同様のためその説明は省略する。
また、図3、図5において例示をしたステップの先後を入れ替えることもできる。例えば、面取り加工部を形成した後に突起部3aと平面部3bとを形成するようにしたが、突起部3aと平面部3bとを形成した後に面取り加工部を形成するようにしてもよい。また、貫通孔などを形成した後に誘電体基板3の主面の外縁部分に面取り加工部3b2を形成するようにしたが、面取り加工部3b2を形成した後に貫通孔などを形成するようにしてもよい。また、誘電体基板3の被処理物を載置する側となる主面に貫通孔などを形成した後に主面を研磨するようにしたが、主面を研磨した後に主面に貫通孔などを形成してもよい。
1 静電チャック、1a 静電チャック、2 基台、3 誘電体基板、3a 突起部、3b 平面部、3b1 面取り加工部、3b2 面取り加工部、3c 空間、4 電極、5 絶縁体層、6 接合層、7 樹脂層、8 流路、9 電線、10a 電源、10b 電源、11 貫通孔

Claims (17)

  1. セラミック焼結体からなる誘電体基板と、
    前記誘電体基板の第1の主面に開口する貫通孔の開口部分に形成された第1の面取り加工部と、
    前記第1の主面に形成され、前記貫通孔が開口する位置に開口部を有する樹脂層と、
    を備え、
    前記樹脂層の開口部の周端は、前記第1の面取り加工部に形成されており、
    前記貫通孔の直径寸法D1(mm)と、
    前記第1の主面と前記第1の面取り加工部とが交わる部分の直径寸法D2(mm)と、
    前記樹脂層の開口部の直径寸法Dh(mm)と、が、以下の関係を満足すること、を特徴とする静電チャック。
    D1(mm)+0.1(mm)≦Dh(mm)≦D2(mm)−0.1(mm)
  2. 前記第1の面取り加工部は、前記第1の主面とのなす角度θが30度以上、60度以下、
    前記第1の主面からの深さ寸法が0.3mm以上、1mm以下となるように形成されていること、を特徴とする請求項1記載の静電チャック。
  3. 前記誘電体基板の第1の主面の外縁部分に形成された第2の面取り加工部をさらに備え、
    前記樹脂層の周端は、前記第2の面取り加工部に形成されていること、を特徴とする請求項1または2に記載の静電チャック。
  4. 前記誘電体基板の直径寸法D3(mm)と、
    前記第1の主面と前記第2の面取り加工部とが交わる部分の直径寸法D4(mm)と、
    前記樹脂層の周端の直径寸法Do(mm)と、が、以下の関係を満足すること、を特徴とする請求項3記載の静電チャック。
    D4(mm)+0.2(mm)≦Do(mm)≦D3(mm)−0.05(mm)
  5. 前記第2の面取り加工部は、前記第1の主面とのなす角度θが30度以上、60度以下、前記第1の主面からの深さ寸法が0.3mm以上、1mm以下となるように形成されていること、を特徴とする請求項3または4に記載の静電チャック。
  6. 前記第2の面取り加工部は、凸状の曲面を有し、前記曲面の半径寸法が0.3mm以上、1mm以下となるように形成されていること、を特徴とする請求項3または4に記載の静電チャック。
  7. 静電チャックの使用温度領域における前記誘電体基板の体積抵抗率は、10Ωcm以上、1011Ωcm以下であること、を特徴とする請求項1〜6のいずれか1つに記載の静電チャック。
  8. 前記樹脂層の25℃における体積抵抗率は、1014Ωcm以上であること、を特徴とする請求項1〜7のいずれか1つに記載の静電チャック。
  9. 前記樹脂層は、ポリイミド系樹脂を含むこと、を特徴とする請求項1〜8のいずれか1つに記載の静電チャック。
  10. 前記樹脂層は、蒸着重合法を用いて形成されること、を特徴とする請求項1〜9のいずれか1つに記載の静電チャック。
  11. 前記誘電体基板の第1の主面の側に形成された複数の突起部と、
    前記複数の突起部の周辺に形成された平面部と、
    を有し、
    前記樹脂層は、前記複数の突起部と、前記平面部と、を覆うように形成されていること、を特徴とする請求項1〜10のいずれか1つに記載の静電チャック。
  12. セラミック焼結体からなる誘電体基板の第1の主面に開口する貫通孔を形成する工程と、
    前記第1の主面を研磨する工程と、
    前記貫通孔の開口部分に第1の面取り加工部を形成する工程と、
    前記誘電体基板の第1の主面の外縁部分に第2の面取り加工部を形成する工程と、
    前記第1の主面に所望の形状のマスクを設け、サンドブラスト法を用いて前記マスクにより覆われていない部分を除去することで平面部を形成するとともに突起部を形成する工程と、
    前記突起部と、前記平面部と、を覆うように樹脂を被覆することで樹脂層を形成する工程と、
    前記第1の面取り加工部において、前記貫通孔が開口するように樹脂層を除去する第1の除去工程と、
    前記第2の面取り加工部において、樹脂層を除去する第2の除去工程と、
    前記突起部の頂面に形成された前記樹脂層の表面をポリッシュ加工する工程と、
    を備え、
    前記第1の除去工程において、
    前記貫通孔の直径寸法D1(mm)と、
    前記第1の主面と前記第1の面取り加工部とが交わる部分の直径寸法D2(mm)と、
    前記樹脂層の開口部の直径寸法Dh(mm)と、が、以下の関係を満足するように前記樹脂層が除去されることを特徴とする静電チャックの製造方法。
    D1(mm)+0.1(mm)≦Dh(mm)≦D2(mm)−0.1(mm)
  13. 前記第1の面取り加工部を形成する工程において、
    前記第1の面取り加工部は、前記第1の主面とのなす角度θが30度以上、60度以下、前記第1の主面からの深さ寸法が0.3mm以上、1mm以下となるように形成されること、を特徴とする請求項12記載の静電チャックの製造方法。
  14. 前記第2の除去工程において、
    前記誘電体基板の直径寸法D3(mm)と、
    前記第1の主面と前記第2の面取り加工部とが交わる部分の直径寸法D4(mm)と、
    前記樹脂層の周端の直径寸法Do(mm)と、が、以下の関係を満足するように前記樹脂層が除去されること、を特徴とする請求項12または13に記載の静電チャックの製造方法。
    D4(mm)+0.2(mm)≦Do(mm)≦D3(mm)−0.05(mm)
  15. 前記第2の面取り加工部を形成する工程において、
    前記第2の面取り加工部は、前記第1の主面とのなす角度θが30度以上、60度以下、前記第1の主面からの深さ寸法が0.3mm以上、1mm以下となるように形成されること、を特徴とする請求項1214のいずれか1つに記載の静電チャックの製造方法。
  16. 前記第2の面取り加工部を形成する工程において、
    前記第2の面取り加工部は、凸状の曲面を有し、前記曲面の半径寸法が0.3mm以上、1mm以下となるように形成されること、を特徴とする請求項1215のいずれか1つに記載の静電チャックの製造方法。
  17. 前記樹脂層を形成する工程において、
    前記樹脂層は、蒸着重合法を用いて形成されること、を特徴とする請求項1216のいずれか1つに記載の静電チャックの製造方法。
JP2009107930A 2009-04-27 2009-04-27 静電チャックおよび静電チャックの製造方法 Expired - Fee Related JP5453902B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107930A JP5453902B2 (ja) 2009-04-27 2009-04-27 静電チャックおよび静電チャックの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107930A JP5453902B2 (ja) 2009-04-27 2009-04-27 静電チャックおよび静電チャックの製造方法

Publications (2)

Publication Number Publication Date
JP2010258280A JP2010258280A (ja) 2010-11-11
JP5453902B2 true JP5453902B2 (ja) 2014-03-26

Family

ID=43318837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107930A Expired - Fee Related JP5453902B2 (ja) 2009-04-27 2009-04-27 静電チャックおよび静電チャックの製造方法

Country Status (1)

Country Link
JP (1) JP5453902B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2007452A (en) * 2010-12-08 2012-06-11 Asml Holding Nv Electrostatic clamp, lithographic apparatus and method of manufacturing an electrostatic clamp.
US10276410B2 (en) * 2011-11-25 2019-04-30 Nhk Spring Co., Ltd. Substrate support device
US10497598B2 (en) 2014-02-07 2019-12-03 Entegris, Inc. Electrostatic chuck and method of making same
JP7308254B2 (ja) * 2018-02-19 2023-07-13 日本特殊陶業株式会社 保持装置
KR20230121932A (ko) * 2018-03-22 2023-08-21 어플라이드 머티어리얼스, 인코포레이티드 반도체 디바이스들의 제조에서 사용될 프로세싱 컴포넌트들의세라믹 표면들의 레이저 폴리싱
JP7288308B2 (ja) * 2019-02-12 2023-06-07 日本特殊陶業株式会社 保持装置の製造方法
JP7402430B2 (ja) * 2020-01-29 2023-12-21 住友電気工業株式会社 基板保持台、及び基板加熱装置
JP7343069B1 (ja) 2023-03-27 2023-09-12 Toto株式会社 静電チャック

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643629B2 (ja) * 1987-01-22 1994-06-08 日本真空技術株式会社 静電チャック部品の製造方法
JPH04372152A (ja) * 1991-06-20 1992-12-25 Nikon Corp 静電チャック装置
JPH06204326A (ja) * 1993-01-05 1994-07-22 Tokyo Electron Ltd 静電チャック
JP3072206B2 (ja) * 1993-03-24 2000-07-31 東京エレクトロン株式会社 静電チャック
JP2000286332A (ja) * 1999-03-31 2000-10-13 Shibaura Mechatronics Corp ドライエッチング用静電チャック装置及び載置台
JP4094262B2 (ja) * 2001-09-13 2008-06-04 住友大阪セメント株式会社 吸着固定装置及びその製造方法
JP2005340442A (ja) * 2004-05-26 2005-12-08 Kyocera Corp 静電チャック及びその製造方法
JP2006287210A (ja) * 2005-03-07 2006-10-19 Ngk Insulators Ltd 静電チャック及びその製造方法
JP4499031B2 (ja) * 2005-12-27 2010-07-07 株式会社 電硝エンジニアリング チャックプレートおよびチャックプレートの製造方法
JP5188085B2 (ja) * 2007-03-27 2013-04-24 日本碍子株式会社 窒化アルミニウム耐食性部材及び半導体製造装置用部材

Also Published As

Publication number Publication date
JP2010258280A (ja) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5453902B2 (ja) 静電チャックおよび静電チャックの製造方法
JP5293211B2 (ja) 静電チャックおよび静電チャックの製造方法
CN108352354B (zh) 具有沉积表面特征结构的基板支撑组件
JP4942471B2 (ja) サセプタおよびこれを用いたウェハの処理方法
TWI463597B (zh) 用於半導體晶圓處理的高效率靜電夾盤組件
JP5174582B2 (ja) 接合構造体
JP5957812B2 (ja) 静電チャック装置
TW201936389A (zh) 稀土氧化物系抗電漿腐蝕薄膜塗層
JP2008160093A (ja) 静電チャック、静電チャックの製造方法および基板処理装置
JP5515365B2 (ja) 静電チャックおよび静電チャックの製造方法
JP2005057234A (ja) 静電チャック
JP5343802B2 (ja) 静電チャック装置
CN104241181A (zh) 静电吸盘的制造方法,静电吸盘及等离子体处理装置
JP2018174256A (ja) 基板保持装置の補修方法
JP2004002101A (ja) 耐プラズマ性部材及びその製造方法
JP2006222240A (ja) プラズマ処理装置
CN113594014B (zh) 零部件、等离子体反应装置及零部件加工方法
TW201535456A (zh) 等離子體處理腔室及其靜電夾盤的製造方法
CN116936442A (zh) 静电卡盘设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5453902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees