JP5445229B2 - ロボットの制御装置及びロボットの接続不良判定方法 - Google Patents

ロボットの制御装置及びロボットの接続不良判定方法 Download PDF

Info

Publication number
JP5445229B2
JP5445229B2 JP2010047737A JP2010047737A JP5445229B2 JP 5445229 B2 JP5445229 B2 JP 5445229B2 JP 2010047737 A JP2010047737 A JP 2010047737A JP 2010047737 A JP2010047737 A JP 2010047737A JP 5445229 B2 JP5445229 B2 JP 5445229B2
Authority
JP
Japan
Prior art keywords
inspection target
motors
motor
target motor
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010047737A
Other languages
English (en)
Other versions
JP2011183460A (ja
Inventor
義英 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2010047737A priority Critical patent/JP5445229B2/ja
Publication of JP2011183460A publication Critical patent/JP2011183460A/ja
Application granted granted Critical
Publication of JP5445229B2 publication Critical patent/JP5445229B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Description

本発明は、多可動軸型ロボット本体の各軸に配置される永久磁石型の同期モータを駆動制御するロボットの制御装置,及びロボットの接続不良判定方法に関する。
ロボットシステムについては、故障の発生を極力抑止するために十分な考慮を払った上で設計や生産が行われている。しかしながら、経年劣化や、設計時の想定を上回る負荷が加わるなどした結果、一部の部品に故障が発生することが避けられない場合がある。すると、故障の修理に伴い、ロボットの部品を交換したり配線を接続し直したりする必要があり、その際に作業ミスが発生すると配線接続を誤る場合もありうる。
モータの駆動制御系について誤配線がある状態でロボットを動作させようとすると、本来発生すべきトルクが発生しなかったり、動作を停止させようとすると逆にモータが加速したり、動作対象に指定したはずの軸とは異なる軸のモータが突然動作することなどが想定される。これらは、ユーザが予期しないロボットの動作を引き起こすことになるため、状況によっては安全上問題になることがある。
そして、モータの故障や、モータと駆動回路との間の配線誤り等を検出する技術は従来様々なものが提案されている。例えば特許文献1には、電源をオンした後に行う最初の加速時において、サーボモータのU,V相出力端子に流れる電流を検出し、その電流波形のパターンを監視してモータ出力端子の誤結線を検出する技術が開示されている。また、特許文献2には、ブレーキの解除後に、タイマをスタートさせると共にサーボアンプをオンして移動指令をサーボ制御器に出力して、各軸ごとにトルク指令値,電流フィードバック値,位置指令値,位置フィードバック値などの異常判断指標を記憶し、時間t0の経過後にサーボアンプをオフしてブレーキをかけ、その時点の上記異常判断指標の各値を取得すると、それぞれの整合関係をチェックして異常を判定する技術が開示されている。
特開平9−16233号公報 特開2000−181521号公報
しかしながら、特許文献1,2に開示されている判定方式では、判定に用いる電流等のパラメータがモータに係る負荷重量の大きさに影響を受けるため、判定に際しては事前に負荷重量の情報を得ておく必要がある。したがって、ユーザによる情報支援を受けることが必須となり、ユーザに作業負担を負わせてしまう。また、事前に与えた情報と、実際の負荷重量とが異なる場合もあるため、確実な検出が難しいという問題があった。
また、特許文献1,2の方式では、判定を行うためにモータをある程度回転させることが前提となっている。ところが、ロボットの動作制御は一般に、各軸モータの回転量をエンコーダ等の位置検出器により検出しつつ行うフィードバック制御である。そのため、複数の軸間で誤配線が生じていると、フィードバック制御量が本来の値とは異なる不適切な値となって誤動作量が大きく増加することも想定される。
また、1つの軸;モータの相間で誤配線が生じている場合には、与えられた指令値に対してモータの回転方向が逆になることがあるため、指令値と検出位置との偏差が大きくなって正帰還が作用し、やはり誤動作量が大きく増加するおそれがある。更に、位置検出器が位置検出信号を出力する配線に誤りや一部の断線が生じていると、検出位置と実際のモータの電気角とにずれが生じて、上記相間の誤配線と同様の事態に至る場合がある。
本発明は上記事情に鑑みてなされたものであり、その目的は、誤配線が生じている状態でも、モータの誤動作量を極力少なくした状態で、誤配線を検出できるロボットの制御装置,及びロボットの接続不良判定方法を提供することにある。
請求項1記載のロボットの制御装置によれば、制御回路は、複数のモータの何れか1つを検査対象モータとして、初期位置取得手段により、電源投入時に検査対象モータに配置されている位置検出器によって得られる位置信号から、検査対象モータの電気角を取得する。そして、検査対象モータの電気角が初期位置を維持するように吸引力が最大になる電流位相に固定した状態で、対応する駆動回路を介して検査対象モータの各相巻線に駆動電流を出力すると、その電流出力期間内にロボット本体の各軸に配置されるモータの何れかが回転した場合は、各駆動回路とそれぞれに対応するモータとの接続状態を不良と判定する。
このように判定を行えば、駆動回路と対応するモータとの接続が誤っていることで何れかのモータが回転する場合でも、その回転量は極めて僅かな値に留まる。すなわち、最大でもモータが機械角で1回転以上することはなく、回転子の極数と固定子のスロット数との関係で決まる数分の1回転以内に収まる。したがって、それに伴うロボット本体の動作変化量も僅かとなるから安全性を維持することができる。また、上記の判定は、制御回路が実行する制御プログラムを変更すれば容易に実施できるので、既存のロボットシステムに対しても容易に適用することができる。
請求項2記載のロボットの制御装置によれば、制御回路は、複数のモータの内、最初に容量が最小のモータを検査対象モータとして選択すると、以降は容量が大きくなる順に検査対象モータを順次選択して接続状態判定手段による判定を繰り返し実行する。斯様に構成すれば、接続判定を行うために駆動制御手段が流す駆動電流の量が最初は小さな値となり、そこから順次電流量が大きくなるように変化する。したがって、容量の小さい小型モータの巻線に大き過ぎる駆動電流を流すことが無く、巻線が発生する磁界によって回転子に配置されている永久磁石が減磁する事態を回避できる。
請求項3記載のロボットの制御装置によれば、駆動制御手段は、接続状態判定手段による前記判定の結果が「良」である場合に、検査対象モータに付与する回転力を漸増させるように駆動電流を出力し、接続状態判定手段は、検査対象モータが駆動電流に応じて回転したか否かにより更に接続状態の良否を判定する。すなわち、請求項1のように判定を行った結果、何れのモータも回転しなかった場合は、複数の軸間における一部の誤接続は無いことが確認される。
その上で、請求項3のように判定を行えば、検査対象モータと他の1つのモータとの間で全ての接続が入れ替わっている場合は、検査対象モータ以外のモータが回転することで判定できる。また、検査対象モータの相間に誤接続が生じている場合には、与えた駆動電流指令値に対して検査対象モータが逆方向に回転することで判定できる。したがって、誤接続判定を、様々なケースについて確実に行うことができる。
第1実施例であり、(a)は故障・誤接続判定処理を示すフローチャート、(b)は(a)のステップS4で行う検査の詳細を示すフローチャート ステップS19で「YES」と判断する正常な場合のイメージ図 ステップS18で「YES」と判断する異常な場合のイメージ図 ロボットシステムの構成を示す図 サーボモータの駆動系及び制御系を示すブロック図 サーボモータの構造を模式的に示す図 サーボモータの軸角(機械角)と電気角との関係を示す図 電気角と駆動電流との位相差に応じてサーボモータに発生する回転力と、固定子−回転子間に作用する吸引・反発力とが変化する状態を示す図 図8に示す一部の状態を回転座標系で示す図 第2実施例を示す図1相当図
(第1実施例)
以下、第1実施例について図1ないし図9を参照して説明する。図4は、ロボットシステムの構成を示す。このロボット本体1は、ベース(回転軸)2上に、この場合6軸のアームを有し、そのアームの先端には、図示しないハンド等のツールが取り付けられる。前記ベース2上には、第1関節(可動軸)J1を介して第1のアーム3が回転可能に連結されている。この第1のアーム3には、第2関節J2を介して上方に延びる第2のアーム4の下端部が回転可能に連結され、さらに、この第2のアーム4の上端部には、第3関節J3を介して第3のアーム5が回転可能に連結されている。
この第3のアーム5の先端には第4関節J4を介して第4のアーム6が回転可能に連結され、この第4のアーム6の先端には第5関節J5を介して第5のアーム7が回転可能に連結され、この第5のアーム7には第6関節J6を介して第6のアーム8が回転可能に連結されている。なお、各関節J1〜J6においては、サーボモータ9(1〜6)により(図5参照)各アーム3〜8を回転駆動するようになっている。
制御装置11は、各軸のサーボモータ9(1〜6)に対応して独立したドライバユニット12(1〜6)を備えており、これらのドライバユニット12は制御回路13(図5参照)によって制御される。そして、ロボット1本体と各ドライバユニット12(1〜6)との間は、モータ線14及びエンコーダ線15によって接続されている。モータ線14は、ドライバユニット12に内蔵されているインバータ(駆動回路,図5参照)16の各相出力端子と、サーボモータ9の固定子巻線との間を接続する配線である。モータ線14のドライバユニット12側は6つに分岐しており、各分岐先がドライバユニット12(1〜6)にそれぞれ接続されている。
また、エンコーダ線15は、ロボット本体1の各軸について、サーボモータ9(1〜6)に配置されている位置検出器17(1〜6)(図5参照)と、ドライバユニット12(1〜6)とを接続する配線である。位置検出器17は、例えばロータリエンコーダ等で構成され、サーボモータ9の回転子の絶対位置を例えば光学式により検出し、位置データをシリアル通信によってドライバユニット12側に送信する。エンコーダ線15のドライバユニット12側も6つに分岐しており、各分岐先がドライバユニット12(1〜6)にそれぞれ接続されている。
図5は、サーボモータ9の駆動系及び制御系を示すブロック図である。インバータ16は、例えばパワートランジスタ等の6個のスイッチング素子を三相ブリッジ接続して構成されている。電源回路18は、6個のダイオードを三相ブリッジ接続して構成される整流回路19と平滑コンデンサ20とで構成され、三相交流電源21を整流・平滑してインバータ16に直流電源を供給する。
また、図5には、例えばマイクロコンピュータにより構成される制御回路(初期位置判定手段,駆動制御手段,接続状態判定手段)13がソフトウェアにより実現する各機能をブロック化して示している。減算器22には、位置指令値と位置検出器17により検出される位置(電気角)θaとが与えられ、両者の差分(位置偏差)が乗算器23に出力される。乗算器23では、上記差分に位置ループ比例ゲインKppが乗じられ、その乗算結果が速度指令値として減算器24に出力される。減算器24には、上記位置θaを微分器25で微分して得られる速度が減算値として与えられる。
減算器24における減算結果(速度偏差)は、乗算器26に与えられて速度ループ比例ゲインKvpが乗じられると加算器27に出力され、また積分器28に与えられて積分される。積分器28による積分結果は、乗算器29に与えられて速度ループ積分ゲインKviが乗じられると加算器27に出力される。加算器27における加算結果はトルク指令値となり、故障診断切換スイッチ30の固定接点30(t1)に与えられる。
故障診断切換スイッチ30の固定接点30(t2)には、最大トルク指令値付与部31により最大トルク指令値が与えられ、可動接点30(t3)は、トルク制限器(リミッタ)32の入力端子に接続されている。トルク制限器32は、加算器27より出力されるトルク指令値を上限,下限で制限して座標変換部33U,33Vに出力する。座標変換部33U,33Vには、サーボモータ9に正弦波状の電流を通電するための波形データが記憶されており、故障診断切換スイッチ34を介して位置検出器17が検出した位置(電気角)θa(t1側),又は故障診断装置35より出力される故障診断用の電気角(t2側)の何れか一方が与えられる。
故障診断切換スイッチ30,34の切換え制御は故障診断装置35によって行われ、サーボモータ9を通常制御する場合、故障診断装置35は、故障診断切換スイッチ30,34の可動接点30(t3),34(t3)を夫々固定接点30(t1),34(t1)側に切り替え、故障診断を行う場合は、可動接点30(t3),34(t3)を夫々固定接点30(t2),34(t2)側に切り替える。
座標変換部33は、故障診断切換スイッチ34を介して与えられる電気角に応じて正弦波状の電流波形データを読み出して出力する。そして、トルク制限器32を介して与えられるトルク指令値は、上記電流波形データに乗じられて振幅値を設定する。尚、座標変換部33U,33Vより出力される波形データには、120°の位相差が付与されている。
座標変換部33U,33Vより出力される波形データは、減算器36U,36Vに夫々与えられ、インバータ16のU,V相出力端子に夫々配置されている電流検出器37U,37Vにより検出されるU相電流,V相電流との差がとられる。電流検出器37U,37Vは、例えばカレントトランス(CT)等で構成される。減算器36U,36Vより出力される減算結果は、乗算器38U,38Vにより電流ループ比例ゲインKcpが乗じられて、PWM発生器・プリドライバ39に出力される。
すなわち、PWM発生器・プリドライバ39には、U,V相のPWM指令値のみが与えられ、PWM発生器・プリドライバ39は、上記PWM指令値に基づき内部でW相のPWM指令値を生成する。そしてPWM発生器・プリドライバ39は、インバータ16を構成する各スイッチング素子(例えばパワートランジスタやパワーMOSFET,IGBTなど)の制御端子(ベース又はゲート)に三相PWM信号を出力する。
図6は、サーボモータ9の構造を模式的に示す図である。サーボモータ9は、永久磁石型の同期モータで4極6スロットの内転型であり、回転子41は、回転子鉄心42の表面に永久磁石43が4極分配置されて構成されている。一方、固定子44は、回転子41の外周を囲むように配置される固定子鉄心の6つの歯45に、U,V,Wの各相コイル46が順次巻装されている。そして、サーボモータ9(1〜6)の図示しない回転軸は、減速機構を介して各アーム3〜8を回転駆動する。
次に、本実施例の作用について図1ないし図3,図7,図8を参照して説明する。図4に示したように、ロボット本体1と、ドライバユニット12(1〜6)との間は、モータ線14及びエンコーダ線15により接続されるが、ドライバユニット12(1〜6)側については6つに分岐しているため、それらの接続先を誤る場合が起こり得る。そこで、本実施例ではシステムへの電源投入時に、以下のようにして接続状態の良否を判定する。
尚、ロボット本体1について、各サーボモータ9に対する通電が停止している状態で、且つ機械的なブレーキの作用が無いとすれば、アーム4,5は重力に抗して現状の位置を維持する必要がある。しかし、例えば減速機構にも一定の負荷があり、減速機構を構成するギア等を回転させるために所定値以上のトルクが必要であれば(例えばウォームギア等が介在している場合)、サーボモータ9が非通電の状態であってもロボット本体1の各軸が原位置を維持することは可能である。
図1(a)は、制御回路13が行う故障・誤接続判定処理を示すフローチャート(メインルーチン)である。制御回路13は、先ず、検査対象とする軸(サーボモータ9)を選択するためのカウンタnを「1」にセットすると(ステップS1)、各軸に配置されているサーボモータ9(1〜6)のうち、容量すなわち通電可能な最大定格電流値がn番目に少ないものを選択し、その軸数をポインタjに設定する(ステップS2)。
ここで、多可動軸型のロボットでは、一般にアームの基部に近いほどサーボモータの負荷が高くなるため、相対的に容量の大きいものが使用される。例えば6軸ロボットの場合について一例を挙げると、第1軸〜第6軸にかけて容量が1500W,750W,400W,200W,200W,100Wとなっている。つまり、第6軸のサーボモータ9(6)の容量が最小であるから、最初は第6軸が選択される。
ステップS2に続くステップS3でカウンタnをインクリメントすると、第j軸について検査を行う(ステップS4)。図1(b)は、ステップS4で行う検査の詳細を示すフローチャートである。先ず、全ての軸に配置されている位置検出器17が、電源が投入された時点で検出している各サーボモータ9の回転子位置(初期位置)を取得する(ステップS11)。尚、位置検出器17が出力するのは機械角であるから、4極モータでは、その2倍が電気角を示す。すなわち、図7に示すように、モータの機械角(軸角)が0[DEG]〜〜360[DEG]に変化する間に、電気角は2周期に亘り変化する。ステップS11を実行すると、検査対象軸のサーボモータ9(j)について固定子−回転子間の吸引力が最大になる通電位相差で、ドライバユニット12(j)により最大電流を流す(ステップS12)。
ここで、図8を参照する。図8は、電気角と駆動電流との位相差に応じて、サーボモータ9に発生する回転力(トルク)と、固定子−回転子間に作用する吸引・反発力とが変化する状態を示したものである。ここで、回転力はベクトル制御におけるトルク電流;q軸電流に対応し、磁力は励磁電流;d軸電流に対応しており、駆動電流はこれらのベクトル和である。そして、上記位相差(以降、通電位相差と称す)は、d−q座標上での角度を示す。
この図から、通電位相差が0度の場合にd軸電流が最大となって磁力の吸引力が最大になり、q軸電流はゼロになって回転力は最小になることが判る。また、通電位相差が180度の場合は、d軸電流が逆極性で最大となって磁力の反発力が最大となる。一方、通電位相差が90度の場合はd軸電流がゼロとなって磁力は最小になり、q軸電流が最大となって右回転力が最大になり、通電位相差が−90度の場合は、q軸電流が逆極性で最大となって左回転力が最大となる。
図9は、図8に示す一部の状態を回転座標系で示したものである。図9(a)は(電気角θa)=(電流位相角θb);すなわち、図8の通電位相差が0度の場合に対応し、図9(b)は(電気角θa)−(電流位相角θb)=90[DEG];すなわち、図8の通電位相差が90度の場合に対応している。
再び、図1を参照する。ステップS12では、電気角と駆動電流との通電位相差を0度にしてd軸電流が最大となるように通電する。この場合、故障診断装置35は、上述のように可動接点30(t3),34(t3)を夫々固定接点30(t2),34(t2)側に切り替えた状態で、最大トルク指令値を付与すると共に、位置検出器17が検出した電気角θaから吸引力が最大となるような電気角を固定接点34bに出力する。これにより、上記位相差が実態に一致していれば、検査対象軸のサーボモータ9(j)には回転力が発生せず初期位置を維持する。
しかし、検査対象軸の位置検出器17(j)が出力する位置データに誤りがあったり、検査対象軸のエンコーダ線15がそれ以外の軸と入れ替わって接続されている場合は、実際の電気角θaとのずれにより生じた位相差に基づいてq軸電流が流れ、サーボモータ9に回転力が発生する。
そこで、再びステップS11と同様にして各サーボモータ9の位置θaを取得し(ステップS13)、初期位置との差から何れかの軸のサーボモータ9が回転したか否かを判断する(ステップS14)。そして、何れかの軸のサーボモータ9が回転した場合は(YES)、検査対象である第j軸の判定結果は「異常」となり(ステップS22)、処理を終了する。一方、何れの軸のサーボモータ9も回転しなかった場合は(NO)、ステップS15に移行する。
ステップS15以降は、異なる手法により更に検査を行う。次は、検査対象軸について、通電位相差を0度から90度未満の範囲で(ステップS16)次第にずらして(例えば5度ずつ)、すなわちq軸電流を次第に増加させてサーボモータ9(j)に付与する回転力が徐々に大きくなるようにする。そして、通電位相差が90度(絶対値)に達するまで(YES)、全ての軸について現在位置を取得し(ステップS17)、検査対象軸以外の軸(他軸)が回転したか否か,若しくは自軸が通電位相差をずらした方向とは逆方向に回転した場合は(ステップS18)、また検査対象軸(自軸)が通電位相差をずらした方向に回転したか否か(ステップS19)を判断する。この場合、故障診断装置35は、位置検出器17(j)が検出した電気角θaに対して、自身が付与する通電位相差を徐々に増加させながら固定接点34(t2)に出力する。
ステップS18において、他軸の回転が検出された場合,若しくは自軸が通電位相差をずらした方向とは逆方向に回転した場合は(YES)、モータ線14の配線接続に誤りがあることを示すのでステップS22に移行する。また、ステップS19において、検査対象軸が通電位相差をずらした方向に回転すれば(YES)、モータ線14の配線接続は正常であることを示す。したがって、必要に応じて第j軸の位置を初期位置に復帰させるように通電制御を行うと(ステップS20)、第j軸の判定結果を「正常」として(ステップS21)検査を終了する。
また、ステップS19において、検査対象軸の回転が検出されなければ(NO)ステップS15に戻り通電位相差を増加させるが、上記回転が検出されないまま通電位相差が90度に達した場合は(ステップS16:NO)、サーボモータ9(j)が故障しているか、モータ線14の配線接続に問題があることを示す。したがって、この場合もステップS22に移行する。
ここで図2は、ステップS19で「YES」と判断した正常な場合のイメージであり、検査対象とする第j軸のサーボモータ9(j)が、検査を行う毎に順番に回転することになる。また、図3は、ステップS18で「YES」と判断した異常な場合のイメージであり、第j軸のサーボモータ9(j)とは異なる他軸のサーボモータ9が回転した場合を示している。
上記のようにして第j軸の検査が終了すると、図1(a)のフローにリターンしてステップS5に移行する。そして、第j軸の検査結果が「正常」か否かを判断し、「正常」であれば(YES)、カウンタnの値が検査する軸数(6軸であれば「6」)を超えたか否かを判断する(ステップS6)。検査軸数を超えていなければ(NO)ステップS2に戻り、容量が次に大きい(通電可能な最大定格電流値が次に少ない)サーボモータ9の軸数をポインタjに設定して、引き続き検査を行う。
ステップS6において、検査軸数を超えた場合は(YES)全体の判定結果を「正常」として(ステップS8)処理を終了する。また、ステップS5において、第j軸の検査結果が「異常」であれば(NO)、その時点で全体の判定結果を「異常」として(ステップS7)処理を終了する。
以上のように本実施例によれば、制御回路13は、複数のサーボモータ9の何れか1つを検査対象モータ9(j)として、電源投入時に検査対象モータ9(j)に配置されている位置検出器17(j)によって得られる位置θaから検査対象モータ9(j)の初期位置を取得すると、検査対象モータ9(j)の回転子が初期位置を維持するように、対応するインバータ16(j)を介して検査対象モータ9(j)の各相巻線に駆動電流を出力する。そして、その電流出力期間内にロボット本体1の各軸に配置されるサーボモータ9の何れかが回転したか否かによって、各インバータ16とそれぞれに対応するサーボモータ9との接続状態の良否を判定する。また、エンコーダ線15の接続状態の良否も判定できる。
このように判定を行えば、インバータ16と対応するサーボモータ9との接続が誤っているため何れかのサーボモータ9が回転する場合でも、その回転量は極めて僅かな値に留まる。すなわち、最大でも、サーボモータ9が機械角で1回転以上することはなく、回転子41の極数と固定子44のスロット数との関係で決まる数分の1回転以内に収まる。したがって、それに伴うロボット本体1の動作変化量も僅かとなるから安全性を維持することができる。また、上記の判定は、制御回路13が実行する制御プログラムを変更すれば容易に実施できるので、既存のロボットシステムに対しても容易に適用することができる。
また、制御回路13は、複数のサーボモータ9の内、最初に容量が最小のサーボモータ9を検査対象モータ9(j)として選択すると、以降は容量が大きくなる順に検査対象モータ9(j)を順次選択して判定を繰り返し実行する。したがって、容量の小さいサーボモータ9の巻線に大き過ぎる駆動電流を流すことが無く、巻線が発生する磁界によって回転子に配置されている永久磁石が減磁する事態を回避できる。
更に、制御回路13は、前記判定の結果が「良」である場合に、検査対象モータ9(j)に付与する回転力を漸増させるように駆動電流を出力し、検査対象モータ9(j)が駆動電流に応じて回転したか否かにより更に接続状態の良否を判定するので、検査対象モータ9(j)と他の1つのサーボモータ9との間で全ての接続が入れ替わっている場合は、検査対象モータ9(j)以外の何れかのサーボモータ9が回転することで判定できる。また、検査対象モータ9(j)の相間に誤接続が生じている場合には、与えた駆動電流指令値に対して検査対象モータ9(j)が逆方向に回転するか,若しくは回転しないことで判定できる。したがって、誤接続判定を、様々なケースについて確実に行うことができる。
(第2実施例)
図10は第2実施例であり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。第2実施例は、具体的には図示しないが、ロボット本体1の各軸に機械ブレーキが作用する構成となっている場合で、機械ブレーキを解除すると、各軸の回転位置は重量の作用や外乱により容易に変化し得る状態にあるとする。この状態で故障検出を行う場合を示す。
そして、初期状態で、機械ブレーキがロボット本体1の各軸に作用しているとする。図10(a)のステップS30では、全ての軸の初期位置を取得すると、全ての軸についてd軸電流が最大となるように駆動電流を通電し(ステップS31)、その状態で機械ブレーキを解除する(ステップS32)。そして、全軸のその時点の回転位置を取得すると(ステップS33)、何れかの軸が回転したか否かを判断する(ステップS34)。
ステップS34において、何れの軸も回転していなければ(NO)、カウンタjを「1」に設定し(ステップS35)、第j軸の検査を行う。図9(b)に示す第j軸の検査内容は、第1実施例の図1(b)よりステップS12〜S14を削除したものとほぼ同様である。そして、ステップS5の実行後に、カウンタjをインクリメントする(ステップS36)。
図10(a)のステップS6’では、カウンタjの値が検査する軸数を超えたか否かを判断する。また、ステップS7の実行後は、全軸の機械ブレーキを作用させてから(ステップS37)全軸について通電をオフし(ステップS38)、その後処理を終了する。
以上のように第2実施例によれば、ロボット本体1の各軸に機械ブレーキが作用する構成となっており、機械ブレーキを解除すると、各軸の回転位置が変化し得る構成においても、第1実施例と同様に故障診断を行うことができる。
本発明は上記し、又は図面に記載した実施例にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
位置検出器には、その他例えばレゾルバ等を用いても良い。
永久磁石型の同期モータは、SPM(Surface Permanent Magnet)型,IPM(Interior Permanent Magnet)型の何れでも良い。また、4極6スロット構成に限ることもない。
水平多可動軸型のロボットに適用しても良い。
尚、「可動軸」は回転軸だけでなく、直動軸も含むものとする。
図面中、1はロボット本体、9はサーボモータ(永久磁石型モータ)、16はインバータ(駆動回路)、13は制御回路(初期位置判定手段,駆動制御手段,接続状態判定手段)、17は位置検出器を示す。

Claims (6)

  1. 多可動軸型ロボット本体の各軸に配置される永久磁石型のモータにそれぞれ対応して配置される、前記モータの各相巻線に電流を出力する複数の駆動回路及び前記モータの電気角を検出する複数の位置検出器と、前記複数の位置検出器より各モータの電気角を得ると、前記複数の駆動回路を介して各モータを駆動制御する制御回路とを備えるロボットの制御装置において、
    前記制御回路は、前記複数のモータの何れか1つを検査対象モータとして、
    電源投入時に、前記検査対象モータに配置されている位置検出器によって得られる位置信号から、前記検査対象モータの電気角を初期位置として取得する初期位置取得手段と、
    前記検査対象モータの電気角が前記初期位置を維持するように、対応する駆動回路を介して前記検査対象モータの各相巻線に駆動電流を出力する駆動制御手段と、
    この駆動制御手段が前記駆動電流を出力している期間に、前記各軸に配置されるモータの何れかが回転した場合は、前記複数の駆動回路とそれぞれに対応するモータとの接続状態の不良を判定する接続状態判定手段とを備えることを特徴とするロボットの制御装置。
  2. 前記制御回路は、前記複数のモータの内、最初に容量が最小のモータを前記検査対象モータとして選択すると、以降は容量が大きくなる順に前記検査対象モータを順次選択して、前記接続状態判定手段による判定を繰り返し実行することを特徴とする請求項1記載のロボットの制御装置。
  3. 前記駆動制御手段は、前記接続状態判定手段による前記判定の結果が「良」である場合に、前記検査対象モータに付与する回転力を漸増させるように前記検査対象モータの各相巻線に駆動電流を出力し、
    前記接続状態判定手段は、前記検査対象モータが前記駆動電流に応じて回転したか否かによって、更に前記接続状態の良否を判定することを特徴とする請求項1又は2記載のロボットの制御装置。
  4. 多可動軸型ロボット本体の各軸に配置される永久磁石型のモータにそれぞれ対応して配置される、前記モータの各相巻線に電流を出力する複数の駆動回路及び前記モータの電気角を検出する複数の位置検出器と、前記複数の位置検出器より各モータの電気角を得ると、前記複数の駆動回路を介して各モータを駆動制御する場合、
    前記複数のモータの何れか1つを検査対象モータとして、
    電源投入時に、前記検査対象モータに配置されている位置検出器によって得られる位置信号から、前記検査対象モータの電気角を初期位置として取得すると、
    前記検査対象モータの電気角が前記初期位置を維持するように、対応する駆動回路を介して前記検査対象モータの各相巻線に駆動電流を出力し、
    前記駆動電流を出力している期間に、前記各軸に配置されるモータの何れかが回転した場合は、前記複数の駆動回路とそれぞれに対応するモータとの接続状態の不良を判定することを特徴とするロボットの接続不良判定方法。
  5. 前記複数のモータの内、最初に容量が最小のモータを前記検査対象モータとして選択すると、以降は容量が大きくなる順に前記検査対象モータを順次選択して、前記接続状態の判定を繰り返し実行することを特徴とする請求項4記載のロボットの接続不良判定方法。
  6. 前記接続状態の判定結果が「良」である場合に、前記検査対象モータに付与する回転力を漸増させるように前記検査対象モータの各相巻線に駆動電流を出力し、
    前記検査対象モータが前記駆動電流に応じて回転したか否かによって、更に接続状態の良否を判定することを特徴とする請求項4又は5記載のロボットの接続不良判定方法。
JP2010047737A 2010-03-04 2010-03-04 ロボットの制御装置及びロボットの接続不良判定方法 Expired - Fee Related JP5445229B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047737A JP5445229B2 (ja) 2010-03-04 2010-03-04 ロボットの制御装置及びロボットの接続不良判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047737A JP5445229B2 (ja) 2010-03-04 2010-03-04 ロボットの制御装置及びロボットの接続不良判定方法

Publications (2)

Publication Number Publication Date
JP2011183460A JP2011183460A (ja) 2011-09-22
JP5445229B2 true JP5445229B2 (ja) 2014-03-19

Family

ID=44790360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047737A Expired - Fee Related JP5445229B2 (ja) 2010-03-04 2010-03-04 ロボットの制御装置及びロボットの接続不良判定方法

Country Status (1)

Country Link
JP (1) JP5445229B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705242A1 (en) 2011-10-21 2020-09-09 Intuitive Surgical Operations, Inc. Grip force control for robotic surgical instrument end effector
WO2014181438A1 (ja) * 2013-05-09 2014-11-13 株式会社安川電機 モータ駆動システム、モータ駆動装置、多軸モータ駆動システム及び多軸モータ駆動装置
KR101304292B1 (ko) * 2013-05-16 2013-09-11 (주)라온 다관절 로봇으로 공급되는 전원 및 제어신호의 중계장치
JP2018019471A (ja) * 2016-07-26 2018-02-01 セイコーエプソン株式会社 ロボット及びモーター
US20180006518A1 (en) * 2016-06-29 2018-01-04 Seiko Epson Corporation Robot and motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3217334B2 (ja) * 1998-10-05 2001-10-09 ファナック株式会社 自動機械のための制御装置
JP2008022590A (ja) * 2006-07-10 2008-01-31 Nachi Fujikoshi Corp サーボモータ監視装置
JP5081633B2 (ja) * 2008-01-07 2012-11-28 株式会社日立産機システム モータ制御装置

Also Published As

Publication number Publication date
JP2011183460A (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5760830B2 (ja) 3相回転機の制御装置
JP5590076B2 (ja) 多相回転機の制御装置
JP5556845B2 (ja) 3相回転機の制御装置
US9806645B2 (en) Robot system
JP5636707B2 (ja) 生産機器の制御装置及び生産機器用モータの停止制御方法
KR102066364B1 (ko) 전력 변환 장치 및 전동 파워 스티어링 장치
JP5445229B2 (ja) ロボットの制御装置及びロボットの接続不良判定方法
JP6769247B2 (ja) 回転電機システム
JP5402403B2 (ja) 電動機制御システム
JP5309242B1 (ja) 電源回生及び停電時の同期モータの停止を行うために同期モータを制御する同期モータ制御装置
JP2014007880A (ja) 交流回転機の制御装置、及びその制御装置を備えた電動パワーステアリング装置
JP2008211911A (ja) モータ制御装置及び電動パワーステアリング装置
JPWO2007114058A1 (ja) 永久磁石同期モータの磁極位置検出方法
JP6591089B2 (ja) 回転機の制御装置及びそれを備えた電動パワーステアリング装置
JP2010041868A (ja) 同期電動機のロータ回転監視装置および制御システム
JP2019208329A (ja) センサレスベクトル制御装置及びセンサレスベクトル制御方法
Teng et al. Fault tolerant direct torque control of three-phase permanent magnet synchronous motors
JP6307223B2 (ja) 三相同期電動機の制御装置及びそれを用いた三相同期電機駆動システム、一体型電動機システム、ポンプシステム、及び圧縮機システム、並びに三相同期電動機の制御方法
JP5217760B2 (ja) 電動機駆動装置
US9692337B2 (en) Method for controlling a synchronous reluctance electric motor
JP6822074B2 (ja) 回転電機システム
WO2014017019A1 (ja) 産業用機械の異常判定方法
JP5479094B2 (ja) 同期モータの制御方法及び制御装置
JP2014093899A (ja) 回転機駆動システム
JP2009254191A (ja) モータ制御装置、圧縮装置、冷凍装置および空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5445229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees