JP5441800B2 - プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法、並びに光学式変位計を用いた微小角度検出方法 - Google Patents

プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法、並びに光学式変位計を用いた微小角度検出方法 Download PDF

Info

Publication number
JP5441800B2
JP5441800B2 JP2010089660A JP2010089660A JP5441800B2 JP 5441800 B2 JP5441800 B2 JP 5441800B2 JP 2010089660 A JP2010089660 A JP 2010089660A JP 2010089660 A JP2010089660 A JP 2010089660A JP 5441800 B2 JP5441800 B2 JP 5441800B2
Authority
JP
Japan
Prior art keywords
chuck
substrate
stage
displacement meter
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010089660A
Other languages
English (en)
Other versions
JP2011221245A (ja
Inventor
知明 林
隆悟 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010089660A priority Critical patent/JP5441800B2/ja
Publication of JP2011221245A publication Critical patent/JP2011221245A/ja
Application granted granted Critical
Publication of JP5441800B2 publication Critical patent/JP5441800B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液晶ディスプレイ装置等の表示用パネル基板の製造において、基板の露光を行うプロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及びそれらを用いた表示用パネル基板の製造方法に係り、特に基板を支持するチャックを移動ステージによりXY方向へ移動及びθ方向へ回転して露光時の基板の位置決めを行うプロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及びそれらを用いた表示用パネル基板の製造方法に関する。
また、本発明は、XY方向へ移動及びθ方向へ回転する移動ステージに搭載された被測定物の変位を、複数の光学式変位計により複数箇所で測定し、測定した被測定物の変位に基づき、被測定物のθ方向の微小な傾きを検出する光学式変位計を用いた微小角度検出方法に関する。
表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electroluminescence)表示パネル用基板等の製造は、露光装置を用いて、フォトリソグラフィー技術により基板上にパターンを形成して行われる。露光装置としては、レンズ又は鏡を用いてマスクのパターンを基板上に投影するプロジェクション方式と、マスクと基板との間に微小な間隙(プロキシミティギャップ)を設けてマスクのパターンを基板へ転写するプロキシミティ方式とがある。プロキシミティ方式は、プロジェクション方式に比べてパターン解像性能は劣るが、照射光学系の構成が簡単で、かつ処理能力が高く量産用に適している。
プロキシミティ露光装置において、パターンの焼付けを精度良く行うためには、露光時の基板の位置決めを精度良く行わなければならない。基板の位置決めは、移動ステージにより、基板を支持するチャックをXY方向へ移動し、またθ方向へ回転して行われる。特許文献1及び特許文献2には、基板を位置決めする際に、レーザー測長系を用いて移動ステージのXY方向の位置を検出し、また複数のレーザー変位計を用いてチャックのθ方向の傾きを検出する技術が開示されている。レーザー変位計は、三角測量を応用した光学式変位計であって、レーザー光源からのレーザー光を被測定物へ照射し、被測定物からの反射光をCCDセンサー等の受光素子で受光して、被測定物の変位を測定する。光学式変位計には、レーザー光源を使用したレーザー変位計の他に、LED等の半導体発光素子を光源に使用したものもある。
特開2008−298906号公報 特開2009−31639号公報
光学式変位計の出力特性は、設置状態により変動し、被測定物の微小な角度変化に対して線形性が異なる。そのため、特許文献1及び特許文献2に記載されている様に、複数のレーザー変位計を用いてチャックのθ方向の傾きを検出する場合、各レーザー変位計の測定値にチャックの角度に依存した変動値が含まれ、チャックのθ方向の傾きを精度良く検出することができない。
本発明の課題は、複数の光学式変位計を用い、チャックのθ方向の傾きを精度良く検出して、基板のθ方向の位置決めを精度良く行うことである。また、本発明の課題は、パターンの焼付けを精度良く行って、高品質な表示用パネル基板を製造することである。
さらに、本発明の課題は、複数の光学式変位計を用いて、XY方向へ移動及びθ方向へ回転する移動ステージに搭載された被測定物の微小な傾きを精度良く検出することである。
本発明のプロキシミティ露光装置は、基板を支持するチャックと、マスクを保持するマスクホルダとを備え、マスクと基板との間に微小なギャップを設けて、マスクのパターンを基板へ転写するプロキシミティ露光装置において、チャックを搭載して、XY方向へ移動及びθ方向へ回転する移動ステージと、チャックの変位を複数箇所で測定する複数の光学式変位計と、移動ステージを駆動するステージ駆動回路と、複数の光学式変位計の測定結果に基づき、チャックのθ方向の傾きを検出し、検出したチャックのθ方向の傾きに応じて、ステージ駆動回路を制御し、移動ステージによりチャックをθ方向へ回転させて、基板のθ方向の位置決めを行う制御手段とを備え、制御手段が、移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正し、補正した測定値から、チャックのθ方向の傾きを検出するものである。
また、本発明のプロキシミティ露光装置の基板位置決め方法は、基板を支持するチャックと、マスクを保持するマスクホルダとを備え、マスクと基板との間に微小なギャップを設けて、マスクのパターンを基板へ転写するプロキシミティ露光装置の基板位置決め方法であって、チャックを、XY方向へ移動及びθ方向へ回転する移動ステージに搭載し、複数の光学式変位計によりチャックの変位を複数箇所で測定し、移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正し、補正した測定値から、チャックのθ方向の傾きを検出し、検出したチャックのθ方向の傾きに応じて、移動ステージによりチャックをθ方向へ回転して、基板のθ方向の位置決めを行うものである。
移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正するので、各光学式変位計の測定値に含まれるチャックの角度に依存した変動値が削除される。そして、補正した測定値から、チャックのθ方向の傾きを検出し、検出したチャックのθ方向の傾きに応じて、移動ステージによりチャックをθ方向へ回転して、基板のθ方向の位置決めを行うので、チャックのθ方向の傾きが精度良く検出され、基板のθ方向の位置決めが精度良く行われる。
さらに、本発明のプロキシミティ露光装置は、制御手段が、ステージ駆動回路を制御し、θ方向の複数の異なる角度について、移動ステージをθ方向へ回転させた状態でX方向又はY方向へ移動させ、各光学式変位計により測定したチャックの変位の測定値と、計算で求めたチャックの変位の理論値とから、光学式変位計毎にθ方向の角度に応じた補正値を決定するものである。
また、本発明のプロキシミティ露光装置の基板位置決め方法は、θ方向の複数の異なる角度について、移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、各光学式変位計によりチャックの変位を測定し、各光学式変位計により測定したチャックの変位の測定値と、計算で求めたチャックの変位の理論値とから、光学式変位計毎にθ方向の角度に応じた補正値を決定するものである。
移動ステージをθ方向へある角度だけ回転した状態でX方向又はY方向へ移動し、各光学式変位計によりチャックの変位を測定すると、各光学式変位計により測定したチャックの変位の測定値と、計算で求めたチャックの変位の理論値とから、その角度における光学式変位計毎の補正値(校正係数)を求めることができる。これを、θ方向の複数の異なる角度について行うので、移動ステージのθ方向の角度に応じた補正値(校正係数)の変動特性が得られ、光学式変位計毎のθ方向の角度に応じた補正値を決定することができる。
この補正値(校正係数)の変動特性は、移動ステージのθ方向の角度が0のときを漸近線とする双曲線となり、一般的な双曲線の近似式により、θ方向の角度を変数とする関数として取り使うことができる。なお、この補正値(校正係数)の変動特性は、光学式変位計の個体差、設置状態、及び周囲の状況により異なるので、光学式変位計の設置前に得ることはできず、光学式変位計の設置後に光学式変位計毎に得なければならない。
本発明の表示用パネル基板の製造方法は、上記のいずれかのプロキシミティ露光装置を用いて基板の露光を行い、あるいは、上記のいずれかのプロキシミティ露光装置の基板位置決め方法を用いて基板を位置決めして、基板の露光を行うものである。露光時の基板のθ方向の位置決めが精度良く行われるので、パターンの焼付けが精度良く行われ、高品質な表示用パネル基板が製造される。
本発明の光学式変位計を用いた微小角度検出方法は、XY方向へ移動及びθ方向へ回転する移動ステージに搭載された被測定物の変位を、複数の光学式変位計により複数箇所で測定し、測定した被測定物の変位に基づき、被測定物のθ方向の微小な傾きを検出する光学式変位計を用いた微小角度検出方法であって、θ方向の複数の異なる角度について、移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、各光学式変位計により被測定物の変位を測定し、各光学式変位計により測定した被測定物の変位の測定値と、計算で求めた被測定物の変位の理論値とから、光学式変位計毎にθ方向の角度に応じた補正値を予め決定し、移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正し、補正した測定値から、被測定物のθ方向の傾きを検出するものである。
θ方向の複数の異なる角度について、移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、各光学式変位計により被測定物の変位を測定し、各光学式変位計により測定した被測定物の変位の測定値と、計算で求めた被測定物の変位の理論値とから、光学式変位計毎にθ方向の角度に応じた補正値を予め決定し、移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正するので、被測定物の変位が、被測定物の微小な傾きに依存しないで精度良く検出される。そして、補正した測定値から、被測定物のθ方向の傾きを検出するので、被測定物のθ方向の微小な傾きが精度良く検出される。
本発明のプロキシミティ露光装置及びプロキシミティ露光装置の基板位置決め方法によれば、チャックを、XY方向へ移動及びθ方向へ回転する移動ステージに搭載し、複数の光学式変位計によりチャックの変位を複数箇所で測定し、移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正し、補正した測定値から、チャックのθ方向の傾きを検出し、検出したチャックのθ方向の傾きに応じて、移動ステージによりチャックをθ方向へ回転して、基板のθ方向の位置決めを行うことにより、チャックのθ方向の傾きを精度良く検出して、基板のθ方向の位置決めを精度良く行うことができる。
さらに、本発明のプロキシミティ露光装置及びプロキシミティ露光装置の基板位置決め方法によれば、θ方向の複数の異なる角度について、移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、各光学式変位計によりチャックの変位を測定することにより、各光学式変位計により測定したチャックの変位の測定値と、計算で求めたチャックの変位の理論値とから、光学式変位計毎にθ方向の角度に応じた補正値を決定することができる。
本発明の表示用パネル基板の製造方法によれば、露光時の基板のθ方向の位置決めを精度良く行うことができるので、パターンの焼付けを精度良く行って、高品質な表示用パネル基板を製造することができる。
本発明の光学式変位計を用いた微小角度検出方法によれば、θ方向の複数の異なる角度について、移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、各光学式変位計により被測定物の変位を測定し、各光学式変位計により測定した被測定物の変位の測定値と、計算で求めた被測定物の変位の理論値とから、光学式変位計毎にθ方向の角度に応じた補正値を予め決定し、移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正することにより、被測定物の変位を、被測定物の微小な傾きに依存しないで精度良く検出することができる。そして、補正した測定値から、被測定物のθ方向の傾きを検出することにより、被測定物のθ方向の微小な傾きを精度良く検出することができる。
本発明の一実施の形態によるプロキシミティ露光装置の概略構成を示す図である。 チャック10aが露光位置にあり、チャック10bがロード/アンロード位置にある状態を示す上面図である。 チャック10aが露光位置にあり、チャック10bがロード/アンロード位置にある状態を示す一部断面側面図である。 チャック10bが露光位置にあり、チャック10aがロード/アンロード位置にある状態を示す上面図である。 チャック10bが露光位置にあり、チャック10aがロード/アンロード位置にある状態を示す一部断面側面図である。 主ステージベース上にある移動ステージの上面図である。 主ステージベース上にある移動ステージのX方向の一部断面側面図である。 主ステージベース上にある移動ステージのY方向の側面図である。 レーザー干渉計の動作を説明する図である。 レーザー干渉計の動作を説明する図である。 X方向の変位を測定するレーザー変位計の斜視図である。 Y方向の変位を測定するレーザー変位計の斜視図である。 移動ステージをθ方向へ回転した状態でY方向へ移動したときのチャック10aの変位を説明する図である。 チャック10aの変位の理論値を示す図である。 移動ステージをθ方向へ回転した状態でY方向へ移動したときのチャック10bの変位を説明する図である。 チャック10bの変位の理論値を示す図である。 チャックの変位の理論値と測定値の関係の一例を示す図である。 θステージの角度と校正係数の関係の一例を示す図である。 液晶ディスプレイ装置のTFT基板の製造工程の一例を示すフローチャートである。 液晶ディスプレイ装置のカラーフィルタ基板の製造工程の一例を示すフローチャートである。
図1は、本発明の一実施の形態によるプロキシミティ露光装置の概略構成を示す図である。本実施の形態は、複数のチャックを有するプロキシミティ露光装置の例を示している。プロキシミティ露光装置は、複数のチャック10a,10b、主ステージベース11、複数の副ステージベース11a,11b、台12、Xガイド13、複数の移動ステージ、マスクホルダ20、レーザー測長系制御装置30、複数の第1のレーザー測長系、第2のレーザー測長系、レーザー変位計制御装置40、レーザー変位計42,43、バーミラー44、主制御装置70、入出力インタフェース回路71,72、及びステージ駆動回路80a,80bを含んで構成されている。プロキシミティ露光装置は、これらの他に、基板1をチャック10へ搬入し、また基板1をチャック10から搬出する基板搬送ロボット、露光光を照射する照射光学系、装置内の温度管理を行う温度制御ユニット等を備えている。
なお、本実施の形態では、チャック、副ステージベース、移動ステージ、第1のレーザー測長系及びステージ駆動回路がそれぞれ2つ設けられているが、これらをそれぞれ1つ又は3つ以上設けてもよい。また、以下に説明する実施の形態におけるXY方向は例示であって、X方向とY方向とを入れ替えてもよい。
図1において、基板1の露光を行う露光位置の上空に、マスク2を保持するマスクホルダ20が設置されている。マスクホルダ20には、露光光が通過する開口20aが設けられており、開口20aの下方には、マスク2が装着されている。マスクホルダ20の下面の開口20aの周囲には、吸着溝が設けられており、マスクホルダ20は、吸着溝により、マスク2の周辺部を真空吸着して保持している。マスクホルダ20に保持されたマスク2の上空には、図示しない照射光学系が配置されている。露光時、照射光学系からの露光光がマスク2を透過して基板1へ照射されることにより、マスク2のパターンが基板1の表面に転写され、基板1上にパターンが形成される。
マスクホルダ20の下方には、主ステージベース11が配置されている。主ステージベース11の左右には、主ステージベース11のX方向に隣接して副ステージベース11a,11bが配置されている。主ステージベース11のY方向には、台12が取り付けられている。チャック10aは、後述する移動ステージによって、副ステージベース11a上のロード/アンロード位置と主ステージベース11上の露光位置との間を移動される。また、チャック10bは、後述する移動ステージによって、副ステージベース11b上のロード/アンロード位置と主ステージベース11上の露光位置との間を移動される。
基板1は、副ステージベース11a,11b上のロード/アンロード位置において、図示しない基板搬送ロボットにより、チャック10a,10bへ搬入され、またチャック10a,10bから搬出される。チャック10a,10bへの基板1のロード及びチャック10a,10bからの基板1のアンロードは、チャック10a,10bに設けた複数の突き上げピンを用いて行われる。突き上げピンは、チャック10a,10bの内部に収納されており、チャック10a,10bの内部から上昇して、基板1をチャック10a,10bにロードする際、基板搬送ロボットから基板1を受け取り、基板1をチャック10a,10bからアンロードする際、基板搬送ロボットへ基板1を受け渡す。チャック10a,10bは、基板1を真空吸着して支持する。
図2は、チャック10aが露光位置にあり、チャック10bがロード/アンロード位置にある状態を示す上面図である。また、図3は、チャック10aが露光位置にあり、チャック10bがロード/アンロード位置にある状態を示す一部断面側面図である。図2において、主ステージベース11上及び副ステージベース11a,11b上には、主ステージベース11上から副ステージベース11a,11b上へX方向に伸びるXガイド13が設けられている。
図3において、チャック10a,10bは、それぞれ移動ステージに搭載されている。各移動ステージは、Xステージ14、Yガイド15、Yステージ16、θステージ17、及びチャック支持台19を含んで構成されている。Xステージ14は、Xガイド13に搭載され、Xガイド13に沿ってX方向へ移動する。Yステージ16は、Xステージ14上に設けられたYガイド15に搭載され、Yガイド15に沿ってY方向(図3の図面奥行き方向)へ移動する。θステージ17は、Yステージ16に搭載され、θ方向へ回転する。チャック支持台19は、θステージ17に搭載され、チャック10a,10bを複数箇所で支持する。
各移動ステージのXステージ14のX方向への移動により、チャック10aは、副ステージベース11a上のロード/アンロード位置と主ステージベース11上の露光位置との間を移動され、チャック10bは、副ステージベース11b上のロード/アンロード位置と主ステージベース11上の露光位置との間を移動される。図4は、チャック10bが露光位置にあり、チャック10aがロード/アンロード位置にある状態を示す上面図である。また、図5は、チャック10bが露光位置にあり、チャック10aがロード/アンロード位置にある状態を示す一部断面側面図である。副ステージベース11a,11b上のロード/アンロード位置において、各移動ステージのXステージ14のX方向への移動、Yステージ16のY方向への移動、及びθステージ17のθ方向への回転により、チャック10a,10bに搭載された基板1のプリアライメントが行われる。
主ステージベース11上の露光位置において、各移動ステージのXステージ14のX方向への移動及びYステージ16のY方向への移動により、チャック10a,10bに保持された基板1のXY方向へのステップ移動が行われる。そして、各移動ステージのXステージ14のX方向への移動、Yステージ16のY方向への移動、及びθステージ17のθ方向への回転により、露光時の基板1の位置決めが行われる。また、図示しないZ−チルト機構によりマスクホルダ20をZ方向へ移動及びチルトすることにより、マスク2と基板1とのギャップ合わせが行われる。
各移動ステージのXステージ14、Yステージ16、及びθステージ17には、ボールねじ及びモータや、リニアモータ等の図示しない駆動機構が設けられている。図1において、ステージ駆動回路80aは、主制御装置70の制御により、チャック10aを搭載する移動ステージのXステージ14、Yステージ16、及びθステージ17を駆動する。また、ステージ駆動回路80bは、主制御装置70の制御により、チャック10bを搭載する移動ステージのXステージ14、Yステージ16、及びθステージ17を駆動する。
なお、本実施の形態では、マスクホルダ20をZ方向へ移動及びチルトすることにより、マスク2と基板1とのギャップ合わせを行っているが、各移動ステージにZ−チルト機構を設けて、チャック10a,10bをZ方向へ移動及びチルトすることにより、マスク2と基板1とのギャップ合わせを行ってもよい。
以下、本実施の形態のプロキシミティ露光装置の基板の位置決め動作について説明する。本実施の形態では、2つの第1のレーザー測長系の一方により、チャック10aを搭載する移動ステージのX方向の位置を検出し、他方により、チャック10bを搭載する移動ステージのX方向の位置を検出する。また、第2のレーザー測長系により、主ステージベース11上での各移動ステージのY方向の位置を検出する。さらに、レーザー変位計42,43を用いて、チャック10a,10bのθ方向の傾きを検出する。
図1において、第1のレーザー測長系の一方は、レーザー光源31a、2つのレーザー干渉計32a、及び後述するバーミラー34aを含んで構成されている。第1のレーザー測長系の他方は、レーザー光源31b、2つのレーザー干渉計32b、及び後述するバーミラー34bを含んで構成されている。また、第2のレーザー測長系は、レーザー光源31b、レーザー干渉計33、及びバーミラー35を含んで構成されている。
図6は、主ステージベース上にある移動ステージの上面図である。図7は、主ステージベース上にある移動ステージのX方向の一部断面側面図である。図8は、主ステージベース上にある移動ステージのY方向の側面図である。図6〜図8は、チャック10aを搭載する移動ステージを示しており、チャック10bを搭載する移動ステージは、チャック10aを搭載する移動ステージとX方向において左右対称な構成となっている。なお、図7ではXガイド13が省略され、図8ではレーザー干渉計32a,32bが省略されている。
図8において、移動ステージのXステージ14がXガイド13に搭載されているので、主ステージベース11及び副ステージベース11a,11bとXステージ14との間に、Xガイド13の高さに応じた空間が発生している。第1のレーザー測長系のバーミラー34aは、この空間を利用して、Xステージ14の下に取り付けられている。バーミラー34bも同様である。第1のレーザー測長系の2つのレーザー干渉計32aは、図1に示す様に、主ステージベース11のXガイド13から外れた位置に設置されている。レーザー干渉計32bも同様である。
図6〜図8において、第2のレーザー測長系のバーミラー35は、アーム36により、ほぼチャック10aの高さでYステージ16に取り付けられている。チャック10bを搭載する移動ステージについても、同様に、バーミラー35は、ほぼチャック10bの高さでYステージ16に取り付けられている。第2のレーザー測長系のレーザー干渉計33は、図6及び図8に示す様に、主ステージベース11のY方向に取り付けられた台12に設置されている。
図9及び図10は、レーザー干渉計の動作を説明する図である。なお、図9は、チャック10aが露光位置にあり、チャック10bがロード/アンロード位置にある状態を示し、図10は、チャック10bが露光位置にあり、チャック10aがロード/アンロード位置にある状態を示している。
図9及び図10において、各レーザー干渉計32aは、レーザー光源31aからのレーザー光をバーミラー34aへ照射し、バーミラー34aにより反射されたレーザー光を受光して、レーザー光源31aからのレーザー光とバーミラー34aにより反射されたレーザー光との干渉を測定する。図1において、レーザー測長系制御装置30は、主制御装置70の制御により、2つのレーザー干渉計32aの測定結果から、チャック10aを搭載する移動ステージのX方向の位置を検出し、またXステージ14がX方向へ移動する際のヨーイングを検出する。主制御装置70は、レーザー測長系制御装置30の検出結果を、入出力インタフェース回路71を介して入力する。
図9及び図10において、各レーザー干渉計32bは、レーザー光源31bからのレーザー光をバーミラー34bへ照射し、バーミラー34bにより反射されたレーザー光を受光して、レーザー光源31bからのレーザー光とバーミラー34bにより反射されたレーザー光との干渉を測定する。図1において、レーザー測長系制御装置30は、主制御装置70の制御により、2つのレーザー干渉計32bの測定結果から、チャック10bを搭載する移動ステージのX方向の位置を検出し、またXステージ14がX方向へ移動する際のヨーイングを検出する。主制御装置70は、レーザー測長系制御装置30の検出結果を、入出力インタフェース回路71を介して入力する。
第1のレーザー測長系のバーミラー34a,34bを各移動ステージのXステージ14の下に取り付け、レーザー干渉計32a,32bを主ステージベース11のXガイド13から外れた位置に設置するので、各移動ステージは副ステージベース11a,11bと主ステージベース11とを移動する際にレーザー干渉計32a,32bと衝突することがない。そして、レーザー干渉計32a,32bを主ステージベース11に設置するので、レーザー干渉計32a,32bが副ステージベース11a,11bの振動の影響を受けない。また、レーザー干渉計32a,32bから主ステージベース11上の各移動ステージまでの測定距離が短くなる。従って、各第1のレーザー測長系を用いて、各移動ステージのX方向の位置が精度良く検出される。そして、各第1のレーザー測長系で、複数のレーザー干渉計32a,32bを主ステージベース11に設置するので、複数のレーザー干渉計32a,32bの測定結果から、各移動ステージのXステージ14がX方向へ移動する際のヨーイングが検出される。
図9及び図10において、レーザー干渉計33は、レーザー光源31bからのレーザー光をバーミラー35へ照射し、バーミラー35により反射されたレーザー光を受光して、レーザー光源31bからのレーザー光とバーミラー35により反射されたレーザー光との干渉を測定する。図1において、レーザー測長系制御装置30は、主制御装置70の制御により、レーザー干渉計33の測定結果から、主ステージベース11上での各移動ステージのY方向の位置を検出する。
第2のレーザー測長系のレーザー干渉計33を主ステージベース11のY方向に取り付けられた台12に設置するので、レーザー干渉計33が副ステージベース11a,11bの振動の影響を受けない。また、レーザー干渉計33から主ステージベース11上の各移動ステージまでの測定距離が短くなる。従って、第2のレーザー測長系を用いて、主ステージベース11上での各移動ステージのY方向の位置が精度良く検出される。そして、第2のレーザー測長系の各バーミラー35を、ほぼ各移動ステージが搭載するチャック10a,10bの高さに取り付けるので、各移動ステージのY方向の位置が基板1の近傍で検出される。
図11は、X方向の変位を測定するレーザー変位計の斜視図である。図11は、チャック10aを搭載する移動ステージに取り付けられたレーザー変位計を示しており、チャック10bを搭載する移動ステージに取り付けられたレーザー変位計は、図11とX方向において左右対称な構成となっている。バーミラー44は、チャック10a,10bのY方向へ伸びる一側面に取り付けられている。2つのレーザー変位計42は、それぞれ、アーム46により、バーミラー44の高さでブロック48に取り付けられている。ブロック48は、Xステージ14に取り付けられている。
図12は、Y方向の変位を測定するレーザー変位計の斜視図である。図12において、バーミラー45は、取り付け具49により、チャック10a,10bの裏面に取り付けられている。レーザー変位計43は、図7及び図12に示す様に、アーム47により、バーミラー45の高さでYステージ16に取り付けられている。なお、図12は、バーミラー45及び取り付け具49が見える様にするため、チャック10a,10bの一部を切り欠いた状態を示している。
図11において、各レーザー変位計42は、レーザー光をバーミラー44へ照射し、バーミラー44により反射されたレーザー光を検出することにより、バーミラー44が取り付けられたチャク10aのX方向の変位を測定する。また、図12において、レーザー変位計43は、レーザー光をバーミラー45へ照射し、バーミラー45により反射されたレーザー光を検出することにより、バーミラー45が取り付けられたチャック10a,10bのY方向の変位を測定する。
図1において、主制御装置70は、レーザー変位計42及びレーザー変位計43の測定結果を、レーザー変位計制御装置40から入出力インタフェース回路72を介して入力する。そして、主制御装置70は、レーザー変位計42の測定結果から、チャック10a,10bのθ方向の傾きを検出する。このとき、レーザー変位計42の出力特性は、設置状態により変動し、チャック10a,10bの微小な角度変化に対して線形性が異なる。そのため、複数のレーザー変位計42を用いてチャック10a,10bのθ方向の傾きを検出する場合、各レーザー変位計42の測定値にチャック10a,10bの角度に依存した変動値が含まれ、チャック10a,10bのθ方向の傾きを精度良く検出することができない。
一般的に、レーザー変位計を使用して被測定物の変位を精度良く測定するためには、レーザー変位計を実際に設置した後、被測定物をレーザー変位計の測定方向へ平行に移動して被測定物の変位を測定し、移動距離と測定結果とが一致する様にレーザー変位計を校正する作業が必要となる。しかしながら、本実施の形態では、レーザー変位計42を各移動ステージのXステージ14に取り付けているため、レーザー変位計42に対してチャック10a,10bを測定方向(X方向)へ平行に移動する可動軸が存在せず、この校正作業を行うことができない。
そこで、本実施の形態では、θ方向の複数の異なる角度について、各移動ステージのθステージ17をθ方向へ回転した状態で、チャック10a,10bを各移動ステージのYステージ16によりY方向へ移動し、各レーザー変位計42により測定したチャック10a,10bの変位の測定値と、計算で求めたチャック10a,10bの変位の理論値とから、レーザー変位計42毎にθ方向の角度に応じた補正値(校正係数)を決定する。
まず、主制御装置70は、ステージ駆動回路80a,80bを制御し、各移動ステージのYステージ16によりチャック10a,10bをY方向へ所定の距離だけ移動させて、移動の前後のレーザー変位計42の測定値を比較する。主制御装置70は、各移動ステージのθステージ17のθ方向の角度を変更しながら、移動の前後の測定値が同じ値(または両者の差が許容誤差の範囲内)になるまで、この動作を繰り返す。移動の前後の測定値が同じ値になると、チャック10a,10bに取り付けられたバーミラー44が、レーザー変位計42の測定方向(X方向)と直交する方向(Y方向)と平行になるので、主制御装置70は、その状態で、ステージ駆動回路80a,80bを制御し、チャック10a,10bの中心のY方向の位置が2つのレーザー変位計42の中間に来る様に、各移動ステージのYステージ16によりチャック10a,10bをY方向へ移動させる。この状態を、チャック10a,10bの初期状態とする。
次に、主制御装置70は、ステージ駆動回路80a,80bを制御し、各移動ステージのθステージ17を初期状態からθ方向へ任意の角度だけ回転させ、その状態で各移動ステージのYステージ16によりチャック10a,10bをY方向へ移動させながら、所定の間隔で、Y方向への移動量及びレーザー変位計42の測定値を内部のメモリに記憶する。主制御装置70は、θ方向の複数の異なる角度について、これを繰り返し、各レーザー変位計42により測定したチャック10a,10bの変位の測定値と、計算で求めたチャック10a,10bの変位の理論値とから、レーザー変位計42毎にθ方向の角度に応じた補正値(校正係数)を予め決定する。主制御装置70は、レーザー変位計42毎に予め決定した補正値(校正係数)を、内部のメモリに記憶する。
図13は、移動ステージをθ方向へ回転した状態でY方向へ移動したときのチャック10aの変位を説明する図である。また、図14は、チャック10aの変位の理論値を示す図である。図13及び図14において、図中の破線は、初期状態におけるバーミラー44の反射面44aの位置を示し、実線は、θステージ17を初期状態からθ方向へ角度φだけ回転した状態で、チャック10aをY方向へ距離Y1だけ移動したときのバーミラー44の反射面44bの位置を示している。
図13において、初期状態のチャック10aの中心Oからバーミラー44の反射面44aまでの距離を、X0とする。回転及び移動後のチャック10aの中心O’ からバーミラー44の反射面44bまでの距離も、同じX0である。また 、初期状態のチャック10aの中心Oから各レーザー変位計42までのY方向の距離をY0とする。そして、各レーザー変位計42のY座標の位置において、初期状態のバーミラー44の反射面44aと、回転及び移動後のバーミラー44の反射面44bとのX方向の距離(チャック10aの変位)を、dX,dX’とする。
回転及び移動後のチャック10aの中心O’のY座標の位置において、初期状態のバーミラー44の反射面44aと、回転及び移動後のバーミラー44の反射面44bとのX方向の距離を、ΔXとすると、
XO/(XO+ΔX)=cosφ
であるので、
ΔX=XO(1/cosφ−1)
となる。また、チャック10aをY方向へY1だけ移動したとき、移動後のチャック10aの中心O’から各レーザー変位計42までのY方向の距離は、Y1−YO,Y1+YOとなる。
図14は、角度φを大きくしてΔX及びdX,dX’を図示したものであり、図14において、
(dX+ΔX)/(Y1−Y0)=tanφ
(dX’+ΔX)/(Y1+Y0)=tanφ
であるので、各レーザー変位計42で測定されるチャック10aの変位dX,dX’は、次の式で計算することができる。
dX=(Y1−Y0)tanφ−ΔX
=(Y1−Y0)tanφ+XO(1−1/cosφ)
dX’=(Y1+Y0)tanφ−ΔX
=(Y1+Y0)tanφ+XO(1−1/cosφ)
図15は、移動ステージをθ方向へ回転した状態でY方向へ移動したときのチャック10bの変位を説明する図である。また、図16は、チャック10bの変位の理論値を示す図である。図15及び図16において、各符号は、図13及び図14と同じものを示している。図15において、
XO/(XO+ΔX)=cosφ
であるので、
ΔX=XO(1/cosφ−1)
となる。また、チャック10bをY方向へY1だけ移動したとき、移動後のチャック10bの中心O’から各レーザー変位計42までのY方向の距離は、Y1−YO,Y1+YOとなる。
図16は、角度φを大きくしてΔX及びdX,dX’を図示したものであり、図16において、
(dX−ΔX)/(Y1−Y0)=tanφ
(dX’−ΔX)/(Y1+Y0)=tanφ
であるので、各レーザー変位計42で測定されるチャック10bの変位dX,dX’は、次の式で計算することができる。
dX=(Y1−Y0)tanφ+ΔX
=(Y1−Y0)tanφ+XO(1/cosφ−1)
dX’=(Y1+Y0)tanφ+ΔX
=(Y1+Y0)tanφ+XO(1/cosφ−1)
図17は、チャックの変位の理論値と測定値の関係の一例を示す図である。図17は、θステージ17を初期状態からθ方向へある微小角度だけ回転した状態で、Yステージ16によりチャック10a,10bをY方向へ移動したとき、レーザー変位計42で測定されるチャック10a,10bの変位について、上記の計算式により計算した理論値を横軸、実際にあるレーザー変位計42で測定した測定値を縦軸として示したものである。図17に示す様に、チャックの変位の理論値と測定値はほぼ比例し、グラフの傾きから、その角度においてレーザー変位計42の測定値を補正する補正値(校正係数)を求めることができる。
θ方向の複数の異なる角度について、同様の測定を行って、チャックの変位の理論値と測定値の関係を示すグラフを作成すると、グラフの傾きから求められる校正係数は、θステージ17のθ方向の角度によって変化する。図18は、θステージの角度と校正係数の関係の一例を示す図である。図18の横軸はθステージ17のθ方向の角度を示し、縦軸は各角度において求められた校正係数を示している。図18に示す様に、θステージ17のθ方向の角度に応じた校正係数の変動特性は、θステージ17のθ方向の角度が0のときを漸近線とする双曲線となり、一般的な双曲線の近似式により、θ方向の角度を変数とする関数として取り使うことができる。ただし、θステージ17のθ方向の角度が0に近いときは、校正係数が無限大になるので、校正係数を理想値の1とする。なお、この校正係数の変動特性は、レーザー変位計42の個体差、設置状態、及び周囲の状況により異なるので、レーザー変位計42の設置前に得ることはできず、レーザー変位計42の設置後にレーザー変位計42毎に得なければならない。
この様に、各移動ステージのθステージ17をθ方向へある角度だけ回転した状態でY方向へ移動し、各レーザー変位計42によりチャック10a,10bの変位を測定すると、各レーザー変位計42により測定したチャック10a,10bの変位の測定値と、計算で求めたチャック10a,10bの変位の理論値とから、その角度におけるレーザー変位計42毎の補正値(校正係数)を求めることができる。これを、θ方向の複数の異なる角度について行うので、各移動ステージのθステージ17のθ方向の角度に応じた補正値(校正係数)の変動特性が得られ、レーザー変位計42毎のθ方向の角度に応じた補正値を決定することができる。
図1において、露光時の基板1の位置決めを行う際、主制御装置70は、各移動ステージのθステージ17のθ方向の角度に応じて、内部のメモリに記憶したレーザー変位計42毎に予め決定した補正値(校正係数)により、各レーザー変位計42の測定値を補正し、補正した測定値から、チャック10a,10bのθ方向の傾きを検出する。そして、主制御装置70は、チャック10a,10bのθ方向の傾きの検出結果に基づき、ステージ駆動回路80a,80bを制御して各移動ステージのθステージ17を駆動させ、露光時の基板1のθ方向の位置決めを行う。また、主制御装置70は、入出力インタフェース回路71を介して入力したレーザー測長系制御装置30の検出結果に基づき、ステージ駆動回路80a,80bを制御して各移動ステージのXステージ14及びYステージ16を駆動させ、露光時の基板1のXY方向の位置決めを行う。
各移動ステージのθステージ17のθ方向の角度に応じて、レーザー変位計42毎に予め決定した補正値により、各レーザー変位計42の測定値を補正するので、各レーザー変位計42の測定値に含まれるチャック10a,10bの角度に依存した変動値が削除される。そして、補正した測定値から、チャック10a,10bのθ方向の傾きを検出し、検出したチャック10a,10bのθ方向の傾きに応じて、各移動ステージのθステージ17によりチャック10a,10bをθ方向へ回転して、基板1のθ方向の位置決めを行うので、チャック10a,10bのθ方向の傾きが精度良く検出され、基板1のθ方向の位置決めが精度良く行われる。
以上説明した本実施の形態によれば、チャック10a,10bを、XY方向へ移動及びθ方向へ回転する移動ステージに搭載し、複数のレーザー変位計42によりチャック10a,10bの変位を複数箇所で測定し、移動ステージのθ方向の角度に応じて、レーザー変位計42毎に予め決定した補正値により、各レーザー変位計42の測定値を補正し、補正した測定値から、チャック10a,10bのθ方向の傾きを検出し、検出したチャック10a,10bのθ方向の傾きに応じて、移動ステージによりチャック10a,10bをθ方向へ回転して、基板1のθ方向の位置決めを行うことにより、チャック10a,10bのθ方向の傾きを精度良く検出して、基板1のθ方向の位置決めを精度良く行うことができる。
さらに、θ方向の複数の異なる角度について、移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、各レーザー変位計42によりチャック10a,10bの変位を測定することにより、各レーザー変位計42により測定したチャック10a,10bの変位の測定値と、計算で求めたチャック10a,10bの変位の理論値とから、レーザー変位計42毎にθ方向の角度に応じた補正値を決定することができる。
本発明の露光装置又は露光方法を用いて基板の露光を行うことにより、露光時の基板のθ方向の位置決めを精度良く行うことができるので、パターンの焼付けを精度良く行って、高品質な基板を製造することができる。
例えば、図19は、液晶ディスプレイ装置のTFT基板の製造工程の一例を示すフローチャートである。薄膜形成工程(ステップ101)では、スパッタ法やプラズマ化学気相成長(CVD)法等により、基板上に液晶駆動用の透明電極となる導電体膜や絶縁体膜等の薄膜を形成する。レジスト塗布工程(ステップ102)では、ロール塗布法等により感光樹脂材料(フォトレジスト)を塗布して、薄膜形成工程(ステップ101)で形成した薄膜上にフォトレジスト膜を形成する。露光工程(ステップ103)では、プロキシミティ露光装置や投影露光装置等を用いて、マスクのパターンをフォトレジスト膜に転写する。現像工程(ステップ104)では、シャワー現像法等により現像液をフォトレジスト膜上に供給して、フォトレジスト膜の不要部分を除去する。エッチング工程(ステップ105)では、ウエットエッチングにより、薄膜形成工程(ステップ101)で形成した薄膜の内、フォトレジスト膜でマスクされていない部分を除去する。剥離工程(ステップ106)では、エッチング工程(ステップ105)でのマスクの役目を終えたフォトレジスト膜を、剥離液によって剥離する。これらの各工程の前又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。これらの工程を数回繰り返して、基板上にTFTアレイが形成される。
また、図20は、液晶ディスプレイ装置のカラーフィルタ基板の製造工程の一例を示すフローチャートである。ブラックマトリクス形成工程(ステップ201)では、レジスト塗布、露光、現像、エッチング、剥離等の処理により、基板上にブラックマトリクスを形成する。着色パターン形成工程(ステップ202)では、染色法、顔料分散法、印刷法、電着法等により、基板上に着色パターンを形成する。この工程を、R、G、Bの着色パターンについて繰り返す。保護膜形成工程(ステップ203)では、着色パターンの上に保護膜を形成し、透明電極膜形成工程(ステップ204)では、保護膜の上に透明電極膜を形成する。これらの各工程の前、途中又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。
図19に示したTFT基板の製造工程では、露光工程(ステップ103)において、図20に示したカラーフィルタ基板の製造工程では、ブラックマトリクス形成工程(ステップ201)の露光処理において、本発明のプロキシミティ露光装置及びプロキシミティ露光装置の基板位置決め方法を適用することができる。
本発明のレーザー変位計を用いた微小角度検出方法は、XY方向へ移動及びθ方向へ回転する移動ステージに搭載された被測定物の変位を、複数のレーザー変位計により複数箇所で測定し、測定した被測定物の変位に基づき、被測定物のθ方向の微小な傾きを検出するレーザー変位計を用いた微小角度検出方法であって、θ方向の複数の異なる角度について、移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、各レーザー変位計により被測定物の変位を測定し、各レーザー変位計により測定した被測定物の変位の測定値と、計算で求めた被測定物の変位の理論値とから、レーザー変位計毎にθ方向の角度に応じた補正値を予め決定し、移動ステージのθ方向の角度に応じて、レーザー変位計毎に予め決定した補正値により、各レーザー変位計の測定値を補正し、補正した測定値から、被測定物のθ方向の傾きを検出するものである。
θ方向の複数の異なる角度について、移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、各レーザー変位計により被測定物の変位を測定し、各レーザー変位計により測定した被測定物の変位の測定値と、計算で求めた被測定物の変位の理論値とから、レーザー変位計毎にθ方向の角度に応じた補正値を予め決定し、移動ステージのθ方向の角度に応じて、レーザー変位計毎に予め決定した補正値により、各レーザー変位計の測定値を補正することにより、被測定物の変位を、被測定物の微小な傾きに依存しないで精度良く検出することができる。そして、補正した測定値から、被測定物のθ方向の傾きを検出することにより、被測定物のθ方向の微小な傾きを精度良く検出することができる。
1 基板
2 マスク
10a,10b チャック
11 主ステージベース
11a,11b 副ステージベース
12 台
13 Xガイド
14 Xステージ
15 Yガイド
16 Yステージ
17 θステージ
19 チャック支持台
20 マスクホルダ
30 レーザー測長系制御装置
31a,31b レーザー光源
32a,32b,33 レーザー干渉計
34a,34b,35 バーミラー
36 アーム
40 レーザー変位計制御装置
42,43 レーザー変位計
44,45 バーミラー
46,47 アーム
48 ブロック
49 取り付け具
70 主制御装置
71,72 入出力インタフェース回路
80a,80b ステージ駆動回路

Claims (7)

  1. 基板を支持するチャックと、マスクを保持するマスクホルダとを備え、マスクと基板との間に微小なギャップを設けて、マスクのパターンを基板へ転写するプロキシミティ露光装置において、
    前記チャックを搭載して、XY方向へ移動及びθ方向へ回転する移動ステージと、
    前記チャックの変位を複数箇所で測定する複数の光学式変位計と、
    前記移動ステージを駆動するステージ駆動回路と、
    前記複数の光学式変位計の測定結果に基づき、前記チャックのθ方向の傾きを検出し、検出した前記チャックのθ方向の傾きに応じて、前記ステージ駆動回路を制御し、前記移動ステージにより前記チャックをθ方向へ回転させて、基板のθ方向の位置決めを行う制御手段とを備え、
    前記制御手段は、前記移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正し、補正した測定値から、前記チャックのθ方向の傾きを検出することを特徴とするプロキシミティ露光装置。
  2. 前記制御手段は、前記ステージ駆動回路を制御し、θ方向の複数の異なる角度について、前記移動ステージをθ方向へ回転させた状態でX方向又はY方向へ移動させ、各光学式変位計により測定した前記チャックの変位の測定値と、計算で求めた前記チャックの変位の理論値とから、光学式変位計毎にθ方向の角度に応じた補正値を決定することを特徴とする請求項1に記載のプロキシミティ露光装置。
  3. 基板を支持するチャックと、マスクを保持するマスクホルダとを備え、マスクと基板との間に微小なギャップを設けて、マスクのパターンを基板へ転写するプロキシミティ露光装置の基板位置決め方法であって、
    チャックを、XY方向へ移動及びθ方向へ回転する移動ステージに搭載し、
    複数の光学式変位計によりチャックの変位を複数箇所で測定し、
    移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正し、
    補正した測定値から、チャックのθ方向の傾きを検出し、
    検出したチャックのθ方向の傾きに応じて、移動ステージによりチャックをθ方向へ回転して、基板のθ方向の位置決めを行うことを特徴とするプロキシミティ露光装置の基板位置決め方法。
  4. θ方向の複数の異なる角度について、
    移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、
    各光学式変位計によりチャックの変位を測定し、
    各光学式変位計により測定したチャックの変位の測定値と、計算で求めたチャックの変位の理論値とから、光学式変位計毎にθ方向の角度に応じた補正値を決定することを特徴とする請求項3に記載のプロキシミティ露光装置の基板位置決め方法。
  5. 請求項1又は請求項2に記載のプロキシミティ露光装置を用いて基板の露光を行うことを特徴とする表示用パネル基板の製造方法。
  6. 請求項3又は請求項4に記載のプロキシミティ露光装置の基板位置決め方法を用いて基板を位置決めして、基板の露光を行うことを特徴とする表示用パネル基板の製造方法。
  7. XY方向へ移動及びθ方向へ回転する移動ステージに搭載された被測定物の変位を、複数の光学式変位計により複数箇所で測定し、測定した被測定物の変位に基づき、被測定物のθ方向の微小な傾きを検出する光学式変位計を用いた微小角度検出方法であって、
    θ方向の複数の異なる角度について、
    移動ステージをθ方向へ回転した状態でX方向又はY方向へ移動し、
    各光学式変位計により被測定物の変位を測定し、
    各光学式変位計により測定した被測定物の変位の測定値と、計算で求めた被測定物の変位の理論値とから、光学式変位計毎にθ方向の角度に応じた補正値を予め決定し、
    移動ステージのθ方向の角度に応じて、光学式変位計毎に予め決定した補正値により、各光学式変位計の測定値を補正し、
    補正した測定値から、被測定物のθ方向の傾きを検出することを特徴とする光学式変位計を用いた微小角度検出方法。
JP2010089660A 2010-04-08 2010-04-08 プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法、並びに光学式変位計を用いた微小角度検出方法 Expired - Fee Related JP5441800B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089660A JP5441800B2 (ja) 2010-04-08 2010-04-08 プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法、並びに光学式変位計を用いた微小角度検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089660A JP5441800B2 (ja) 2010-04-08 2010-04-08 プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法、並びに光学式変位計を用いた微小角度検出方法

Publications (2)

Publication Number Publication Date
JP2011221245A JP2011221245A (ja) 2011-11-04
JP5441800B2 true JP5441800B2 (ja) 2014-03-12

Family

ID=45038306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089660A Expired - Fee Related JP5441800B2 (ja) 2010-04-08 2010-04-08 プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法、並びに光学式変位計を用いた微小角度検出方法

Country Status (1)

Country Link
JP (1) JP5441800B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326170A (ja) * 2000-05-18 2001-11-22 Jeol Ltd ビーム処理装置における調整方法
JP3936546B2 (ja) * 2001-03-30 2007-06-27 株式会社日立ハイテクノロジーズ 露光装置及びその装置における基板位置決め方法並びにフラットディスプレイパネルの製造方法
JP4522142B2 (ja) * 2004-05-18 2010-08-11 株式会社日立ハイテクノロジーズ 露光装置、露光方法、及び基板製造方法
JP2008185946A (ja) * 2007-01-31 2008-08-14 Nsk Ltd 露光装置
JP4808676B2 (ja) * 2007-05-30 2011-11-02 株式会社日立ハイテクノロジーズ 露光装置、露光方法、及び表示用パネル基板の製造方法
JP4863948B2 (ja) * 2007-07-30 2012-01-25 株式会社日立ハイテクノロジーズ 露光装置、露光方法、及び表示用パネル基板の製造方法

Also Published As

Publication number Publication date
JP2011221245A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
JP4863948B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP4808676B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP5349093B2 (ja) プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法
JP2019086709A (ja) 露光システム、露光方法、及び表示用パネル基板の製造方法
JP4522142B2 (ja) 露光装置、露光方法、及び基板製造方法
JP5687165B2 (ja) プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法
JP5441800B2 (ja) プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法、並びに光学式変位計を用いた微小角度検出方法
JP5433524B2 (ja) 露光装置及び露光方法並びに表示用パネル基板製造装置及び表示用パネル基板の製造方法
JP2013195778A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP5305967B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2011007974A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2013205678A (ja) プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法
JP2012032666A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP5537063B2 (ja) プロキシミティ露光装置、プロキシミティ露光装置のギャップ制御方法、及び表示用パネル基板の製造方法
JP2008009012A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
US10036967B2 (en) Lithography apparatus, lithography method, and article manufacturing method
JP2012103584A (ja) プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法
JP2010276901A (ja) 露光装置、露光装置のチャック位置検出方法、及び表示用パネル基板の製造方法
JP2013064896A (ja) プロキシミティ露光装置、プロキシミティ露光装置の基板位置決め方法、及び表示用パネル基板の製造方法
JP2013054270A (ja) プロキシミティ露光装置、プロキシミティ露光装置のギャップ制御方法、及び表示用パネル基板の製造方法
JP2011123103A (ja) プロキシミティ露光装置、プロキシミティ露光装置のギャップ制御方法、及び表示用パネル基板の製造方法
JP5349163B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP5501273B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2013197568A (ja) 露光装置及び露光方法
JP2010102084A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees