JP5426952B2 - 像振れ補正装置及びその制御方法、光学機器、撮像装置 - Google Patents

像振れ補正装置及びその制御方法、光学機器、撮像装置 Download PDF

Info

Publication number
JP5426952B2
JP5426952B2 JP2009167272A JP2009167272A JP5426952B2 JP 5426952 B2 JP5426952 B2 JP 5426952B2 JP 2009167272 A JP2009167272 A JP 2009167272A JP 2009167272 A JP2009167272 A JP 2009167272A JP 5426952 B2 JP5426952 B2 JP 5426952B2
Authority
JP
Japan
Prior art keywords
focal length
blur correction
image blur
shake
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009167272A
Other languages
English (en)
Other versions
JP2011023988A5 (ja
JP2011023988A (ja
Inventor
義和 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009167272A priority Critical patent/JP5426952B2/ja
Publication of JP2011023988A publication Critical patent/JP2011023988A/ja
Publication of JP2011023988A5 publication Critical patent/JP2011023988A5/ja
Application granted granted Critical
Publication of JP5426952B2 publication Critical patent/JP5426952B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Description

本発明は、撮像装置において、撮影者の手ブレ等によって生ずる画像のブレを補正する技術に関するものである。
ビデオカメラ等の撮像装置により動画像を撮影する場合においては、撮像装置に加わる撮影者の手振れや動きなどが原因で、特にレンズを望遠側にズームしたときに画像にブレが生じることが問題となる。このような画像のブレを補正するために、撮像装置に加わる撮影者の手ブレを検出し、検出した手ブレ成分に基づきブレ補正を行う手ブレ補正機能を有する撮像装置が提案および実用化されている(特許文献1参照)。
特許文献1に記載の技術は、撮影者の意図的なパンニング操作又はチルティング操作も通常の手ブレと同じく補正してしまい、撮影画像が撮影者の意に反した鑑賞しづらいものとなることを改善するものである。具体的には、撮影者の意図的な操作であるパンニング又はチルティングが行われた場合には、パンニング又はチルティング判定結果とズーム倍率に基づきブレ補正性能に制限を施す。そして、特にズーム倍率が高倍時にはブレ補正性能に施す制限を更に強くして撮影者の意図したパンニング操作又はチルティング操作による撮影を可能としている。
特許第3424063号公報
しかしながら、特許文献1に記載の技術では、装置を大きく動かした場合のカメラワークを撮影者の意図的なパンニング操作又はチルティング操作と判断し、焦点距離がワイド側にある場合でもブレ補正性能に制限を加えていた。そのため、以下のような問題点があった。
例えば、撮像装置が大きく動くという点では歩行しながらの撮影が挙げられる。この場合のブレの周波数は1〜6[Hz]程度と通常のブレ周波数より低い成分であり、撮影者が意図的にパンニング操作又はチルティング操作した場合と同様にブレの振幅が大きくかつブレの周波数成分が低い。そのため、このようなブレは、パンニング又はチルティングと判定されてしまい、焦点距離がワイド側であってもブレ補正性能に制限がかかり、十分なブレ補正性能が得られずブレ残りが目立つこととなる。また、焦点距離によらずにある一定の補正角までの補正しかできない撮像装置であれば、焦点距離がテレ側と比べワイド側となるほどブレ補正を行える補正範囲が大きいにもかかわらず、利用できる補正範囲を有効に活用していないという問題もある。
従って、本発明は上述した課題に鑑みてなされたものであり、その目的は、像振れ補正装置において、振幅が大きく周波数が低いブレも極力補正できるようにすることである。
本発明に係わる像振れ補正装置は、焦点距離の変更が可能である撮影光学系に用いられる像振れ補正装置であって、振れを検出する振れ検出手段と、前記振れに起因する像振れを補正するための像振れ補正部材の移動を制御するための信号である像振れ補正制御信号を算出する算出手段と、前記撮影光学系の焦点距離を検出する焦点距離検出手段と、前記振れ検出手段によって検出された振れに対する、前記像振れ補正の追従性を変更する制御手段とを備え、前記制御手段は、前記振れの大きさが所定以上である場合、前記焦点距離が長いほど前記像振れ補正の追従性を下げるように制御し、前記振れの大きさが前記所定未満である場合、前記焦点距離の変更にかかわらず前記像振れ補正の追従性は一定であるように制御することを特徴とする。
本発明によれば、像振れ補正装置において、振幅が大きく周波数が低いブレも極力補正することが可能となる。
本発明の第1の実施形態に係わる撮像装置の構成を示すブロック図である。 レンズ位置と焦点距離の関係を示した図である。 第1の実施形態における撮像装置のマイコン内で実行される処理を示すフローチャートである。 HPFのカットオフ周波数のブレ補正制御信号に対する変化の割合の変更による特性を示した図である。 歩行時のブレ補正制御信号とパンチルト判定閾値を示した図である。 本発明の第2の実施形態における撮像装置のマイコン内で実行される処理を示すフローチャートである。 (a)は焦点距離とパンチルト判定閾値の変化を示した図であり、(b)はブレ補正制御量の大きさとパンチルト判定閾値の変化を示した図である。
(第1の実施形態)
図1は、本発明の第1の実施の形態に係わる手ブレ補正装置を搭載した撮像装置を示したブロック図である。図1において、101は撮像装置に加わる振れを振れ検出信号として検出する振れ検出センサであり、例として角速度センサ、102は振れ検出センサ101の出力から直流成分を除去するDCカットフィルタである。103はDCカットフィルタ102の出力を所定量増幅する増幅器である。また、104は増幅器103の出力に所定の信号処理を施すマイクロコンピュータ(以下、マイコン)であり、増幅器103の出力に所定の信号処理を施すことで、振れ検出信号を振れ補正に用いる振れ補正制御信号として出力する。111は被写体像を結像させるための撮影光学系である。撮影光学系111は、焦点距離を変更可能なレンズであり、撮影画角を変化させることが可能な変倍レンズ(以下、ズームレンズ)112と、撮像装置のブレ量を補正する補正光学系としてのブレ補正レンズ(以下、シフトレンズ)113とを備えている。114は撮影光学系111によって結像された被写体像を電気信号に変換する撮像素子である。なお、シフトレンズ113はブレ補正光学系を構成する。
次に、マイコン104内に構成される処理ブロックについて説明する。105は増幅器103の出力をアナログ信号からデジタル信号へ変換するA/D変換器である。106はA/D変換器105の出力に帯域制限を施す(低周波成分を除去する)カットオフ周波数可変の高域通過フィルタ(以下、HPF)である。107はHPF106の出力に積分処理を施す積分器である。108は積分器107の出力に焦点距離に基づいた補正を施す焦点距離補正演算器である。109は焦点距離補正演算器108の出力と後述する焦点距離検出器110の出力とから撮像装置がパンニング状態又はチルティング状態かを判定し、また、焦点距離情報を判定して、結果をHPF106に出力するパンチルト判定器である。110はズームレンズ112の位置から焦点距離を検出する焦点距離検出器である。
次に、上記のように構成される撮像装置の動作について説明する。振れ検出センサ101が撮像装置に加わる振れに基づいた振れ検出信号を出力する。本実施例においては振れ検出センサは角速度センサなので、振れ検出信号は角速度信号である。そして、振れ検出センサ101の出力からDCカットフィルタ102で直流成分を除去した後、増幅器103により所定量増幅する。つまり、振れ検出センサ101、DCカットフィルタ102、増幅器103の構成によって、振れ検出センサ101の振れ検出信号は所定の帯域制限と増幅が施された振れ検出信号として生成され、システムの制御を行うマイコン104に入力される。マイコン104に入力された振れ検出信号は、A/D変換器105にて振れ検出信号がアナログ信号からデジタル信号に変換された後、HPF106にて振れ検出信号のうち低域周波数成分が除去される。
次に、積分器107における積分演算によって角速度信号を角変位信号へと変換する。そして、次の焦点距離補正演算器108で撮影光学系111の焦点距離に基づいて補正が施される。ここで、積分器107の出力に焦点距離に基づいて補正が必要なのは、ブレ補正を行うシフトレンズ113が、ズームレンズ112の後群、即ちズームレンズ112よりも撮像素子側にあるためである。撮影光学系111の焦点距離情報は、ズームレンズ112の位置情報を焦点距離検出器110で取り込むことにより得られ、焦点距離補正演算器108に供給される。
ここで、レンズ位置と焦点距離の関係について図2を用いて説明する。図2は、ズームレンズ112のレンズ位置と焦点距離の関係を示した図であり、横軸にズームレンズの位置、縦軸に焦点距離をとっている。本実施形態の撮像装置では、ズームレンズ112の駆動にステッピングモータを採用しており、図2の横軸のレンズ位置は駆動パルス数に置換できる。そのため、駆動パルス数を読み取ることでレンズ位置に対応した焦点距離が検出できる。ズームモータとして、DCモータやリニアモータを採用している場合は、別途、位置検出用にエンコーダを設けることで焦点距離の検出が可能となる。
次に、マイコン104によって算出されたブレ補正制御信号は不図示のレンズ駆動回路を経由してシフトレンズ113を駆動制御する。シフトレンズ113をブレ補正制御信号に基づき駆動制御することで、撮像素子114には、ブレの補正された被写体像が撮影光学系111よって供給される。撮像素子114の出力は、不図示の後段の信号処理部で所定の処理が施されることになる。
マイコン104から出力されるブレ補正制御信号は、マイコン104内で、パンチルト判定器109にも供給される。パンチルト判定器109では、ブレ補正制御信号と焦点距離検出器110の出力である焦点距離とからパンチルト判定を行い、更に焦点距離の判定を行う。そして、両方の判定結果に基づきHPF106のブレ補正制御信号に対するカットオフ周波数を変化させる変化の割合(傾き)を変更するように動作する。
なお、本実施形態では、上記の振れ検出センサ101、DCカットフィルタ102、増幅器103、マイコン104内のA/D変換器105、HPF106、積分器107、焦点距離補正演算器108、パンチルト判定器109を2系統備えている。ただし、本実施例において2系統とするのは、撮像装置に加わる振れをピッチ方向とヨー方向の2方向から検出するためであるので、ロー方向の検出やその他特別な方向の検出のために、3系統以上備えていてもよい。ここでは、説明を分かりやすくするために、1系統のみ図示している。また、動作の説明についても1系統としている。
次に、マイコン104内で行われるブレ補正処理について、図3のフローチャートを用いて説明する。図3はマイコン104の全体の処理において垂直同期の周期毎に行われるルーチンを示している。処理が開始されるとまずステップS301にて振れ検出センサ101が撮像装置に加わる振れを検出し、その振れ検出信号をA/D変換器105がアナログ信号からデジタル信号に変換する。そして、次のステップS302にて前述のデジタルブレ検出信号の低域成分が除去されるように、HPF106によって所定の帯域制限を施すフィルタ演算がなされる。低域周波数成分を除去したら、ステップS303へ進む。
ステップS303では、積分器107は、所定の帯域制限が施された振れ検出信号を積分処理し、角変位信号を算出して、ステップS304へ進む。ステップS304では、撮影光学系111内のズームレンズ112から出力されるレンズ位置信号を焦点距離検出器110が取り込み、ステップS305へ進む。ステップS305では、ステップS303で算出された角変位信号にステップS304で取り込まれた焦点距離情報に基づく補正を施し、ブレ補正制御信号として出力して、ステップS306へ進む。
ステップS306では、ブレ補正制御信号の大きさからパンニング又はチルティング状態であるかどうかの判定を行っている。具体的には、ブレ補正制御信号の大きさが所定の閾値以上(ステップS306でyes)か否か(ステップS306でno)によって撮像装置がパンニング又はチルティング状態であるかどうかを判断している。ブレ補正制御信号の大きさが所定の閾値以上の場合(ステップS306でyes)は、ステップS307へ進み、ブレ補正制御信号の大きさが所定の閾値未満の場合(ステップS306でno)は、ステップS309へ進む。ステップS309へ進んだ場合は、通常の手ブレ補正の制御と同じ処理であり、マイコン104内で算出されたブレ補正制御信号をシフトレンズ113の駆動制御信号として出力して一連の処理を終了する。
ここで、10倍のズーム倍率を持つ撮影光学系で、テレ端焦点距離でのブレ補正角で0.3[deg]に相当する移動量である場合、同じ移動量ではワイド端焦点距離での補正角は10倍の3.0[deg]となることから明らかである。したがって、焦点距離がワイド側にある場合は、振れ補正が可能な角度が焦点距離がテレ側にある場合よりも大きい。そのため、ステップS307では、焦点距離がワイド側にある場合であるかを判定するために、焦点距離検出器110は、焦点距離が所定の焦点距離閾値以上(yes)か否(no)かを判定する。このステップS307では焦点距離閾値はワイド側に設定されている。ステップS307で焦点距離が所定の焦点閾値以上(望遠側)であれば(ステップS307でyes)、ステップS308へ進み、焦点距離が所定の閾値未満であれば(ステップS307でno)ステップS309へ進む。
次に、ステップS308での処理について説明する。ステップS308では、ブレ補正制御信号の大きさと所定の焦点距離閾値以上の焦点距離に対応したHPF106のブレ補正制御信号に対するカットオフ周波数の変化の割合(傾き)に設定し、ステップS309へ進む。
ブレ補正制御信号に対するカットオフ周波数変化の割合の設定は、具体的には、ブレ補正制御信号、焦点距離、カットオフ周波数の変化の割合1、カットオフ周波数の変化の割合2の4つのパラメータから決まる設定値をマイコン104内にデータテーブルとして格納したものから適宜選択することで行う。
ここで、パンチルト判定器109が、HPF106のブレ補正制御信号に対するカットオフ周波数の変化の割合を変更した状態を図4に示す。図4は、ブレ補正制御信号とHPF106のカットオフ周波数の変化の割合の関係を図示したものであり、横軸をブレ補正制御信号、縦軸をHPFのカットオフ周波数としている。図4において、401,402,403はブレ補正制御信号の変化と焦点距離の変化に基づいてHPF106のブレ補正制御信号に対するカットオフ周波数の変化の割合がどのように変更されているかを表している。401は焦点距離がワイド端近傍時の場合、402は焦点距離がミドル域の場合、403は焦点距離がテレ端時の場合である。HPF106のカットオフ周波数の変化の割合401,402,403は焦点距離に連動して連続的に変化するようになっている。また、パンチルト判定閾値である+PanTH1、+PanTH2、−PanTH1、−PanTH2は、HPF106のブレ補正制御信号に対するカットオフ周波数の変化の割合を変更する閾値である。
前述のブレ補正制御信号に対するカットオフ周波数の変化の割合の設定のパラメータのカットオフ周波数変化の変化の割合1は、+PanTH1から+PanTH2(−PanTH1から−PanTH2)までの変化の割合を、カットオフ周波数変化の変化の割合2は+PanTH2(−PanTH2)以上の変化の割合を示している。
図4から分かるように、撮影光学系111の焦点距離が望遠側にいくにつれて、ブレ補正制御信号に対するカットオフ周波数を高く設定し、低周波から比較的高い周波数の撮像装置の動きまでを、パンニング動作又はチルティング動作として扱う。そのため、望遠側では比較的高い周波数のブレに対してのみブレ補正制御が行われる。これに対し、広角側では、ブレ補正制御信号に対するカットオフ周波数を低く設定し、低い周波数のブレに対してもぶれ補正制御が行われるようにする。これにより、広角側でブレ補正可能範囲が広くなることに応じて、このブレ補正可能範囲を有効に利用することができる。
ここで、図3のフローチャートに戻り、説明を続ける。ステップS309では、マイコン104内で算出されたブレ補正制御信号をシフトレンズ113の駆動制御信号として出力して一連の処理を終了する。ステップS309にて出力されたブレ補正制御信号はシフトレンズ113を駆動し撮像装置のブレ補正機能を動作させる。
以上の動作によって、HPF106のブレ補正制御信号に対するカットオフ周波数の変化の割合変更が設定されることで、歩行しながらの撮影状態でもブレ補正が行われることについて図4、図5を用いて説明する。
図5は、撮影者がカメラを手持ちで歩行しながら撮影を行っているときの単位時間あたりのブレ補正制御信号の変化の一例を表した図である。図5において、横軸が時間、縦軸がブレ補正制御信号の大きさ、501はブレ補正制御信号である。また、縦軸の0は、カメラが停止している状態でのブレ補正制御信号でありカメラのブレの中心である。
単位時間あたり1周期の信号の増減の折り返し回数が2回で1[Hz]と言えることから、図5の501からはブレの周波数が約3[Hz]と読み取れ、通常の手ブレより低い周波数であることがわかる。そのため、積分演算によってブレ補正制御信号は大きく算出されることとなる。ブレ補正制御信号には、図4で設定されていたパンチルト判定閾値(+PanTH1、+PanTH2、−PanTH1、−PanTH2)がある。図5の501ように歩行時のブレ補正制御信号が設定されたパンチルト判定閾値を超える場合は、従来のブレ補正制御ではパンニング又はチルティングと判定され、HPF106のカットオフ周波数を変更して、低域信号に制限をかける。これに対して、本実施形態では、パンチルト判定器109がブレ補正制御信号の大きさと焦点距離とに基づきHPF106のブレ補正制御信号に対するカットオフ周波数の変化の割合を変更するようにしている(図4)。そのため、パンチルト判定後、焦点距離が所定の焦点距離閾値(fth)未満の場合は、HPF106のカットオフ周波数の変化の割合を変更しない。
これは、前述したように焦点距離がワイド側のほうがブレ補正の可能な補正角が大きいため、パンニング又はチルティング判定がされても、ブレ補正を行えるためである。また、ブレが大きい歩行しながらの撮影は、被写体像を画角内に捉えやすいワイド側の焦点距離で行うことが一般的である。
図4、図5から分かるように、ブレ補正制御信号が大きくなっても、焦点距離がワイド端近傍にあるときはHPF106のカットオフ周波数を変更しないのでパンチルト判定がされてもブレ補正は行われる。一方、所定の焦点距離閾値以上の焦点距離となった場合は、パンチルト判定がなされているので、ブレ補正制御信号の大きさと焦点距離に基づきHPF106のブレ補正制御信号に対するカットオフ周波数の変化の割合が変更されてパンニング又はチルティング制御に移行し、ブレ補正に制限がかかる。
以上説明したように、本実施形態では、ブレ補正制御信号の大きさと焦点距離とに基づいて、ブレ補正制御信号が大きくなるほどかつ焦点距離がワイド側となるほど、パンチルト判定器109の出力に基づいてHPF106のブレ補正制御信号に対するカットオフ周波数の変化の割合を小さくしている。更に、焦点距離が所定の焦点距離より短焦点距離となるワイド端近傍(広角端近傍)の場合には、パンチルト判定器109の出力に基づいてHPF106のカットオフ周波数を変化させないようにしている。そのため、歩行しながらの大きなブレのある撮影の場合でもブレ残りが低減された画像を撮影することが可能となる。また、焦点距離がワイド側となるほどブレ補正を行える範囲が大きくなることから、ブレ補正を行える範囲を有効に活用することが可能となった。
(第2の実施形態)
上記の第1の実施形態では、パンチルト判定器109が、撮像装置に加わるブレ補正制御信号の大きさと焦点距離とに基づいて、ブレ補正制御信号が大きくなるほどかつ焦点距離がワイド側となるほど、HPF106のブレ補正制御信号に対するカットオフ周波数の変化の割合を小さく変更していた。または、焦点距離が所定の焦点距離より短焦点距離となるワイド端近傍ではカットオフ周波数を変更しなかった。これに対し、第2の実施形態では、パンチルト判定器109が、装置のブレ補正制御信号の大きさと焦点距離とに基づいて、ブレ補正制御信号が大きくなるほどかつ焦点距離がワイド側となるほど、パンチルト判定閾値を大きくする。また、ブレ補正制御信号が大きくなるほどかつ焦点距離がテレ側となるほど、パンチルト判定閾値を小さくするようにして、パンニング又はチルティング判定を変更する。
第2の実施形態における撮像装置の構成は第1の実施形態と同様なのでその説明は省略する。次に、ブレ補正制御信号の大きさと焦点距離に基づき、パンチルト判定器109のパンチルト判定閾値を変更させるためにマイコン104内で実行される処理について図6のフローチャートを用いて説明する。第1の実施形態と同様の部分には同一の符号を付している。
図6はマイコン104の全体の処理において垂直同期の周期毎に行われるルーチンである。処理が開始されるとまずステップS301にて角速度信号を取り込み、A/D変換器105は、振れ検出信号をアナログ信号からデジタル信号に変換する。そして、次のステップS302にて、HPF106は前述の振れ検出信号の低域成分が除去されるように、所定の帯域制限を施すフィルタ演算がなされる(HPF106)。低域周波数成分を除去したら、ステップS303へ進む。
次に、ステップS303では、積分器107にて所定の帯域制限が施されたデジタルブレ検出信号を積分処理し、角変位信号を算出して(積分器107)、ステップS304へ進む。次に、ステップS304では、焦点距離検出器110は、撮影光学系111内のズームレンズ112から出力されるレンズ位置信号を取り込み(焦点距離検出器110)、ステップS305へ進む。次に、ステップS305では、ステップS303で算出された角変位信号にステップS304で取り込まれた焦点距離情報に基づく補正を施し、ブレ補正制御信号として出力して、ステップS306へ進む。
次に、ステップS306では、ブレ補正制御信号の大きさからパンニング又はチルティングの判定を行っている。ブレ補正制御信号の大きさが所定の閾値以上(ステップS306でyes)か否か(ステップS306でno)を判断している。ブレ補正制御信号の大きさが所定の閾値以上の場合(yes)は、ステップS601へ進み、ブレ補正制御信号の大きさが所定の閾値未満の場合(no)は、ステップS309へ進む。ステップS309へ進んだ場合は、通常の手ブレ補正の制御と同じ処理であり、マイコン104内で算出されたブレ補正制御信号をシフトレンズ113の駆動制御信号として出力して一連の処理を終了する。
次に、ステップS306でのパンチルト判定結果が、ブレ補正制御信号の大きさが所定のパンチルト判定閾値を超える場合について説明する。パンチルト判定結果が所定のパンチルト判定閾値を超えた場合は、ステップS601へ進み、焦点距離が所定の焦点距離閾値以下(yes)か否(no)かを判定している。これは、パンニング状態又はチルティング状態となっていても焦点距離がテレ側にある場合は、ブレ補正が可能な角度が、焦点距離がワイド側にある場合よりも小さいからである。したがって、ここでの所定の焦点距離閾値はテレ側に設定される。次に、ステップS601で焦点距離が所定の焦点閾値以下(ワイド側)であれば(ステップS601でyes)ステップS602へ進み、焦点距離が所定の閾値より大きければ(ステップS601でno)ステップS309へ進む。
次に、ステップS601でステップS602へ進んだ場合(ステップS601でyes)について説明する。ステップS602では、ブレ補正制御信号の大きさと所定の焦点距離閾値以下の焦点距離に対応したパンチルト判定器109のパンチルト判定閾値を設定し、ステップS309へ進む。パンチルト判定閾値の設定は、具体的には、ブレ補正制御信号、焦点距離、パンチルト判定閾値の3つのパラメータから決まる設定値をマイコン104内にデータテーブルとして格納したものから適宜選択することで行う。
次に、ステップS309では、マイコン104内で算出されたブレ補正制御信号をシフトレンズ113の駆動制御信号として出力して一連の処理を終了する。ステップS309にて出力されたブレ補正制御信号はシフトレンズ113を駆動し撮像装置のブレ補正機能を動作させる。
次に、焦点距離とパンチルト判定閾値の関係と、ブレ補正制御量の大きさとパンチルト判定閾値の関係を図7(a)、図7(b)に示す。図7(a)は、横軸に焦点距離、縦軸にパンチルト判定閾値をとっており、701が焦点距離におけるパンチルト判定閾値の変化を示している。図7(b)は、横軸にブレ補正制御信号の大きさ、縦軸にパンチルト判定閾値を取っており、702がブレ補正制御信号の大きさに対応するパンチルト判定閾値の変化を示している。
図7(a)、図7(b)の変化特性から、図5に示すような手持ち歩行での撮影を行っている状態で、振幅が大きくかつ低周波数のブレがカメラに加わった場合にも、焦点距離がワイド端近傍にあるときはパンチルト判定器109のパンチルト判定閾値が大きく設定されるのでパンチルト判定がされてもブレ補正は行われる。そして、所定の焦点距離閾値より大きい焦点距離となった場合は、パンチルト判定がなされているので、ブレ補正制御信号の大きさと焦点距離によってパンチルト判定器109のパンチルト判定閾値が小さく設定されパンニング又はチルティング制御に移行する。
以上説明したように、本実施形態では、ブレ補正制御信号の大きさと焦点距離とに基づいて、ブレ補正制御信号が大きくなるほどかつ焦点距離が所定の焦点閾値以下のワイド側となるほど、パンチルト判定器109のパンチルト判定閾値を大きく設定している。また、ブレ補正制御信号が大きくなるほどかつ焦点距離が所定の焦点閾値より大きいテレ側となるほど、パンチルト判定器109のパンチルト判定閾値を小さく設定するようにしている。これにより、歩行しながらの大きなブレのある撮影の場合でもブレ残りが低減された画像の撮影が可能となった。また、焦点距離がワイド側となるほどブレ補正を行える範囲が大きくなることから、ブレ補正を行える範囲を有効に活用することが可能となった。
以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。また、上述の実施形態の一部を適宜組み合わせてもよい。

Claims (7)

  1. 焦点距離の変更が可能である撮影光学系に用いられる像振れ補正装置であって、
    振れを検出する振れ検出手段と、
    前記振れに起因する像振れを補正するための像振れ補正部材の移動を制御するための信号である像振れ補正制御信号を算出する算出手段と、
    前記撮影光学系の焦点距離を検出する焦点距離検出手段と、
    前記振れ検出手段によって検出された振れに対する、前記像振れ補正の追従性を変更する制御手段とを備え、
    前記制御手段は、前記振れの大きさが所定以上である場合、前記焦点距離が長いほど前記像振れ補正の追従性を下げるように制御し、前記振れの大きさが前記所定未満である場合、前記焦点距離の変更にかかわらず前記像振れ補正の追従性は一定であるように制御することを特徴とする像振れ補正装置。
  2. 前記像振れ補正制御信号に含まれる低周波成分を除去する、カットオフ周波数可変である高域通過フィルタを更に備え
    前記制御手段は、前記振れの大きさが所定以上である場合、前記焦点距離が長いほど前記カットオフ周波数を上げるように制御し、前記振れの大きさが前記所定未満である場合、前記焦点距離の変更にかかわらず前記カットオフ周波数は一定であるように制御することを特徴とする請求項1に記載の像振れ補正装置。
  3. 前記制御手段は、前記焦点距離が所定の焦点距離より短くなる前記撮影光学系の広角端近傍においては、前記振れの大きさの変化にかかわらず前記高域通過フィルタのカットオフ周波数を変化させないことを特徴とする請求項2に記載の像振れ補正装置。
  4. 前記像振れ補正部材は、前記焦点距離によって移動可能な範囲が変化し、前記撮影光学系の広角端の方が前記撮影光学系の望遠端よりも前記移動可能な範囲が広いことを特徴とする請求項1ないし3の何れか1項に記載の像振れ補正装置。
  5. 請求項1乃至のいずれか1項に記載の像振れ補正装置を有することを特徴とする光学機器。
  6. 請求項1乃至のいずれか1項に記載の像振れ補正装置を有することを特徴とする撮像装置。
  7. 焦点距離の変更が可能である撮影光学系に用いられる像振れ補正装置の制御方法であって、
    振れを検出する振れ検出ステップと、
    前記振れに起因する像振れを補正するための像振れ補正部材の移動を制御するための信号である像振れ補正制御信号を算出する算出ステップと、
    前記撮影光学系の焦点距離を検出する焦点距離検出ステップと、
    前記振れ検出ステップによって検出された振れに対する、前記像振れ補正の追従性を変更する制御ステップとを備え、
    前記制御ステップにおいて、前記振れの大きさが所定以上である場合、前記焦点距離が長いほど前記像振れ補正の追従性を下げるように制御し、前記振れの大きさが前記所定未満である場合、前記焦点距離の変更にかかわらず前記像振れ補正の追従性は一定であるように制御することを特徴とする像振れ補正装置の制御方法。
JP2009167272A 2009-07-15 2009-07-15 像振れ補正装置及びその制御方法、光学機器、撮像装置 Active JP5426952B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167272A JP5426952B2 (ja) 2009-07-15 2009-07-15 像振れ補正装置及びその制御方法、光学機器、撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167272A JP5426952B2 (ja) 2009-07-15 2009-07-15 像振れ補正装置及びその制御方法、光学機器、撮像装置

Publications (3)

Publication Number Publication Date
JP2011023988A JP2011023988A (ja) 2011-02-03
JP2011023988A5 JP2011023988A5 (ja) 2012-08-09
JP5426952B2 true JP5426952B2 (ja) 2014-02-26

Family

ID=43633663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167272A Active JP5426952B2 (ja) 2009-07-15 2009-07-15 像振れ補正装置及びその制御方法、光学機器、撮像装置

Country Status (1)

Country Link
JP (1) JP5426952B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5848603B2 (ja) * 2011-12-27 2016-01-27 キヤノン株式会社 撮像装置及びその制御方法
JP6178573B2 (ja) * 2012-12-27 2017-08-09 キヤノン株式会社 像ブレ補正装置及びその制御方法、プログラム、記憶媒体
WO2015166713A1 (ja) * 2014-05-02 2015-11-05 富士フイルム株式会社 測距装置、測距法、及び測距プログラム
WO2016030926A1 (ja) * 2014-08-27 2016-03-03 株式会社ニコンビジョン 振れ補正装置および測距計
DE102017200320A1 (de) * 2017-01-11 2018-07-12 Sivantos Pte. Ltd. Verfahren zur Frequenzverzerrung eines Audiosignals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189654A (ja) * 2003-12-26 2005-07-14 Konica Minolta Photo Imaging Inc 手振れ補正機構を備えたカメラ
JP2009008929A (ja) * 2007-06-28 2009-01-15 Olympus Imaging Corp ブレ補正可能な撮像装置

Also Published As

Publication number Publication date
JP2011023988A (ja) 2011-02-03

Similar Documents

Publication Publication Date Title
US9264616B2 (en) Image capturing apparatus, method of controlling the same, and storage medium for correcting image blurring of a captured image
JP6214316B2 (ja) 像ブレ補正装置、レンズ装置、撮像装置、像ブレ補正装置の制御方法、プログラム、および、記憶媒体
US8150250B2 (en) Camera body and camera system including the same
JP5501119B2 (ja) 撮像装置およびその制御方法
EP2357790B1 (en) Image capturing apparatus and control method thereof
JP5409342B2 (ja) 撮像装置及びその制御方法
JP4072348B2 (ja) 振れ補正装置、撮像装置、振れ補正方法、振れ補正装置の制御プログラム、及び記憶媒体
JP6530602B2 (ja) 撮像装置及びその制御方法
JP6581352B2 (ja) 像振れ補正装置及びその制御方法、撮像装置、レンズ装置、プログラム、記憶媒体
WO2011086728A1 (ja) 撮像装置および画像振れ補正方法
US7557831B2 (en) Optical apparatus provided with image-shake correction function
JP2011137996A (ja) レンズ装置
JP5612917B2 (ja) 光学機器及びその制御方法
JP5426952B2 (ja) 像振れ補正装置及びその制御方法、光学機器、撮像装置
US8878947B2 (en) Image capturing apparatus and method of controlling image capturing apparatus
JP6039212B2 (ja) 像ブレ補正装置、撮像装置及び像ブレ補正装置の制御方法
JP2018072540A (ja) 画像処理装置、その画像処理方法および光学機器
JP2021033015A (ja) 像ブレ補正装置及びその制御方法、プログラム、記憶媒体
JP2012163852A (ja) ブレ補正装置及び光学機器
JP5744165B2 (ja) 撮像装置及びブレ補正装置、及びその制御方法
JP4258383B2 (ja) 撮像装置
JP6178573B2 (ja) 像ブレ補正装置及びその制御方法、プログラム、記憶媒体
JP4227213B2 (ja) 撮像装置
JPH11275431A (ja) 撮像装置
JP2024035336A (ja) 像ブレ補正の制御装置及び制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R151 Written notification of patent or utility model registration

Ref document number: 5426952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151