JP5401712B2 - 光電変換素子およびそれを用いた色素増感型太陽電池 - Google Patents
光電変換素子およびそれを用いた色素増感型太陽電池 Download PDFInfo
- Publication number
- JP5401712B2 JP5401712B2 JP2010268038A JP2010268038A JP5401712B2 JP 5401712 B2 JP5401712 B2 JP 5401712B2 JP 2010268038 A JP2010268038 A JP 2010268038A JP 2010268038 A JP2010268038 A JP 2010268038A JP 5401712 B2 JP5401712 B2 JP 5401712B2
- Authority
- JP
- Japan
- Prior art keywords
- dye
- layer
- photoelectric conversion
- electrolytic solution
- conversion element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
しかし、これらの太陽電池は、高温もしくは真空下で製造するために、プラントのコストが高く、エネルギーペイバックタイムが長いという欠点がある。
なかでも特に注目されるのは大気中で低コストの量産が可能な色素増感型太陽電池であり、特許文献1では、色素増感された多孔質半導体膜を用いる高効率の光電変換方法が提案されている。
色素増感型太陽電池は、固体接合型太陽電池における固体(半導体)‐固体(半導体)接合の代りに、固体(半導体)‐液体(電解液)接合を採用する湿式太陽電池である。色素増感型太陽電池は、エネルギー変換効率が11%という高い値まで達しており、電気エネルギーの供給源として有望である。
有機溶媒としては、一般に、非プロトン性極性溶媒(例、カーボネート化合物、鎖状エーテル類、多価アルコール類、ラクトン類、二トリル化合物、環状・鎖状スルホン化合物など)がイオン液体溶解性の観点から用いられている。
酸化還元対としては、ヨウ素とヨウ化物(I - /I 3 - )系、臭素と臭化物(Br - /Br 3 - )系、キノン/ハイドロキノン系、フェロシアン酸塩/フェリシアン酸塩、フェロセンとフェリシニウムイオン等の金属錯体などが挙げられている。ただし、エネルギー変換効率の観点から、実際に使用されている酸化還元対は、ヨウ素とヨウ化物(I - /I 3 - )系に限定されている。
代表的な電解質(イオン液体)は、第四級アンモニウム(ピリジニウムイオンやイミダゾリウムイオンのような環状イオンを含む)の塩(対イオンは、一般にヨウ化物イオン)である。
特許文献2は、何らかの構成要素が異なる複数の色素増感型太陽電池を組み合わせたモジュールを提案している(請求項1)。構成要素が異なる例は、電解質中のヨウ素濃度の違いが含まれる(請求項6、7)。さらにヨウ素濃度に関する予備実験として、固体状のイミダゾリウム塩と4−t−ブチルピリジンとを併用、あるいは液体イミダゾリウム塩と4−t−ブチルピリジンとを併用して、ヨウ素濃度0.01〜0.05Mの範囲で変化させた例が報告されている(段落番号0039〜0050)。実施例においては、ヨウ素濃度の低い方の太陽電池では0.02Mまたは0.03Mとのヨウ素濃度、ヨウ素濃度の高い方の太陽電池では0.05Mとのヨウ素濃度が採用されている(段落番号0057の表1)。その報告によると、ヨウ素を全く添加しないと、太陽電池として機能しないこと。ヨウ素添加量は0.04M乃至0.2Mが必要である。
本願発明は、このような事情のもとに、電解液へヨウ素とイオン液体を添加しなくても、高いエネルギー変換効率が得られ、かつ電池の劣化を起こしにくい電解質溶液およびそれを用いた光電変換素子並びにそれを用いた色素増感型太陽電池を提供することを目的としてなされたものである。
前記電解液層が下記一般式(1)に示す無機塩及び下記一般式(2)に示すベンゾイミダゾール化合物を溶質とし、
下記一般式(3)に示すグリコールエーテル及び/またはγブチロラクトンを溶媒とする電解液からなることを特徴とする光電変換素子である。
式(1)において、MはLi、Na、Kであり、XはIである。
式(2)において、R21,R22は炭素原子数1〜4のアルキル基、ベンジル基である。
式(3)において、R31,R32は水素または炭素原子数1〜2のアルキル基であり、nは2〜6の整数である。
式(5)において、R51,R52,及びR53は、水素または炭素原子数1〜4のアルキル基であり、XはIである。
本願発明の電解液は、基本的に、無機塩とベンゾイミダゾール化合物を溶質とし、グリコールエーテル及び/又は5員環環状エーテルを溶媒とするものであり、酸化還元対及びイオン液体を実質的に含まない。以下、電解液構成成分について説明する。
本願発明の電解液の溶媒としては、低粘度でイオン移動度が高いか、高誘電率で有効キャリアー濃度を高めることができるか、あるいはその両方であるために優れたイオン伝導性を発現できるものが好ましい。多孔質半導体微粒子層に色素を吸着して得られる色素増感半導体薄膜層を光電極とするため、多孔質半導体微粒子層への浸透性が光電変換効率を向上するために必要だからである。また、電解液量を保持するために高沸点であること、特に沸点が200℃以上であることが好ましい。さらに、溶質として用いる無機塩とベンゾイミダゾール化合物の混合物の溶解性の観点から、非プロトン性極性溶媒であることも好ましい。
本願発明の電解液の溶質としては、前記一般式(1)に示す無機塩と前記一般式(2)に示すベンゾイミダゾール化合物の混合物を用いる。さらには前記一般式(5)のイミダゾリウム塩を加えることもできる。本発明は無機塩及び/またはイミダゾリウム塩とベンゾイミダゾール化合物との相乗効果で高い発電効率が得られるものであり、それぞれの単独使用では本発明のような高い発電効率は達成できない。
本願発明の電解液では、三ヨウ素化物イオン(I 3 - )濃度が0mol/L(イオン液体中の不純物として混入する場合を除き、含まれないことを意味する。)であることが、耐久性の観点から好ましい。ただし、0.05mol/L(電解液が三ヨウ化物イオン(I 3 - )の形成により着色され、光エネルギー変換効率が低下せず、ヨウ素の酸化腐食反応によって、電池の劣化が進みにくい濃度)以下まで添加してもよい。
電解液は、さらに他の成分を含むことができる。他の成分の例には、(イソ)チオシアン酸イオン、後述する一般式(6)で表わされるグアニジウムイオンが含まれる。
脂肪族基よりも水素原子の方が好ましい。すなわち、無置換のグアニジウムイオンが最も好ましい。
電解液の調製において、グアニジウムイオンは塩として添加することが好ましい。塩の対イオンは、ヨウ化物イオンまたはイソチオシアン酸イオンが好ましく、イソチオシアン酸イオンがさらに好ましい。
図1は、本願発明の色素増感型光電変換素子の構造例を示す断面図である。色素増感型光電変換素子は、光電極層1、電解液層2および対向電極層3をこの順で有する積層構造からなる。
本願発明において、電解液層2は、グリコールエーテルとγ―ブチロラクトンのいずれかまたは双方を含む溶媒中に、無機塩及びベンゾイミダゾール化合物が溶解している電解液からなる。本願発明の電解液組成では、ヨウ素、あるいはヨウ素が会合した三ヨウ化物イオン(I3 -)や五ヨウ化物イオン(I5 -)は必要がなく。添加するとしても、その量を削減でき、電解液の透明性を高くすることができ、ヨウ素会合体による着色、ヨウ素の酸化腐食反応による電池の劣化進行を抑えることができる。また、光エネルギー変換効率も低下しない。
光電極層1は、光電極基板と色素増感多孔質半導体粒子層からなる。光電極基板は、透明基板11と透明導電層12とからなり、色素増感多孔質半導体粒子層は色素15により増感された半導体粒子14からなる。図1に示す色素増感型光電変換素子では、色素増感多孔質半導体層の多孔膜内(空孔)が、電解液層2を構成している電解液により充填されている。
対向電極層3は、透明基板31と透明導電層32とからなる。
電解液層2および透明導電層(12および32)の透明性を高くすることができる。このため、本願発明の色素増感型光電変換素子では、光電極層1側から入射する光41と対向電極層3側から入射する光42の双方を利用して、高い光電変換効率で電流5を発電することができる。
以下、光電極層、電解液層、そして、対向電極層の順序で説明する。
光電極層は、光電極基板および色素増感多孔質半導体微粒子層からなることが好ましい。光電極基板は、透明基板上に透明導電層を有する。
半導体粒子層を担持する透明導電性基板は、ガラス板やポリマーフィルムが好ましく、ガラス板よりも屈曲性があるポリマーフィルムである方がより好ましい。
ポリマーフィルム材料としては、無着色で透明性が高く、耐熱性が高く、耐薬品性ならびにガス遮断性に優れ、かつ低コストの材料が好ましく選ばれる。
この観点から、好ましい材料としては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルホン(PSF)、ポリエステルスルホン(PES)、ポリエーテルイミド(PEI)、透明ポリイミド(PI)などが用いられる。
これらのなかでも化学的安定性とコストの点で特に好ましいものは、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)であり、もっとも好ましいものはポリエチレンナフタレート(PEN)である。
この中で高い光学的透明性をもつ点で導電性金属酸化物が好ましく、インジウム‐スズ複合酸化物(ITO)、酸化亜鉛、インジウム‐亜鉛酸化物(IZO)が特に好ましい。
最も好ましいものは、耐熱性と化学安定性に優れるインジウム‐亜鉛酸化物(IZO)である。
低い表面抵抗値を達成するためには、金属を用いることが好ましい。金属は、透明でないという問題は、金属メッシュ構造からなる透明導電性層を形成することにより解決でき、金属がヨウ素により腐食されるという問題は、本願発明に従い、電解液中のヨウ素をなくすか、あるいはその含有量を削減することにより解決できる。
透明基板上に透明電極層を設けた光電極基板の光透過率(測定波長:500nm)は、60%以上が好ましく、75%以上であることがさらに好ましく、80%以上が最も好ましい。
このような補助リードは、低抵抗の金属材料(例、銅、銀、アルミニウム、白金、金、チタン、ニッケル)によって形成される。
補助リードがパターニングされた透明導電層において、補助リードを含めた表面の抵抗値は好ましくは1Ω/□以下に制御することが好ましい。このような補助リードのパターンは透明基板に蒸着、スパッタリングなどにより形成し、さらにその上に酸化スズ、ITO膜、IZO膜などからなる透明導電層を設けるのが好ましい。
本願発明の多孔質半導体微粒子層は、ナノサイズの細孔が内部に網目状に形成されたいわゆるメソポーラスな半導体膜からなっている。
多孔質半導体微粒子層を形成する半導体微粒子としては、金属の酸化物及び金属カルコゲニドを使用することができる。
金属酸化物及び金属カルコゲニドを構成する金属元素としては、例えば、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ストロンチウム、インジウム、セリウム、バナジウム、ニオブ、タンタル、カドミウム、亜鉛、鉛、アンチモン、ビスマス、カドミウム、鉛などが挙げられる。
TiO2、ZnO、SnO2、WO3、Nb2O3が好ましく、チタン酸化物、亜鉛酸化物、スズ酸化物およびこれらの複合体がさらに好ましく、二酸化チタンが最も好ましい。
これらの半導体粒子の一次粒子は、平均粒径が2nm以上80nm以下であることが好ましく、10nm以上60nm以下がさらに好ましく、2nm以上30nm以下が最も好ましい。
本願発明の光電変換素子において、上記の半導体粒子によって作られる多孔質半導体粒子層は、色素によって増感されているので色素を多孔質膜の表面に吸着分子として持っている。
多孔質半導体粒子層は、2種類以上の微粒子群を含むことができる。2種以上の微粒子群は、例えば、粒径分布が異なるものであることができる。粒径分布が異なる2種類以上の微粒子群を含む場合、最も小さい粒子群の平均サイズは20nm以下が好ましい。
この超微粒子に対して、光散乱により光吸収を高める目的で、平均粒径が200nmを越える大きな粒子を、質量割合として5乃至30質量%の割合で添加することが好ましい。
このような低温製膜は、例えば、プレス法、水熱分解法、泳動電着法、バインダーフリーコーティング法により行うことができる。バインダーフリーコーティング法は、ポリマーなどのバインダー材料を用いないで、粒子分散液をコーティングして作製する方法である。
ここで、バインダーを実質的にほとんど含まないこととは、ペーストの組成において、半導体を除く固形分でありバインダー材料を含める固形分が、半導体の全量に対して占める含量が1%以下であることを意味する。
バインダーフリーコーティング法においては、半導体粒子分散ペーストをプラスチック基板などにコーティングしたあとに、150℃乃至200℃の条件で加熱し乾燥することによって、多孔質半導体粒子層を形成する。
多孔質半導体粒子層の増感に用いる色素分子としては、電気化学の分野で色素分子を用いる半導体電極の分光増感にこれまで用いられてきた各種の有機系、金属錯体系の増感材料が用いられる。
また、光電変換の波長領域をできるだけ広くし、かつ、変換効率を上げるために、二種類以上の色素を混合して用いてもよく、光源の波長域と強度分布に合わせて、混合する色素とその混合割合を選択してもよい。
そのほか「機能材料」、2003年6月号、第5〜18ページに記載されている合成色素と天然色素や、「ジャーナル・オブ・ケミカル・フィジックス(J.Chem.Phys.)」、B.第107巻、第597ページ(2003年)に記載されるクマリンを中心とする有機色素を用いることもできる。
半導体微粒子に色素を吸着させるためは、色素の溶液中によく乾燥した半導体微粒子層を有する導電性支持体を浸漬する方法、或いは色素の溶液を半導体微粒子層に塗布する方法を用いることができる。
前者の方法では、浸漬法、ローラ法、エアーナイフ法等が使用可能である。
なお、浸漬法の場合、色素の吸着は室温で行ってもよいし、特開平7‐249790号公報に記載されているように加熱還流して行ってもよい。
また、後者の方法では、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、スプレー法等の塗布方法や、凸版、オフセット、グラビア、スクリーン印刷等の印刷方法が利用できる。
量産化の観点からは、塗布後の色素吸着に要する時間をなるべく短くすることが好ましい。
また、色素の吸着量を増大させるために吸着前に加熱処理を施すのが好ましい。
加熱処理の後に半導体微粒子表面に水が吸着するのを抑制するために、常温に戻さず40〜80℃で素早く色素を吸着させるのが好ましい。
また、色素の半導体微粒子に対する吸着量は、十分な増感効果を得るためには半導体微粒子1g当たり0.01〜1mmolであるのが好ましい。
色素の吸着量が少なすぎると増感効果が不十分となり、また多すぎると色素が浮遊しやすく、増感効果を低減させる原因となる。
共吸着させる疎水性化合物としてはカルボキシル基を有するステロイド化合物(例えばケノデオキシコール酸)等が挙げられる。また、紫外線吸収剤を併用してもよい。
電解液層は色素の酸化体に電子を補充する機能を有する層である。電解液層に前記本願発明の電解液を用いる。
光電極層は、その多孔構造中の空孔が電解液により充填されていることが好ましい。具体的に、光電極層が有する空孔が電解液によって充填されている割合は、20体積%以上が好ましく、50体積%以上がさらに好ましい。
電解液層の厚さは、例えば、光電極層と対向電極層との間に設けるスペーサーの大きさによって調整できる。電解液が光電極の外側で単独で存在する部分の厚さは、1μm乃至30μmが好ましく、1μm乃至10μmがより好ましく、1μm乃至5μmがさらに好ましく、1μm乃至2μmが最も好ましい。
ここで、電解液層の厚さ(半導体粒子層を含まない)は0.001〜200μmであるのが好ましく、0.1〜100μmであるのが更に好ましく、0.1〜50μmであるのが特に好ましい。
電解液層が0.001μmより薄いと光電極層の半導体微粒子が対向電極層の透明導電層に接触するおそれがあり、また200μmより厚いと電荷の移動距離が大きくなりすぎ、素子の抵抗が大きくなる。なお、電解液層の厚さ(実質的に電解液を含む層の厚さ)は0.1〜300μmであるのが好ましく、1〜130μmであるのが更に好ましく、2〜75μmであるのが特に好ましい。
また、対向電極にヨウ素等を塗布又は蒸着し、光電変換素子を組み立てたときに電解液層中に導入することも可能である。
なお、電解液層中の水分は10,000ppm以下であるのが好ましく、更に好ましくは2,000ppm以下であり、特に好ましくは100ppm以下である。
対向電極は光電変換素子を光化学電池としたときに正極として作用するものである。
対向電極は、透明基板および透明導電層からなることが好ましい。
透明基板および透明導電層の詳細は、光電極層の透明基板および透明導電層と同様である。
電極として作用する光電極層及び対向電極層の一方又は両方に、保護層、反射防止層等の機能性層を設けてもよい。
このような機能性層を多層に形成する場合、同時多層塗布法や逐次塗布法が利用できる。生産性の観点からは同時多層塗布法が好ましい。同時多層塗布法では、生産性及び塗膜の均一性の観点からスライドホッパー法やエクストルージョン法が好ましい。
機能性層の形成には、光電極層及び対向電極層の材質に応じて蒸着法や貼り付け法等を用いることができる。
このセパレータ層は、色素増感多孔質半導体フィルム電極と対向電極との間に挿入し、フレキシブルな電極である両極が物理的に接触することを防止することを目的とする。
表1に示す(実施例1−1〜1−18)、(比較例1−1〜1−5)において、各電解液溶媒10mLを50mLビーカーに入れた後、各ハロゲン化物を表1に示した濃度になるように電解液溶媒に添加した。次いで、超音波洗浄機により振動攪拌を1時間行い、ヨウ素を含まない電解液を調製した。
また、表1に示す(実施例2−1〜2−2)においては、各電解液溶媒10mLを50mLのビーカーに入れた後、各ハロゲン化物を濃度が0.4mol/Lになるように電解液溶媒に添加した。さらに、濃度が0.05mol/Lになるようにヨウ素を添加した。次いで、超音波洗浄機により振動攪拌を1時間行い、ヨウ素を含む電解液を調製した。
ルテニウム錯体色素(N719、ソラロニクス社製)7.2mgを20mLのメスフラスコに入れた。tert−ブタノー10mLを混合し、攪拌した。その後、アセトニトリル8mLを加え、メスフラシコに栓をした後、超音波洗浄器による振動により、60分間攪拌した。溶液を常温に保ちながら、アセトニトリルを加え、全量を20mLとした。
透明導電膜として、インジウム−スズ酸化物(ITO)をコートしたポリエチレンナフタレートフィルム(ITO−PENフィルム、フィルム厚み200μm、シート抵抗15Ω/sq)を20cm×10cmにカットし、メタノールでITO面を洗浄後、ITO面を表にして、平滑なガラス台の上に真空ポンプを使って固定した。
ポリマー成分を含まないバインダーフリー酸化チタンペースト(PECC−C01−06、ペクセル・テクノロジーズ(株)製)をベーカー式アプリケータを用いて、塗布厚み150μmで塗布した。ペーストを常温で10分間乾燥させた後、150℃のホットプレート上で、さらに5分間加熱乾燥して、酸化チタンナノ多孔膜フィルムを作製した。
酸化チタン膜フィルムを放冷後、1.5×2.0cmのサイズにカットした。さらに、カットしたフィルムの短辺(1.5cmの辺)の一方から、2mm内側より、酸化チタン膜を直径6mmの円となるように爪楊枝で削り、電極を作製した。
この酸化チタン電極を、再度、110℃にて10分間加熱乾燥した後、上記のように調製した0.4mMのN719色素液に浸けた。このとき、充分な色素吸着を行うため、色素溶液は、電極一枚当たり、2mL以上を目安とした。
色素溶液を40℃に保ちながら、軽く攪拌しながら、色素を吸着させた。2時間後、シャーレから色素吸着済み酸化チタン膜を取り出し、アセトニトリル溶液にて洗浄して乾燥させた。
ガラス基板に塩化白金酸の水溶液をスプレーで塗布した。乾燥後、400℃で20分間熱分解処理を行い、平均厚みが約5nmの白金膜を形成した。このようにして、光透過率が72%の対極用ガラス基板が得られた。
色素吸着した半導体層をITO‐PENフィルムから掻き落として、受光面積40cm2(5cm×8cm)の長方形の受光層を形成した。
この電極に対して、対向電極の透明型銀パターン化ITO‐PETフィルムもしくは不透明型の白金蒸着ITO‐PETフィルムを、上記のセパレータフィルムを挿入して重ね合わせ、セパレータフィルムが挿入された間隙に毛管効果によって50℃のもとで電解液を注液した。
電解液として、表1の実施例及び比較例に記載した組成からなる電解液を用いた。
このように作製したサンドイッチ型のフィルム電池のエッジ部にエポキシ系の熱効果型シール材を注入し、110℃で20分間硬化処理を行った。
このようにして組み立てた名刺サイズのフィルム型光電池は厚さが380μm、重さが2.2gとなった。
光源として、150Wキセノンランプ光源にAM1.5Gフィルタを装着した擬似太陽光照射装置(PEC−L11型、ペクセル・テクノロジーズ(株)製)光源を用いた。光量は、1sun(AM1.5G、100mWcm-2(JIS−C−8912のクラスA))に調整した。作製した色素増感型太陽電池をソースメータ(2400型ソースメータ、Keithley社製)に接続した。
電流電圧特性は、1sunの光照射下、バイアス電圧を、0Vから0.8Vまで、0.01V単位で変化させながら出力電流を測定した。出力電流の測定は、各電圧ステップにおいて、電圧を変化後、0.05秒後から0.15秒後の値を積算することで行った。バイアス電圧を、逆方向に0.8V〜0Vまでステップさせる測定も行い、順方向と逆方向の測定の平均値を、光電流とした。
これにより求められた上記の各種素子の初期エネルギー変換効率(η)を表1に示す。
初期エネルギー変換効率を測定した各種素子を環境加速試験機(ペクセル・テクノロジーズ(株)製)を用いて、1sunの光量下に評価サンプルをセットし、60℃,30%RHの温湿度下で1ヶ月間耐久性試験を行った。耐久性試験後の各素子のエネルギー変換効率を、上記と同一方法で測定した。下記式(1)により算出した耐久性試験後の性能保持率(%)を表1に示す。
(式1) 耐久性試験後の性能保持率(%)=(初期変換効率/耐久性試験後変換効率)×100
11 透明基板
12 透明電極層
14 半導体粒子
15 増感色素
2 電解液層
3 対向電極層
31 透明基板
32 透明導電層
41 光電極層側の入射光
42 対向電極側の入射光
5 電流
Claims (5)
- 導電性支持体上に、色素増感された半導体粒子からなる半導体電極層、電解液層および対向電極をこの順で有する色素増感型太陽電池または光電変換素子において、
前記電解液層が下記一般式(1)に示す無機塩及び下記一般式(2)に示すベンゾイミダゾール化合物を溶質とし、
下記一般式(3)に示すグリコールエーテル及び/またはγブチロラクトンを溶媒とする電解液からなることを特徴とする光電変換素子。
式(1)において、MはLi、Na、Kであり、XはIである。
式(2)において、R21,R22は炭素原子数1〜4のアルキル基、ベンジル基である。
式(3)において、R31,R32は水素または炭素原子数1〜2のアルキル基であり、nは2〜6の整数である。
- 前記電解液層が前記一般式(1)に示す無機塩と前記一般式(2)に示すベンゾイミダゾール化合物と下記一般式(5)に示すイミダゾリウム塩とを溶質とする電解液からなることを特徴とする請求項1に記載した光電変換素子。
式(5)において、R51,R52,及びR53は、水素または炭素原子数1〜4のアルキル基であり、XはIである。 - 前記一般式(3)で示すグリコールエーテルが、ジアルキルグリコールエーテルであることを特徴とする請求項1または2のいずれかに記載の光電変換素子。
- 前記電解液中の三ヨウ化物イオン濃度が0〜0.05mol/Lであることを特徴とする請求項1乃至3のいずれかに記載の光電変換素子。
- 請求項1乃至4のいずれかに記載した光電変換素子を用いた色素増感型太陽電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010268038A JP5401712B2 (ja) | 2010-06-23 | 2010-12-01 | 光電変換素子およびそれを用いた色素増感型太陽電池 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010142802 | 2010-06-23 | ||
JP2010142802 | 2010-06-23 | ||
JP2010268038A JP5401712B2 (ja) | 2010-06-23 | 2010-12-01 | 光電変換素子およびそれを用いた色素増感型太陽電池 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012028298A JP2012028298A (ja) | 2012-02-09 |
JP2012028298A5 JP2012028298A5 (ja) | 2013-06-20 |
JP5401712B2 true JP5401712B2 (ja) | 2014-01-29 |
Family
ID=45780962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010268038A Active JP5401712B2 (ja) | 2010-06-23 | 2010-12-01 | 光電変換素子およびそれを用いた色素増感型太陽電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5401712B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013258029A (ja) * | 2012-06-12 | 2013-12-26 | Osaka Gas Co Ltd | 電解液及び光電変換素子 |
JP6076539B2 (ja) * | 2014-08-28 | 2017-02-08 | 株式会社フジクラ | 色素増感太陽電池素子用電解質、及び、これを用いた色素増感太陽電池素子 |
JP5791770B1 (ja) * | 2014-08-28 | 2015-10-07 | 株式会社フジクラ | 色素増感太陽電池素子用電解質、及び、これを用いた色素増感太陽電池素子 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5189870B2 (ja) * | 2008-03-21 | 2013-04-24 | 株式会社豊田中央研究所 | 電解液及び色素増感型太陽電池 |
WO2009128451A1 (ja) * | 2008-04-18 | 2009-10-22 | 日本電気硝子株式会社 | 色素増感型太陽電池用ガラス組成物および色素増感型太陽電池用材料 |
EP2276103A4 (en) * | 2008-05-02 | 2013-04-17 | Peccell Technologies Inc | Dye-sensitized photoelectric conversion element |
JP5547990B2 (ja) * | 2010-03-02 | 2014-07-16 | ペクセル・テクノロジーズ株式会社 | 光電変換素子およびそれを用いた色素増感型太陽電池 |
JP2011192452A (ja) * | 2010-03-12 | 2011-09-29 | Peccell Technologies Inc | 光電変換素子およびそれを用いた色素増感型太陽電池 |
JP2011258539A (ja) * | 2010-05-12 | 2011-12-22 | Peccell Technologies Inc | 光電変換素子およびそれを用いた色素増感型太陽電池 |
-
2010
- 2010-12-01 JP JP2010268038A patent/JP5401712B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012028298A (ja) | 2012-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11185836A (ja) | 光電変換素子および光再生型光電気化学電池 | |
JP2007073505A (ja) | 光電変換素子 | |
JP2007227087A (ja) | 色素増感型光電変換素子 | |
JPWO2009116511A1 (ja) | 光増感素子及びそれを用いた太陽電池 | |
US10014122B2 (en) | Photoelectric conversion element and photoelectric conversion element module | |
JP5096064B2 (ja) | 色素増感型太陽電池モジュール | |
JP2012156096A (ja) | 光電変換素子およびそれを用いた色素増感型太陽電池 | |
JP4247820B2 (ja) | 光電変換素子の作製方法及び光電変換素子 | |
JP5401712B2 (ja) | 光電変換素子およびそれを用いた色素増感型太陽電池 | |
JP4356865B2 (ja) | 金属−金属酸化物複合電極の作製方法、光電変換素子及び光電池 | |
JP5467237B2 (ja) | 色素増感型光電変換素子およびそれを用いた色素増感型太陽電池の製造方法 | |
JP5547990B2 (ja) | 光電変換素子およびそれを用いた色素増感型太陽電池 | |
JP2011192452A (ja) | 光電変換素子およびそれを用いた色素増感型太陽電池 | |
JP2014186995A (ja) | 透明色素増感太陽電池および色素増感太陽電池モジュール | |
JP5343242B2 (ja) | 光電変換素子の作製方法、光電変換素子及び光電池 | |
JP2004238213A (ja) | 酸化チタン粒子の製造方法、及びそれを用いた光電変換素子 | |
JP2011258539A (ja) | 光電変換素子およびそれを用いた色素増感型太陽電池 | |
JP4537693B2 (ja) | 色素増感太陽電池 | |
JP2015028857A (ja) | 色素増感型光電変換素子およびそれを用いた色素増感型太陽電池の製造方法 | |
JP2012119181A (ja) | 光電変換素子およびそれを用いた色素増感型太陽電池 | |
JP2004127579A (ja) | 金属−金属酸化物複合電極の作製方法、光電変換素子及び光電池 | |
JP7413699B2 (ja) | 色素増感型太陽電池および太陽電池モジュール | |
JP5591156B2 (ja) | 電解液及び光電変換素子 | |
CN108231422B (zh) | 光电转换元件和具有该光电转换元件的电子部件 | |
JP6415380B2 (ja) | 光電変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130501 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130501 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20130501 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20130604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131008 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5401712 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |