JP5397942B2 - Satch-decomposing microbe-encapsulating microcapsules, lawn conservation method using the same, and method for producing the microcapsules - Google Patents

Satch-decomposing microbe-encapsulating microcapsules, lawn conservation method using the same, and method for producing the microcapsules Download PDF

Info

Publication number
JP5397942B2
JP5397942B2 JP2009237984A JP2009237984A JP5397942B2 JP 5397942 B2 JP5397942 B2 JP 5397942B2 JP 2009237984 A JP2009237984 A JP 2009237984A JP 2009237984 A JP2009237984 A JP 2009237984A JP 5397942 B2 JP5397942 B2 JP 5397942B2
Authority
JP
Japan
Prior art keywords
satch
microcapsules
bacteria
degrading
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009237984A
Other languages
Japanese (ja)
Other versions
JP2011083222A (en
Inventor
昌弘 吉田
泰雄 幡手
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2009237984A priority Critical patent/JP5397942B2/en
Publication of JP2011083222A publication Critical patent/JP2011083222A/en
Application granted granted Critical
Publication of JP5397942B2 publication Critical patent/JP5397942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Description

本発明は、芝生地に堆積するサッチを分解除去するのに好適なサッチ分解菌内包マイクロカプセルと、このマイクロカプセルを用いた芝生地の保全方法、及び該マイクロカプセルの製造方法に関する。   TECHNICAL FIELD The present invention relates to a satch-decomposing bacteria-encapsulating microcapsule suitable for decomposing and removing a satch deposited on a lawn, a method for preserving a lawn using the microcapsule, and a method for producing the microcapsule.

一般的に、ゴルフ場のグリーン、サッカーや野球、競馬等の競技場、庭園等の芝生地では、芝丈を揃えるために定期的に芝刈りを行うが、その際に発生する刈りかすが芝草の間に蓄積してサッチ(thatch) を生じる。このサッチは芝草の前記刈りかすや枯れた葉、茎、根等の堆積層であるが、その堆積が多くなると、土中や芝草の根に対して空気や水が浸透しにくくなると共に、散布した肥料や農薬がサッチに吸収されて効きにくくなり、また病原菌や害虫の繁殖や腐敗による有毒ガスの発生を招き易く、芝草の生育不良や枯死の要因になる。従って、芝生地を健全に保つための手入れとして、サッチの堆積が多くなる前に除去する必要がある。   Generally, lawn mowers are regularly used to keep the lawn height in the green of golf courses, stadiums such as soccer, baseball and horse races, and lawns such as gardens. Accumulate in between to produce a thatch. This thatch is a pile of turfgrass, dead leaves, stems, roots, etc., but as the accumulation increases, it becomes difficult for air and water to penetrate into the soil and the roots of turfgrass. Fertilizers and pesticides are absorbed by the satch and become less effective, and toxic gas is easily generated due to the propagation and decay of pathogenic bacteria and pests, causing turfgrass growth failure and death. Therefore, it is necessary to remove it before the accumulation of thatch increases as a care for keeping the grassland healthy.

従来、サッチの除去手段として、ゴルフ場や競技場等の広い芝生地ではバーチカルモアと称される自走式又は牽引式の機械のブレードによってサッチを掻き取る方法が採用され、また庭園等の狭い芝生地ではレーキや熊手を用いて人手でサッチを掻き出すのが普通である(非特許文献1)。しかるに、機械的作業と手作業のいずれにしても、サッチ除去作業には非常に手間が掛かる上、その作業で芝草を痛める懸念も多分にあった。   Conventionally, as a means for removing the satch, a method of scraping the satch with a blade of a self-propelled or towed machine called vertical mower on a large lawn such as a golf course or a stadium has been adopted. In a grassy field, it is normal to scrape the satch manually using a rake or rake (Non-patent Document 1). However, either the mechanical work or the manual work is very troublesome for the satch removal work, and there is a concern that the work may damage the turf grass.

http://www.takii.co.jp/green/howto/howto5.html(2009/9/11) 「芝・緑化・緑肥|芝生なんでも百科.タキイ種苗」http://www.takii.co.jp/green/howto/howto5.html (2009/9/11) "Turf, greening, green manure | Encyclopedia of lawn. Takii seedlings"

本発明者らは、上述の事情に鑑みて、微生物を用いてサッチを分解・減容化する手段の可否について実験研究を重ねた結果、サッチ分解菌として高い活性を示す微生物が存在し、該微生物を一般的な培養手段によって容易に増殖でき、もって工業的規模での利用が充分に可能であることが判明した。しかるに、このようなサッチ分解菌を芝生地に直接に散布する方法では、日照、温度変化、降雨等の厳しい自然条件の影響を受けるため、該サッチ分解菌が芝生地に定着し難い上に短期間で失活し易く、安定したサッチ分解作用を長期にわたって発揮させることが困難であった。   In light of the above-mentioned circumstances, the present inventors have conducted experimental research on the possibility of means for decomposing and reducing the volume of a satch using microorganisms. As a result, there are microorganisms that exhibit high activity as satch-decomposing bacteria, It has been found that microorganisms can be easily propagated by general culturing means and can be sufficiently used on an industrial scale. However, the method of directly spraying such a sorghum-degrading bacterium on turf land is affected by severe natural conditions such as sunlight, temperature change, and rainfall. It was difficult to exhibit a stable thatch decomposition action over a long period of time.

そこで、本発明者らは、更なる実験研究の過程で、マイクロカプセルによる微生物の固定化に着目し、サッチ分解菌への応用について鋭意検討を重ねた。その結果、環境分解性ポリマーからなる多孔質のマイクロカプセルによれば、サッチ分解菌を安定的に担持させて芝生地に効率よく定着させることが可能であり、しかもサッチ分解菌を環境変化から保護できることに加え、マイクロカプセルの環境分解性ポリマーが食餌となるためにサッチ分解菌の失活が抑制され、散布した芝生地への環境負荷を与えることなく、その高いサッチ分解能力を長期間安定的に発揮させ得ることを見出し、本発明をなすに至った。   In view of this, the inventors of the present invention have made extensive studies on application to that-degrading bacteria, focusing on the immobilization of microorganisms by microcapsules in the course of further experimental research. As a result, porous microcapsules made of environmentally degradable polymers can stably hold satch-degrading bacteria and efficiently establish them on lawn, and protect satch-degrading bacteria from environmental changes. In addition to being able to do so, the environmentally degradable polymer of the microcapsule is used as a feed, which suppresses the inactivation of the satch-degrading bacteria and ensures its high satch-degrading ability for a long period of time without impacting the environment on the sprayed lawn. It has been found that the present invention can be exhibited, and the present invention has been made.

請求項1の発明に係るサッチ分解菌内包マイクロカプセルは、平均分子量10,000〜500,000のポリ−ε−カプロラクトンを主体とする環境分解性ポリマーからなる、多孔質で空洞状の内腔部を有するマイクロカプセルの該内腔部に、サッチ分解菌を含む内水相が充満してなるものとしている。 Thatch-decomposing bacteria-encapsulating microcapsules according to the invention of claim 1 are porous and hollow lumens comprising an environmentally degradable polymer mainly composed of poly-ε-caprolactone having an average molecular weight of 10,000 to 500,000. It is assumed that the inner portion of the microcapsule having the inner capsule is filled with the inner aqueous phase containing the satch-degrading bacteria .

そして、上記請求項1のサッチ分解菌内包マイクロカプセルの好適態様として、請求項2の発明はサッチ分解菌がBacillus subtilis属菌であること、請求項3の発明は平均粒子径が10〜3,000μmの範囲にあること、をそれぞれ特定している。   As a preferred embodiment of the microcapsules containing that-degrading bacterium of claim 1, the invention of claim 2 is that the bacterium that belongs to the genus Bacillus subtilis, and the invention of claim 3 is that the average particle size is 10 to 3, Each of them is specified to be in the range of 000 μm.

請求項の発明に係る芝生地の保全方法は、上記1〜3の何れかに記載のサッチ分解菌内包マイクロカプセルを芝生地に散布することを特徴としている。 The lawn conservation method according to the invention of claim 4 is characterized in that the satch-decomposing bacteria-encapsulating microcapsules according to any one of the above 1 to 3 are sprayed on the lawn.

請求項の発明に係るサッチ分解菌内包マイクロカプセルの製造方法は、平均分子量10,000〜500,000のポリ−ε−カプロラクトンを主体とする環境分解性の壁材ポリマーがジクロロメタンを主成分とする低沸点有機溶剤に溶解されてなる有機相中に、サッチ分解菌を含むアルギン酸塩水溶液を添加混合することにより、該有機相中に内水相としてサッチ分解菌を含むアルギン酸塩水溶液の液滴が分散したS/Oエマルションを調製したのち、このS/Oエマルションを水相中に添加混合して所定時間の攪拌を行うことにより、外水相中に前記S/Oエマルションの液滴が分散したS/O/Wエマルションを調製し、次いで有機相中の有機溶媒を加温又は/及び減圧による液中乾燥で除去して壁材ポリマーをゲル化させることにより、環境分解性ポリマーからなる多孔質のマイクロカプセルの空洞状の内腔部にサッチ分解菌を含む内水相が充満したマイクロカプセルを生成させることを特徴としている。 The method for producing microcapsules containing that-degrading bacteria according to the invention of claim 5 is characterized in that the environmentally degradable wall material polymer mainly composed of poly-ε-caprolactone having an average molecular weight of 10,000 to 500,000 is mainly composed of dichloromethane. low boiling point organic organic phase the solvent formed by dissolving the by admixing alginate aqueous solution containing thatch degrading bacteria, liquid droplets of the alginate aqueous solution containing thatch decomposing bacteria as the inner aqueous phase in the organic phase After preparing an S / O emulsion in which the S / O emulsion is dispersed, the S / O emulsion is added and mixed in the aqueous phase and stirred for a predetermined time, whereby the droplets of the S / O emulsion are dispersed in the outer aqueous phase. S / O / W emulsion prepared, and then the organic solvent in the organic phase is removed by heating or / and drying in liquid under reduced pressure to gel the wall material polymer. Ri, is characterized in that to produce microcapsules inner aqueous phase is filled comprising thatch-degrading bacteria to the cavity shape of the lumen of the microcapsules porous consisting of environmentally degradable polymers.

請求項1の発明に係るサッチ分解菌内包マイクロカプセルは、サッチ分解菌がマイクロカプセルに安定的に担持されており、芝生地に散布することで効率よく定着させることができる。そして、多孔質のマイクロカプセルの空洞状の内腔部にサッチ分解菌を含む内水相が充満した構成であることから、日照、温度変化、降雨等の厳しい自然条件に晒されても内包されたサッチ分解菌は環境変化から保護され、加えてマイクロカプセルを形成している環境分解性ポリマーがサッチ分解菌の食餌となるため、該内腔部においてサッチ分解菌が盛んに増殖し、そのマイクロカプセル外への放出による減少分が常時確実に補充され、しかも該環境分解性ポリマーとして用いたポリ−ε−カプロラクトンが生分解性及び生体適合性に優れる上、サッチ分解菌との相性が特によく、サッチ分解菌が代謝ストレスを受けずに高活性を持続する。従って、該マイクロカプセルを散布した芝生地においては、長期にわたってサッチ分解菌が安定的に放出されて高いサッチ分解能力を持続的に発揮するから、サッチが厚く堆積して土中や芝草の根に対して空気や水が浸透しにくくなったり、散布した肥料や農薬がサッチに吸収されて効きにくくなったりすることがなく、また病原菌や害虫の繁殖や腐敗による有毒ガスの発生も防止され、もって芝草が長期間健全な状態に保持される上、マイクロカプセル自体は自然環境下で経時的に分解されて最終的に消失するから、該マイクロカプセルの散布によって芝生地及びその周辺に環境負荷を与えることもない。 The satch-degrading bacteria-encapsulating microcapsules according to the invention of claim 1 are such that the satch-degrading bacteria are stably supported on the microcapsules and can be efficiently fixed by spraying on the lawn . Since the hollow microcapsule has a hollow inner cavity filled with an internal aqueous phase containing satch-degrading bacteria, it is included even when exposed to severe natural conditions such as sunlight, temperature changes, and rainfall. The satch-degrading bacteria are protected from environmental changes, and in addition, the environmentally degradable polymer that forms the microcapsules serves as a feed for the satch-degrading bacteria. The amount of decrease due to release from the capsule is always reliably replenished, and the poly-ε-caprolactone used as the environmentally degradable polymer is excellent in biodegradability and biocompatibility, and is particularly well compatible with that degradation bacteria. Satch-degrading bacteria remain highly active without metabolic stress. Therefore, in the lawn where the microcapsules are sprayed, the satch-degrading bacteria are stably released over a long period of time, and the high satch-degrading ability is continuously exhibited. Air and water do not penetrate easily, and fertilizers and pesticides that have been spread are not absorbed by the satch, making it difficult for them to work, and the generation of toxic gases due to the propagation and decay of pathogenic bacteria and pests is prevented. Is maintained in a healthy state for a long time, and the microcapsules themselves are degraded over time in the natural environment and eventually disappear. Nor.

請求項2の発明によれば、上記マイクロカプセルに内包するサッチ分解菌が、高いサッチ分解作用を発揮すると共に、マイクロカプセル内包状態で失活しにくく、且つ比較的に培養し易く安価に入手できるという利点がある。   According to the invention of claim 2, the satch-degrading bacterium encapsulated in the microcapsule exhibits a high satch-degrading action, is hardly inactivated in a microcapsule-encapsulated state, is relatively easy to culture and can be obtained at low cost. There is an advantage.

請求項3の発明によれば、上記のサッチ分解菌内包マイクロカプセルの平均粒子径が特定範囲にあるため、芝生地に散布後、降雨や撒水によって流失しにくく、且つ芝草の植生状況や土壌状況を変化させることもない。    According to the invention of claim 3, since the average particle size of the microcapsules containing such saccharolytic bacteria is in a specific range, it is difficult to be washed away by rainfall or flooding after being sprayed on lawn, and the vegetation status and soil status of turfgrass There is no change.

請求項の発明に係る芝生地の保全方法によれば、上記のサッチ分解菌内包マイクロカプセルを芝生地に散布することから、長期にわたってサッチ分解菌が安定的に放出されて高いサッチ分解能力を持続的に発揮、サッチが厚く堆積して土中や芝草の根に対して空気や水が浸透しにくくなったり、散布した肥料や農薬がサッチに吸収されて効きにくくなったりすることがなく、また病原菌や害虫の繁殖や腐敗による有毒ガスの発生も防止され、もって芝草が長期間健全な状態に保持されると共に、散布された該マイクロカプセルによる環境負荷も生じない。 According to the lawn land preservation method according to the invention of claim 4 , since the satch-decomposing bacteria-encapsulating microcapsules are sprayed on the lawn ground, the satch-degrading bacteria are stably released over a long period of time and have a high thatch decomposition ability. persistently demonstrated, or become air and water is less likely to penetrate to the soil or turf grass-roots deposited thick thatch, scatter the fertilizer and pesticides is not able to or less likely effectiveness is absorbed by the thatch, In addition, the generation of toxic gas due to the propagation and decay of pathogenic bacteria and pests is prevented, so that turfgrass is maintained in a healthy state for a long period of time, and the environmental burden caused by the sprayed microcapsules does not occur.

請求項の発明に係るサッチ分解菌内包マイクロカプセルの製造方法によれば、ポリ−ε−カプロラクトンを主体とする環境分解性ポリマーからなる多孔質のマイクロカプセルの内腔部にサッチ分解菌を含む内水相が充満したマイクロカプセルとして、高いサッチ分解能力を長期にわたって安定的に発揮できるものを効率よく容易に量産できる。 According to the method for producing a microcapsule containing a satch-decomposing bacterium according to the invention of claim 5, the satch-degrading bacterium is contained in the lumen of a porous microcapsule made of an environmentally degradable polymer mainly composed of poly-ε-caprolactone. As a microcapsule filled with an inner aqueous phase, it is possible to efficiently and easily mass-produce microcapsules that can stably exhibit high thatch degradation ability over a long period of time.

サッチ分解菌の培養時間と培地中制菌数及び培地中pHとの関係を示し、(a)は培養1回目の相関特性図、(b)は培養2回目の相関特性図である。The relationship between the culture time of the satch-degrading bacteria, the number of bacteria in the medium and the pH in the medium is shown, (a) is a correlation characteristic diagram of the first culture, and (b) is a correlation characteristic diagram of the second culture. サッチ分解菌の活性評価試験における震とう時間とセルロース分解率の相関特性図である。It is a correlation characteristic figure of the shaking time and cellulose degradation rate in the activity evaluation test of a satch degradation bacterium. 本発明の実施例1〜3で調製したサッチ分解菌内包マイクロカプセルとその断面を示す走査型電子顕微鏡写真図である。It is a scanning electron microscope photograph figure which shows the Satch decomposition | disassembly microbe inclusion microcapsule prepared in Examples 1-3 of this invention, and its cross section. 本発明の実施例4におけるアルギン酸−キトサンゲルビーズの調製試験で得られたゲルビーズを示す走査型電子顕微鏡写真図である。It is a scanning electron micrograph figure which shows the gel bead obtained by the preparation test of the alginate-chitosan gel bead in Example 4 of this invention. 同実施例4で調製したサッチ分解菌内包アルギン酸−キトサンゲルビーズとその断面、ならびに前記調製試験で得られた菌なしアルギン酸−キトサンゲルビーズの断面を示す走査型電子顕微鏡写真図である。It is a scanning electron micrograph figure which shows the cross section of the alginic acid chitosan gel bead which included the satch decomposition | disassembly microbe prepared in the same Example 4, its cross section, and the microbe alginate-chitosan gel bead obtained by the said preparation test.

本発明のサッチ分解菌内包マイクロカプセルは、環境分解性ポリマーからなる多孔質のマイクロカプセルにサッチ分解菌が内包されたものであり、芝生地に散布することにより、長期にわたってサッチ分解菌が安定的に放出されて高いサッチ分解能力を持続的に発揮する。従って、このサッチ分解菌内包マイクロカプセルを散布した芝生地では、サッチが厚く堆積して土中や芝草の根に対して空気や水が浸透しにくくなったり、散布した肥料や農薬がサッチに吸収されて効きにくくなったりすることがなく、また病原菌や害虫の繁殖や腐敗による有毒ガスの発生も防止される結果、芝草が健全な状態で長期間安定的に保持される。そして、マイクロカプセル自体は、これを構成する環境分解性ポリマーがサッチ分解菌の食餌となって該サッチ分解菌の失活防止に寄与する上、自然環境下で経時的に分解されて最終的に消失するから、散布した芝生地及びその周辺に環境負荷を与えることもない。   Thatch-decomposing bacteria-encapsulating microcapsules of the present invention are those in which porous decomposing bacteria are encapsulated in porous microcapsules made of an environmentally degradable polymer. It is released to the end and exhibits a high thatch decomposition ability. Therefore, in turfland sprayed with microcapsules containing that sachet-degrading bacteria, the satch accumulates thickly, making it difficult for air and water to penetrate into the soil and the roots of turfgrass. As a result, the generation of toxic gases due to the propagation and decay of pathogenic bacteria and pests is prevented, so that turfgrass is stably maintained for a long time in a healthy state. The microcapsule itself is an environmentally degradable polymer that constitutes a feed for the satch-degrading bacteria and contributes to preventing the deactivation of the satch-degrading bacteria. Since it disappears, there is no environmental impact on the sprayed turf land and its surroundings.

本発明で用いるサッチ分解菌としては、サッチ分解能力を備えるものであれば特に制約はないが、所謂枯草菌として知られるBacillus subtilis 属菌が好適である。すなわち、Bacillus subtilis 属菌は、サッチ分解能力が高く、且つマイクロカプセル内包状態で失活しにくいことに加え、比較的に培養し易く安価に入手できるという利点がある。   The satch-degrading bacterium used in the present invention is not particularly limited as long as it has a satch-degrading ability, but Bacillus subtilis genus known as so-called Bacillus subtilis is preferable. That is, the genus Bacillus subtilis has an advantage that it has a high ability of degrading that batch and is not easily inactivated in a microcapsule-encapsulated state, and is relatively easy to culture and available at low cost.

多孔質のマイクロカプセルを構成する環境分解性ポリマーとしては、土壌中で微生物によって水と二酸化炭素に分解される所謂生分解性ポリマーと共に、自然環境下で日光や水等によって経時的に分解する所謂崩壊性ポリマー成分を包含するが、サッチ分解菌の食餌とする上で生分解性ポリマーが好適である。この生分解性ポリマーは、製法的に化学合成系、天然物系、微生物系に分かれるが、そのいずれであってもよく、具体例としてポリカプロラクトン、ポリ乳酸、ポリグリコール酸、ポリブチレンサクシネート、ポリエチレンサクシネートの如き脂肪族ポリエステル類、ポリビニルアルコール、ポリリン酸、ポリアミノ酸類、キトサン、キチン、セルロース、澱粉、酢酸セルロース、バクテリアセルロース、カードラン、プルランの如き多糖類、バイオポリエステル、これらの複合物等が挙げられる。   The environmentally degradable polymer constituting the porous microcapsule includes so-called biodegradable polymer that is decomposed by microorganisms in the soil into water and carbon dioxide, and so-called biodegradable polymer that degrades over time in natural environment with sunlight, water, etc. A biodegradable polymer is suitable for use as a feed for a satch-degrading bacterium, although it contains a disintegrating polymer component. This biodegradable polymer is divided into chemical synthesis systems, natural product systems, and microbial systems in terms of production method, and any of them may be used. Specific examples include polycaprolactone, polylactic acid, polyglycolic acid, polybutylene succinate, Aliphatic polyesters such as polyethylene succinate, polyvinyl alcohol, polyphosphoric acid, polyamino acids, chitosan, chitin, cellulose, starch, cellulose acetate, bacterial cellulose, polysaccharides such as curdlan and pullulan, biopolyester, and composites thereof Etc.

サッチ分解菌内包マイクロカプセルのサイズは、平均粒子径として10〜3,000μmの範囲が好適であり、小さ過ぎては降雨や撒水によって流失し易く、逆に大き過ぎては芝草の植生状況や土壌状況を変化させる懸念がある。   The size of the satch-decomposing bacteria-encapsulating microcapsules is preferably in the range of 10 to 3,000 μm as the average particle size. If it is too small, it is easy to be washed away by rainfall or flooding. There are concerns that change the situation.

多孔質のマイクロカプセルの形態には特に制約はないが、その好ましい具体例として、多孔質の肉部内に1つ又は複数の空洞状の内腔部を有し、その内腔部にサッチ分解菌を含む内水相が充満したコアーシェル形態と、皮張り状の表面を有して内部全体が荒目のスポンジ状をなし、そのスポンジ状の空隙部にサッチ分解菌を含む内水相が充満したゲルビーズ形態とが挙げられる。とりわけ、前者のコアーシェル形態では、その内腔部においてサッチ分解菌が環境変化の影響を受けずに盛んに増殖し、マイクロカプセル外への放出による減少分が常時確実に補充され、もって高いサッチ分解能力をより長期にわたって安定的に発揮でき、また高いマイクロカプセル回収率が得られるという利点がある。   There are no particular restrictions on the form of the porous microcapsule, but as a preferred specific example thereof, there is one or a plurality of hollow lumens in the porous meat part, and a satch-degrading bacterium in the lumen part. A core-shell form filled with an inner aqueous phase containing, and a rough sponge-like surface with a skin-like surface, and an inner aqueous phase containing a satch-degrading bacterium filled in the sponge-like voids Gel bead form. In particular, in the former core-shell form, the satch-degrading bacteria grow actively in the lumen without being affected by environmental changes, and the decrease due to the release outside the microcapsule is always replenished reliably, and thus high thatch degradation There is an advantage that the ability can be stably exhibited over a longer period of time, and a high microcapsule recovery rate can be obtained.

上記前者のコアーシェル形態のマイクロカプセルを製造するには、まず環境分解性の壁材ポリマーを低沸点有機溶媒に溶解した有機相O中に、サッチ分解菌を含む環境分解性の保護剤ポリマー水溶液を添加混合することにより、該有機相O中に内水相Sとしてサッチ分解菌を含む保護剤ポリマー水溶液の液滴が分散したS/Oエマルションを調製する。そして、このS/Oエマルションを水相中に添加混合して所定時間の攪拌を行うことにより、外水相W中にS/Oエマルションの液滴が分散したS/O/Wエマルションを調製する。次に、加温又は/及び減圧による液中乾燥を行い、S/O/Wエマルションの有機相O中の有機溶媒を除去して壁材ポリマーをゲル化させることにより、環境分解性ポリマーからなる多孔質のマイクロカプセルの内腔部にサッチ分解菌を含む内水相Sが充満したマイクロカプセルを生成させる。   In order to produce the above-mentioned core-shell microcapsules, first, an environmentally degradable protective polymer aqueous solution containing satch-degrading bacteria is added to an organic phase O in which an environmentally degradable wall material polymer is dissolved in a low-boiling organic solvent. By adding and mixing, an S / O emulsion in which droplets of a protective polymer aqueous solution containing satch-decomposing bacteria are dispersed as an inner aqueous phase S in the organic phase O is prepared. Then, the S / O emulsion is added and mixed in the aqueous phase and stirred for a predetermined time to prepare an S / O / W emulsion in which droplets of the S / O emulsion are dispersed in the outer aqueous phase W. . Next, drying in liquid by heating or / and decompression is performed, and the organic solvent in the organic phase O of the S / O / W emulsion is removed to gel the wall material polymer, thereby comprising an environmentally degradable polymer. A microcapsule in which an inner water phase S containing a satch-degrading bacterium is filled in a lumen of the porous microcapsule is generated.

ここで、上記有機相Oの低沸点有機溶媒としては、加温又は/及び減圧による液中乾燥を行う上で沸点が85℃以下の無極性溶剤が好ましく、例えばジクロロメタン(沸点40℃)、クロロホルム(同61℃)、酢酸エチル(同77℃)、1.2−ジクロロエタン(同83.5℃)等が好適なものとして挙げられ、これらは2種以上を併用してもよいが、ジクロロメタンを単独使用もしくは主体として他と併用することが推奨される。すなわち、ジクロロメタンは特に沸点が低いため、液中乾燥による壁材ポリマーのゲル化が効率よく進行すると共に、液中乾燥に要する温度・圧力条件が緩和されて消費エネルギーを少なくできるという利点がある。   Here, as the low-boiling organic solvent of the organic phase O, a nonpolar solvent having a boiling point of 85 ° C. or lower is preferable for drying in liquid by heating and / or reduced pressure, for example, dichloromethane (boiling point 40 ° C.), chloroform (61 ° C.), ethyl acetate (77 ° C.), 1.2-dichloroethane (83.5 ° C.), and the like are suitable. It is recommended to use alone or in combination with others as the subject. That is, since dichloromethane has a particularly low boiling point, gelation of the wall material polymer by in-liquid drying proceeds efficiently, and the temperature and pressure conditions required for in-liquid drying are eased and energy consumption can be reduced.

上記有機相Oの壁材ポリマーに用いる環境分解性ポリマーは、特に制約されないが、ポリ−ε−カプロラクトンを主体とするものが特に推奨される。これは、ポリ−ε−カプロラクトンを壁材ポリマーとすることにより、回収率及び物理的強度に優れたマイクロカプセルを製出できることに加え、ポリ−ε−カプロラクトンとサッチ分解菌との相性が特によく、これを食餌としてサッチ分解菌の活性が高いレベルで持続するから、より優れたサッチ分解能力が発揮されることによる。なお、このポリ−ε−カプロラクトンとしては、平均分子量が10,000〜500,000であるものが好適である。   The environmentally degradable polymer used for the organic phase O wall material polymer is not particularly limited, but a polymer mainly composed of poly-ε-caprolactone is recommended. This is because, by using poly-ε-caprolactone as a wall material polymer, microcapsules excellent in recovery rate and physical strength can be produced, and in addition, compatibility between poly-ε-caprolactone and that-degrading bacteria is particularly good. This is because the activity of the satch-degrading bacterium persists at a high level by using this as a diet, so that a better satch-degrading ability is exhibited. In addition, as this poly-epsilon-caprolactone, that whose average molecular weight is 10,000-500,000 is suitable.

また、有機相O中には、内水相S添加によるS/Oエマルションの調製のために、適当なエマルション安定剤を配合しておくのがよい。このようなエマルション安定剤としては、ソルビタンモノオレエートの如きスパン系界面活性剤を始めとして、一般的にエマルション調製に用いる種々の界面活性剤、水溶性樹脂、水溶性多糖類等がある。   In addition, in the organic phase O, an appropriate emulsion stabilizer is preferably blended for preparing an S / O emulsion by adding the inner aqueous phase S. Examples of such emulsion stabilizers include a spanning surfactant such as sorbitan monooleate, and various surfactants, water-soluble resins, water-soluble polysaccharides and the like generally used for emulsion preparation.

内水相Sに用いる環境分解性の保護剤ポリマーとしては、サッチ分解菌の活動及び増殖を妨げない水溶性ポリマーであればよく、例えばアルギン酸塩、κ−カラギーナン、キトサンの如き水溶性高分子多糖類やポリビニルアルコール等が挙げられるが、特にサッチ分解菌との相性の良さからアルギン酸ナトリウムの如きアルギン酸塩が推奨される。このアルギン酸ナトリウムを用いる場合の水溶液濃度は、0.5〜10質量%程度とするのがよく、高過ぎてはS/Oエマルションの分散安定性が低下して凝集を生じ易くなる。なお、保護剤ポリマー水溶液中には、サッチ分解菌の栄養源として、ポリペプトン、イーストエキス、硫酸マグネシウム等を適宜配合できる。   The environmentally degradable protective polymer used in the inner aqueous phase S may be any water-soluble polymer that does not interfere with the activity and growth of that-satch-degrading bacteria. For example, a water-soluble polymer such as alginate, κ-carrageenan, chitosan, etc. Examples thereof include saccharides and polyvinyl alcohol, but an alginate such as sodium alginate is particularly recommended because of its good compatibility with that degradation bacteria. The concentration of the aqueous solution in the case of using this sodium alginate is preferably about 0.5 to 10% by mass, and if it is too high, the dispersion stability of the S / O emulsion is lowered and aggregation tends to occur. In addition, polypeptone, a yeast extract, magnesium sulfate, etc. can be suitably mix | blended in the protective agent polymer aqueous solution as a nutrient source of a satch-degrading bacterium.

有機相O中に内水相Sを添加混合してS/Oエマルションを調製する際には、サッチ分解菌を保護するために氷冷下で攪拌を行うことが推奨される。また、S/O/Wエマルションの外水相Wに用いる水相には、分散安定剤を含むことが望ましい。この分散安定剤としては、特に制約はなく、一般的にエマルション調製に使用されるものをいずれも使用できるが、高分子量のエマルション安定剤を用いることで優れたエマルション効果が得られる点から、ゼラチンが特に好適なものとして挙げられる。このゼラチンを使用する場合の外水相における濃度は0.1〜10質量%程度が好適である。更に、液中乾燥後には、高分子量のゼラチンを低分子量へ分解し、調製したマイクロカプセルと外水相との濾過特性を向上させる目的で、パパインの如き蛋白質分解酵素を添加してもよい。   When the S / O emulsion is prepared by adding and mixing the inner aqueous phase S in the organic phase O, it is recommended to stir under ice cooling in order to protect the satch-degrading bacteria. Moreover, it is desirable that the aqueous phase used for the outer aqueous phase W of the S / O / W emulsion contains a dispersion stabilizer. The dispersion stabilizer is not particularly limited, and any of those generally used for emulsion preparation can be used. From the viewpoint that an excellent emulsion effect can be obtained by using a high molecular weight emulsion stabilizer. Are particularly preferred. When this gelatin is used, the concentration in the outer aqueous phase is preferably about 0.1 to 10% by mass. Furthermore, after drying in the liquid, a proteolytic enzyme such as papain may be added for the purpose of degrading the high molecular weight gelatin to a low molecular weight and improving the filtration characteristics of the prepared microcapsules and the outer aqueous phase.

上記液中乾燥では有機相の低沸点有機溶媒を揮散除去するために、攪拌下で加温と減圧の一方もしくは両方を行うが、処理効率面より加温と減圧を同時に行うことが推奨される。その加温ではエマルションの液温を数時間をかけて段階的又は連続的に昇温してゆけばよいが、最高到達温度は低沸点有機溶媒の沸点より低い温度でよい。また減圧ではエマルションの液面が接する雰囲気の圧力を同様に数時間をかけて段階的又は連続的に減じてゆけばよいが、最高減圧は大気圧の数分の1程度まででよい。しかして、有機相の低沸点有機溶媒がジクロロメタンを主体とする場合、加温と減圧を同時に行う液中乾燥では最高到達温度は30℃程度、最高減圧は400hPa程度で済む。なお、この液中乾燥における攪拌速度は、50〜500rpm程度とするのがよい。   In the above-mentioned drying in the liquid, in order to volatilize and remove the low boiling point organic solvent in the organic phase, one or both of heating and depressurization is performed with stirring, but it is recommended to simultaneously perform heating and depressurization in terms of processing efficiency. . In the heating, the temperature of the emulsion may be raised stepwise or continuously over several hours, but the highest temperature may be lower than the boiling point of the low boiling organic solvent. Further, in the reduced pressure, the pressure of the atmosphere in contact with the liquid level of the emulsion may be reduced stepwise or continuously over several hours, but the maximum reduced pressure may be about a fraction of the atmospheric pressure. Thus, when the organic solvent having a low boiling point in the organic phase is mainly dichloromethane, the maximum ultimate temperature is about 30 ° C. and the maximum pressure reduction is about 400 hPa in the liquid drying in which heating and decompression are performed simultaneously. In addition, it is good for the stirring speed in this liquid drying to be about 50-500 rpm.

一方、ゲルビーズ形態のマイクロカプセルとしては、特に制約されないが、アルギン酸−キトサンゲルビーズが、サッチ分解菌の担持性及び棲息適性に優れ、高いサッチ分解能力をより長期にわたって安定的に発揮できることに加え、ゲルビーズの調製が容易である点から推奨される。   On the other hand, the microcapsules in the form of gel beads are not particularly limited, but the alginic acid-chitosan gel beads are excellent in the supportability and habitability of that-satch-degrading bacteria, and in addition to being able to exhibit high thatch-degrading ability stably over a long period of time, gel beads Is recommended because it is easy to prepare.

このサッチ分解菌を内包したアルギン酸−キトサンゲルビーズからなる多孔質のマイクロカプセルを製造するには、キトサンを水に溶解させるための酸成分とアルギン酸のゲル化剤である塩化カルシウムとを含むキトサン水溶液からなる連続相に、サッチ分解菌を含むアルギン酸塩水溶液を分散相として滴下混合することにより、サッチ分解菌を内包したアルギン酸−キトサンゲルビーズを生成させたのち、ろ過・洗浄して得られるゲルビーズを凍結乾燥して回収すればよい。   In order to produce a porous microcapsule composed of alginate-chitosan gel beads encapsulating this satch-degrading bacterium, an aqueous solution containing an acid component for dissolving chitosan in water and calcium chloride as a gelling agent for alginic acid is used. The alginate-chitosan gel beads encapsulating the satch-degrading bacteria are produced by adding dropwise the alginate aqueous solution containing the satch-degrading bacteria to the continuous phase as a dispersed phase to freeze-dry the gel beads obtained by filtration and washing. And collect it.

この製造方法における上記連続相では、サッチ分解菌の活性を高めることと、アルギン酸とキトサンとの間の静電的相互作用による複合膜形成促進のために、水酸化ナトリウム等のアルカリ添加でpHを5〜5.5程度の弱酸性に調整することが望ましい。また、この連続相に分散相のサッチ分解菌を含むアルギン酸塩水溶液を滴下混合する際、サッチ分解菌を保護するのために液温を1〜20℃適度の低温に設定することが望ましい。   In the above continuous phase in this production method, the pH is increased by adding an alkali such as sodium hydroxide in order to increase the activity of the satch-degrading bacterium and promote the formation of a composite film by electrostatic interaction between alginic acid and chitosan. It is desirable to adjust to a weak acidity of about 5 to 5.5. In addition, when the alginate aqueous solution containing the satch-decomposing bacteria in the dispersed phase is added dropwise to this continuous phase, it is desirable to set the liquid temperature at a moderate temperature of 1 to 20 ° C. in order to protect the satch-degrading bacteria.

なお、キトサンとしては、市販のキトサン水溶液を使用できるが、その粘度によって製出するアルギン酸−キトサンゲルビーズの性状に差異を生じる。因みに、キトサン水溶液の市販品として代表的な和光純薬工業社製の商品名キトサン5,キトサン50,キトサン300の3種では、その粘度及びpHが次のように異なっている。
粘度(mPa・s) pH(10g/l水浸液,25℃)
キトサン5 ・・・・ 0〜10 ・・・・・・8.0〜10.0
キトサン50 ・・・・ 10〜100 ・・・・・・7.0〜 9.0
キトサン300・・・・ 100〜500 ・・・・・・6.0〜 8.0
しかして、これら3種のいずれのキトサンを用いてもアルギン酸−キトサンゲルビーズの調製は可能であるが、上記のアルカリ添加で連続相のpHを上げてゆくと、キトサン50及びキトサン300ではゲルビーズの生成と共に一部に凝集を生じ易いが、キトサン5ではpH5.4まで上昇させても凝集を生じないという結果が得られている。従って、pHを弱酸性に調整してサッチ分解菌の活性を高める上では、キトサン水溶液として粘度が10mPa・s以下のものを用いることが推奨される。
In addition, as chitosan, although commercially available chitosan aqueous solution can be used, a difference arises in the property of the alginate-chitosan gel bead produced by the viscosity. By the way, the viscosity and pH of three kinds of trade names chitosan 5, chitosan 50, and chitosan 300 manufactured by Wako Pure Chemical Industries, Ltd., which are typical commercial products of chitosan aqueous solutions, are different as follows.
Viscosity (mPa · s) pH (10g / l water immersion, 25 ° C)
Chitosan 5 ... 0-10 ... 8.0-100.0
Chitosan 50 ... 10 to 100 ... 7.0 to 9.0
Chitosan 300 ... 100-500 ... 6.0-8.0
Thus, alginic acid-chitosan gel beads can be prepared by using any of these three types of chitosan. However, when the pH of the continuous phase is increased by adding the above-mentioned alkali, the formation of gel beads is caused by chitosan 50 and chitosan 300. At the same time, it is easy to cause agglomeration in part, but the chitosan 5 does not agglomerate even when the pH is raised to 5.4. Therefore, it is recommended to use a chitosan aqueous solution having a viscosity of 10 mPa · s or less in order to increase the activity of the satch-degrading bacteria by adjusting the pH to slightly acidic.

〔サッチ分解菌の培養〕
減菌処理した702 培地(蒸留水100mlに1gのポリペプトンと0.2gのYeast exract及び0.1g のMgSO4 ・7H2 Oを溶解、PH7.0)に、サッチ分解菌としてBacillus su-btilis NBRC13719を添加し、インキュベーター内においてシェイカーで温度30℃、攪拌速度170rpmの条件で所定日数の培養を行い、培養後の702 培地の液0.1mlを採取して0.9重量%生理食塩水0.9mlに混合し、その混合液の0.1mlを採取して同様の生理食塩水0.9mlに混合する操作を繰り返すことで702 培地を1億容積倍まで希釈し、この希釈液0.1mlを802 寒天培地(蒸留水100mlに1gのポリペプトン、0.2gのYeast extract、0.1g のMgSO4 ・7H2O、1.5gの寒天を溶解、PH7.0)に添加し、インキュベーターで30℃にて静置し、1日、2日,3日後に形成したサッチ分解菌のコロニーをカウントして生菌数を計測すると共に、培地中のpHをpHメーターによって測定した。なお、この培養試験は、再現性を確認するために同一条件で2回行った。その結果、702 培地での培養時間(日数=day )と、1日〜3日の各カウント日における802 寒天培地中の生菌数(CFU/ml)及び培地中pHとの関係は、1回目の試験では図1(a)、2回目の試験では図1(b)に示す通りであった。
[Culture of that-degrading bacteria]
Bacillus su-btilis NBRC13719 as a satch-degrading bacterium in sterilized 702 medium (1 g polypeptone and 0.2 g Yeast exract and 0.1 g MgSO 4 .7H 2 O dissolved in 100 ml distilled water, pH 7.0) In a incubator, the cells were cultured for a predetermined number of days with a shaker at a temperature of 30 ° C. and a stirring speed of 170 rpm, and 0.1 ml of the 702 medium after the culture was collected, and 0.9 wt% physiological saline was added. The mixture was mixed with 9 ml, and 0.1 ml of the mixed solution was collected and mixed with 0.9 ml of the same physiological saline, so that the 702 medium was diluted to 100 million volume times. 802 agar medium (polypeptone 1g of distilled water 100 ml, Yeast the Extract of 0.2g, MgSO 4 · 7H 2 O of 0.1 g, agar 1.5g dissolved, pH 7.0) was added to in And allowed to stand at 30 ° C. in Yubeta, 1 day, 2 days, and counting the colonies of thatch degrading bacteria were formed after 3 days with measuring the number of viable bacteria, the pH was measured in the media by a pH meter. This culture test was performed twice under the same conditions in order to confirm reproducibility. As a result, the relationship between the culture time in 702 medium (days = day), the number of viable bacteria (CFU / ml) in the 802 agar medium and the pH in the medium on each count day from 1st to 3rd In the test of Fig. 1 (a), the second test was as shown in Fig. 1 (b).

図1(a)(b)で示すように、サッチ分解菌の生菌数は2〜3日の培養でピークに達し、培養時間が長くなるに伴って培地中pHは上昇する傾向を示すが、やがてpH9未満で略一定になることが確認された。   As shown in FIGS. 1 (a) and 1 (b), the viable count of that-degrading bacteria reaches a peak after 2 to 3 days of culture, and the pH in the medium tends to increase as the culture time increases. Soon, it was confirmed that it became substantially constant at a pH of less than 9.

〔サッチ分解菌の活性評価〕
0.9重量%生理食塩水10mlにセルロース0.25gを溶解させた試料液を試験管に収容して減菌処理し、その試料液中に前記培養試験(試験1回目の培養日数 日、寒天培地静置3日後)で得られたサッチ分解菌を湿潤重量で0.0967g添加混合して試験管を密栓し、これを30℃、150rpmで所定時間(0日、0.5日、1日、2日、3日、4日、5日 )震とうさせたのち、混合液をろ過して回収したセルロースを凍結乾燥させ、その乾燥重量を測定した。そして、震とう0日と震とうn日後の乾燥重量の差をセルロースの重量減少量として、各震とう時間によるセルロース分解率を求めたところ、図2に示す結果が得られた。この図2より、震とう時間(日数)と共にセルロース分解率が上昇し、震とう4日でセルロース分解率50%近くに達しており、このサッチ分解菌が高いサッチ分解能力を備えることが明らかである。
[Activity evaluation of that-degrading bacteria]
A sample solution in which 0.25 g of cellulose was dissolved in 10 ml of 0.9% by weight physiological saline was placed in a test tube and sterilized, and the above-described culture test (the number of days of culture for the first test, agar) was added to the sample solution. 0.0967 g of the Satch-degrading bacterium obtained in 3 days after leaving the medium) was added and mixed with a wet weight, and the test tube was sealed and sealed at 30 ° C. and 150 rpm for a predetermined time (0 day, 0.5 day, 1 day). 2 days, 3 days, 4 days, 5 days) After shaking, the collected liquid was filtered and freeze-dried, and the dry weight was measured. Then, the difference in dry weight after 0 days of shaking and n days after shaking was taken as the weight loss of cellulose, and the cellulose degradation rate by each shaking time was determined, and the results shown in FIG. 2 were obtained. From FIG. 2, the cellulose degradation rate increased with shaking time (days), and the cellulose degradation rate reached nearly 50% in 4 days of shaking. It is clear that this satch-degrading bacterium has a high satch-degrading ability. is there.

実施例1
<S/Oエマルションの調製>
50mlのジクロロメタンに平均分子量10,000のポリ−ε−カプロラクトン5gと0.1重量%のソルビタンモノオレエートを添加混合して有機相Oを調製する一方、1重量%アルギン酸ナトリウム水溶液(粘度80〜120cp)にサッチ分解菌として前記の培養した Bacillus su-btilis NBRC13719を湿潤重量で1g添加混合して内水相Sを調製し、この内水相Sを前記有機相Oに添加して氷冷下でホモジナイザーによって攪拌速度6,000rpmで10分間の攪拌を行うことにより、S/Oエマルションを調製した。
Example 1
<Preparation of S / O emulsion>
An organic phase O is prepared by adding and mixing 5 g of poly-ε-caprolactone having an average molecular weight of 10,000 and 0.1% by weight of sorbitan monooleate in 50 ml of dichloromethane, while a 1% by weight aqueous solution of sodium alginate (viscosity of 80 to 120 cp), 1 g of the above cultured Bacillus su-btilis NBRC13719 as a wet-degrading bacterium was added and mixed in a wet weight to prepare an inner aqueous phase S, and this inner aqueous phase S was added to the organic phase O and cooled with ice. A S / O emulsion was prepared by stirring with a homogenizer at a stirring speed of 6,000 rpm for 10 minutes.

<S/O/Wエマルションの調製>
給排気口及びウォータージャケットを備えた密閉式の攪拌槽内に外水相Wとして0.5重量%ゼラチン水溶液200mlを収容し、この攪拌槽内に前記の調製したS/Oエマルションの全量を添加し、水冷によって液温を15℃に保持しつつ、攪拌速度150rpmで10分間の攪拌を行うことにより、外水相W中にS/Oエマルションの液滴が分散したS/O/Wエマルションを調製した。
<Preparation of S / O / W emulsion>
200 ml of 0.5% by weight gelatin aqueous solution is accommodated as an outer aqueous phase W in a closed stirring tank equipped with an air supply / exhaust port and a water jacket, and the total amount of the prepared S / O emulsion is added to the stirring tank. The S / O / W emulsion in which the droplets of the S / O emulsion are dispersed in the outer water phase W is obtained by stirring for 10 minutes at a stirring speed of 150 rpm while maintaining the liquid temperature at 15 ° C. by water cooling. Prepared.

<液中乾燥及びマイクロカプセル回収>
前記の調製したS/O/Wエマルションについて、攪拌速度150rpmを維持しつつ、排気口からの真空吸引とウォータージャケットへの温水流通により、第一段では液温25℃,雰囲気圧600hPaで2時間、第二段階では液温30℃,雰囲気圧600hPaで3時間、第三段階では液温30℃,雰囲気圧500hPaで4時間、第四段階では液温30℃,雰囲気圧400hPaで5時間の四段階の液中乾燥処理を行ったのち、パパインを外水相に対して0.5g/Lの割合で添加混合し、製出したサッチ分解菌内包マイクロカプセルをろ過分離し、蒸留水で洗浄して回収した。
<Drying in liquid and collecting microcapsules>
About the prepared S / O / W emulsion, while maintaining a stirring speed of 150 rpm, by vacuum suction from the exhaust port and circulation of warm water to the water jacket, in the first stage, the liquid temperature is 25 ° C. and the atmospheric pressure is 600 hPa for 2 hours. In the second stage, the liquid temperature is 30 ° C. and the atmospheric pressure is 600 hPa for 3 hours. In the third stage, the liquid temperature is 30 ° C. and the atmospheric pressure is 500 hPa for 4 hours. In the fourth stage, the liquid temperature is 30 ° C. and the atmospheric pressure is 400 hPa for 5 hours. After performing the step-in-liquid drying treatment, papain is added and mixed at a rate of 0.5 g / L with respect to the outer aqueous phase, and the produced Satch-degrading bacteria-encapsulated microcapsules are separated by filtration and washed with distilled water. And recovered.

実施例2,3
有機相Oのポリ−ε−カプロラクトンとして、実施例2では平均分子量40,000のものを、実施例3では平均分子量70,000〜100,000のものを、それぞれ5g使用した以外は実施例1と同様にしてサッチ分解菌内包マイクロカプセルを調製して、回収した。
Examples 2 and 3
The organic phase O poly-ε-caprolactone was used in Example 2 except that 5 g of an average molecular weight of 40,000 was used in Example 2, and 5 g of an average molecular weight of 70,000 to 100,000 was used in Example 3. In the same manner as that, satch-degrading bacteria-encapsulating microcapsules were prepared and collected.

上記実施例1〜3におけるS/Oエマルション(S/O−EM)及びW/S/Oエマルション(W/S/O-EM)の液滴平均径、得られたマイクロカプセル(MC)の平均粒径と回収量及び回収率を、使用したポリ−ε−カプロラクトン(PCL)の平均分子量と共に次の表1に示す。また、各実施例で得られたマイクロカプセルの全体及び断面の走査型電子顕微鏡写真図を図3に、それぞれ実施例番号に対応した番号(1)〜(3)として示す。なお、表1におけるエマルションの液滴平均径は実体顕微鏡写真から、同じくマイクロカプセルの平均粒子径は走査型電子顕微鏡写真から、それぞれ50個のサンプルを実測して平均値を求めたものである。また、マイクロカプセルの回収率(%)は、(マイクロカプセル乾燥重量×100)/(アルギン酸Na質量+ポリ−ε−カプロラクトン質量+ソルビタンモノオレエート質量)として算出した。












Average droplet diameter of S / O emulsion (S / O-EM) and W / S / O emulsion (W / S / O-EM) in Examples 1 to 3 above, average of obtained microcapsules (MC) The particle size, recovery amount and recovery rate are shown in the following Table 1 together with the average molecular weight of the poly-ε-caprolactone (PCL) used. Moreover, the scanning electron microscope photograph figure of the whole microcapsule obtained in each Example and a cross section is shown as number (1)-(3) corresponding to an Example number in FIG. In Table 1, the average droplet size of the emulsion was obtained from a stereomicrograph, and the average particle size of the microcapsule was obtained from a scanning electron micrograph, and 50 samples were actually measured to obtain an average value. The microcapsule recovery rate (%) was calculated as (microcapsule dry weight × 100) / (Na alginate mass + poly-ε-caprolactone mass + sorbitan monooleate mass).












表1で示すように、実施例1〜3のいずれにおいても85%以上という高いマイクロカプセル回収率が得られている。また、実施例1〜3の対比より、有機相Oに用いたポリ−ε−カプロラクトンの平均分子量が大きいほど、W/S/Oエマルションの液滴平均径とマイクロカプセルの平均粒子径が大きくなるが、S/Oエマルションの液滴平均径とマイクロカプセル回収率についてはε−カプロラクトンの平均分子量による差異が殆どないことが判る。一方、図3の電子顕微鏡写真図から、実施例1〜3で得られたサッチ分解菌内包マイクロカプセルは、いずれも多孔質の肉部内に複数の空洞状の内腔部を有するコアーシェル形態であることが判る。 As shown in Table 1, in any of Examples 1 to 3, a high microcapsule recovery rate of 85% or more was obtained. Further, as compared with Examples 1 to 3, the larger the average molecular weight of the poly-ε-caprolactone used in the organic phase O, the larger the average droplet size of the W / S / O emulsion and the average particle size of the microcapsules. However, it can be seen that there is almost no difference due to the average molecular weight of ε-caprolactone in the average droplet diameter and the microcapsule recovery rate of the S / O emulsion. On the other hand, from the electron micrograph of FIG. 3 , the Satch-degrading bacteria-encapsulating microcapsules obtained in Examples 1 to 3 are all in the form of a core shell having a plurality of hollow lumens in the porous meat part. I understand that.

実施例4
<アルギン酸−キトサンゲルビーズの調製試験>
既述キトサンの規格による3種のキトサンをそれぞれ用い、ウォータージャケットを備えた密閉式の攪拌槽内で、4g/L濃度のキトサン水溶液150mlに0.1重量%相当の塩酸0.417gと0.05M相当の塩化カルシウム0.833gを添加混合して連続相を調製すると共に、1M−水溶液ナトリウム水溶液を加えてpH調整を行い、この連続相を水冷によって液温4℃に維持しつつ、分散相として1.8w/v%のアルギン酸ナトリウム水溶液(粘度500〜600cp)20mlをシリンジによって滴下し、120rpmで緩やかに30分間攪拌してアルギン酸−キトサンゲルビーズを生成させたのち、ろ過・洗浄して得られるゲルビーズを凍結乾燥して回収した。
Example 4
<Preparation test of alginic acid-chitosan gel beads>
Three kinds of chitosan according to the above-mentioned chitosan standards were used, respectively, and 0.417 g of hydrochloric acid corresponding to 0.1% by weight and 0.1% of 0.14% hydrochloric acid were added to 150 ml of 4 g / L chitosan aqueous solution in a closed stirring tank equipped with a water jacket. A 0.5M equivalent calcium chloride 0.833g was added and mixed to prepare a continuous phase, and a 1M aqueous sodium solution was added to adjust the pH. The continuous phase was maintained at a liquid temperature of 4 ° C by water cooling, while the dispersed phase was As a result, 20 ml of a 1.8 w / v% sodium alginate aqueous solution (viscosity 500 to 600 cp) is dropped by a syringe, and gently stirred at 120 rpm for 30 minutes to produce alginate-chitosan gel beads, followed by filtration and washing. Gel beads were lyophilized and collected.

このゲルビーズの回収量及び回収率とゲルビーズ生成状況を、使用したキトサンの粘度及び連続相pHと共に表2に示す。また、図4に、キトサン種と連続相pHが異なる各調製条件で得られたゲルビーズの走査型電子顕微鏡写真図を示す。なお、回収率は、〔回収したゲルビーズ(凝集物を含む)の重量×100〕/(アルギン酸Na質量+キトサン質量)として算出した。なお、ゲルビーズ生成状況は次の5段階で評価した。
◎・・・最も良好な生成状況で、乾燥後の状態もよい。
○・・・良好なゲルビースが生成している。
△・・・ゲルビーズが生成するが、一部に凝集がみられる。
▲・・・ゲルビーズが生成するが、柔らかく脆い。
×・・・ゲルビーズが生成していない。
Table 2 shows the amount and rate of recovery of the gel beads and the gel bead generation status together with the viscosity and continuous phase pH of the chitosan used. FIG. 4 shows scanning electron micrographs of gel beads obtained under various preparation conditions with different chitosan species and continuous phase pH. The recovery rate was calculated as [weight of recovered gel beads (including aggregates) × 100] / (Na alginate mass + chitosan mass). The gel bead production status was evaluated in the following five stages.
◎ ・ ・ ・ The best production situation and good condition after drying.
○: Good gel beads are generated.
Δ: Gel beads are formed, but aggregation is partially observed.
▲ ・ ・ ・ Gel beads are formed, but soft and brittle.
X: No gel beads are formed.

図4の電子顕微鏡写真図で示すように、3種のキトサン用いて各々連続相のpHを2.2と5.4のいずれに設定した場合でもゲルビーズが生成している。また、表2で示すように、キトサン種及び連続相pHの違いによるゲルビーズ回収量及び回収率の差は殆どない。しかるに、キトサン50,300を用いて水溶液ナトリウム水溶液による連続相のpH調整を行った場合、ゲルビーズの生成と共に一部に凝集を生じている。これに対し、キトサン5を用いた場合では、連続相のpHを5.4まで上昇させても上記凝集を生じていない。この結果から、次のサッチ分解菌内包アルギン酸−キトサンゲルビーズの調製ではキトサン5を使用した。   As shown in the electron micrograph of FIG. 4, gel beads are generated even when the pH of the continuous phase is set to either 2.2 or 5.4 using three types of chitosan. Moreover, as shown in Table 2, there is almost no difference in the amount of gel beads recovered and the recovery rate due to the difference in chitosan species and continuous phase pH. However, when the pH of the continuous phase is adjusted with an aqueous sodium solution using chitosan 50,300, the gel beads are partially agglomerated together with the formation of gel beads. On the other hand, when chitosan 5 is used, the above aggregation does not occur even when the pH of the continuous phase is increased to 5.4. From this result, chitosan 5 was used in the preparation of the next that decomposed bacteria encapsulating alginic acid-chitosan gel beads.

<サッチ分解菌内包アルギン酸−キトサンゲルビーズの調製>
キトサンとしてキトサン5を用いると共に、分散相のアルギン酸ナトリウム水溶液にサッチ分解菌として前記の培養した Bacillus su-btilis NBRC13719を湿潤重量で0.65g添加した以外は、前記アルギン酸−キトサンゲルビーズの調製試験と同様にしてサッチ分解菌内包アルギン酸−キトサンゲルビーズを調製した。
<Preparation of that-decomposing bacteria-containing alginic acid-chitosan gel beads>
Similar to the preparation test of the alginate-chitosan gel beads, except that chitosan 5 was used as chitosan and 0.65 g of the cultured Bacillus su-btilis NBRC13719 was added as a satch-degrading bacterium to the dispersed phase sodium alginate aqueous solution in a wet weight. In this way, satch-decomposing bacteria-encapsulating alginic acid-chitosan gel beads were prepared.

得られたサッチ分解菌内包ゲルビーズの回収量及び回収率を連続相pHと共に表3に示す。また、図5に、連続相pHが2.2及び5.4の場合の得られたサッチ分解菌内包ゲルビーズの走査型電子顕微鏡写真図(a)(b)と、連続相pH2.2で得られたサッチ分解菌内包ゲルビーズの断面の走査型電子顕微鏡写真図(c)と、前記調製試験でキトサン5を用いて連続相pH2.2の条件で調製した菌なしのゲルビーズの断面の走査型電子顕微鏡写真図(d)を示す。なお、回収率は、〔回収したゲルビーズ(凝集物を含む)の重量×100〕/(アルギン酸Na質量+キトサン質量+菌重量)として算出した。

Table 3 shows the recovery amount and recovery rate of the obtained gel-degrading bacteria containing gel beads together with the continuous phase pH. FIG. 5 shows scanning electron micrographs (s) (a) and (b) of the Satch-degrading bacteria-encapsulating gel beads obtained when the continuous phase pH is 2.2 and 5.4, and the continuous phase pH is 2.2. Scanning electron micrograph (c) of the cross-section of the obtained Satch-degrading bacteria-encapsulating gel beads, and scanning electron of the cross-section of the germ-free gel beads prepared using chitosan 5 in the preparation test under the condition of continuous phase pH 2.2 A micrograph (d) is shown. The recovery rate was calculated as [weight of recovered gel beads (including aggregates) × 100] / (Na alginate mass + chitosan mass + bacterial weight).

図5の電子顕微鏡写真から、調製したサッチ分解菌内包アルギン酸−キトサンゲルビーズは、皮張り状の表面を有して内部全体が荒目のスポンジ状をなし、そのスポンジ状の空隙部にサッチ分解菌を含む内水相が充満したゲルビーズ形態であることが判る。また、表2の結果から、サッチ分解菌内包ゲルビーズの回収率が菌なしゲルビーズの回収率(表1参照)よりも若干低下している。これは、分散相のアルギン酸ナトリウム水溶液がサッチ分解菌を含むことで、連続相に対する分散性が低下する傾向を示している。   From the electron micrograph of FIG. 5, the prepared satch-degrading bacterium-encapsulated alginic acid-chitosan gel beads have a skin-like surface and the entire interior is a rough sponge-like shape, and the satch-degrading bacterium is present in the sponge-like void portion. It can be seen that the gel is in the form of gel beads filled with an inner aqueous phase containing. In addition, from the results in Table 2, the recovery rate of that-degrading bacteria-encapsulating gel beads is slightly lower than the recovery rate of germ-free gel beads (see Table 1). This shows that the dispersibility with respect to the continuous phase tends to be reduced because the aqueous sodium alginate solution in the dispersed phase contains a satch-degrading bacterium.

参考例
既述キトサンの規格による3種のキトサンをそれぞれ用い、その1w/w%濃度のキトサン水溶液10mlに1v/v%相当の酢酸を添加混合して分散相を調製すると共に、ウォータージャケットを備えた密閉式の攪拌槽内に4w/w濃度のポリリン酸水溶液100mlを収容し、1M−水溶液ナトリウム水溶液を加えてpH調整を行い、この連続相を水冷によって液温4℃に維持しつつ、前記分散相のキトサン水溶液をシリンジによって滴下し、120rpmで緩やかに30分間攪拌してポリリン酸−キトサンゲルビーズを生成させたのち、ろ過・洗浄して得られるゲルビーズを凍結乾燥して回収した。
Reference Example Three types of chitosan according to the standard of chitosan described above were used, and a dispersed phase was prepared by adding and mixing 1 v / v% acetic acid to 10 ml of a 1 w / w% concentration chitosan aqueous solution, and equipped with a water jacket. 100 ml of a 4 w / w concentration polyphosphoric acid aqueous solution was placed in a closed stirring tank, pH was adjusted by adding a 1 M aqueous sodium chloride solution, and the continuous phase was maintained at a liquid temperature of 4 ° C. by water cooling. A dispersed phase chitosan aqueous solution was dropped by a syringe, and the mixture was gently stirred at 120 rpm for 30 minutes to produce polyphosphate-chitosan gel beads. Then, the gel beads obtained by filtration and washing were freeze-dried and collected.

このゲルビーズの回収量及び回収率とゲルビーズ生成状況を、使用したキトサンの粘度及び連続相pHと共に表4に示す。なお、回収率(%)は、〔回収したゲルビーズ(凝集物を含む)の重量×100〕/(ポリリン酸質量+キトサン質量)として算出した。また、ゲルビーズ生成状況は前記アルギン酸−キトサンゲルビーズの場合と同じ5段階で評価した。














Table 4 shows the amount and rate of recovery of the gel beads and the state of gel bead formation together with the viscosity and continuous phase pH of the chitosan used. The recovery rate (%) was calculated as [weight of recovered gel beads (including aggregates) × 100] / (polyphosphoric acid mass + chitosan mass). Moreover, the gel bead production | generation condition was evaluated in the same five steps as the case of the said alginate-chitosan gel bead.














表4に示すように、キトサン50,300を用いて連続相のpHを5.4に調整した場合はゲルビーズが生成するが、キトサン5を用いた場合やキトサン50,300を用いても連続相のpHが未調整(pH2.2)である場合は良好なゲルビーズを生成できない。そこで、キトサン50,300を用いて連続相のpHを5.4に調整する条件で、分散相のキトサン水溶液にサッチ分解菌を添加混合し、前記同様にしてポリリン酸−キトサンゲルビーズを調製することを試みたが、連続相に分散相を分散させることが困難であり、良好なサッチ分解菌内包ゲルビーズを調製できなかった。   As shown in Table 4, gel beads are produced when the pH of the continuous phase is adjusted to 5.4 using chitosan 50,300, but continuous phase is also obtained when chitosan 5 is used or chitosan 50,300 is used. When the pH is not adjusted (pH 2.2), good gel beads cannot be produced. Therefore, under the condition that the pH of the continuous phase is adjusted to 5.4 using chitosan 50,300, a Satch-degrading bacterium is added to and mixed with the dispersed phase chitosan aqueous solution, and polyphosphate-chitosan gel beads are prepared in the same manner as described above. However, it was difficult to disperse the disperse phase in the continuous phase, and it was not possible to prepare a satchel-degrading bacteria-encapsulated gel bead.

Claims (5)

平均分子量10,000〜500,000のポリ−ε−カプロラクトンを主体とする環境分解性ポリマーからなる、多孔質で空洞状の内腔部を有するマイクロカプセルの該内腔部に、サッチ分解菌を含む内水相が充満してなるサッチ分解菌内包マイクロカプセル。 A satch-degrading bacterium is placed in the lumen of a microcapsule having a porous and hollow lumen made of an environmentally degradable polymer mainly composed of poly-ε-caprolactone having an average molecular weight of 10,000 to 500,000. Thatch-decomposing bacteria-encapsulated microcapsules filled with the inner aqueous phase . サッチ分解菌がBacillus subtilis属菌である請求項1に記載のサッチ分解菌内包マイクロカプセル。   The satch-decomposing bacteria-encapsulating microcapsules according to claim 1, wherein the satch-decomposing bacterium is a genus Bacillus subtilis. 平均粒子径が10〜3,000μmの範囲にある請求項1又は2に記載のサッチ分解菌内包マイクロカプセル。   The satch-degrading bacteria-encapsulating microcapsules according to claim 1 or 2, wherein the average particle size is in the range of 10 to 3,000 µm. 前記請求項1〜3の何れかに記載のサッチ分解菌内包マイクロカプセルを芝生地に散布することを特徴とする芝生地の保全方法。 A method for preserving a lawn, comprising spraying the microcapsules containing that-degrading bacteria according to any one of claims 1 to 3 onto a lawn. 平均分子量10,000〜500,000のポリ−ε−カプロラクトンを主体とする環境分解性の壁材ポリマーがジクロロメタンを主成分とする低沸点有機溶剤に溶解されてなる有機相中に、サッチ分解菌を含むアルギン酸塩水溶液を添加混合することにより、該有機相中に内水相としてサッチ分解菌を含むアルギン酸塩水溶液の液滴が分散したS/Oエマルションを調製したのち、このS/Oエマルションを水相中に添加混合して所定時間の攪拌を行うことにより、外水相中に前記S/Oエマルションの液滴が分散したS/O/Wエマルションを調製し、次いで有機相中の有機溶媒を加温又は/及び減圧による液中乾燥で除去して壁材ポリマーをゲル化させることにより、環境分解性ポリマーからなる多孔質のマイクロカプセルの空洞状の内腔部にサッチ分解菌を含む内水相が充満したマイクロカプセルを生成させることを特徴とするサッチ分解菌内包マイクロカプセルの製造方法。 In an organic phase in which an environmentally degradable wall material polymer mainly composed of poly-ε-caprolactone having an average molecular weight of 10,000 to 500,000 is dissolved in a low boiling point organic solvent mainly composed of dichloromethane, by admixing alginate aqueous solution containing, after the droplets of alginate aqueous solution containing thatch degrading bacteria to prepare a S / O emulsion was dispersed as an internal aqueous phase in the organic phase, the S / O emulsion An S / O / W emulsion in which droplets of the S / O emulsion are dispersed in the outer aqueous phase is prepared by adding and mixing in the aqueous phase and stirring for a predetermined time, and then the organic solvent in the organic phase It was removed in-liquid drying by heating and / or reduced pressure by gelling the wall material polymer, a porous consisting of environmentally degradable polymers of the microcapsules cavity shaped Thatch decomposing bacteria-encapsulating microcapsule production method, characterized in that to produce the microcapsules inner aqueous phase is filled comprising thatch-degrading bacteria to the cavity.
JP2009237984A 2009-10-15 2009-10-15 Satch-decomposing microbe-encapsulating microcapsules, lawn conservation method using the same, and method for producing the microcapsules Active JP5397942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009237984A JP5397942B2 (en) 2009-10-15 2009-10-15 Satch-decomposing microbe-encapsulating microcapsules, lawn conservation method using the same, and method for producing the microcapsules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237984A JP5397942B2 (en) 2009-10-15 2009-10-15 Satch-decomposing microbe-encapsulating microcapsules, lawn conservation method using the same, and method for producing the microcapsules

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013103475A Division JP5721240B2 (en) 2013-05-15 2013-05-15 Satch-decomposing microbe-encapsulating microcapsules, lawn conservation method using the same, and method for producing the microcapsules

Publications (2)

Publication Number Publication Date
JP2011083222A JP2011083222A (en) 2011-04-28
JP5397942B2 true JP5397942B2 (en) 2014-01-22

Family

ID=44076679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237984A Active JP5397942B2 (en) 2009-10-15 2009-10-15 Satch-decomposing microbe-encapsulating microcapsules, lawn conservation method using the same, and method for producing the microcapsules

Country Status (1)

Country Link
JP (1) JP5397942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097056A (en) * 2018-09-10 2018-12-28 燕山大学 A kind of microcapsules and its preparation method and application for keeping soil from packing together

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222539B (en) * 2013-04-09 2015-05-06 思科福(北京)生物科技有限公司 Preparation method of microbial pre-fermentation coating multilayer microcapsule
CN105085099B (en) * 2015-09-17 2018-04-24 广西天峨五福种业有限公司 A kind of microorganism release and release control fertilizer
JP2019174077A (en) * 2018-03-29 2019-10-10 ダイキン工業株式会社 Drug-filled capsule and component for air processing device
JP7449573B2 (en) 2021-02-08 2024-03-14 ロンタイ株式会社 Vegetation capsule, vegetation method using it, and vegetation
CN114405423B (en) * 2022-01-11 2022-10-28 广州乐居日化用品有限公司 Porous chitosan microcapsule fragrance retaining bead and high-stability laundry gel bead
JP7302086B1 (en) * 2022-12-16 2023-07-03 ミヨシ油脂株式会社 soil conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3283228B2 (en) * 1998-02-12 2002-05-20 片倉チッカリン株式会社 Organic matter-degrading microorganism, culture material composition thereof, and method for controlling fairy ring disease using the culture material composition
JP2003154352A (en) * 2001-09-10 2003-05-27 Fuji Photo Film Co Ltd Method for restoring contaminated soil by microorganism
JP4657658B2 (en) * 2004-09-06 2011-03-23 日本有機株式会社 Method for producing useful microorganism-immobilized biodegradable microcapsules
ES2273572B1 (en) * 2005-05-04 2008-04-01 Universidad De Sevilla MICRO AND NANOMETRIC SIZE PARTICLE PREPARATION PROCEDURE WITH LABIL PRODUCTS AND PARTICLES OBTAINED.
JP2007129967A (en) * 2005-11-11 2007-05-31 Idemitsu Kosan Co Ltd Mowed lawn and thatch-degradation promoter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097056A (en) * 2018-09-10 2018-12-28 燕山大学 A kind of microcapsules and its preparation method and application for keeping soil from packing together

Also Published As

Publication number Publication date
JP2011083222A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5397942B2 (en) Satch-decomposing microbe-encapsulating microcapsules, lawn conservation method using the same, and method for producing the microcapsules
JP3428658B2 (en) Antimicrobial microbial preparation, its production method and treatment method
BR112020014469A2 (en) materials and methods for treating bacterial infections in plants
CN101400257A (en) Delayed-effect agronomic treatment agent, in particular for seed germination and plant development
TW201431489A (en) Particle of microbial fertilizer
CN105875592B (en) One kind killing Neurospora composite drug
US20220264895A1 (en) Insect-pathogenic fungus, spores, composition and use of same
JP2829325B2 (en) Antibacterial and anti-nematode agents, plant cell activators and microorganisms therefor
CA2408392C (en) Sprayable mycelium-based formulation for biological control agents
US20080248058A1 (en) Plant Disease Control Agent And Method For Controlling Plant Disease
KR101691191B1 (en) Cultivating method of peanut sprouts and peanut sprouts cultivated by thereof
JP5721240B2 (en) Satch-decomposing microbe-encapsulating microcapsules, lawn conservation method using the same, and method for producing the microcapsules
JP5374260B2 (en) Agricultural materials
JP5400476B2 (en) Spray liquid for pest control agent and method for producing raw material composition of spray liquid
TW200825182A (en) Novel bacillus bacterium strain capable of degrading/volume-reducing plant residue
CN108753657A (en) A kind of slow-released system and application thereof
CN107896918A (en) A kind of muskmelon seedling medium
CN107099200A (en) It is a kind of to be used for pest-resistant packaging film of antibacterial before fruit is adopted and preparation method thereof
CN113749130A (en) Sugarcane biological seed stem coating agent and preparation method thereof
JP2021132602A (en) Thatch-decomposing bacteria-containing capsule and lawn area preservation method
CN105284867A (en) Polypeptin copper complexing agent for preventing and treating bacterial angular leaf spot
JPH11332556A (en) New bacterium and control of insect of family scarabaeidae using the same
CN111088186A (en) Bacillus, microbial agent and application thereof
JP6748888B2 (en) Soil disease control method, soil for plant cultivation, and soil disease control agent
KR100596692B1 (en) fertilizer and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131017

R150 Certificate of patent or registration of utility model

Ref document number: 5397942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250