JP5397688B2 - Diamond coated cutting tool - Google Patents

Diamond coated cutting tool Download PDF

Info

Publication number
JP5397688B2
JP5397688B2 JP2009281528A JP2009281528A JP5397688B2 JP 5397688 B2 JP5397688 B2 JP 5397688B2 JP 2009281528 A JP2009281528 A JP 2009281528A JP 2009281528 A JP2009281528 A JP 2009281528A JP 5397688 B2 JP5397688 B2 JP 5397688B2
Authority
JP
Japan
Prior art keywords
diamond
film
cutting
tool
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009281528A
Other languages
Japanese (ja)
Other versions
JP2011121142A (en
Inventor
秀充 高岡
秀夫 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009281528A priority Critical patent/JP5397688B2/en
Publication of JP2011121142A publication Critical patent/JP2011121142A/en
Application granted granted Critical
Publication of JP5397688B2 publication Critical patent/JP5397688B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、炭化タングステン(WC)基超硬合金で構成された工具基体(以下、単に工具基体という)の表面に、ダイヤモンド皮膜を被覆したダイヤモンド被覆切削工具に関し、特に、すぐれた耐摩耗性を長期の使用に亘って発揮することができるダイヤモンド被覆切削工具(以下、ダイヤモンド被覆工具という)に関するものである。   The present invention relates to a diamond-coated cutting tool in which a diamond coating is coated on the surface of a tool base (hereinafter simply referred to as a tool base) made of a tungsten carbide (WC) based cemented carbide, and in particular, has excellent wear resistance. The present invention relates to a diamond-coated cutting tool (hereinafter referred to as a diamond-coated tool) that can be exhibited over a long period of use.

従来、工具基体の表面に、ダイヤモンド皮膜を被覆したダイヤモンド被覆工具が知られているが、従来のダイヤモンド被覆工具においては、ダイヤモンドを成膜した際に、成膜後の冷却過程で工具基体とダイヤモンド皮膜の熱膨張係数の差に起因して、ダイヤモンド皮膜に大きな圧縮残留応力が発生し、そのため工具基体に対するダイヤモンド皮膜の付着強度が十分でないという問題があった。特に、ダイヤモンド皮膜が薄い場合には、この残留応力によってダイヤモンド皮膜が破壊し、剥離を生じるという問題点があった。
この問題を解決するため、例えば、特許文献1に示されるように、成膜後のダイヤモンド皮膜に対してレーザー加工を施し、ダイヤモンド皮膜に溝を形成し、皮膜内の圧縮残留応力を低減させて、ダイヤモンド皮膜の剥離を防止するという提案がなされている。
また、例えば特許文献2に示されるように、工具基体表面にSiC薄膜を形成し、核発生密度を高めることにより、この上に成膜するダイヤモンド皮膜の工具基体への密着性を向上させる提案もされている。
Conventionally, a diamond-coated tool in which the surface of a tool base is coated with a diamond coating is known. However, in a conventional diamond-coated tool, when a diamond is formed, the tool base and the diamond are cooled in the cooling process after the film is formed. Due to the difference in coefficient of thermal expansion of the film, a large compressive residual stress is generated in the diamond film, and there is a problem that the adhesion strength of the diamond film to the tool substrate is not sufficient. In particular, when the diamond film is thin, there is a problem in that the diamond film is broken by the residual stress and peeling occurs.
In order to solve this problem, for example, as shown in Patent Document 1, laser processing is performed on the diamond film after film formation, grooves are formed in the diamond film, and the compressive residual stress in the film is reduced. There have been proposals to prevent peeling of the diamond film.
In addition, as shown in Patent Document 2, for example, there is also a proposal for improving the adhesion of the diamond film formed thereon to the tool base by forming a SiC thin film on the surface of the tool base and increasing the nucleation density. Has been.

特開平10−337602号公報JP 10-337602 A 特開昭63−199870号公報JP-A 63-199870

近年の切削装置のFA化はめざましく、かつ切削加工の省力化に対する要求も強く、これに伴い、ダイヤモンド被覆工具による切削加工は高速化する傾向にあるが、上記の従来ダイヤモンド被覆工具においては、通常の条件での連続切削や断続切削ではすぐれた切削性能を発揮するが、金属材料より比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の難削材の高熱発生を伴う高速切削加工に用いた場合には、ダイヤモンド皮膜に剥離が発生し、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable, and there has been a strong demand for labor saving in cutting work. With this, cutting with diamond-coated tools tends to increase in speed, but in the conventional diamond-coated tools described above, Excellent cutting performance in continuous cutting and intermittent cutting under the above conditions, but high-speed cutting with high heat generation of difficult-to-cut materials such as CFRP with higher specific strength and specific rigidity than metal materials or Al alloy with high weldability When used in the above, the diamond film is peeled off and the service life is reached in a relatively short time.

そこで、本発明者等は、高速切削に用いてもダイヤモンド皮膜の剥離が発生しないダイヤモンド被覆工具を開発すべく研究を行った結果、
WC基超硬合金からなる工具基体表面にダイヤモンド皮膜を成膜するにあたり、ウエットブラスト工程、洗浄工程、酸とアルカリによるエッチング工程、微細ダイヤモンド粒子による傷つけ処理を行った後の工具基体表面に、インクジェト法によりCo粒子を含有するインクを吹き付け、その後、例えば、気相合成法の1種である熱フィラメント法でダイヤモンド皮膜を1〜10μmの膜厚で成膜すると、図1に示すように、吹き付けられたCo粒子を含有するインクの上方にはグラファイト相が形成され、一方、インクの吹き付けられていない箇所の上方にはダイヤモンド相が形成され、ダイヤモンド相中にグラファイト相が共存するダイヤモンド皮膜が成膜されることを見出した。
さらに、上記ダイヤモンド相中にグラファイト相が共存するダイヤモンド皮膜を被覆したダイヤモンド被覆工具を、高熱発生を伴う高速切削加工条件に用いたところ、ダイヤモンド相中に存在するグラファイト相によって、ダイヤモンド皮膜が残留応力によって剥離するのが防止され、同時に、グラファイト相が潤滑作用を呈することから、すぐれた耐摩耗性を長期の使用に亘って発揮するようになることを見出したのである。
Therefore, the present inventors conducted research to develop a diamond-coated tool that does not cause peeling of the diamond film even when used for high-speed cutting,
When a diamond film is formed on the surface of a tool base made of a WC-based cemented carbide, an ink jet is formed on the surface of the tool base after a wet blasting process, a cleaning process, an etching process using acid and alkali, and a scratching process using fine diamond particles. The ink containing Co particles is sprayed by the method, and after that, for example, when a diamond film is formed with a film thickness of 1 to 10 μm by a hot filament method which is a kind of vapor phase synthesis method, as shown in FIG. A graphite phase is formed above the ink containing the Co particles, while a diamond phase is formed above the portion where the ink is not sprayed, and a diamond film in which the graphite phase coexists in the diamond phase is formed. It was found to be a film.
Furthermore, when a diamond-coated tool coated with a diamond film in which the graphite phase coexists in the diamond phase was used for high-speed cutting conditions involving the generation of high heat, the diamond film caused residual stress due to the graphite phase present in the diamond phase. It has been found that exfoliation is prevented by this, and at the same time, the graphite phase exhibits a lubricating action, so that it exhibits excellent wear resistance over a long period of use.

この発明は、上記知見に基づいてなされたものであって、
「(1) タングステンカーバイド及び結合相形成成分として少なくともコバルトを含有する炭化タングステン基超硬合金からなる工具基体の表面に、1〜15μmの膜厚のダイヤモンド皮膜が被覆されたダイヤモンド被覆切削工具において、ダイヤモンド皮膜の膜厚方向に沿って、工具基体の表面からダイヤモンド皮膜の表面にまで、幅5〜200μmのグラファイト相が形成されていることを特徴とするダイヤモンド被覆切削工具。
(2) ダイヤモンド皮膜の表面のグラファイト相が、50〜300μmのピッチで格子状に形成されていることを特徴とする前記(1)に記載のダイヤモンド被覆切削工具。」
を特徴とするものである。
This invention has been made based on the above findings,
“(1) In a diamond-coated cutting tool in which a surface of a tool base made of a tungsten carbide-based cemented carbide containing tungsten carbide and at least cobalt as a binder phase forming component is coated with a diamond film having a thickness of 1 to 15 μm, A diamond-coated cutting tool, wherein a graphite phase having a width of 5 to 200 μm is formed from the surface of a tool base to the surface of the diamond film along the film thickness direction of the diamond film.
(2) The diamond-coated cutting tool as described in (1) above, wherein the graphite phase on the surface of the diamond film is formed in a lattice shape at a pitch of 50 to 300 μm. "
It is characterized by.

以下、本発明について説明する。
本発明では、工具基体は、WCを硬質成分とし、また、少なくともCoを結合相成分として含有するWC基超硬合金を用いるが、超硬合金成分として、例えば、微量のV,Cr,Ta,Nb等が含有されることは許される。
この工具基体は、ダイヤモンド被覆に先立って、通常の前処理が施される。通常の前処理としては、例えば、ウエットブラスト工程、洗浄工程、酸とアルカリによるエッチング工程、工具基体表面の微細ダイヤモンド粒子による傷つけ処理等が挙げられる。
上記通常の前処理を終えた後、工具基体表面に対して、Co粒子を含有するインク吹き付け処理を行う。
本発明では、このインク吹き付け処理を施すことによって、ダイヤモンド相中にグラファイト相が共存する特異な構造のダイヤモンド皮膜を成膜することができる。
The present invention will be described below.
In the present invention, a WC-based cemented carbide containing WC as a hard component and at least Co as a binder component is used as the tool base, but as the cemented carbide component, for example, a small amount of V, Cr, Ta, It is allowed to contain Nb or the like.
The tool substrate is subjected to normal pretreatment prior to diamond coating. Examples of the normal pretreatment include a wet blasting process, a cleaning process, an etching process using acid and alkali, and a scratching process using fine diamond particles on the tool base surface.
After the above-described normal pretreatment, an ink spraying process containing Co particles is performed on the tool base surface.
In the present invention, a diamond film having a specific structure in which a graphite phase coexists in a diamond phase can be formed by performing this ink spraying process.

具体的なインク吹き付け処理は、以下の通り行う。
上記通常の前処理を行った工具基体の表面に、例えば、幅30μm,100μm間隔で格子状に、インクジェット法にて粒径10〜20nmのCo粒子を含有するコロイダル溶液(コバルトカルボニルを熱分解して得られたナノコバルト粒を分散したインク)を吹き付ける。なお、吹き付けの幅、間隔は、ダイヤモンド膜の成膜工程で形成するグラファイト相の幅、格子間隔に応じて調整すればよい。
上記Co粒子を含有するインクを吹き付けた工具基体を、Ar雰囲気中で500℃に加熱することによって、インク中に含有される有機成分の除去を行った後、例えば熱フィラメント法により、水素とメタンガスの混合気流中でダイヤモンド膜を成膜すると、図1、図2に示すように、工具基体表面のインク吹き付けを行った箇所にはグラファイト相が形成され、一方、インクが吹き付けられなかった工具基体表面には、ダイヤモンド膜が成膜され、ダイヤモンド相中にグラファイト相が共存する構造のダイヤモンド皮膜を有する本発明のダイヤモンド被覆工具を得ることができる。
A specific ink spraying process is performed as follows.
For example, a colloidal solution containing Co particles having a particle size of 10 to 20 nm by an inkjet method on the surface of the tool base that has been subjected to the above-described normal pretreatment, in a grid pattern with a width of 30 μm and an interval of 100 μm. The ink obtained by dispersing nano-cobalt particles obtained by spraying is sprayed. The blowing width and interval may be adjusted according to the width and lattice interval of the graphite phase formed in the diamond film forming step.
The tool base on which the ink containing Co particles is sprayed is heated to 500 ° C. in an Ar atmosphere to remove organic components contained in the ink, and then, for example, hydrogen and methane gas are obtained by a hot filament method. As shown in FIGS. 1 and 2, when a diamond film is formed in a mixed gas stream, a graphite phase is formed at a location where ink is sprayed on the surface of the tool base, whereas a tool base where ink is not sprayed is formed. A diamond-coated tool of the present invention having a diamond film having a structure in which a diamond film is formed on the surface and a graphite phase coexists in the diamond phase can be obtained.

上記ダイヤモンド被覆工具は、ダイヤモンド相中に存在するグラファイト相によって、ダイヤモンド皮膜が残留応力によって剥離するのが防止され、さらに、グラファイト相が切削加工時の潤滑機能を有することから、これを、高熱発生を伴う高速切削加工条件に用いた場合でも、ダイヤモンド皮膜の剥離、特に、エッジ部での膜損傷、が防止されるとともに長期の使用に亘ってすぐれた耐摩耗性を発揮し、工具の長寿命化が図られる。   The above diamond-coated tool prevents the diamond film from being peeled off by residual stress due to the graphite phase present in the diamond phase, and the graphite phase has a lubricating function during cutting, which generates high heat. Even when used in high-speed cutting conditions that involve cutting, diamond film peeling, especially film damage at the edge, is prevented, and excellent wear resistance is demonstrated over a long period of use, resulting in a long tool life. Is achieved.

この発明では、ダイヤモンド皮膜の膜厚を1〜15μmと定めているが、これは、従来、膜厚が15μm以下のダイヤモンド薄膜を被覆したダイヤモンド被覆工具において膜の剥離が大きく問題視されていたため、本発明のダイヤモンド被覆工具では膜厚が15μm以下であってもかかる剥離の問題は生じないという観点から膜厚の上限を15μmとした。一方、膜厚が1μm未満では長期の使用に亘ってすぐれた切削性能を発揮することができないことから、本発明では、ダイヤモンド皮膜の膜厚を1〜15μmと定めた。   In this invention, although the film thickness of the diamond film is set to 1 to 15 μm, this is because, conventionally, peeling of the film has been regarded as a serious problem in a diamond-coated tool coated with a diamond thin film having a film thickness of 15 μm or less. In the diamond-coated tool of the present invention, the upper limit of the film thickness is set to 15 μm from the viewpoint that such a peeling problem does not occur even when the film thickness is 15 μm or less. On the other hand, if the film thickness is less than 1 μm, excellent cutting performance cannot be exhibited over a long period of use. Therefore, in the present invention, the film thickness of the diamond film is set to 1 to 15 μm.

また、この発明では、工具基体の表面からダイヤモンド皮膜の表面にまで連続的に形成されているグラファイト相の幅を5〜200μmと定めているが、グラファイト相の幅が5μm未満では、ダイヤモンド皮膜中に発生する残留応力の緩和効果が少なく、一方、グラファイト相の幅が200μmを超えると潤滑性は増すものの、膜全体に占めるグラファイト相の面積割合が増加することによって、硬さの低下、耐摩耗性の低下が生じるようになるため、グラファイト相の幅を5〜200μmと定めた。   In the present invention, the width of the graphite phase continuously formed from the surface of the tool base to the surface of the diamond film is set to 5 to 200 μm. However, if the width of the graphite phase is less than 5 μm, Is less effective in reducing the residual stress generated in the film. On the other hand, if the width of the graphite phase exceeds 200 μm, the lubricity increases, but the area ratio of the graphite phase in the entire film increases, resulting in a decrease in hardness and wear resistance. Therefore, the width of the graphite phase was determined to be 5 to 200 μm.

また、本発明では、グラファイト相を格子状に形成する場合の格子のピッチを50〜300μmと定めているが、前記グラファイト相の幅の場合と同様に、格子のピッチが50μm未満では、ダイヤモンド皮膜の硬さの低下、耐摩耗性の低下が生じ、一方、これが300μmを超えると、残留応力の緩和効果が少なくなるため、格子状のグラファイト相の格子のピッチを、50〜300μmと定めた。   In the present invention, the pitch of the lattice when the graphite phase is formed in a lattice shape is determined to be 50 to 300 μm. Similarly to the case of the width of the graphite phase, if the pitch of the lattice is less than 50 μm, the diamond film On the other hand, when the hardness exceeds 300 μm, the effect of relieving residual stress is reduced. Therefore, the lattice pitch of the lattice-like graphite phase is determined to be 50 to 300 μm.

この発明のダイヤモンド被覆工具は、ダイヤモンド皮膜の膜厚方向に沿って、工具基体の表面からダイヤモンド皮膜の表面にまでグラファイト相が形成されているため、切削加工時にダイヤモンド皮膜が残留応力によって剥離するのが防止され、また、グラファイト相が切削加工時の潤滑機能を有することから、これを、金属材料より比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の難削材の高熱発生を伴う高速切削加工条件で用いた場合でも、ダイヤモンド皮膜の剥離、特に、エッジ部での膜損傷、が防止されるとともに長期の使用に亘ってすぐれた耐摩耗性を発揮し、工具の長寿命化が図られる。   In the diamond-coated tool according to the present invention, the graphite film is formed from the surface of the tool base to the surface of the diamond film along the film thickness direction of the diamond film. In addition, since the graphite phase has a lubricating function during cutting, it can generate high heat in difficult-to-cut materials such as CFRP having higher specific strength and specific rigidity than metal materials or Al alloy having high weldability. Even when used under the high-speed cutting conditions involved, diamond film peeling, especially film damage at the edge, is prevented, and excellent wear resistance is demonstrated over a long period of use, thus extending tool life. Is planned.

本発明のダイヤモンド被覆工具のすくい面と直交する方向での切断断面図の概略を示す。The outline of a cut sectional view in the direction orthogonal to the rake face of the diamond covering tool of the present invention is shown. 本発明のダイヤモンド被覆工具の概略斜視図とともに、一部切断断面図を示す。A partially cut cross-sectional view is shown together with a schematic perspective view of the diamond-coated tool of the present invention.

つぎに、この発明のダイヤモンド被覆工具を実施例により具体的に説明する。   Next, the diamond-coated tool of the present invention will be specifically described with reference to examples.

まず、原料粉末として、いずれも1〜3μmの範囲内の所定の平均粒径を有するWC粉末、Co粉末、TaC粉末、およびCr32 粉末を用意し、これら原料粉末を、重量%で(以下、%は重量%を示す)、WC−1%Cr32 −4%Coとなるように配合した工具基体1用混合粉末を調製し、これをボールミルで72時間湿式混合し、乾燥した後、1.5ton/cm2 の圧力で圧粉体にプレス成形し、これら圧粉体を真空中、1400℃に1時間保持の条件で焼結し、研削加工を施してISO規格SPGN120412のチップ形状をもち、切刃稜線部に施されたホーニングがR:0.05mmの工具基体1を製造した。
また、WC−6%Coとなるように原料粉末を配合した工具基体2用混合粉末、WC−2%TaC−8%Coとなるように原料粉末を配合した工具基体3用混合粉末をそれぞれ調製し、工具基体1と同様にして、工具基体2,3をそれぞれ製造した。
First, WC powder, Co powder, TaC powder, and Cr 3 C 2 powder each having a predetermined average particle diameter in the range of 1 to 3 μm are prepared as raw material powders. In the following,% indicates% by weight), and a mixed powder for the tool base 1 blended so as to be WC-1% Cr 3 C 2 -4% Co was prepared, wet-mixed for 72 hours by a ball mill, and dried. After that, the green compact was pressed into a green compact at a pressure of 1.5 ton / cm 2 , these green compacts were sintered in vacuum at 1400 ° C. for 1 hour, ground, and subjected to grinding to insert an ISO standard SPGN120212 chip. A tool base 1 having a shape and a honing applied to the cutting edge ridge line portion of R: 0.05 mm was manufactured.
In addition, a mixed powder for the tool base 2 in which the raw material powder is blended so as to be WC-6% Co, and a mixed powder for the tool base 3 in which the raw material powder is blended so as to be WC-2% TaC-8% Co are prepared. In the same manner as the tool base 1, the tool bases 2 and 3 were manufactured.

ついで、これら工具基体1〜3に、前処理として、まず5%硝酸水溶液中に10分間浸漬の表面エッチング処理を施して表面部のCoを除去し、さらに平均粒径:0.1μmのダイヤモンドパウダーを分散含有させたアルコール中に10分間保持の条件で超音波表面傷付け処理を施した。   Next, as a pretreatment, these tool bases 1 to 3 are first subjected to surface etching treatment for 10 minutes in a 5% nitric acid aqueous solution to remove Co on the surface portion, and further diamond powder having an average particle size of 0.1 μm. Was subjected to ultrasonic surface scratching treatment under the condition of holding for 10 minutes in alcohol in which the dispersion was contained.

ついで、工具基体1〜3に対して、インク吹き付け処理を行った。
即ち、工具基体1〜3の表面に、インクジェット法により、該ノズルからCoを含有するインクを表1に示される幅および格子間隔で工具基体A〜Cの表面に吹き付け、その後、Ar雰囲気中500℃で加熱して、インク中の有機成分を除去した。
Next, an ink spraying process was performed on the tool bases 1 to 3.
That is, ink containing Co from the nozzles is sprayed onto the surfaces of the tool bases A to C on the surfaces of the tool bases 1 to C with the width and lattice spacing shown in Table 1 by an inkjet method, The organic component in the ink was removed by heating at 0 ° C.

ついで、上記工具基体1〜3に対して熱フィラメント法により、表1に示される膜厚のダイヤモンド膜を成膜することによって、本発明のダイヤモンド被覆工具1〜3(本発明1〜3という)を作製した。
熱フィラメント法による成膜条件は、以下のとおりである。
成膜圧力:400 Pa、
流量:3000 sccm、
CH流量:150 sccm、
フィラメント温度:2100 ℃
成膜温度:800 ℃
成膜時間:狙い膜厚により設定。本発明工具3の場合、10 時間
Next, the diamond coated tools 1 to 3 of the present invention (referred to as the present invention 1 to 3) are formed by forming a diamond film having a film thickness shown in Table 1 on the tool bases 1 to 3 by the hot filament method. Was made.
The film forming conditions by the hot filament method are as follows.
Deposition pressure: 400 Pa,
H 2 flow rate: 3000 sccm,
CH 4 flow rate: 150 sccm,
Filament temperature: 2100 ° C
Deposition temperature: 800 ° C
Deposition time: Set according to the target film thickness. In the case of the inventive tool 3, 10 hours

比較のため、上記工具基体1〜3に対して、本発明1〜3と同様な前処理を施した後、インク吹き付け処理を行わずに、本発明1〜3と同様な条件でダイヤモンド膜を成膜し、表1に示される比較例のダイヤモンド被覆工具1〜3(比較例1〜3という)を作製した。   For comparison, after the same pretreatment as that of the present invention 1 to 3 is performed on the tool bases 1 to 3, the diamond film is formed under the same conditions as those of the present invention 1 to 3 without performing the ink spraying process. Film formation was performed, and diamond coated tools 1 to 3 (referred to as Comparative Examples 1 to 3) of Comparative Examples shown in Table 1 were produced.

上記本発明1〜3、比較例1〜3について、ダイヤモンド皮膜厚み、グラファイト相の幅および格子ピッチを、走査型電子顕微鏡および光学顕微鏡により測定したところ表1に示す結果が得られた。
また、本発明1〜3、比較例1〜3について、その膜厚方向に平行な断面のグラファイト相の生成状況を、走査型電子顕微鏡により観察したところ、表1に示される観察結果が得られた。
For the present inventions 1 to 3 and Comparative Examples 1 to 3, the diamond film thickness, the width of the graphite phase, and the lattice pitch were measured with a scanning electron microscope and an optical microscope, and the results shown in Table 1 were obtained.
Moreover, about this invention 1-3 and the comparative examples 1-3, when the production | generation condition of the graphite phase of the cross section parallel to the film thickness direction was observed with the scanning electron microscope, the observation result shown in Table 1 was obtained. It was.

Figure 0005397688
Figure 0005397688

つぎに、上記本発明1〜3、比較例1〜3について、次の条件による高速切削試験を行った。
《切削条件A》
被削材:A390の丸棒、
切削速度:1200 m/min.、
切り込み:2.0 mm、
送り:0.3 mm/rev.、
切削時間:3 分、
の条件での高Si含有アルミニウム合金の乾式高速連続切削加工試験(通常の切削速度は、800m/min.)、
《切削条件B》
被削材:20%SiC粒子分散Al合金の丸棒、
切削速度:600 m/min.、
切り込み:1.0 mm、
送り:0.2 mm/rev.、
切削時間:5 分、
の条件でのSiC−Al合金の乾式高速連続切削加工試験(通常の切削速度は、300m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表2に示した。
Next, the above-mentioned present invention 1 to 3 and comparative examples 1 to 3 were subjected to a high-speed cutting test under the following conditions.
<Cutting condition A>
Work material: A390 round bar,
Cutting speed: 1200 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 3 minutes,
Dry high-speed continuous cutting test of high Si content aluminum alloy under the conditions of (normal cutting speed is 800 m / min.),
<Cutting condition B>
Work material: Round bar of 20% SiC particle dispersed Al alloy,
Cutting speed: 600 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed continuous cutting test of SiC-Al alloy under the conditions (normal cutting speed is 300 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 2.

Figure 0005397688
Figure 0005397688

また、上記の実施例1で調製した工具基体1用混合粉末、工具基体2用混合粉末、工具基体3用混合粉末を用いて、直径が13mmの丸棒焼結体を作製し、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが10mm×22mmの寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)4〜6をそれぞれ製造した。   Further, a round bar sintered body having a diameter of 13 mm was prepared using the mixed powder for the tool base 1, the mixed powder for the tool base 2, and the mixed powder for the tool base 3 prepared in Example 1 above. From a sintered body, by grinding, a tool base made of a WC-based cemented carbide having a two-blade shape with a diameter x length of 10 mm x 22 mm and a twist angle of 30 degrees in the groove forming part ( Drills 4 to 6 were produced.

ついで、これらの工具基体(ドリル)4〜6の切刃に、ホーニングを施し、上記実施例1と同様の前処理を施した後、上記実施例1と同一の条件で、インク吹き付け処理を行った後、上記実施例1と同一の条件で、ダイヤモンド皮膜を成膜することにより、表3に示される本発明のダイヤモンド被覆ドリル4〜6(以下、本発明4〜6という)をそれぞれ製造した。   Next, honing is performed on the cutting edges of these tool bases (drills) 4 to 6, and the same pretreatment as in the first embodiment is performed, and then the ink spraying process is performed under the same conditions as in the first embodiment. Then, the diamond coating drills 4 to 6 of the present invention shown in Table 3 (hereinafter referred to as the present inventions 4 to 6) were produced by forming a diamond film under the same conditions as in Example 1 above. .

比較のため、上記の工具基体(ドリル)4〜6の切刃にホーニングを施し、上記実施例1と同様の前処理を施した後、上記実施例1のインク吹き付け処理を行わずに、ダイヤモンド皮膜を成膜することにより、表3に示される比較例のダイヤモンド被覆ドリル4〜6(以下、比較例4〜6という)をそれぞれ製造した。   For comparison, the cutting edges of the tool bases (drills) 4 to 6 are subjected to honing, the same pretreatment as in the first embodiment is performed, and then the ink spraying process in the first embodiment is not performed. By forming a film, diamond coated drills 4 to 6 (hereinafter referred to as comparative examples 4 to 6) of comparative examples shown in Table 3 were produced.

上記本発明4〜6、比較例4〜6について、ダイヤモンド皮膜厚み、グラファイト相の幅および格子ピッチを、走査型電子顕微鏡および光学顕微鏡により測定したところ表3に示す結果が得られた。
また、本発明4〜6、比較例4〜6について、その膜厚方向に平行な断面のグラファイト相の生成状況を、走査型電子顕微鏡により観察したところ、表3に示される観察結果が得られた。
About the said invention 4-6, the comparative examples 4-6, when the diamond film thickness, the width | variety of the graphite phase, and the lattice pitch were measured with the scanning electron microscope and the optical microscope, the result shown in Table 3 was obtained.
Moreover, about this invention 4-6 and comparative examples 4-6, when the production | generation condition of the graphite phase of the cross section parallel to the film thickness direction was observed with the scanning electron microscope, the observation result shown in Table 3 was obtained. It was.

Figure 0005397688
Figure 0005397688

つぎに、上記本発明4〜6および比較4〜6について、次に示す条件で、乾式高速穴あけ切削試験を行った。
《切削条件C》
被削材−平面寸法:100mm×250mm、厚さ:8mmの、炭素繊維と熱硬化型エポキシ系樹脂が直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度:80 m/min.、
送り:0.05 mm/rev、
貫通穴:(8mm)、
エアーブロー、
の条件での上記CFRPの乾式高速穴あけ切削加工試験、
《切削条件D》
被削材−平面寸法:100mm×250mm、厚さ:15mmの、JIS・ADC12の板材
切削速度:150 m/min.、
送り:0.1 mm/rev、
貫通穴:(15mm)、
MQL(2cc/h)、
の条件での上記Al合金の乾式高速穴あけ切削加工試験、
をそれぞれ行い、いずれの乾式高速穴あけ切削加工試験でも、切削不能になるまでの穴あけ加工数を測定した。
この測定結果を表4にそれぞれ示した。
Next, dry high-speed drilling tests were performed on the present inventions 4 to 6 and comparisons 4 to 6 under the following conditions.
<< Cutting conditions C >>
Work material-planar dimensions: 100 mm × 250 mm, thickness: 8 mm, carbon fiber reinforced resin composite material (CFRP) plate material with carbon fiber and thermosetting epoxy resin having an orthogonal laminated structure,
Cutting speed: 80 m / min. ,
Feed: 0.05 mm / rev,
Through hole: (8mm),
Air blow,
CFRP dry high-speed drilling test under the conditions of
<< Cutting condition D >>
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 15mm, JIS / ADC12 Plate Material
Cutting speed: 150 m / min. ,
Feed: 0.1 mm / rev,
Through hole: (15mm),
MQL (2cc / h),
Dry high-speed drilling test of the above Al alloy under the conditions of
In each dry high-speed drilling test, the number of drilling operations until cutting became impossible was measured.
The measurement results are shown in Table 4, respectively.

Figure 0005397688
Figure 0005397688

表1〜4に示される結果から、ダイヤモンド皮膜中にグラファイト相が形成されていない比較例1〜6においては、残留応力に起因するダイヤモンド皮膜の剥離により工具寿命が短いことが分かる。
これに対して、本発明1〜6は、ダイヤモンド皮膜中にグラファイト相が膜厚方向に沿って形成されていることから、高速切削条件下で用いられた場合でも、ダイヤモンド皮膜が残留応力によって剥離することが防止され、また、グラファイト相が切削加工時の潤滑機能を有することから、ダイヤモンド皮膜の剥離、特に、エッジ部での膜損傷、が防止されるとともに長期の使用に亘ってすぐれた耐摩耗性を発揮する。
From the results shown in Tables 1 to 4, it can be seen that in Comparative Examples 1 to 6 in which the graphite phase is not formed in the diamond film, the tool life is short due to peeling of the diamond film due to residual stress.
On the other hand, in the present inventions 1 to 6, since the graphite phase is formed along the film thickness direction in the diamond film, the diamond film peels off due to residual stress even when used under high-speed cutting conditions. In addition, since the graphite phase has a lubricating function during cutting, peeling of the diamond film, particularly film damage at the edge, is prevented, and excellent resistance over a long period of use. Exhibits abrasion.

この発明のダイヤモンド被覆工具は、金属材料より比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の難削材の高速切削においても、ダイヤモンド皮膜の剥離が生じることはなく長期の使用に亘って、すぐれた耐欠損性と耐摩耗性を発揮するものであり、インサート、ドリルに限らず、フライス工具、エンドミル、カッター等の各種切削工具として幅広く利用することが可能でありる。
ト化に十分満足に対応できるものである。
The diamond-coated tool of the present invention can be used for a long time without peeling of the diamond film even in high-speed cutting of difficult-to-cut materials such as CFRP having higher specific strength and specific rigidity than metal materials or Al alloy having high weldability. It exhibits excellent chipping resistance and wear resistance, and can be widely used as various cutting tools such as milling tools, end mills, and cutters as well as inserts and drills.
It is possible to cope with the development of the system fully satisfactorily.

Claims (2)

タングステンカーバイド及び結合相形成成分として少なくともコバルトを含有する炭化タングステン基超硬合金からなる工具基体の表面に、1〜15μmの膜厚のダイヤモンド皮膜が被覆されたダイヤモンド被覆切削工具において、ダイヤモンド皮膜の膜厚方向に沿って、工具基体の表面からダイヤモンド皮膜の表面にまで、幅5〜200μmのグラファイト相が形成されていることを特徴とするダイヤモンド被覆切削工具。   In a diamond-coated cutting tool in which a diamond substrate having a thickness of 1 to 15 μm is coated on the surface of a tungsten carbide-based cemented carbide containing tungsten carbide and at least cobalt as a binder phase forming component. A diamond-coated cutting tool, wherein a graphite phase having a width of 5 to 200 μm is formed along the thickness direction from the surface of the tool base to the surface of the diamond coating. ダイヤモンド皮膜の表面のグラファイト相が、50〜300μmのピッチで格子状に形成されていることを特徴とする請求項1に記載のダイヤモンド被覆切削工具。   2. The diamond-coated cutting tool according to claim 1, wherein the graphite phase on the surface of the diamond film is formed in a lattice shape at a pitch of 50 to 300 [mu] m.
JP2009281528A 2009-12-11 2009-12-11 Diamond coated cutting tool Expired - Fee Related JP5397688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281528A JP5397688B2 (en) 2009-12-11 2009-12-11 Diamond coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281528A JP5397688B2 (en) 2009-12-11 2009-12-11 Diamond coated cutting tool

Publications (2)

Publication Number Publication Date
JP2011121142A JP2011121142A (en) 2011-06-23
JP5397688B2 true JP5397688B2 (en) 2014-01-22

Family

ID=44285575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281528A Expired - Fee Related JP5397688B2 (en) 2009-12-11 2009-12-11 Diamond coated cutting tool

Country Status (1)

Country Link
JP (1) JP5397688B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777733A (en) * 2016-12-27 2017-05-31 沈阳航空航天大学 The optimization method of CFRP and titanium alloy laminated construction bore process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220274186A1 (en) 2019-10-24 2022-09-01 Sumitomo Electric Hardmetal Corp. Diamond cutting tool and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399138A (en) * 1987-08-14 1988-04-30 Nippon Telegr & Teleph Corp <Ntt> Manufacture of tool coated with carbon film of hard quality
US5776355A (en) * 1996-01-11 1998-07-07 Saint-Gobain/Norton Industrial Ceramics Corp Method of preparing cutting tool substrate materials for deposition of a more adherent diamond coating and products resulting therefrom
JPH10337602A (en) * 1997-06-04 1998-12-22 Mitsubishi Materials Corp Cutting tool made of surface covering cemented carbide and having thick artificial diamond covering layer having superior peeling resistance
US6267867B1 (en) * 1998-05-26 2001-07-31 Saint-Gobain Industrial Ceramics, Inc. Composite article with adherent CVD diamond coating and method of making
JP2001179504A (en) * 1999-12-27 2001-07-03 Hitachi Tool Engineering Ltd Hard carbon film-coated tool
JP2008100301A (en) * 2006-10-17 2008-05-01 Ngk Spark Plug Co Ltd Diamond coated cutting insert and cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777733A (en) * 2016-12-27 2017-05-31 沈阳航空航天大学 The optimization method of CFRP and titanium alloy laminated construction bore process
CN106777733B (en) * 2016-12-27 2020-03-24 沈阳航空航天大学 Drilling method for CFRP and titanium alloy laminated structure

Also Published As

Publication number Publication date
JP2011121142A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5866650B2 (en) Surface coated cutting tool
JP4739236B2 (en) Surface coated cutting tool
EP2940181A1 (en) Surface coated member, and manufacturing method for same
JP5499650B2 (en) Diamond-coated tools with excellent peeling and wear resistance
JP5124790B2 (en) Diamond coated cutting tool
WO2015025903A1 (en) Coated cutting tool
WO2013042790A1 (en) Surface-coated cutting tool
EP2772330A1 (en) Diamond-coated tool
WO2011052767A1 (en) Surface coated cutting tool with excellent chip resistance
JP5488873B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP5397689B2 (en) Diamond coated cutting tool
KR20130019378A (en) Surface-coated cutting tool
JP5397688B2 (en) Diamond coated cutting tool
JP5499771B2 (en) Diamond coated cutting tool
JP5163879B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP5292900B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP2011104721A (en) Diamond coating tool showing excellent anti-defective property and abrasion resistance
JP5187572B2 (en) Diamond coated cemented carbide cutting tool
JP5569740B2 (en) Surface coated cutting tool with excellent chipping resistance
JP2011131347A (en) Diamond-coated cemented carbide cutting tool
JP5239059B2 (en) Coated cBN sintered tool for high precision cutting
JP5246597B2 (en) Diamond coated tools
JP2009090398A (en) Diamond-coated cutting tool having excellent lubricity and machining accuracy
JP5163878B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP2007245269A (en) Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5397688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees