JPS6399138A - Manufacture of tool coated with carbon film of hard quality - Google Patents

Manufacture of tool coated with carbon film of hard quality

Info

Publication number
JPS6399138A
JPS6399138A JP20330487A JP20330487A JPS6399138A JP S6399138 A JPS6399138 A JP S6399138A JP 20330487 A JP20330487 A JP 20330487A JP 20330487 A JP20330487 A JP 20330487A JP S6399138 A JPS6399138 A JP S6399138A
Authority
JP
Japan
Prior art keywords
carbon film
tool
gas
base board
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20330487A
Other languages
Japanese (ja)
Inventor
Shojiro Miyake
正二郎 三宅
Hideo Yoshihara
秀雄 吉原
Iwao Watanabe
巌 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20330487A priority Critical patent/JPS6399138A/en
Publication of JPS6399138A publication Critical patent/JPS6399138A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable a tool to small decrease its damage, by applying negative high voltage to the tool, arranged separating from two electrodes, and forming a carbon film of hard quality, consisting of mixed crystal by hexagonal crystal diamond and graphite, on a surface of the tool. CONSTITUTION:A base board 3 is set to a base board holder 2 in a vacuum vessel 1, and after the inside of the vacuum vessel 1 is exhausted, Ar gas is introduced from a gas introducing variable valve 11. And the vessel 1, in which an electron emitting filament 7 is heated by a DC power source 9, generates Ar gas plasma between the electron emitting filament 7 and a discharge maintaining electrode 6 by applying positive voltage by a DC power source 8 to the discharge maintaining electrode 6. Thereafter, C2H4 gas plasma is generated between the discharge maintaining electrode 6 and the electron emitting filament 7 by introducing C2H4 gas from a gas introducing variable valve 10. Subsequently, a shutter 5 is opened after negative high voltage is applied to the base board 3, and a carbon film of hard quality, consisting of mixed crystal by diamond and graphite, is formed on the base board.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は切削抵抗が小さく、かつ工具の損傷も少なく、
加工物の仕上物を高品位に仕上げることのできる硬質カ
ーボン膜被覆工具の製造方法に関する。
[Detailed description of the invention] [Industrial application field] The present invention has low cutting resistance and less damage to tools.
The present invention relates to a method of manufacturing a hard carbon film-coated tool that can finish a workpiece with high quality.

〔従来の技術〕[Conventional technology]

従来、切削工具等の材料としては、通常の工具鋼の他、
高速度工具鋼、超硬合金等が用いられている。ところが
これらの材料は相手材料と凝着を生じ易い材料や、又は
比較的硬質な材料を切削する場合には抵抗が大きく、ま
た工具も損耗し易いという欠点がある。一方、これに対
し、凝着性の小さい硬質なセラミックスを工具材料とし
て用いることも行なわれているが、セラミックスは脆性
を有するため、内在するクラックに起因して工具のチッ
ピングないし欠損を生じ易いという問題がある。
Conventionally, materials for cutting tools, etc. have been made of ordinary tool steel,
High-speed tool steel, cemented carbide, etc. are used. However, these materials have the disadvantage that when cutting materials that tend to adhere to the other material or relatively hard materials, the resistance is large and the tools are easily worn out. On the other hand, hard ceramics with low adhesion have been used as tool materials, but ceramics are brittle and tend to chip or break due to inherent cracks. There's a problem.

また最近、工具材料表面にT + N 、T r C、
A40s 。
Recently, T + N, T r C,
A40s.

BN等の硬質材料を被覆した工具が用いられている。こ
れらの被覆はイオンブレーティング、スパッタリング、
OVD、  プラズマ容射等により形成されている。こ
れは下地材として靭性の優れた材料を用いることによシ
欠損ないし割れを生じ難くし、かつ膜の硬質なことを利
用し、被削性を向上させようとしている。
A tool coated with a hard material such as BN is used. These coatings can be applied by ion blasting, sputtering,
It is formed by OVD, plasma radiation, etc. This aims to use a material with excellent toughness as the base material to make it less likely to cause chipping or cracking, and to improve machinability by taking advantage of the hardness of the film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

コノヨウナ工具材料表面K T + N 、T i C
1At203゜BN等の硬質材料を被覆した工具では、
被覆材料には特に潤滑性がないため、切削抵抗は大きく
なシ、このため下地材料と被覆材料の密着性が悪い場合
その接合面に応力集中が生じ剥離による脱落が生じ易い
等の問題点がある。
Konoyouna tool material surface K T + N, T i C
For tools coated with hard materials such as 1At203°BN,
Since the coating material does not have any particular lubricity, the cutting resistance is large. Therefore, if the adhesion between the base material and the coating material is poor, stress concentration will occur at the bonded surface, which may easily cause the material to come off due to peeling. be.

本発明は上記従来の問題点を解消した工具の製造方法を
提供するものである。
The present invention provides a tool manufacturing method that solves the above-mentioned conventional problems.

〔問題点を解決するための手段〕[Means for solving problems]

02 H4ガスを放電維持用電極と電子放出用フィラメ
ントとの間に導入して放電により02H,ガスプラズマ
を生成し、前記放電維持用電極から離れて配置した工具
に負の高電圧を印加して六方晶ダイヤモンドとグラフフ
ィトの混晶からなる硬質カーボン膜を工具表面に形成す
る。
02H4 gas is introduced between the discharge sustaining electrode and the electron emitting filament to generate 02H gas plasma by discharge, and a negative high voltage is applied to a tool placed away from the discharge sustaining electrode. A hard carbon film consisting of a mixed crystal of hexagonal diamond and graphite is formed on the tool surface.

〔作 用〕[For production]

C2H4ガスをプラズマ化して、プラズマに対して負の
高電圧が加えられた工具表面にイオンを加速して導くこ
とによシ、固体潤滑性と共に高硬度を備えた六方晶ダイ
ヤモンドとグラフフィトの混晶からなる硬質カーボン膜
が工具表面に形成される。
By converting C2H4 gas into plasma and accelerating ions to the tool surface where a high negative voltage is applied to the plasma, a mixture of hexagonal diamond and graphite with solid lubricity and high hardness can be created. A hard carbon film consisting of crystals is formed on the tool surface.

〔実施例〕〔Example〕

第1図に上記硬質カーボン膜を形成する方法の一例とし
てプラズマOVD法による場合の装置例の概略を示す。
FIG. 1 schematically shows an example of an apparatus in which a plasma OVD method is used as an example of a method for forming the hard carbon film.

図において、lは真空容器、2は基盤ホルダ、3は基盤
(工具)、4tは高圧電源、!はシャッタ、乙は放電維
持用電極、7は電子放出用フィラメント、♂は直流電源
、りは直流電源、10、//はガス導入用可変バルブ、
/2は排気路、/3は永久磁石である。真空容器/内の
基盤ホルダーに基盤3をセットし、前記真空容器lをJ
’ X / OTorr  以上まで排気した後、ガス
導入用可変バルブ//からArガスを導入し、/ 0 
= Torr程度に設定する。電子放出用フィラメント
7を直流電源りによシ過熱する。次いで、放電維持用電
極乙に正の電圧CjO〜1oov)を直流電源とによっ
て印加し、前記の電子放出用フィラメント7と放電維持
用電極乙との間に、Arガスプラズマを生成する。次に
、基盤3に高圧電源弘によシ負の高電圧(−/〜−3k
V )を印加してAr+イオンによるスパッタクリーニ
ングt−10〜30分間行ない、基盤クリーニングを終
了する。スパッタクリーニング終了後、0. H,ガス
をガス導入用可変バルブ10から導入し、ガス圧を7Q
  Torr程度に設定する。次にArガスによるスパ
ッタクリーニングの場合と同一手順で、放電維持用電極
乙と電子放出用フィラメント7との間に、O,H。
In the figure, l is a vacuum container, 2 is a base holder, 3 is a base (tool), 4t is a high voltage power supply, and ! is a shutter, B is a discharge sustaining electrode, 7 is a filament for electron emission, ♂ is a DC power supply, RI is a DC power supply, 10, // is a variable valve for gas introduction,
/2 is an exhaust path, and /3 is a permanent magnet. Set the board 3 in the board holder inside the vacuum container/, and place the vacuum container l in the J
' After exhausting the air to over X / OTorr, introduce Ar gas from the variable gas introduction valve //, / 0
= Set to about Torr. The electron emitting filament 7 is heated by a DC power supply. Next, a positive voltage CjO~1oov) is applied to the discharge sustaining electrode B by a DC power supply to generate Ar gas plasma between the electron emitting filament 7 and the discharge sustaining electrode B. Next, apply a negative high voltage (-/~-3k) to the board 3 by applying a high voltage power supply.
V) is applied to perform sputter cleaning using Ar+ ions for t-10 to 30 minutes, and the substrate cleaning is completed. After sputter cleaning, 0. H, gas is introduced from the variable gas introduction valve 10, and the gas pressure is set to 7Q.
Set to about Torr. Next, in the same procedure as in the case of sputter cleaning with Ar gas, O, H was applied between the discharge sustaining electrode B and the electron emitting filament 7.

ガスプラズマを生成する。次いで、基盤3に負の高電圧
(−2〜−j、 j kV )を印加した後、シャッタ
!を開き、基盤上にダイヤモンドとダイヤモンドとグラ
フフィトの混晶からなる硬質カーポン膜を形成する。
Generates gas plasma. Next, after applying a negative high voltage (-2 to -j, j kV) to the board 3, the shutter is pressed! A hard carbon film consisting of diamond and a mixed crystal of diamond and graphite is formed on the substrate.

“以上によシ得られた硬質カーボン膜は、第2図のX線
回折パターン図に示すように六方晶系のダイヤモンドと
グラフフィトとの混晶によって形成されている・ 次に本発明によって製造された工具の切削性について説
明する。
“As shown in the X-ray diffraction pattern in Figure 2, the hard carbon film obtained above is formed of a mixed crystal of hexagonal diamond and graphite. The machinability of the tool will be explained below.

第3図に上記試験方法の概略を示す。硬質カーボン膜−
/全形成した試料、22に焼入れした鋼球圧子23を押
圧し、摺動させる。
FIG. 3 shows an outline of the above test method. Hard carbon film
/A hardened steel ball indenter 23 is pressed onto the fully formed sample 22 and made to slide.

このときの摺動抵抗、摺動面の情況、相手材料の除去量
等により切削性を評価する。
The machinability is evaluated based on the sliding resistance at this time, the condition of the sliding surface, the amount of removed material, etc.

上記試験結果を第1図乃至第3図に示す。The above test results are shown in FIGS. 1 to 3.

第グ図は硬脆材料であるシリコン表面に硬質カーボン膜
を形成しないものA。と形成するものAH+ A2につ
いてその摺動抵抗の測定結果を示している。鋼球圧子2
3でシリコン表面を直接摺動させた時の摩擦抵抗(人。
Figure A shows a case A in which a hard carbon film is not formed on the surface of silicon, which is a hard and brittle material. The measurement results of the sliding resistance of AH+A2 formed with AH+A2 are shown. Steel ball indenter 2
3. Frictional resistance when sliding directly on the silicon surface (human).

)に比べ、硬質カーボン膜を形成した面(A4 + A
! )では摩擦抵抗は十程度に減少する。
), the surface on which the hard carbon film was formed (A4 + A
! ), the frictional resistance decreases to about 10%.

また、シリコンのみの摩擦面には脆性クラックが発生し
ておシ、シリコンは硬質材料であるにもかかわらず摩擦
面の損耗は著しく大きい。これに対し、シリコン面に硬
質カーボン膜を形成したものはシリコン面には摩耗痕は
観察されず、表面にクラックはもちろん発生しなかった
。さらに、相手摩擦面である鋼球圧子側にはシリコンと
摺動させた面の摩耗除去量は大きいが、摩擦面には円形
状の凝着痕が形成され粗されている。これに対し硬質カ
ーボン膜を形成した面と摩擦した法王子の除去量は小さ
く、その面は塑性流動痕で形成されていることが観察さ
れた。
Furthermore, brittle cracks occur on the friction surface made only of silicon, and even though silicon is a hard material, the wear and tear on the friction surface is extremely large. On the other hand, in the case where a hard carbon film was formed on the silicon surface, no wear marks were observed on the silicon surface, and of course no cracks were generated on the surface. Further, on the steel ball indenter side, which is the mating friction surface, although the amount of abrasion removed by the surface sliding on the silicon is large, the friction surface is rough with circular adhesion marks formed thereon. On the other hand, it was observed that the amount of Hoji removed when rubbed against the surface on which the hard carbon film was formed was small, and that the surface was formed by plastic flow marks.

また、シリコン表面として表面粗さの大きいランプ面に
硬質カーボン膜を形成した場合の摺動抵抗は第≠図A2
に示すようにシリコンの鏡面に硬質カーボン膜を形成し
たA1の場合よりさらに小さい値を示す。また、この時
の摩擦面にはほとんど条痕が検出されない程であったの
に対し、鋼球圧子側の摩擦面には非常に鋭利な切削条痕
が形成されている。即ち、表面粗さが太きいため、それ
が砥粒切刃として作用して相手を切削したと考えられる
In addition, the sliding resistance when a hard carbon film is formed on the lamp surface, which has a large surface roughness as a silicon surface, is shown in Figure A2.
As shown in the figure, the value is even smaller than that of A1 in which a hard carbon film is formed on a mirror surface of silicon. Furthermore, while there were hardly any marks detected on the friction surface at this time, very sharp cutting marks were formed on the friction surface on the steel ball indenter side. That is, since the surface roughness was large, it is thought that it acted as an abrasive cutting edge and cut the other party.

次に第5図は本発明の製造方法によって硬質カーボン膜
を形成した工具試料とB/夕O/鋼とを摺動させた場合
、相手材料であるB/!0/鋼の除去体積を示したもの
である。明らかに粗面に硬質カーボン膜を形成したA2
の除去体積が太きい。
Next, FIG. 5 shows that when a tool sample on which a hard carbon film has been formed by the manufacturing method of the present invention is slid against B/O/steel, the mating material B/! 0/removed volume of steel. A2 with a hard carbon film clearly formed on the rough surface
The removed volume is large.

特に小荷重においてその除去体積が大きいことは本発明
により製造された工具の被剛性が優れていることを示し
ている。
The fact that the removed volume is large, especially under small loads, indicates that the tool manufactured according to the present invention has excellent rigidity.

ここで、シリコン鏡面A。が高荷重において硬質カーボ
ン膜を形成したA2と同程度の相手材料除去量を示すの
はシリコン表面に摩擦方向にほぼ直角に非常に大きなり
ラックが発生し、その段差で削っているためである。し
かしこの場合、被削材の面は粗されて、かつ抵抗は著し
く大きくなる。
Here, silicon mirror surface A. The reason why A2 shows the same amount of mating material removed as A2 with a hard carbon film under high load is because a very large rack is generated on the silicon surface almost perpendicular to the direction of friction, and the step is used to scrape. . However, in this case, the surface of the workpiece is roughened and the resistance becomes significantly large.

ここで、シリコン表面には相手材料である鋼が凝着して
おシ、これが抵抗増大の原因となっているが、硬質カー
ボン膜を形成した面にはこのような切削変動の原因とな
る相手材料の凝着は観察されなかった。
Here, steel, which is the mating material, adheres to the silicon surface and causes an increase in resistance, but the surface on which the hard carbon film is formed has a mating material that causes cutting fluctuations. No material adhesion was observed.

これらの結果は、本発明では工具の下地材料として脆性
材料を用いてもチッピング等の欠損に対する防止効果が
あり、更に切削抵抗が小さく、相手面の加工面の仕上が
9面が良好な加工工具を提供できることを示している。
These results indicate that the present invention has the effect of preventing defects such as chipping even when a brittle material is used as the base material of the tool, and furthermore, the cutting force is small and the machining tool has a good finish on the mating surface of 9 surfaces. It shows that we can provide

第4図は、比較的軟質なSUS弘t、toaの鋼材を下
地材とし、硬質カーボン膜を形成したものB。
Fig. 4 shows B in which a hard carbon film is formed on a relatively soft SUS steel material as a base material.

と、形成しないものB、との摺動抵抗を比較したもので
ある。同図から明らかなように、B、はB。
This figure shows a comparison of the sliding resistance between B and B, which is not formed. As is clear from the figure, B is B.

に比べ、摺動抵抗が十〜上に減少する。また、B。Compared to , the sliding resistance is reduced by 10 to 10 times. Also, B.

は球圧子である焼入れした鋼球より高度が低いため、大
きな摩擦痕が形成される。これに対し、硬質カーボン膜
を/μm程度形成したB、では、 摩耗痕は観察されな
い。さらに、相手材料である鋼球を観察すると、Boと
摺動させた場合には不規則な凝着底が生じるのみである
が、B1と摺動させた場合には摺動方向の切削条痕が形
成されている。
Since the height of the indenter is lower than that of the hardened steel ball used as a ball indenter, large friction marks are formed. On the other hand, no wear marks were observed in case B, in which a hard carbon film was formed on the order of 1/μm. Furthermore, when observing the steel ball, which is the mating material, when it slides with Bo, only irregular adhesive bottoms occur, but when it slides with B1, there are cutting marks in the sliding direction. is formed.

このように比較的軟質な下地材料を用いても硬質カーボ
ン膜を形成することにより、相手面を有効に除去可能で
あり、また、固体潤滑作用によって切削抵抗も著しく小
さくできることが分る。また、形成したカーボン膜はス
テンレスと同様耐食性、耐環境性もあるので、特殊環境
でも使用でき、各種分野の工具として使用できる。
It can be seen that even if such a relatively soft base material is used, the opposing surface can be effectively removed by forming a hard carbon film, and cutting resistance can also be significantly reduced due to the solid lubrication effect. In addition, the formed carbon film has corrosion resistance and environmental resistance similar to stainless steel, so it can be used in special environments and can be used as tools in various fields.

また、球圧子側に硬質カーボンを形成し、同様にSUS
≠グOCと摺動させた場合についても、今までの結果と
同様摺動抵抗が小さく、かつ5O3ttttocとの凝
着もなく、鋭利な切削条痕が形成され、優れた切削性を
示した。
In addition, hard carbon is formed on the ball indenter side, and SUS
In the case of sliding with ≠g OC, the sliding resistance was small as in the previous results, there was no adhesion with 5O3ttttoc, sharp cutting marks were formed, and excellent machinability was exhibited.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による製造方法を用いれば
、製造された工具はグラファイトの固体潤滑性と共にダ
イヤモンドの硬度を備えているので、切削抵抗及び工具
損傷が小さく、かつ凝着も生じず、加工物の仕上面を高
品位に仕上げることが可能であシ、旋盤、フライス盤、
ボール盤等各種切削工具、鍛造、プレス、ダイス、ゲー
ジ類。
As explained above, if the manufacturing method according to the present invention is used, the manufactured tool has the solid lubricity of graphite and the hardness of diamond, so cutting resistance and tool damage are small, and no adhesion occurs. It is possible to finish the finished surface of the workpiece with high quality, such as lathes, milling machines,
Various cutting tools such as drilling machines, forging, presses, dies, and gauges.

成型用型、またハサミ、ナイフ、鋸等の各種の工具の製
造に本発明を適用すれば、非常に優れた特性を示す。
When the present invention is applied to the production of molds for molding and various tools such as scissors, knives, and saws, it exhibits very excellent properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は本発明における硬質カーボン膜形成装置の一例
を示す概略図、第2図は本発明による硬質カーボン膜の
X線回折パターン図、第3図は本発明により製造された
工具の切削性の試験方法の概略図、第≠図は摩擦抵抗の
測定結果を示すグラフ、第5図は相手材料の除去体積め
測定結果を示すグラフ、第6図は摩擦抵抗の測定結果を
示すグラフである。 図中符号/は真空容器、コは基盤ホルダ、3は基盤、≠
は高圧電源、jはシャッタ、乙は放電維持用電極、7は
電子放出用フィラメント、♂は直流電源、りは直流電源
、10.//はガス導入用可変バルブ、/2は排気路、
/3は永久磁石。 2/は硬質カーボン膜、22は下地材料、23は鋼球圧
子である。
FIG. 7 is a schematic diagram showing an example of the hard carbon film forming apparatus according to the present invention, FIG. 2 is an X-ray diffraction pattern diagram of the hard carbon film according to the present invention, and FIG. 3 is a diagram showing the machinability of the tool manufactured according to the present invention. A schematic diagram of the test method of . In the figure, / is a vacuum container, ko is a base holder, 3 is a base, ≠
is a high-voltage power supply, j is a shutter, B is a discharge sustaining electrode, 7 is a filament for electron emission, ♂ is a DC power supply, RI is a DC power supply, 10. // is a variable valve for gas introduction, /2 is an exhaust path,
/3 is a permanent magnet. 2/ is a hard carbon film, 22 is a base material, and 23 is a steel ball indenter.

Claims (1)

【特許請求の範囲】[Claims] C_2H_4ガスを2つの電極間に導入して放電により
C_2H_4ガスプラズマを生成し、前記2つの電極か
ら離れて配置した工具に負の高電圧を印加して六方晶ダ
イヤモンドとグラファイトの混晶からなる硬質カーボン
膜を工具表面に形成することを特徴とする硬質カーボン
膜被覆工具の製造方法。
C_2H_4 gas is introduced between two electrodes to generate C_2H_4 gas plasma by discharge, and a high negative voltage is applied to a tool placed apart from the two electrodes to produce a hard material made of a mixed crystal of hexagonal diamond and graphite. A method for manufacturing a hard carbon film coated tool, which comprises forming a carbon film on the tool surface.
JP20330487A 1987-08-14 1987-08-14 Manufacture of tool coated with carbon film of hard quality Pending JPS6399138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20330487A JPS6399138A (en) 1987-08-14 1987-08-14 Manufacture of tool coated with carbon film of hard quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20330487A JPS6399138A (en) 1987-08-14 1987-08-14 Manufacture of tool coated with carbon film of hard quality

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17770783A Division JPS6070178A (en) 1983-09-26 1983-09-26 Hard carbon film-coated tool

Publications (1)

Publication Number Publication Date
JPS6399138A true JPS6399138A (en) 1988-04-30

Family

ID=16471817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20330487A Pending JPS6399138A (en) 1987-08-14 1987-08-14 Manufacture of tool coated with carbon film of hard quality

Country Status (1)

Country Link
JP (1) JPS6399138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121143A (en) * 2009-12-11 2011-06-23 Mitsubishi Materials Corp Diamond-coated cutting tool
JP2011121142A (en) * 2009-12-11 2011-06-23 Mitsubishi Materials Corp Diamond-coated cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121143A (en) * 2009-12-11 2011-06-23 Mitsubishi Materials Corp Diamond-coated cutting tool
JP2011121142A (en) * 2009-12-11 2011-06-23 Mitsubishi Materials Corp Diamond-coated cutting tool

Similar Documents

Publication Publication Date Title
Grigoriev et al. DLC-coating application to improve the durability of ceramic tools
CN109072406B (en) Coated cutting tool
JP6337944B2 (en) Coated tool
JP2002144110A (en) Surface coat boron nitride sintered body tool
US6517688B2 (en) Method of smoothing diamond coating, and method of manufacturing diamond-coated body
CN110945156A (en) Coated cutting tool and method of making same
JPH08118106A (en) Cutting tool coated with hard layer
JP6308298B2 (en) Manufacturing method of coated tool
JPS60152676A (en) Surface-coated sintered hard member
EP0931177B1 (en) Post treated diamond coated body
JP2012149332A (en) Hard film-coated die and method for manufacturing the same
JPS6399138A (en) Manufacture of tool coated with carbon film of hard quality
CN203360554U (en) Composite coating on surface of cutting tool material
Grigoriev et al. Cutting ceramic materials: influence of abrasive machining and coating deposition on the performance potential
JPS61291493A (en) Diamond coated hard material
JPS6147903B2 (en)
JP6528936B2 (en) Method of manufacturing coated tool
Roth et al. Large area and three-dimensional deposition of diamond-like carbon films for industrial applications
JP5239059B2 (en) Coated cBN sintered tool for high precision cutting
JP5230374B2 (en) Throw-away insert for grooving
JPH0920590A (en) Production of cemented carbide base material having diamond film
JP2002126913A (en) High adhesion hard film-covered tool and its manufacturing method
JPS63306805A (en) Diamond coated cutting tool
JP4895586B2 (en) Surface coated cutting tool
JP2017024138A (en) Surface-coated cutting tool