JPS61291493A - Diamond coated hard material - Google Patents
Diamond coated hard materialInfo
- Publication number
- JPS61291493A JPS61291493A JP13064085A JP13064085A JPS61291493A JP S61291493 A JPS61291493 A JP S61291493A JP 13064085 A JP13064085 A JP 13064085A JP 13064085 A JP13064085 A JP 13064085A JP S61291493 A JPS61291493 A JP S61291493A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- hard material
- coated
- coefficient
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、M4i合金の様な軽合金を高速で切削可能な
ダイヤモンド被覆硬質材料に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a diamond-coated hard material that is capable of cutting light alloys such as M4i alloy at high speeds.
ダイヤモンドは極めて硬度が高く、かつ化学的に安定な
ためAJ、Cuや実用に供される該金属の合金と殆ど反
応しない、ダイヤモンドを用いてこの様な金属を高速で
切削すると、被削材の仕上げ面が極めて良好に仕上がる
ため、単結晶あるいは焼結ダイヤモンドが切削工具材料
として広(実用に供している。Diamond has extremely high hardness and is chemically stable, so it hardly reacts with AJ, Cu, or alloys of these metals used in practical applications.When cutting such metals at high speed with diamond, the workpiece material Single crystal or sintered diamond is widely used as a cutting tool material because it produces an extremely well-finished surface.
近年、水素と炭化水素の混合ガスをプラズマ中で分解励
起することによって、即ちプラズマCvD法によって基
板上にダイヤモンドを被覆する技術が開発されている。In recent years, a technique has been developed for coating diamond on a substrate by decomposing and exciting a mixed gas of hydrogen and hydrocarbon in plasma, that is, by plasma CVD method.
軟質合金を切削することを考えると、被削材とダイヤモ
ンドとの硬度差がきわめて大きく、かつ、工具刃先温度
も低く、かつ、被削材との反応もほとんどないことから
高価な単結晶や、焼結体ダイヤモンド工具ではなく超硬
合金を基材に、その表面にダイヤモンドを被覆した工具
で十分に実用に耐えるのではないかと考えられた。When cutting soft alloys, the hardness difference between the work material and diamond is extremely large, the temperature of the tool tip is low, and there is almost no reaction with the work material, so expensive single crystals, It was thought that instead of a sintered diamond tool, a tool made of cemented carbide and whose surface was coated with diamond would be sufficient for practical use.
この考えに従うて、実際にダイヤモンド被覆超硬合金を
作成し、M−51合金を高速で切削したところ、ダイヤ
モンド被覆膜が初期に剥離してしまい、はとんど効果が
認められなかった。According to this idea, when a diamond-coated cemented carbide was actually produced and M-51 alloy was cut at high speed, the diamond coating peeled off at an early stage, and almost no effect was observed.
そのため、ダイヤモンド被覆膜と超硬合金基材との間の
接着強度を高めるために種々の改良がこころみられた。Therefore, various improvements have been made to increase the adhesive strength between the diamond coating and the cemented carbide substrate.
vPに超硬合金基材とダイヤモンド被覆膜との間に、接
着強度を向上させるべく各種金属(T i + M o
+ Wl S iなど)や、各種化合物(TiC,T
iN。Various metals (T i + Mo
+ Wl Si, etc.) and various compounds (TiC, T
iN.
wc、 AftO,など)を下地被覆することがこころ
みられた。しかしながら、これ等の試みは、はとんど効
果が認められなかった。Attempts have been made to coat the surface with a base coat (wc, AftO, etc.). However, these attempts were largely ineffective.
発明者等は、長年、被覆超硬合金に関し研究を続けてき
た。そして、被覆膜と基材との接着強度を左右する最大
の要因は、被覆膜と基材との熱膨張であり、基材と被覆
膜との熱膨張係数に差が大きいと接着強度が低下し、特
に被覆膜の方が熱膨張係数が小さい時は、被覆処理後冷
却時に被覆膜に圧縮の残留熱応力が加わるため、基材と
の接着強度を特に低下させるという知見を得た。The inventors have continued research on coated cemented carbide for many years. The biggest factor that influences the adhesive strength between the coating film and the base material is the thermal expansion between the coating film and the base material.If there is a large difference in the coefficient of thermal expansion between the base material and the coating film, the bond The strength decreases, especially when the coating film has a smaller coefficient of thermal expansion.The knowledge that compressive residual thermal stress is applied to the coating film when it is cooled after coating treatment, which particularly reduces the adhesive strength with the base material. I got it.
超硬合金の熱膨張係数が5〜6 X 10−” / d
egであるのに対し、ダイヤモンドは3 X 10−6
/ degときわめて小さいため、基材と被覆膜との接
着強度が十分でないと考えられる。The thermal expansion coefficient of cemented carbide is 5~6 x 10-”/d
eg, while diamond is 3 x 10-6
/deg, which is extremely small, and it is considered that the adhesive strength between the base material and the coating film is not sufficient.
中間層として考慮した物質の熱膨張係数もいずれも超硬
合金相等、もしくはそれより大きいため、接着強度の向
上につながらなかったものと考えられる。そこで発明者
は種々検討を行ったところ、ダイヤモンドを被覆する硬
質母材を該母材の線膨張係数が、ダイヤモンドにより近
い物質を用いれば良いとの考えに至り、実際に実行した
ところ線膨張係数が4.0 X 10−’ / deg
以下の硬質母材を用いれば十分な接着強度が得られると
いう知見を得た。It is thought that the thermal expansion coefficients of the materials considered for the intermediate layer were all those of a cemented carbide phase or higher, and therefore did not lead to an improvement in adhesive strength. After conducting various studies, the inventor came up with the idea that it would be better to use a hard base material that covers diamond, and the linear expansion coefficient of the base material is closer to that of diamond. is 4.0 x 10-'/deg
We have found that sufficient adhesive strength can be obtained by using the following hard base materials.
本発明の目的は、主にAI、Cuや実用に供される該金
属の合金を切削するダイヤモンド被覆工具を提供するこ
とにある。その切削条件は通常の鯛などを切削する場合
と異なり、工具刃先の温度は高々 500〜600℃と
低いため、工具と被削材との化学反応によるいわゆる拡
散摩耗は殆ど問題とならない、また同じ理由で通常セラ
ミック工具の欠点とされている熱亀裂に起因する刃先の
欠損も生じ難い。従って、通常拡散摩耗あるいは熱亀裂
による欠損によって鋼の切削には向かないSi3N、や
SiCがダイヤモンド被覆用硬質母材として、使用可能
と考えられた。これらの焼結体の線膨張係数は原材料や
製造方法によって異なり、ある範囲の値を持つが本発明
においては4.0X 10−”/deg以下の線膨張係
数の焼結体を母材に用いて、実際にダイヤモンドを被覆
したところ、従来のものよりも接着強度の大幅な向上が
認められた。An object of the present invention is to provide a diamond-coated tool for cutting mainly AI, Cu, and alloys of these metals that are used in practical use. The cutting conditions are different from those used when cutting regular sea bream, etc., and the temperature at the tool edge is as low as 500 to 600°C, so so-called diffusion wear caused by chemical reactions between the tool and the workpiece material is almost never a problem. For this reason, chipping of the cutting edge due to thermal cracking, which is usually considered a drawback of ceramic tools, is less likely to occur. Therefore, it was thought that Si3N and SiC, which are not suitable for cutting steel due to defects due to diffusion wear or thermal cracking, could be used as hard base materials for diamond coating. The coefficient of linear expansion of these sintered bodies varies depending on the raw materials and manufacturing method, and has a certain range of values, but in the present invention, a sintered body with a coefficient of linear expansion of 4.0×10-”/deg or less is used as the base material. When we actually coated it with diamond, we found that the adhesive strength was significantly improved compared to the conventional one.
また、該ダイヤモンド被覆硬質材料を用いてM合金を切
削したところ、ダイヤモンドを被覆したことによる耐摩
耗性向上の効果が認められた。Furthermore, when M alloy was cut using the diamond-coated hard material, the effect of improving wear resistance due to the diamond coating was observed.
本発明において硬質母材の線膨張係数を4.0×10−
’/deg以下と限定したのは、線膨張係数が4.0X
10−h/degより大きいと被覆処理後冷却時に被覆
膜に加わる圧縮の残留応力が大きくなり、母材と被覆膜
の接着強度が低下し、被覆膜が剥離しやすくなるため、
本発明の目的とする被覆切削工具として、寿命の延長が
認められないからである。In the present invention, the linear expansion coefficient of the hard base material is set to 4.0×10−
'/deg or less is limited to a linear expansion coefficient of 4.0X
If it is larger than 10-h/deg, the compressive residual stress applied to the coating film during cooling after coating treatment will increase, the adhesive strength between the base material and the coating film will decrease, and the coating film will easily peel off.
This is because the life of the coated cutting tool, which is the object of the present invention, cannot be extended.
以下実施例で詳細に説明する。This will be explained in detail in Examples below.
線膨張係数が2.6 X 10−/ degであるSi
3N<焼結体及び線膨張係数が4.0X10−’/de
gであるStC焼結体を作製し、これらを型番5PG4
22のスローアウェイチップに加工した。これらのチッ
プ表面を200番のレジンボンドダイヤモンド砥石で粗
研磨したのち、20μの厚さだけ800番のレジンボン
ドダイヤモンド砥石で仕上げ研磨をした。 2.45G
Hzのマイクロ波プラズマCVD装置を用いて、水素及
びメタンの混合プラズマ中にて、これらの硬質母材表面
にダイヤモンドを1μの厚さに被覆した。Si with a linear expansion coefficient of 2.6 x 10-/deg
3N<sintered body and linear expansion coefficient 4.0X10-'/de
We prepared StC sintered bodies with model number 5PG4.
Processed into 22 indexable tips. The surfaces of these chips were roughly polished with a No. 200 resin bond diamond grindstone, and then final polished to a thickness of 20 μm using a No. 800 resin bond diamond grindstone. 2.45G
The surfaces of these hard base materials were coated with diamond to a thickness of 1 μm in a mixed plasma of hydrogen and methane using a Hz microwave plasma CVD apparatus.
この際硬質母材はプラズマによって約950℃に加熱さ
れていた。またSi3N4. SiC硬質母材の表面に
析出した被覆膜は反射電子線回折によって、ダイヤモン
ドであることを確認した。At this time, the hard base material was heated to about 950° C. by plasma. Also, Si3N4. The coating film deposited on the surface of the SiC hard base material was confirmed to be diamond by reflection electron beam diffraction.
5j3Na+ sicにダイヤモンドを被覆した試料を
各々A、Bとし、また比較のために130 K−10
超硬合金(線膨張係数5.0 X 10−6/ deg
)、型番5PG422を用いて、同様の研磨処理を施し
同一の装置でダイヤモンドを1μの厚さに被覆したもの
を用意し、これを試料Cとした。またダイヤモンドの被
覆を施さなかった5iJa、 sic、超硬合金の同一
母材を用意し、各々試料A’、 B’及びC′とした
。Samples of 5j3Na+ sic coated with diamond are designated as A and B, respectively, and for comparison, 130 K-10
Cemented carbide (linear expansion coefficient 5.0 x 10-6/deg
), Model No. 5PG422, was subjected to similar polishing treatment and coated with diamond to a thickness of 1 μm using the same equipment, and this was designated as Sample C. In addition, the same base materials of 5iJa, SIC, and cemented carbide without diamond coating were prepared and designated as samples A', B', and C', respectively.
これらの試料を用いて表1に示す条件で切削試験を行っ
た。A cutting test was conducted using these samples under the conditions shown in Table 1.
表 1
その結果10分間切削後のフランク摩耗幅はAが0.0
9mmBが0.1)mmであるのに対し、A’、 B
’では2分間切削後のフランク摩耗幅は各々0.22m
m、0.281であった。一方C及びC′では30秒切
削後のフランク摩耗幅は各々0.22mts、 0.2
Qtsmであった。ffQ チ、S+Ja、SiCにダ
イヤモンドを被覆した場合は著しい寿命の延長が認めら
れるが、超硬合金にダイヤモンドを被覆した場合は被覆
層の効果が認められなかった。Table 1 As a result, the flank wear width after 10 minutes of cutting is 0.0 for A.
9mmB is 0.1)mm, whereas A', B
'In each case, the flank wear width after 2 minutes of cutting is 0.22 m.
m, 0.281. On the other hand, for C and C', the flank wear width after 30 seconds of cutting is 0.22 mts and 0.2, respectively.
It was Qtsm. When diamond was coated on ffQ Chi, S+Ja, and SiC, a remarkable extension of life was observed, but when diamond was coated on cemented carbide, no effect of the coating layer was observed.
Claims (3)
て被覆したダイヤモンド被覆硬質材料において、基体と
なる該硬質材料の線膨張係数が4.0×10^−^6d
eg^−^1以下であることを特徴とするダイヤモンド
被覆硬質材料。(1) In a diamond-coated hard material in which diamond is precipitated and coated on the surface of a harder material than in the gas phase, the linear expansion coefficient of the hard material serving as the base is 4.0 x 10^-^6d.
A diamond-coated hard material characterized by having a hardness of less than eg^-^1.
る特許請求の範囲第1項に記載のダイヤモンド被覆硬質
材料。(2) The diamond-coated hard material according to claim 1, wherein the hard material is Si_3N_4.
求の範囲第1項に記載のダイヤモンド被覆硬質材料。(3) The diamond-coated hard material according to claim 1, wherein the hard material is SiC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13064085A JPS61291493A (en) | 1985-06-14 | 1985-06-14 | Diamond coated hard material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13064085A JPS61291493A (en) | 1985-06-14 | 1985-06-14 | Diamond coated hard material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61291493A true JPS61291493A (en) | 1986-12-22 |
Family
ID=15039088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13064085A Pending JPS61291493A (en) | 1985-06-14 | 1985-06-14 | Diamond coated hard material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61291493A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62107067A (en) * | 1985-10-31 | 1987-05-18 | Kyocera Corp | Diamond coated cutting tool |
WO1988007599A1 (en) * | 1987-03-23 | 1988-10-06 | Showa Denko Kabushiki Kaisha | Composite diamond particles |
US5071708A (en) * | 1987-10-20 | 1991-12-10 | Showa Denko K.K. | Composite diamond grain |
US5137398A (en) * | 1990-04-27 | 1992-08-11 | Sumitomo Electric Industries, Ltd. | Drill bit having a diamond-coated sintered body |
WO1992014689A1 (en) * | 1991-02-18 | 1992-09-03 | Sumitomo Electric Industries, Ltd. | Diamond-clad hard material, throwaway tip, and method of making said material and tip |
US5318836A (en) * | 1989-06-15 | 1994-06-07 | Ngk Spark Plug Company Limited | Diamond-coated body |
US5334453A (en) * | 1989-12-28 | 1994-08-02 | Ngk Spark Plug Company Limited | Diamond-coated bodies and process for preparation thereof |
JP2601711B2 (en) * | 1987-03-23 | 1997-04-16 | 昭和電工株式会社 | Composite diamond particles |
JP2021142575A (en) * | 2020-03-10 | 2021-09-24 | 日本特殊陶業株式会社 | Diamond-coated cutting tool |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61106494A (en) * | 1984-10-29 | 1986-05-24 | Kyocera Corp | Member coated with diamond and its production |
JPS61117281A (en) * | 1984-06-27 | 1986-06-04 | サントレ−ド リミテイド | Cvd method for producing diamond clod composite |
JPS61124573A (en) * | 1984-11-21 | 1986-06-12 | Toshiba Tungaloy Co Ltd | Diamond-coated base material and its production |
-
1985
- 1985-06-14 JP JP13064085A patent/JPS61291493A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61117281A (en) * | 1984-06-27 | 1986-06-04 | サントレ−ド リミテイド | Cvd method for producing diamond clod composite |
JPS61106494A (en) * | 1984-10-29 | 1986-05-24 | Kyocera Corp | Member coated with diamond and its production |
JPS61124573A (en) * | 1984-11-21 | 1986-06-12 | Toshiba Tungaloy Co Ltd | Diamond-coated base material and its production |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62107067A (en) * | 1985-10-31 | 1987-05-18 | Kyocera Corp | Diamond coated cutting tool |
WO1988007599A1 (en) * | 1987-03-23 | 1988-10-06 | Showa Denko Kabushiki Kaisha | Composite diamond particles |
US5080975A (en) * | 1987-03-23 | 1992-01-14 | Showa Denko K. K. | Composite diamond granules |
JP2601711B2 (en) * | 1987-03-23 | 1997-04-16 | 昭和電工株式会社 | Composite diamond particles |
US5071708A (en) * | 1987-10-20 | 1991-12-10 | Showa Denko K.K. | Composite diamond grain |
WO1993013015A1 (en) * | 1987-10-20 | 1993-07-08 | Kunio Komaki | Composite diamond grains and process for their production |
US5318836A (en) * | 1989-06-15 | 1994-06-07 | Ngk Spark Plug Company Limited | Diamond-coated body |
US5334453A (en) * | 1989-12-28 | 1994-08-02 | Ngk Spark Plug Company Limited | Diamond-coated bodies and process for preparation thereof |
US5137398A (en) * | 1990-04-27 | 1992-08-11 | Sumitomo Electric Industries, Ltd. | Drill bit having a diamond-coated sintered body |
WO1992014689A1 (en) * | 1991-02-18 | 1992-09-03 | Sumitomo Electric Industries, Ltd. | Diamond-clad hard material, throwaway tip, and method of making said material and tip |
JP2021142575A (en) * | 2020-03-10 | 2021-09-24 | 日本特殊陶業株式会社 | Diamond-coated cutting tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20120140642A (en) | Method for high speed machining and coated cutting tool | |
Shibuki et al. | Diamond coating on WC-Co and WC for cutting tools | |
JPS61291493A (en) | Diamond coated hard material | |
JPH03197677A (en) | Diamond-coated tool and its production | |
JPH09300105A (en) | Throw-away insert of surface coated super-hard alloy | |
JPH04157157A (en) | Production of artificial diamond coated material | |
JP2595203B2 (en) | High adhesion diamond coated sintered alloy and method for producing the same | |
JPS63306805A (en) | Diamond coated cutting tool | |
JPS62107067A (en) | Diamond coated cutting tool | |
JPH02192483A (en) | Diamond silicon carbide composite | |
JPH04280974A (en) | Boron nitride coated hard material | |
JPS61270373A (en) | Diamond coated sintered hard alloy | |
JPS5925970A (en) | Coated sintered hard alloy | |
JP2844934B2 (en) | Manufacturing method of gas-phase synthetic diamond coated cutting tool | |
JPS6257802A (en) | Parts coated with hard carbon | |
JPS61201778A (en) | Coated sintered hard alloy | |
KR102525082B1 (en) | Diamond Coated Cutting Tools | |
KR100576318B1 (en) | A improvement method of surface roughness of diamond coating film to cutting tool | |
JPH01259171A (en) | Cutting tool member coated with hard film | |
JPH05125542A (en) | Manufacture of thin diamond film tool | |
Narutaki et al. | Wear Characteristics and Cultlng Performance of Diamond Coated Ceramic Tools | |
JPS6234704A (en) | Diamond coated cutting tool | |
Vaidyanathan | Ceramic Coatings for Cutting Tool Applications | |
JP2734134B2 (en) | Diamond coated tool and manufacturing method thereof | |
JPH02223437A (en) | Polycrystalline diamond material and manufacture thereof |