JPH02192483A - Diamond silicon carbide composite - Google Patents

Diamond silicon carbide composite

Info

Publication number
JPH02192483A
JPH02192483A JP30833188A JP30833188A JPH02192483A JP H02192483 A JPH02192483 A JP H02192483A JP 30833188 A JP30833188 A JP 30833188A JP 30833188 A JP30833188 A JP 30833188A JP H02192483 A JPH02192483 A JP H02192483A
Authority
JP
Japan
Prior art keywords
diamond
diamond film
film
silicon carbide
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30833188A
Other languages
Japanese (ja)
Inventor
Tatsuo Obata
龍夫 小畑
Noboru Aoyama
昇 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGURA HOUSEKI SEIKI KOGYO KK
Resonac Holdings Corp
Original Assignee
OGURA HOUSEKI SEIKI KOGYO KK
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGURA HOUSEKI SEIKI KOGYO KK, Showa Denko KK filed Critical OGURA HOUSEKI SEIKI KOGYO KK
Priority to JP30833188A priority Critical patent/JPH02192483A/en
Publication of JPH02192483A publication Critical patent/JPH02192483A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • C04B41/5002Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a composite, having longevity as a cutting tool and excellent in corrosion resistance by coating a substrate consisting of a polycrystal of cubic carbide according to a chemical vapor deposition method with a diamond film. CONSTITUTION:For example, a cubic silicon carbide (beta-SiC) film having 6mm film thickness is formed on an isotropic graphite block according to a chemical vapor deposition method. SiCl4 is used as the raw material gas and a hydrocarbon C3H8 is used as carrier gas to provide 1520 deg.C substrate temperature and 0.9l/min gas flow rate. Graphite is then removed from the substrate by cutting and oxidation treatment by heating at 800 deg.C in air to afford a beta-SiC polycrystal plate, which is formed into parts of a prescribed shape. A diamond film is subsequently deposited on the whole surface thereof. Thereby, the diamond film is of high purify and adhesive strength thereof is excellent. As a result, cutting tools or mechanical seals of longevity are obtained without causing peeling of the diamond film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は切削用のし異材料やメカニカルシール等に使用
されるダイヤモンド炭化硅素複合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a diamond silicon carbide composite used for cutting materials, mechanical seals, and the like.

[従来の技術] 炭化硅素焼結体は通常は六方晶炭化硅素(α型)、立方
晶炭化硅素(β型)の粉末にC,B。
[Prior Art] Silicon carbide sintered bodies are usually made of hexagonal silicon carbide (α type) or cubic silicon carbide (β type) powder containing C and B.

A11等の焼結助剤を添加して成形、焼成してつくられ
ている。そしてこれらの炭化硅素はS i 02とCの
反応により製造されるのが普通である。また特殊なもの
としては有機硅素化合物のハ分解により微粒状の炭化硅
素を得る方法も提案されている。
It is made by adding a sintering aid such as A11, molding and firing. These silicon carbides are usually produced by a reaction between S i 02 and C. In addition, as a special method, a method of obtaining fine particulate silicon carbide by halogen decomposition of an organic silicon compound has also been proposed.

ダイヤモンド膜は特公昭59−27753 、特公昭5
9−27754などに開示されている熱フイラメント法
、マイクロ波プラズマCVD法を筆頭に数多くの方法で
得られている。この場合の膜を析出させる基板にはシリ
コン単結晶ウェハーが最も多く用いられている。この外
にもモリブデン、タングステン、金、銀、銅などの金属
基板の外、石英ガラス、アルミナ、炭化硅素などのセラ
ミックス基板にもダイヤモンド膜が析出することが知ら
れている。複合材をそのまま利用するものとしては例え
ば超硬工具材上にダイヤモンド膜をつけて切削工具に使
用する方法も提案されている。
The diamond film was produced by Special Publication No. 59-27753 and Special Publication No. 59-27753.
It can be obtained by a number of methods, including the thermal filament method and the microwave plasma CVD method disclosed in Japanese Patent No. 9-27754. In this case, a silicon single crystal wafer is most often used as the substrate on which the film is deposited. In addition to this, it is known that diamond films are deposited on metal substrates such as molybdenum, tungsten, gold, silver, and copper, as well as on ceramic substrates such as quartz glass, alumina, and silicon carbide. As a way to use composite materials as they are, for example, a method has been proposed in which a diamond film is applied to a carbide tool material and used as a cutting tool.

[発明が解決しようとする課題] ダイヤモンド膜は切削材として優れており、例えばこれ
を用いてアルミ合金を加工すると仕上げ面が超硬合金製
切削工具による加工面よりも良好である。
[Problems to be Solved by the Invention] A diamond film is excellent as a cutting material, and for example, when an aluminum alloy is machined using it, the finished surface is better than a surface machined with a cemented carbide cutting tool.

またダイヤモンド膜は硬度が^く、摩擦係数は小さく耐
食性に優れていることから機械材料としてメカニカルシ
ールに使用される。
Diamond film is also used as a mechanical material for mechanical seals because of its hardness, low coefficient of friction, and excellent corrosion resistance.

いずれの場合もダイヤモンド膜自体は薄く強度が弱いの
でこれを補強する基材が必要である。
In either case, the diamond film itself is thin and weak, so a base material is required to reinforce it.

炭化硅素(S i C)焼結体にはダイヤモンド膜が密
着性よくつけられることから、SiC焼結体の基材にダ
イヤモンドを被覆した複合体(以下「ダイヤ/S i 
CkS2合体」と略記)からなる切削工具やメカニカル
シールの実用化が試みられている。
Since a diamond film can be applied with good adhesion to silicon carbide (S i C) sintered bodies, composites in which the base material of SiC sintered bodies is coated with diamond (hereinafter referred to as ``Diamond/S i C'')
Attempts have been made to commercialize cutting tools and mechanical seals made of CkS2 (abbreviated as "CkS2 combination").

しかし従来のSiC焼結体によるダイヤ/SiC複五よ
切削工具として使用した場合、前記したように加工面は
良好であるが、工具とじての寿命が超硬合金工具より著
しく短かいという欠点がある。これはダイヤモンド膜と
基材の界面における剥離が原因である。従来のSiC焼
結体は焼結助剤が使用されているので、これらの不純物
がこの剥離に関係していると思われる。
However, when used as a cutting tool using a conventional diamond/SiC sintered body, the machined surface is good as described above, but the tool life is significantly shorter than that of a cemented carbide tool. be. This is caused by peeling at the interface between the diamond film and the base material. Since sintering aids are used in conventional SiC sintered bodies, these impurities are thought to be related to this peeling.

また焼結助剤を含むSiC焼結体は腐食性の液体中での
耐食性も十分でない。
Furthermore, the SiC sintered body containing the sintering aid does not have sufficient corrosion resistance in corrosive liquids.

本発明の目的は切削工具として寿命が長く、耐食性にも
優れたダイヤ/SiCm合体を提供することにある。
An object of the present invention is to provide a diamond/SiCm combination that has a long life as a cutting tool and has excellent corrosion resistance.

[課題を解決するための手段] 化学気相蒸着法によれば、高純度の立方晶炭化硅素(以
下「β−5iCJと略記)の膜が得られる。膜を析出さ
せる基材には通常等方性黒鉛が用いられる。β−5EC
の化学気相蒸着法には、様々な公知の方法がある。例え
ば、黒鉛基材をSiO及びCO雰囲気中で1600〜2
0(10℃に加熱すれば黒鉛表層はβ−8IC化する。
[Means for solving the problem] According to the chemical vapor deposition method, a film of highly pure cubic silicon carbide (hereinafter abbreviated as "β-5iCJ") can be obtained. Orthogonal graphite is used.β-5EC
There are various known chemical vapor deposition methods. For example, a graphite base material with a temperature of 1600 to 2
0 (If heated to 10°C, the graphite surface layer becomes β-8IC.

また、S iC14等のハロゲン化硅素とC3H8等の
炭化水素とをH2をキャリヤガスとして流し、黒鉛基材
を1500℃程度に加熱してもβ−8ICの膜が析出す
る。β−8iC膜を0立化するのに十分なだけの膜厚を
確保してから空気中または酸素雰囲気中でおよそ800
℃以上に加熱すれば黒鉛基材は酸化消耗する。こうして
黒鉛を完全に除去すればβ−3LCだけで形成された基
材か残る。
Further, even if a silicon halide such as SiC14 and a hydrocarbon such as C3H8 are passed through with H2 as a carrier gas and the graphite base material is heated to about 1500° C., a β-8IC film is precipitated. After securing a film thickness sufficient to bring the β-8iC film to zero, it is heated approximately 800 ml in air or oxygen atmosphere.
If heated above ℃, the graphite base material will be oxidized and consumed. If graphite is completely removed in this way, a base material formed only of β-3LC remains.

本発明はこのβ−8iC基村上に析出させたダイヤモン
ド膜は高純度であり、従来のSiC焼結体よりもダイヤ
モンド膜との密着強度が優れていることの発見に基づく
ものである。
The present invention is based on the discovery that the diamond film deposited on this β-8iC substrate has high purity and has superior adhesion strength to the diamond film compared to conventional SiC sintered bodies.

即ち、本発明は化学気相蒸着法(以下CVDという)に
よるβ−8iC多結晶焼結体からなる基材にダイヤモン
ド膜を被覆したダイヤ/ S i C複合体である。
That is, the present invention is a diamond/S i C composite in which a diamond film is coated on a base material made of a β-8iC polycrystalline sintered body by chemical vapor deposition (hereinafter referred to as CVD).

β−5iC基材の厚さは0.1p以上、密度は3゜2z
/−以上であることが好ましい。またα−5iC以外の
不純物は50pp■以ドであることが好ましい。モして
β−5ICの中にtoffiffi96以ド程度であれ
ばα−5iCが含まれていてもよい。
The thickness of the β-5iC base material is 0.1p or more, and the density is 3°2z
It is preferable that it is /- or more. Further, it is preferable that the amount of impurities other than α-5iC is 50 ppm or less. Furthermore, α-5iC may be included in β-5IC as long as it is about toffiffi96 or higher.

またダイヤモンド膜は切削工具やメカニカルシールに用
いられたときの性能あるいは生産性を考慮して0.01
〜1000mの範囲とすることが好ましい。
In addition, considering the performance or productivity when using diamond film for cutting tools and mechanical seals,
It is preferable to set it as the range of -1000m.

基材であるβ−5iC焼結体のダイヤモンド被覆は基材
の全面あるいは片面、または用途により必要な部分のみ
とすることも可能である。
The diamond coating of the β-5iC sintered body, which is the base material, can be applied to the entire surface or one side of the base material, or only to a necessary part depending on the application.

基材をダイヤモンド膜で被覆するにはマイクロ波プラズ
マCVD法、熱フイラメントCVD法、高周波CVD法
など公知の方法が用いられる。
Known methods such as microwave plasma CVD, hot filament CVD, and high frequency CVD can be used to coat the substrate with a diamond film.

[作  用] 化学気相蒸着で得られるβ−5iCは、立方晶の結晶構
造を有しており、通常の条件で合成されるダイヤモンド
膜の結晶構造と一致する。また、β−5iCの格子定数
は4.360人でシリコンの5.430人よりもダイヤ
モンドの3.567人に近い。
[Function] β-5iC obtained by chemical vapor deposition has a cubic crystal structure, which matches the crystal structure of a diamond film synthesized under normal conditions. Furthermore, the lattice constant of β-5iC is 4.360, which is closer to 3.567 of diamond than to 5.430 of silicon.

従って、β−5iC基板とダイヤモンド膜との界面のミ
スマツチは、非常に小さい。
Therefore, the mismatch at the interface between the β-5iC substrate and the diamond film is very small.

本発明で用いるβ−5iCの熱膨張係数はto(1〜1
000℃の範囲の・1之均値で4 X 10−6秀し℃
程度である。これは純タングステンに近い値であり、市
販の超硬合金の値C5X to−’聾し℃)よりも小さ
い。従って、ダイヤモンド被覆工具として使用する際問
題となる熱応力は、超硬合金より小さくなる。
The thermal expansion coefficient of β-5iC used in the present invention is to (1 to 1
Average value of 4 x 10-6 in the range of 000°C
That's about it. This value is close to that of pure tungsten and is smaller than the value of commercially available cemented carbide (C5X to 'deafness °C). Therefore, the thermal stress that becomes a problem when used as a diamond-coated tool is smaller than that of cemented carbide.

本発明で用いるβ−5iC基材中の不純物量は、50p
pm以下と極めて高純度である。ダイヤモンド膜を析出
させても界面に密着強度を低ドさせる不純物の析出がほ
とんど起こらない。
The amount of impurities in the β-5iC base material used in the present invention is 50p
It has extremely high purity, below pm. Even when a diamond film is deposited, impurities that reduce adhesion strength are hardly precipitated at the interface.

以上述べてきたように本発明で用いる基材は結晶構造上
及び熱膨張係数上のミスマツチが少なく、かつ界面の不
純物量が著しく少ない。このゆえ、ダイヤモンド膜と基
材との密着強度は極めて大きく、切削工具としての寿命
が従来の超硬合金基材品よりも著しく伸びるのである。
As described above, the base material used in the present invention has little mismatch in crystal structure and coefficient of thermal expansion, and has a significantly low amount of impurities at the interface. Therefore, the adhesion strength between the diamond film and the base material is extremely high, and the life of the cutting tool is significantly longer than that of conventional cemented carbide base materials.

また耐食性に影響するB、A1等が含まれてないので耐
食性がよい。
Also, since it does not contain B, A1, etc. that affect corrosion resistance, it has good corrosion resistance.

[実施例1] 55龍角の等方性黒鉛(東洋炭素■製、  IG−11
0)ブロック上に、化学気相蒸着法で膜厚6龍のβ−8
i C@を形成させた。原料ガスにはS I CII 
4を用い、(1:8H8の炭化水素をキャリヤガスとし
て用いた。基材温度は1520℃、ガス流量は0.9J
/sinである。この基材から切断及び空気中で800
℃に加熱する酸化処理によって膜厚6■、55−−角の
β−8EC多結晶板を得た。これを加工して、外径50
es+、内径3kmのドーナツ状部品を作製した。
[Example 1] 55 Ryukaku isotropic graphite (manufactured by Toyo Tanso ■, IG-11
0) A film of β-8 with a thickness of 6× is deposited on the block using chemical vapor deposition.
iC@ was formed. SICII for raw material gas
4, (1:8H8 hydrocarbon was used as the carrier gas. The substrate temperature was 1520 °C, and the gas flow rate was 0.9 J.
/sin. Cut from this base material and 800 min in air.
A β-8EC polycrystalline plate having a film thickness of 6 cm and a 55-square angle was obtained by oxidation treatment by heating to a temperature of .degree. Machining this, the outer diameter is 50
es+, a donut-shaped part with an inner diameter of 3 km was produced.

この部品の全面を、熱フイラメントCVD法により膜厚
50−のダイヤモンド膜で被覆した。熱フイラメントC
VD法による被覆は、エタノールガスを1vo1.%含
んだ水素ガスをgosc諜伝し、圧力を30Torrq
基材温度を810℃に保って行なった。
The entire surface of this part was coated with a 50-thick diamond film by hot filament CVD. heat filament C
Coating by the VD method uses 1 vol. of ethanol gas. % of hydrogen gas was introduced into the gosc, and the pressure was increased to 30 Torrq.
The substrate temperature was maintained at 810°C.

被覆した全表面を機械的に研磨し、テフロンベローズ型
メカニカルシールの固定環を得た。この固定環に適合す
るシールリングを同様の方法で作製し、90℃、 l(
Nの塩酸を循環させるポンプに適用したところ、800
00時間を越えても、何らの異常もなかった。メカニカ
ルシール部品のみを取り出したところ、表面には何らの
損傷もなく、重量変化も検出されなかった。
The entire coated surface was mechanically polished to obtain a fixed ring of a Teflon bellows type mechanical seal. A seal ring suitable for this fixed ring was made in the same manner, and heated at 90°C (
When applied to a pump that circulates N hydrochloric acid, 800
There were no abnormalities even after 00 hours. When only the mechanical seal parts were taken out, there was no damage to the surface and no change in weight was detected.

同一条件でC,Bを助剤としたα−5iC焼結体製のメ
カニカルシールを用いたところ2000時間でシールが
できなくなった。また、C,Bを助剤としたα−5iC
焼結体をダイヤモンド被覆した場合には、1000時間
でダイヤモンド膜が剥離し、シールができなくなった。
When a mechanical seal made of α-5iC sintered body using C and B as auxiliaries was used under the same conditions, the seal could no longer be formed after 2000 hours. In addition, α-5iC with C and B as auxiliaries
When the sintered body was coated with diamond, the diamond film peeled off after 1000 hours, making it impossible to seal.

[実施例2コ 100 mm角、厚さ10mmの等方性黒鉛(東洋炭素
■製、  IG−110)の板を、SiO及びCO雰囲
気中で1700℃に加熱して厚さ2−IIのβ−5tC
多結晶板を得た。この板から、ノーズ半径0.25+a
m、すくい角lO°のバイト部品を切り出した。このバ
イト部品のすくい面及び逃は面に水素とメタンの混合ガ
スを用いた熱フイラメントCVD法で膜厚150 ta
nのダイヤモンド膜をつけた。このダイヤモンド膜の表
面を研磨してノーズ半径0.3報、刃先内約90″、す
くい角lO″のダイヤモンド膜からなる刃先を得た。こ
のバイトの刃面の反対側に蒸着によりチタンを、その上
に銅のメタライズ層を形成させてからシャンク(鋼)に
銀ろうで固定した。このバイトを用いて切削テストを行
なった。
[Example 2] A 100 mm square, 10 mm thick plate of isotropic graphite (IG-110 manufactured by Toyo Tanso ■) was heated to 1700°C in an SiO and CO atmosphere to form a β of 2-II thickness. -5tC
A polycrystalline plate was obtained. From this plate, nose radius 0.25+a
A tool part with a rake angle of lO° was cut out. The rake face and escape face of this bit part were coated with a film thickness of 150 ta by hot filament CVD using a mixed gas of hydrogen and methane.
A diamond film of n is attached. The surface of this diamond film was polished to obtain a cutting edge made of the diamond film with a nose radius of 0.3mm, an inside of the cutting edge of about 90'', and a rake angle of 10''. Titanium was deposited on the opposite side of the blade surface of this cutting tool, and a copper metallized layer was formed on top of that, and then fixed to the shank (steel) with silver solder. A cutting test was conducted using this tool.

空気軸受スピンドルに直径120mm、幅15mmの被
削材を取り付け、空気軸受スライドテーブルに試作バイ
トを固定した。被削材には無酸素銅を用いた。切削距離
901aaを越えたところですくい面に50mmのくぼ
みが現われた。
A workpiece with a diameter of 120 mm and a width of 15 mm was attached to an air bearing spindle, and a prototype cutting tool was fixed to an air bearing slide table. Oxygen-free copper was used as the work material. A 50 mm depression appeared on the rake face after the cutting distance of 901 aa was exceeded.

一方、天然の単結晶ダイヤモンドを前記試作品と同一の
形状に加工して得られる単結晶バイト(すくい面(11
0)面)を、前記と同一条件で切削テストしたところ、
切削圧1!lt88kmを越えたところですくい面に5
0nwのくぼみが現われた。
On the other hand, a single crystal cutting tool (rake face (11
0) surface) was subjected to a cutting test under the same conditions as above.
Cutting pressure 1! 5 on the rake face after passing lt88km.
A depression of 0nw appeared.

以上より、本試作品は単結晶バイトと同等の性能を有す
ることが判明した。
From the above, it was found that this prototype had the same performance as a single-crystal cutting tool.

[効  果] 本発明によればダイヤモンド膜の剥離が起こらず、長寿
命のメカニカルシールや切削工具を得ることができる。
[Effects] According to the present invention, a diamond film does not peel off, and a long-life mechanical seal or cutting tool can be obtained.

ダイヤモンド被覆によって、111結晶のダイヤモンド
と同等の硬度、化学的耐食性、低摩擦性が得られるので
、本発明品は天然ダイヤモンド製のものより安価である
Since the diamond coating provides hardness, chemical corrosion resistance, and low friction properties equivalent to those of 111-crystalline diamond, the product of the present invention is less expensive than those made of natural diamond.

従って本発明は産業的に極めて有用である。Therefore, the present invention is extremely useful industrially.

代 理 人teenager Reason Man

Claims (4)

【特許請求の範囲】[Claims] (1)化学気相蒸着法による立方晶炭化硅素の多結晶体
からなる基材にダイヤモンド膜を被覆してなるダイヤモ
ンド炭化硅素複合体。
(1) A diamond silicon carbide composite formed by coating a diamond film on a base material made of polycrystalline cubic silicon carbide by chemical vapor deposition.
(2)基材の厚さが0.1μm以上、ダイヤモンド膜の
厚さが0.01〜1000μmである請求項1記載のダ
イヤモンド炭化硅素複合体。
(2) The diamond silicon carbide composite according to claim 1, wherein the base material has a thickness of 0.1 μm or more, and the diamond film has a thickness of 0.01 to 1000 μm.
(3)メカニカルシールに使用する請求項1又は2記載
のダイヤモンド炭化硅素複合体。
(3) The diamond silicon carbide composite according to claim 1 or 2, which is used for a mechanical seal.
(4)切削工具に使用する請求項1又は2記載のダイヤ
モンド炭化硅素複合体。
(4) The diamond silicon carbide composite according to claim 1 or 2, which is used in a cutting tool.
JP30833188A 1988-12-06 1988-12-06 Diamond silicon carbide composite Pending JPH02192483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30833188A JPH02192483A (en) 1988-12-06 1988-12-06 Diamond silicon carbide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30833188A JPH02192483A (en) 1988-12-06 1988-12-06 Diamond silicon carbide composite

Publications (1)

Publication Number Publication Date
JPH02192483A true JPH02192483A (en) 1990-07-30

Family

ID=17979769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30833188A Pending JPH02192483A (en) 1988-12-06 1988-12-06 Diamond silicon carbide composite

Country Status (1)

Country Link
JP (1) JPH02192483A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909879A (en) * 1993-03-09 1999-06-08 Norton Company Diamond film coating for mating parts
US6045029A (en) * 1993-04-16 2000-04-04 Baker Hughes Incorporated Earth-boring bit with improved rigid face seal
US6209185B1 (en) 1993-04-16 2001-04-03 Baker Hughes Incorporated Earth-boring bit with improved rigid face seal
CN103659211A (en) * 2013-12-20 2014-03-26 上海现代先进超精密制造中心有限公司 Method for machining silicon carbide blade
CN113151898A (en) * 2021-02-18 2021-07-23 北京科技大学 Preparation method of embedded diamond-based silicon carbide composite substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909879A (en) * 1993-03-09 1999-06-08 Norton Company Diamond film coating for mating parts
US6045029A (en) * 1993-04-16 2000-04-04 Baker Hughes Incorporated Earth-boring bit with improved rigid face seal
US6209185B1 (en) 1993-04-16 2001-04-03 Baker Hughes Incorporated Earth-boring bit with improved rigid face seal
CN103659211A (en) * 2013-12-20 2014-03-26 上海现代先进超精密制造中心有限公司 Method for machining silicon carbide blade
CN103659211B (en) * 2013-12-20 2016-04-06 上海现代先进超精密制造中心有限公司 A kind of method of processing silicon carbide blade
CN113151898A (en) * 2021-02-18 2021-07-23 北京科技大学 Preparation method of embedded diamond-based silicon carbide composite substrate
CN113151898B (en) * 2021-02-18 2021-10-15 北京科技大学 Preparation method of embedded diamond-based silicon carbide composite substrate

Similar Documents

Publication Publication Date Title
US6406776B1 (en) Surface functionalized diamond crystals and methods for producing same
JPH0535221B2 (en)
JPH01103266A (en) Coated oxidation-resistant porous abrasive molded form and manufacture thereof
EP1709136B1 (en) Coated abrasives
JP3384110B2 (en) Coated cutting tool and its manufacturing method
JPH03197677A (en) Diamond-coated tool and its production
JPS6353269A (en) Cutting tool tip made of diamond coated tungsten carbide-base sintered hard alloy
JPH02192483A (en) Diamond silicon carbide composite
JPH0568548B2 (en)
JPH01162770A (en) Diamond-coated member
JPS61291493A (en) Diamond coated hard material
JPH04157157A (en) Production of artificial diamond coated material
JPH01157412A (en) Substrate with diamond film
JP2595203B2 (en) High adhesion diamond coated sintered alloy and method for producing the same
JP2794111B2 (en) Diamond coated cutting tool
JPS62107067A (en) Diamond coated cutting tool
JPH0710443B2 (en) Cutting tip
JPH07153370A (en) Discharge tube
JPH1053871A (en) Diamond-coated carbon member
JPH01208381A (en) Ain coated silicon nitride base cutting tool
JPH01259171A (en) Cutting tool member coated with hard film
JP2844934B2 (en) Manufacturing method of gas-phase synthetic diamond coated cutting tool
JPH05125542A (en) Manufacture of thin diamond film tool
JPH01225774A (en) High-hardness polycrystalline diamond tool
JPS6345372A (en) Cutting tool tip made of diamond-coated tungsten carbide-base sintered hard alloy