JPH1053871A - Diamond-coated carbon member - Google Patents

Diamond-coated carbon member

Info

Publication number
JPH1053871A
JPH1053871A JP22441196A JP22441196A JPH1053871A JP H1053871 A JPH1053871 A JP H1053871A JP 22441196 A JP22441196 A JP 22441196A JP 22441196 A JP22441196 A JP 22441196A JP H1053871 A JPH1053871 A JP H1053871A
Authority
JP
Japan
Prior art keywords
base material
diamond
layer
carbonaceous substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22441196A
Other languages
Japanese (ja)
Inventor
Teruhisa Kondo
照久 近藤
Yukinori Ishikawa
幸典 石川
Isao Matsuoka
勇夫 松岡
Katsunori Aida
克典 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP22441196A priority Critical patent/JPH1053871A/en
Publication of JPH1053871A publication Critical patent/JPH1053871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a diamond-coated carbon member excellent in adhesion between a base metal and diamond film by forming a coating layer inverted into silicon carbide on the surface of a carbonaceous substrate and forming diamong film on the layer. SOLUTION: A coating layer 22 inverted into SiC by a chemical vapor phase reaction is formed on the surface of a carbonaceous substrate 21. As the carbonaceous substrate 21, a high strength isotropic graphite material small in impurities and in which the coefficient of thermal expansion is close that of SiC is preferably used. Furthermore, the chemical vapor phase reaction can be executed in such a manner that Si and SiO2 are brought into reaction in an atmosphere of an inert gas, and the generated SiO is brought into reaction with the substrate 21 at about 2,000K. Scratches are preferably formed on the inverted layer 22, and after that, diamond film 23 is formed on the surface of the layer. This film 23 is formed, e.g. in such a manner that, while the substrate 21 is subjected to induction heating to about <=1,000K in an evacuated Ar atmosphere, gaseous CH4 is fed thereto together with gaseous H2 as a carrier, and microwave plasma is applied thereto. As for the inverted layer 22 and the diamond-coating layer 23, preferably, their thicknesses and regulated to >=1μm and 1 to 100μm, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面をダイヤモン
ドで被覆した炭素部材に関するものであり、更に詳しく
いえば、工具類を始め、各種センサー等に使用される素
子、各種半導体デバイスの構成材料、磁気記録媒体、各
種電気・電子部材、各種光学機器の光素子及び光装置、
核融合装置用材料、音響機器等の部品等に使用されるダ
イヤモンド被膜炭素部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon member having a surface coated with diamond. More specifically, the present invention relates to tools, various elements used for various sensors, constituent materials of various semiconductor devices, and the like. Magnetic recording media, various electric and electronic members, optical elements and optical devices of various optical instruments,
The present invention relates to a diamond-coated carbon member used for a material for a nuclear fusion device, a component of an acoustic device or the like.

【0002】[0002]

【従来の技術】ダイヤモンドは、現在知られている物質
の中で最も硬く、熱伝導性に優れ、科学的に非常に安定
である、弾性係数が大きい、電気絶縁性が良い等数多く
の利点を有するため、電子、機械、宇宙航空産業等の広
い産業分野に適用可能な新素材として注目されている。
ダイヤモンドの合成方法としては、高温超高圧下で合成
する高圧合成法の他に、セラミックや金属等の基材の表
面に大面積のダイヤモンド薄膜を形成することのできる
低圧合成法が広く知られている。
2. Description of the Related Art Diamond is the hardest material currently known, has excellent thermal conductivity, is extremely stable scientifically, has a large elastic modulus, has good electrical insulation, and has many other advantages. Therefore, it is attracting attention as a new material applicable to a wide range of industrial fields such as the electronics, machinery, and aerospace industries.
As a method for synthesizing diamond, a low-pressure synthesis method capable of forming a large-area diamond thin film on the surface of a base material such as a ceramic or a metal is widely known, in addition to a high-pressure synthesis method that synthesizes under high temperature and high pressure. I have.

【0003】さらに低圧合成法は、物理蒸着法{(Ph
ysical Vapor Deposition)以
下、PVD法と略す}と化学蒸着法{(Chemica
lVapor Deposition)以下、CVD法
と略す}に大別することができるが、CVD法は、PV
D法に比べて結晶性が高いダイヤモンドを大面積に亘っ
て、しかも速い速度で形成できるという利点を有するた
め、近年では、CVD法による合成法が主力となってい
る。
Further, the low-pressure synthesis method is a physical vapor deposition method (Ph).
Hereafter, it is abbreviated as PVD method and chemical vapor deposition method (Chemica).
Hereafter, it can be roughly classified into a CVD method and a CVD method.
In recent years, the synthesis method by the CVD method has been the main force because diamond has higher crystallinity than the D method over a large area and can be formed at a high speed.

【0004】また、通常、ダイヤモンド被膜形成用の下
地(以下、単に母材という)としては、ダイヤモンド、
タングステン焼結体、炭化珪素焼結体、シリコン単結
晶、モリブデン、ニオブ、タンタル、バナジウム、クロ
ム、ハフニウム、ゲルマニウム、ニッケル、銅、金等の
金属や、立方晶窒化ホウ素焼結体、窒化珪素焼結体、酸
化アルミニウム、二酸化珪素、ステライト、サーメット
等のセラミックが使用される。
[0004] Usually, as a base for forming a diamond film (hereinafter simply referred to as a base material), diamond,
Tungsten sintered body, silicon carbide sintered body, silicon single crystal, molybdenum, niobium, tantalum, vanadium, chromium, hafnium, germanium, nickel, copper, gold and other metals, cubic boron nitride sintered body, silicon nitride sintered Ceramics such as cement, aluminum oxide, silicon dioxide, stellite, and cermet are used.

【0005】そして、上記母材にダイヤモンド被膜を形
成する際は、約500ケルビン(以下、Kと略す)〜1
500Kに加熱し、メタン、エチレン、プロパン、アセ
チレン、一酸化炭素、二酸化炭素のような気体及びメチ
ルアルコール、エチルアルコール、ベンゼン、アセトン
等の液体を気化させた原料ガスを水素ガスで希釈し、炉
内をアルゴンガス雰囲気または水素ガス雰囲気にし、原
料ガスを励起させて、化学輸送法、熱CVD法、プラズ
マCVD法、燃焼法、光CVD法等の各種のCVD法の
うち、適切な方法を実施することにより目的を達してい
る。
When a diamond coating is formed on the above-mentioned base material, about 500 Kelvin (hereinafter abbreviated as K) to 1
Heat to 500K, dilute gaseous gases such as methane, ethylene, propane, acetylene, carbon monoxide, carbon dioxide and gaseous liquids such as methyl alcohol, ethyl alcohol, benzene and acetone with hydrogen gas, The atmosphere is set to an argon gas atmosphere or a hydrogen gas atmosphere, the source gas is excited, and an appropriate method is performed among various CVD methods such as a chemical transport method, a thermal CVD method, a plasma CVD method, a combustion method, and a photo CVD method. The goal is achieved by doing.

【0006】しかしながら、前記母材にダイヤモンド被
膜を形成するに当たっては、種々の配慮すべき事項があ
り、具体的には耐熱性の良い母材を選択する必要があ
ること、母材がセラミックの場合は、非常に硬いため
加工し難いこと、母材とダイヤモンド被膜との密着性
があまり良くないこと、等の技術的な欠点があるため、
ダイヤモンド被膜製品の適用用途に応じてこれらの欠点
を少なくするための配慮を必要とし、またそのような配
慮の下に加工を行っても、経済性も併せて確保するとい
う要請下では必ずしも満足できる製品が得られるとは限
らなかった。
However, in forming a diamond coating on the base material, there are various considerations. Specifically, it is necessary to select a base material having good heat resistance. Is difficult to process because it is very hard, the adhesion between the base material and the diamond coating is not very good, etc.
Consideration must be given to reduce these disadvantages depending on the application of the diamond-coated product, and even if processing is performed with such considerations, it is not always satisfactory under the requirement that economical efficiency is also secured. The product was not always available.

【0007】そこで、ダイヤモンド被覆部材の改良のた
めの検討が進められる中、炭素材料の有する、耐熱性が
良く、加工を行い易く、経済的に安価である等の優れた
性質が着目され、この炭素材料を母材とし、その表面に
直接ダイヤモンド被膜を形成する試みも行われた。しか
し、熱膨張係数が大きく違うためダイヤモンド被膜との
密着性が良くなく、また、CVD法の実施時には、水素
を多量に含む還元性雰囲気中に炭素材料を直接曝すこと
になるため、炭素材料と水素ガスとが反応して炭素材料
が消耗してしまうという欠点があり、炭素材料自体の優
位な特性を生かすことができなかった。
Therefore, while studies for improving the diamond coated member are being advanced, attention has been paid to the excellent properties of the carbon material, such as good heat resistance, easy processing, and economical cost. Attempts have been made to form a diamond coating directly on the surface of a carbon material as a base material. However, the thermal expansion coefficient is so different that the adhesion to the diamond coating is not good, and when the CVD method is performed, the carbon material is directly exposed to a reducing atmosphere containing a large amount of hydrogen. There is a disadvantage that the carbon material is consumed by reacting with the hydrogen gas, and the superior characteristics of the carbon material itself cannot be utilized.

【0008】さらに、このような欠点の解消を目的とし
て、炭素材料成形体の表面にCVD法で炭化珪素被膜層
を形成したものを母材とし、この母材上にダイヤモンド
被膜を形成したダイヤモンド被覆炭素部材が提案された
(特開平1−201478号公報)。
Further, for the purpose of solving such a drawback, a diamond coating obtained by forming a silicon carbide coating layer on the surface of a carbon material molded body by a CVD method as a base material and forming a diamond coating on the base material. A carbon member has been proposed (Japanese Patent Application Laid-Open No. Hei 1-2201478).

【0009】[0009]

【発明が解決しようとする課題】しかし、本発明者等が
実際に上記のダイヤモンド被覆炭素部材を使用してみる
と、母材にクラックや剥離が発生し易く、適用用途例え
ば切削工具の刃先に応用した場合、寿命が短く、刃先の
取替回数が増えてかえって製作コストが高くつくという
問題点のあることが判明した。
However, when the present inventors actually use the above-mentioned diamond-coated carbon member, cracks and peeling are liable to occur in the base material, and it is applied to the cutting edge of a cutting tool. When applied, it has been found that there is a problem that the service life is short, and the number of replacements of the cutting edge increases, which in turn increases the manufacturing cost.

【0010】本発明は上記の事情に鑑みてなされたもの
であり、母材とダイヤモンド被膜との密着性を向上させ
て、両者の界面に生じやすいクラックや剥離の発生を無
くし、炭素材料自体が有する性質の優位性を確保しつ
つ、ダイヤモンド被膜の優れた特性を最大限有効に発揮
させることのできるダイヤモンド被覆炭素部材を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and improves the adhesion between a base material and a diamond coating to eliminate the occurrence of cracks and peeling which are likely to occur at the interface between the two and to reduce the carbon material itself. It is an object of the present invention to provide a diamond-coated carbon member capable of maximally and effectively exhibiting the excellent characteristics of a diamond coating while ensuring the superiority of the properties possessed.

【0011】[0011]

【課題を解決するための手段】上記目的を達成し得た本
発明のうち、請求項1記載の発明のダイヤモンド被覆炭
素部材とは、炭素質基体の表面に化学気相反応(以下、
「CVR(Chemical Vapor Reaction)法」という。)に
より炭化珪素に転化された被覆層が形成され、その表面
にさらにダイヤモンド被膜が形成されてなることを特徴
とする。これにより、従来問題とされていた母材とダイ
ヤモンド被膜両者の界面のクラックや剥離を無くし、炭
素材料自体が有する性質の優位性を確保しつつ、ダイヤ
モンド被膜の優れた特性を最大限有効に発揮させること
のできるダイヤモンド被覆炭素部材とすることができ
る。
Means for Solving the Problems In the present invention which has achieved the above object, the diamond-coated carbon member according to the first aspect of the present invention is characterized in that the surface of a carbonaceous substrate is subjected to a chemical vapor reaction (hereinafter, referred to as a "chemical vapor reaction").
It is called "CVR (Chemical Vapor Reaction) method". ), A coating layer converted to silicon carbide is formed, and a diamond coating is further formed on the surface of the coating layer. This eliminates cracks and delaminations at the interface between the base metal and the diamond coating, which have been a problem in the past, and ensures the superior properties of the carbon material itself while maximizing the effective properties of the diamond coating. A diamond-coated carbon member that can be formed.

【0012】また、請求項2記載の発明のダイヤモンド
被覆炭素部材は、請求項1記載の発明の構成のうち、炭
化珪素に転化された被覆層の厚みが1μm以上であり、
かつダイヤモンド被膜の厚みが1μm〜100μmであ
ることを特徴とする。これにより、請求項1記載の発明
の効果(母材とダイヤモンド被膜との密着性を向上する
こと)を一層顕著なものとすることができる。
The diamond-coated carbon member according to the second aspect of the present invention is the diamond-coated carbon member according to the first aspect, wherein the thickness of the coating layer converted into silicon carbide is 1 μm or more,
The diamond coating has a thickness of 1 μm to 100 μm. Thereby, the effect of the invention described in claim 1 (improving the adhesion between the base material and the diamond film) can be further remarkable.

【0013】以下、本発明を詳しく説明する。本発明者
等も従来から品質の良いダイヤモンド被覆炭素部材を開
発すべく鋭意研究を行ってきており、従来のダイヤモン
ド被覆炭素部材の界面付近(炭素部材表層部)における
SiC層が結晶構造的にみて緻密で層状に形成されてい
る点に着目し、母材とダイヤモンド被膜の密着性の低さ
はこの形態の存在に起因するものと考えた。即ち、炭化
珪素に転化された層(以下、単に転化層という)の下面
と炭素質成形体(以下、炭素質基体という)の上面との
境界面が層状でなくて波状となるような積層形態であれ
ば、両者がいわば噛み合って結合された状態となるの
で、密着性を改善できるはずとの予測の下、本発明者等
が先に開発した方法、即ち一酸化珪素(SiO)ガスを
作用させて化学反応により黒鉛基材の上に炭化珪素成形
体(SiC膜)を形成する方法を応用した結果、密着性
の点で満足できるダイヤモンド被覆部材が得られること
を確認することができ、本発明の完成を見たものであ
る。
Hereinafter, the present invention will be described in detail. The present inventors have been conducting intensive research to develop a high quality diamond-coated carbon member, and the SiC layer near the interface (carbon member surface layer) of the conventional diamond-coated carbon member has a crystal structure. Paying attention to the fact that they are formed in a dense and layered form, it is considered that the low adhesion between the base material and the diamond coating is caused by the existence of this form. That is, a laminated form in which a boundary surface between a lower surface of a layer converted into silicon carbide (hereinafter, simply referred to as a conversion layer) and an upper surface of a carbonaceous molded body (hereinafter, referred to as a carbonaceous substrate) is not laminar but wavy. In this case, the two are brought into a state of being engaged with each other, so that the adhesion can be improved. Therefore, the method developed earlier by the present inventors, that is, silicon monoxide (SiO) gas is applied. As a result of applying the method of forming a silicon carbide molded body (SiC film) on a graphite base material by a chemical reaction, it was confirmed that a diamond coated member satisfying in terms of adhesion was obtained. This shows the completion of the invention.

【0014】さらに、実験を進め、転化層の膜厚と、そ
の上に形成するダイヤモンド被膜の膜厚を最適化すれ
ば、ダイヤモンド被膜と母材(以下、本発明でいう母材
とは、転化層を有する炭素質基体をいうものにする)の
表層部との密着性の改善が一層顕著となり、しかも炭素
質基体と転化層の界面でクラックや剥離の発生も完全に
回避できるとの知見を得て、本発明(請求項2記載の発
明)に到達したものである。
Further, by proceeding with experiments and optimizing the film thickness of the conversion layer and the film thickness of the diamond film formed thereon, the diamond film and the base material (hereinafter, the base material in the present invention are referred to as the conversion material). (Referred to as a carbonaceous substrate having a layer), the improvement of the adhesion to the surface layer portion becomes more remarkable, and furthermore, the occurrence of cracks and peeling at the interface between the carbonaceous substrate and the conversion layer can be completely avoided. Thus, the present invention has been achieved (the invention of claim 2).

【0015】本発明の構成のうち、まず炭素質基体につ
いて説明する。本発明で使用する炭素質基体としては、
実質的に炭素のみからなり常法によって製造されたもの
で良く、例えば黒鉛化炭素材料、炭素繊維強化炭素複合
材料(いわゆるC/C材料)、ガラス状炭素成形体、膨
張黒鉛成形体が使用できる。
In the structure of the present invention, the carbonaceous substrate will be described first. As the carbonaceous substrate used in the present invention,
What consists essentially of only carbon and may be manufactured by a conventional method, for example, a graphitized carbon material, a carbon fiber reinforced carbon composite material (so-called C / C material), a vitreous carbon molded product, and an expanded graphite molded product can be used. .

【0016】上記炭素質基体に含まれる不純物は極力少
なくすることが望ましく、日本工業規格(以下、単にJ
ISという)R7221−1979に示される高純度黒
鉛素材を使用することが更に望ましい。中でも炭素質基
体を塩素ガス、フッ素ガス、及びこれら塩素ガス、フッ
素ガスを含有する例えばモノクロロトリフルオルメタ
ン、ジクロロジフルオルメタン、トリクロロモノフルオ
ルメタン等のガスで2000K〜3000Kに昇温して
高純度化し、灰分を50ppm以下とした炭素質基体を
選択して使用することが特に望ましい。中でもダイヤモ
ンド被膜と母材との密着強度を低下させ、しかもダイヤ
モンドの成長速度を抑制する原因となるコバルトは、1
0ppm以下とした炭素質基体を使用することが最も望
ましい。
It is desirable to minimize the impurities contained in the carbonaceous substrate as much as possible.
It is more desirable to use a high-purity graphite material shown in R722-1979. Above all, the carbonaceous substrate is heated to 2,000 K to 3,000 K with chlorine gas, fluorine gas, or a gas containing these chlorine gas and fluorine gas, for example, monochlorotrifluoromethane, dichlorodifluoromethane, trichloromonofluoromethane, etc. It is particularly desirable to select and use a carbonaceous substrate that has been purified and has an ash content of 50 ppm or less. Among them, cobalt, which lowers the adhesion strength between the diamond coating and the base material and suppresses the growth rate of diamond, is 1%.
It is most desirable to use a carbonaceous substrate of 0 ppm or less.

【0017】なお、コバルトの含有率を測定する方法と
しては、例えば日本分析化学会発行の「分析化学」Vo
l.42(1993)別刷の486ページに示される。
「誘導結合プラズマ質量分析法(ICP−MS法ともい
う)」に示される方法が例示できる。
As a method for measuring the cobalt content, for example, “Analytical Chemistry” Vo
l. 42 (1993) reprinted on page 486.
A method shown in “Inductively coupled plasma mass spectrometry (also referred to as ICP-MS method)” can be exemplified.

【0018】更に付言すると、破損の防止を考慮して強
度が高い炭素質基体、例えば3点強度試験によって測定
した曲げ強度は、40MPa以上の炭素質基体を選択す
ることが望ましい。また、上記炭素質基体の中でも炭素
質基体と炭化珪素の剥離・クラックを防止するため熱膨
張係数が炭化珪素の熱膨張係数に近い炭素質基体、例え
ば炭素協会規格(以下、JCASという)にいう「石英
膨張計による平均熱膨張係数の測定法」で測定した、室
温から1273Kまでの平均熱膨張係数が4.0×(1
-6/K)〜5.0×(10-6/K)である炭素質基体
を選択することが更に望ましく、その中でも異方比が
1.2以下の等方性黒鉛材料を使用することが特に望ま
しく、炭素質基体の表層部を炭化珪素に転化するため水
銀圧入法による平均気孔半径0.5μm乃至1.8μm
の等方性黒鉛材料を選択することが望ましい。なお、累
積気孔容積及び平均気孔半径の測定には、例えば水銀圧
入法を例示でき、最大圧力98MPaまで加圧したとき
の気孔量を累積気孔容積(×10-2Mg/m3 )とし、
累積気孔容積の1/2に相当する値(μm)を平均気孔
半径として決定することができる。また、ここでいう等
方性黒鉛材料とは、任意に直角をなす方向の熱膨張係数
の異方性が1.2以下の黒鉛材料をいうものとする。
Further, it is desirable to select a carbonaceous substrate having high strength in consideration of prevention of breakage, for example, a carbonaceous substrate having a bending strength of 40 MPa or more measured by a three-point strength test. In addition, among the above carbonaceous substrates, a carbonaceous substrate having a thermal expansion coefficient close to that of silicon carbide in order to prevent peeling and cracking of the carbonaceous substrate and silicon carbide, for example, is referred to in Japan Carbon Standard (hereinafter referred to as JCAS). The average coefficient of thermal expansion from room temperature to 1273 K measured by the “method of measuring average coefficient of thermal expansion with quartz dilatometer” is 4.0 × (1
0 -6 /K)~5.0×(10 -6 / K) It is further desirable to select the carbonaceous substrate is anisotropically ratio among them is to use an isotropic graphite material 1.2 In order to convert the surface layer of the carbonaceous substrate to silicon carbide, it is particularly desirable to use an average pore radius of 0.5 μm to 1.8 μm by a mercury intrusion method.
It is desirable to select an isotropic graphite material. The cumulative pore volume and the average pore radius can be measured by, for example, a mercury intrusion method. The pore volume when pressurized to a maximum pressure of 98 MPa is defined as a cumulative pore volume (× 10 -2 Mg / m 3 ).
A value (μm) corresponding to の of the cumulative pore volume can be determined as the average pore radius. The term “isotropic graphite material” as used herein refers to a graphite material having an anisotropy in thermal expansion coefficient of 1.2 or less in a direction perpendicular to an arbitrary direction.

【0019】次に、炭化珪素の転化層について説明す
る。炭素質基体の表層部を炭化珪素に転化する方法とし
ては、基本的には本発明者等が先に開示した特開平1−
264969号公報に記載のCVR法に従えばよいが、
具体的には所定の形状に加工した炭素質基体を、電気炉
内に置き、不活性ガス雰囲気とした後、例えば金属珪素
とSiO2 とを反応させてSiOガスを発生させ、約2
000Kで前記炭素質基体とSiOガスを反応させて炭
素質基体の表層部に転化層を形成すればよい。なお、転
化層は炭素質基体の表層部の中で一部分のみ或いは表層
部全面を転化することも可能である。
Next, the silicon carbide conversion layer will be described. As a method of converting the surface layer portion of the carbonaceous substrate into silicon carbide, basically, the method disclosed in Japanese Patent Application Laid-Open No.
Although the CVR method described in JP-A-264969 may be followed,
Specifically, the carbonaceous substrate processed into a predetermined shape is placed in an electric furnace and an inert gas atmosphere is formed. Then, for example, SiO 2 is generated by reacting metallic silicon with SiO 2, and about 2 μm is generated.
The carbonaceous substrate may be reacted with the SiO gas at 000 K to form a conversion layer on the surface of the carbonaceous substrate. It is also possible to convert the conversion layer only partially or entirely in the surface layer of the carbonaceous substrate.

【0020】転化層の厚みは、炭素質基体の表面から深
さ方向に亘って1μm以上とすることが望ましい。その
理由は、転化層の深さが1μmよりも薄いと、ダイヤモ
ンド被膜を形成するときに水素ガスによって炭素質基体
がエッチングされるのを充分に防止することができな
い。また、転化層の厚みに上限はないけれども1000
μmよりも厚くすると、転化層に存在する気孔に封じ込
まれた気体、例えば水蒸気、一酸化珪素、一酸化炭素、
酸素、及び炭素粉等がダイヤモンド被膜を形成するとき
の熱拡散によって転化層の気孔から放出し、ダイヤモン
ド被膜が成長する速度に影響を与えるだけでなく、一酸
化炭素、炭素粉は熱励起によって無定形硬質炭素膜とな
って析出し、ダイヤモンド被膜の純度にも影響を及ぼす
可能性がある。従って、より確実顕著な効果を得るため
には、転化層の厚みを10μm〜500μmとすること
が安全で望ましい。
It is desirable that the thickness of the conversion layer be 1 μm or more over the depth direction from the surface of the carbonaceous substrate. The reason is that if the depth of the conversion layer is less than 1 μm, it is not possible to sufficiently prevent the carbonaceous substrate from being etched by hydrogen gas when forming a diamond film. Although there is no upper limit to the thickness of the conversion layer,
When the thickness is larger than μm, gas trapped in pores existing in the conversion layer, for example, water vapor, silicon monoxide, carbon monoxide,
Oxygen and carbon powder are released from the pores of the inversion layer by thermal diffusion when forming the diamond film, not only affecting the growth rate of the diamond film, but also carbon monoxide and carbon powder are not excited by thermal excitation. It may precipitate as a shaped hard carbon film and affect the purity of the diamond film. Therefore, it is safe and desirable to set the thickness of the conversion layer to 10 μm to 500 μm in order to obtain a more certain effect.

【0021】また、転化層を形成して平均気孔半径を
0.5μm以下とし、且つ累積気孔容積は5(×10-2
Mg/m3 )以下にすることによって上記効果、即ちダ
イヤモンド被膜の結晶速度の促進及びダイヤモンド被膜
の純度を一層向上させることができることも本発明者ら
は見いだしている。
A conversion layer is formed to reduce the average pore radius to 0.5 μm or less, and the cumulative pore volume is 5 (× 10 −2).
The present inventors have also found that the above effect, that is, the enhancement of the crystallization speed of the diamond coating and the purity of the diamond coating can be further improved by making the content of Mg / m 3 ) or less.

【0022】さらに、転化層に存在する気孔に、熱膨張
係数がダイヤモンドと転化層の中間であって、しかも気
密性が高く、硬度が高いガラス状炭素や、ダイヤモンド
被膜と密着性の優れた珪素を含浸(併用しても良い)す
ることによって転化層の気孔を封孔し、しかも母材の強
度を向上させる上で有効であることも本発明者らは見い
だしている。
Further, the pores present in the conversion layer may be formed of glassy carbon having a thermal expansion coefficient between that of diamond and the conversion layer and having high airtightness and high hardness, or silicon having excellent adhesion to the diamond coating. The present inventors have also found that impregnation with (or may be used in combination with) is effective in sealing the pores of the conversion layer and improving the strength of the base material.

【0023】上記操作によって作成された母材は、粒子
径が0.1μm〜1μmのダイヤモンド粉末(ダイヤモ
ンドコンパウンドともいう)の入った液体中に入れて超
音波洗浄を行い、またはダイヤモンドサンドペーパーを
使用して表面の粗さをJISB0601−1982に示
される最大表面粗さ(Rmax )が0.5μm〜1.0μ
mとなるように表面に引っかき傷(以下、スクラッチと
いう)を形成することによってダイヤモンド被膜の成長
速度及び母材との密着性を一層向上させることも可能で
ある。なお、この場合のスクラッチ作業は、従来のダイ
ヤモンド被膜炭素部材におけるCVD−SiC層表面を
スクラッチする場合に比べて簡単となる。即ち、従来の
CVD−SiC層は非常に緻密でその表面も平坦である
ため、より強力なスクラッチ作業を必要とするのに対
し、本発明のCVR−SiC層は比較的多孔質(ポーラ
ス)で、その表面もかなり起伏に富んでいるため、軽め
のスクラッチでよく、作業コストの低減化に有利といえ
る。
The base material prepared by the above operation is subjected to ultrasonic cleaning in a liquid containing diamond powder (also called diamond compound) having a particle size of 0.1 μm to 1 μm, or using diamond sand paper. The maximum surface roughness (R max ) shown in JIS B0601-1982 is 0.5 μm to 1.0 μm.
By forming a scratch (hereinafter referred to as a scratch) on the surface so as to obtain m, the growth rate of the diamond film and the adhesion to the base material can be further improved. The scratching operation in this case is simpler than in the case where the surface of the CVD-SiC layer in the conventional diamond-coated carbon member is scratched. That is, since the conventional CVD-SiC layer is very dense and its surface is flat, a stronger scratching operation is required, whereas the CVR-SiC layer of the present invention is relatively porous. Since the surface is also very uneven, a lighter scratch is sufficient, which is advantageous for reducing the working cost.

【0024】上記母材の表面に形成するダイヤモンド被
膜について説明する。母材表面に形成するダイヤモンド
被膜の厚みは、1μm以上〜100μm以下とすること
が望ましい。その理由は、ダイヤモンド被膜の膜厚が1
μmよりも薄いと、母材表面に形成されたダイヤモンド
被膜がすぐに磨耗してしまい、100μmよりも厚くす
ると、ダイヤモンドの熱膨張係数が転化層のそれに比べ
てはるかに小さいため、母材に引っ張り応力が発生し、
母材とダイヤモンド被膜との間で剥離及びクラックが生
じ易くなるだけでなく、ダイヤモンド被膜を形成するた
めの時間も長くなる。従って、母材表面に形成させるべ
きダイヤモンド被膜の厚みとしては、は、10μm〜5
0μmとすることが安全で望ましい。
The diamond coating formed on the surface of the base material will be described. It is desirable that the thickness of the diamond film formed on the surface of the base material be 1 μm or more and 100 μm or less. The reason is that the thickness of the diamond coating is 1
If the thickness is smaller than μm, the diamond coating formed on the base material surface will be worn away immediately.If the thickness is larger than 100 μm, the diamond has a coefficient of thermal expansion much smaller than that of the conversion layer. Stress occurs,
Not only is it easy for peeling and cracking to occur between the base material and the diamond coating, but also the time for forming the diamond coating is lengthened. Therefore, the thickness of the diamond film to be formed on the base material surface is 10 μm to 5 μm.
It is safe and desirable to set it to 0 μm.

【0025】ダイヤモンド被膜を形成するときの条件に
ついて説明すると以下のようになる。ダイヤモンド被膜
の形成手段は、マイクロ波プラズマCVD法、熱フィラ
メント法、高周波プラズマCVD法、電子衝撃CVD
法、光CVD法、直流CVD法等を例示することがで
き、その中から任意に選択することが可能である。
The conditions for forming the diamond coating will be described below. Means for forming the diamond film include microwave plasma CVD, hot filament, high frequency plasma CVD, and electron impact CVD.
Method, a photo-CVD method, a direct-current CVD method and the like can be exemplified, and it is possible to arbitrarily select from them.

【0026】マイクロ波プラズマCVD法でダイヤモン
ド被膜を形成する例を一例として例示すると以下のよう
になる。先ず、スクラッチを形成した母材を装置に入れ
る。装置内は約1トール〜100トールのアルゴンガス
雰囲気の減圧状態にし、誘導加熱によって母材を加熱す
る。母材を加熱する温度は母材の剥離・クラック等を生
じさせないようにするため極力低い温度とすることが望
ましく、1000K以下とすることが望ましい。
An example in which a diamond film is formed by a microwave plasma CVD method will be described below as an example. First, the base material on which the scratch is formed is put into the device. The apparatus is evacuated to an argon gas atmosphere of about 1 Torr to 100 Torr, and the base material is heated by induction heating. The temperature at which the base material is heated is preferably as low as possible so as not to cause peeling, cracking, etc. of the base material, and is desirably 1000 K or less.

【0027】続いて2.45ギガヘルツのマイクロ波を
導波管から発進する。ダイヤモンドの供給源である原料
ガスとしてはメタンガスを担体ガスとしては水素ガスを
使用し、メタンガス1に対し、水素ガスを50〜200
の体積比率で供給する。この場合最初は、メタンガスの
濃度を薄くし、徐々にメタンガスの濃度を濃くすること
も可能である。ダイヤモンド被膜の析出速度が時間当た
り1μmよりも小さいと所定の膜厚を得るために時間が
長くなり、加熱時間が長くなるので母材への影響、即ち
剥離及びクラックの原因になる。また、析出速度が10
μmよりも速くなると、純度の高い多結晶ダイヤモンド
被膜以外に、無定形硬化炭素膜が析出するためダイヤモ
ンドの純度が低下するだけでなく、母材との密着性を向
上させる上で望ましくない。
Subsequently, a microwave of 2.45 GHz is launched from the waveguide. Methane gas is used as a source gas as a source of diamond, and hydrogen gas is used as a carrier gas.
Is supplied at a volume ratio of In this case, it is possible to initially decrease the concentration of methane gas and gradually increase the concentration of methane gas. If the deposition rate of the diamond film is less than 1 μm per hour, it takes a long time to obtain a predetermined film thickness, and the heating time becomes long, which affects the base material, that is, causes peeling and cracks. When the deposition rate is 10
If it is faster than μm, an amorphous hardened carbon film is deposited in addition to a high-purity polycrystalline diamond film, which not only reduces the purity of diamond but also is undesirable in improving the adhesion to the base material.

【0028】このようにして本発明のダイヤモンド被膜
炭素製品を製造することが可能であるが、用途に応じて
ダイヤモンドの特性を更に活かすことが可能である。最
も良く使用される切削工具、例えばバイト、ドレッサ
ー、カッター、ドリル、ガラス切り等に使用する場合に
は、高い硬度が必要なだけでなく、被加工物に高い加工
精度を付与することも必要である。なお、前記切削工具
として使用する時に問題となるのは、磨耗によって刃先
の鋭利さがなくなってしまうことである。従って、前記
切削工具に使用する場合に形成する場合には刃先の鋭利
さを活かしつつ、しかも磨耗に充分に耐えるだけの充分
な膜厚を確保することが必要であり、ダイヤモンド膜厚
は10μm〜30μm程度とすることが望ましい。
Although the diamond-coated carbon product of the present invention can be produced in this manner, the characteristics of diamond can be further utilized depending on the application. When used in the most commonly used cutting tools, such as cutting tools, dressers, cutters, drills, and glass cutters, not only high hardness is required, but it is also necessary to impart high machining accuracy to the workpiece. is there. A problem when used as the cutting tool is that the sharpness of the cutting edge is lost due to wear. Therefore, when formed for use in the cutting tool, it is necessary to secure a sufficient film thickness to sufficiently withstand abrasion while utilizing the sharpness of the cutting edge, and the diamond film thickness is 10 μm to It is desirable that the thickness be about 30 μm.

【0029】また、高い熱伝導率を要求されるような用
途に使用する場合には、ダイヤモンドの高い熱伝導率に
加えて、母材の高い熱伝導率にすることが望ましい。そ
のような場合には熱伝導率の低い転化層の膜厚は極力薄
くし例えば1μm程度にし、炭素質基体は、熱伝導率が
100W/(m・k)以上の高い炭素質基体を選択し、
母材全体として熱伝導率を高くすることが望ましい。
When used in applications requiring high thermal conductivity, it is desirable that the base material has a high thermal conductivity in addition to the high thermal conductivity of diamond. In such a case, the thickness of the conversion layer having a low thermal conductivity is made as thin as possible, for example, about 1 μm. As the carbonaceous substrate, a high carbonaceous substrate having a thermal conductivity of 100 W / (mk) or more is selected. ,
It is desirable to increase the thermal conductivity of the entire base material.

【0030】上記したように、本発明では、特定の物性
の炭素質基体を選択し、係る炭素質基体の表層部にCV
R(Chemical Vaper Riaction)法により炭化珪素に転化
された被覆層を1μm〜1000μmの厚みで形成して
いるので、転化層と炭素質基体の界面で剥離やクラック
が生じることがない。また必要に応じて、転化層の平均
気孔半径と累積気孔容積を調節し、しかも場合によって
はガラス状炭素や珪素を転化層の気孔に含浸することに
よって母材の気密性も向上させることができるので、ダ
イヤモンド被膜を形成したときに無定形硬質炭化膜等の
形成が殆ど無く、純度の高いダイヤモンド被膜を得るこ
とができ、ダイヤモンド被膜と母材との密着性も良く剥
離・クラックの発生もない。
As described above, in the present invention, a carbonaceous substrate having specific physical properties is selected, and CV is applied to the surface layer of the carbonaceous substrate.
Since the coating layer converted to silicon carbide by the R (Chemical Vaper Riaction) method is formed with a thickness of 1 μm to 1000 μm, no separation or crack occurs at the interface between the conversion layer and the carbonaceous substrate. If necessary, the average pore radius and the cumulative pore volume of the conversion layer are adjusted, and in some cases, the airtightness of the base material can be improved by impregnating the pores of the conversion layer with glassy carbon or silicon. Therefore, when forming a diamond coating, there is almost no formation of an amorphous hard carbonized film and the like, and a high-purity diamond coating can be obtained, the adhesion between the diamond coating and the base material is good, and no peeling or cracking occurs. .

【0031】[0031]

【実施例】以下に、本発明を実施例に基づき具体的に説
明する。実施例1 (炭素質基体の調製)水銀圧入法による平均気孔半径が
1.1μm、3点曲げ試験法による曲げ強度が60MP
a、石英熱膨張計による室温から1273Kまでの平均
熱膨張係数が4.7(×10-6/K)の等方性黒鉛材料
を作成した。この等方性黒鉛材料を50mm角で厚みが
10mmも寸法に加工した後、高純度化し、試験片とし
た。試験片に含まれる灰分は10ppmであった。 (母材の調製)一方、内径が100mmで肉厚が10m
m、高さが100mmの黒鉛ルツボに、金属珪素0.3
kg充填し、高周波誘導加熱によって1800Kで金属
珪素を溶融した。溶融珪素に試験片を入れて試験片の表
層部全面にβ−炭化珪素で200μmの転化層を形成
し、これを母材とした。母材中の転化層の気孔について
累積気孔容積と平均気孔半径を水銀圧入法で測定したと
ころ、各々4.0(×10-2Mg/m3 )及び0.4μ
mであった。この母材に、真空中2000Kで2時間、
珪素を転化層の気孔95%含浸した。ICP−MS法で
珪素を含浸した上記母材の転化層に含まれるコバルトの
含有率を測定したところ、1.8ppmであた。市販
0.5リットルのビーカーに平均粒子径が0.1μmの
ダイヤモンドコンパウンドを入れ、これに純水を加えて
ダイヤモンドコンパウンドを分散し、この中に上記超音
波処理を行った母材を入れて取り出した後、母材の表面
粗さをJIS B0601−1982に示される方法で
測定した結果、最大表面粗さ(Rmax )は0.5μmで
あった。 (母材上へのダイヤモンド被膜の形成)母材を装置に入
れ、原料ガスとしてメタンガスを使用し、担体ガスとし
て水素ガスを使用し、水素ガス中のメタンガス濃度を
0.5体積%としたガスを装置内に流し、装置内圧力を
50トール、基板(母材)温度を1200Kとし、2.
45ギガヘルツのマイクロ波を導波管を通じて反応管の
中央に導入してダイヤモンド被膜を1時間当たり1μm
堆積させ、20時間継続反応をさせてマイクロ波プラズ
マCVD法でダイヤモンド被膜を20μm形成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. Example 1 (Preparation of carbonaceous substrate) The average pore radius by the mercury intrusion method was 1.1 μm, and the bending strength by the three-point bending test method was 60 MP.
a, An isotropic graphite material having an average thermal expansion coefficient of 4.7 (× 10 −6 / K) from room temperature to 1273 K measured by a quartz thermal dilatometer was prepared. After processing this isotropic graphite material to dimensions of 50 mm square and 10 mm thick, it was highly purified and used as a test piece. The ash content in the test piece was 10 ppm. (Preparation of base material) On the other hand, the inner diameter is 100 mm and the thickness is 10 m
m, graphite crucible having a height of 100 mm, metallic silicon 0.3
kg, and metallic silicon was melted at 1800 K by high frequency induction heating. The test piece was put in the molten silicon to form a 200 μm conversion layer of β-silicon carbide on the entire surface of the test piece, and this was used as a base material. When the cumulative pore volume and average pore radius of the pores of the converted layer in the base material were measured by a mercury intrusion method, they were 4.0 (× 10 -2 Mg / m 3 ) and 0.4 μm, respectively.
m. To this base material, at 2000K in vacuum for 2 hours,
Silicon was impregnated with 95% of the pores of the conversion layer. The content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by ICP-MS, and was 1.8 ppm. A diamond compound having an average particle size of 0.1 μm is placed in a commercially available 0.5 liter beaker, pure water is added thereto to disperse the diamond compound, and the base material subjected to the above-described ultrasonic treatment is put therein and taken out. After that, the surface roughness of the base material was measured by the method described in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.5 μm. (Formation of diamond film on base material) A base material is put into an apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, and a methane gas concentration in the hydrogen gas is set to 0.5% by volume. 1. The pressure in the apparatus is set to 50 Torr, the temperature of the substrate (base material) is set to 1200 K, and
A microwave of 45 GHz is introduced into the center of the reaction tube through a waveguide to form a diamond coating at 1 μm / hour.
The diamond film was deposited and allowed to react continuously for 20 hours to form a diamond film having a thickness of 20 μm by a microwave plasma CVD method.

【0032】実施例2 (炭素質基体の調製)水銀圧入法による平均気孔半径が
1.8μm、3点曲げ試験法による曲げ強度が40MP
a、石英熱膨張計による室温から1273Kまでの平均
熱膨張係数が4.7(×10-6/K)の等方性黒鉛材料
を作成した。この等方性黒鉛材料を、50mm角で厚み
が10mmの寸法に加工し、試験片とした。試験片に含
まれる灰分は12ppmであった。 (母材の調製)一方、電気炉内に仕切りを設け、仕切り
の一部に黒鉛ルツボを置き、この黒鉛ルツボ内に金属珪
素0.1kgと二酸化珪素0.1kgを入れた。また別
室には試験片を置き、電気炉内全体はアルゴンガスを1
分間当たり1リットルの割合で流して不活性ガス雰囲気
とした後、2300Kに加熱して一酸化珪素ガスを発生
させた後、炭素質基体と一酸化珪素ガスを反応させて炭
素質基体の表層部全面に転化層を500μm形成したも
のを母材とした。母材中の転化層の気孔について累積気
孔容積と平均気孔半径を水銀圧入法で測定したところ、
各々2.0(×10-2Mg/m3 )及び0.2μmであ
った。ICP−MS法で珪素を含浸した上記母材の転化
層に含まれるコバルトの含有率を測定したところ、0.
5ppmであった。市販0.5リットルのビーカーに平
均粒子径が0.1μmのダイヤモンドコンパウンドを入
れ、これに純水を加えてダイヤモンドコンパウンドを分
散し、この中に上記母材を入れて超音波振動を10分間
与えてスクラッチを形成した。上記超音波処理を行った
母材を取り出した後、母材の表面粗さをJIS B06
01−1982に示される方法で測定した結果、最大表
面粗さ(Rmax )は0.7μmであった。 (母材上へのダイヤモンド被膜の形成)母材を装置に入
れ、原料ガスとしてメタンガスを使用し、担体ガスとし
て水素ガスを使用し、水素ガス中のメタンガス濃度を
0.5体積%としたガスを装置内に流し、装置内圧力を
50トール、基板温度を1200Kとし、2.45ギガ
ヘルツのマイクロ波を導波管を通じて反応管の中央に導
入してダイヤモンド被膜を1時間当たり1μm体積さ
せ、20時間継続して反応を行ってマイクロ波プラズマ
CVD法で20μmダイヤモンド被膜を形成した。
Example 2 (Preparation of Carbonaceous Substrate) The average pore radius by the mercury intrusion method was 1.8 μm, and the bending strength by the three-point bending test method was 40 MP.
a, An isotropic graphite material having an average thermal expansion coefficient of 4.7 (× 10 −6 / K) from room temperature to 1273 K measured by a quartz thermal dilatometer was prepared. This isotropic graphite material was processed into a size of 50 mm square and 10 mm in thickness to obtain a test piece. The ash content in the test piece was 12 ppm. (Preparation of Base Material) On the other hand, a partition was provided in an electric furnace, a graphite crucible was placed in a part of the partition, and 0.1 kg of metal silicon and 0.1 kg of silicon dioxide were put in the graphite crucible. A test piece was placed in another room, and the entire inside of the electric furnace was filled with argon gas.
After flowing at an inert gas atmosphere at a rate of 1 liter per minute, heating to 2300 K to generate silicon monoxide gas, and then reacting the carbonaceous substrate with the silicon monoxide gas to cause the surface layer of the carbonaceous substrate A conversion material formed on the entire surface to a thickness of 500 μm was used as a base material. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method,
They were 2.0 (× 10 -2 Mg / m 3 ) and 0.2 μm, respectively. The content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by the ICP-MS method.
It was 5 ppm. A diamond compound having an average particle diameter of 0.1 μm is placed in a commercially available 0.5-liter beaker, pure water is added thereto to disperse the diamond compound, the base material is placed therein, and ultrasonic vibration is applied for 10 minutes. To form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B06.
As a result of measurement by the method shown in 01-1982, the maximum surface roughness (R max ) was 0.7 μm. (Formation of diamond film on base material) A base material is put into an apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, and a methane gas concentration in the hydrogen gas is set to 0.5% by volume. Was flowed into the apparatus, the internal pressure of the apparatus was set to 50 Torr, the substrate temperature was set to 1200 K, microwaves of 2.45 GHz were introduced into the center of the reaction tube through a waveguide, and the diamond film was made to have a volume of 1 μm per hour. The reaction was continued for a period of time to form a 20 μm diamond coating by microwave plasma CVD.

【0033】実施例3 (炭素質基板の調製)水銀圧入法による平均気孔半径が
0.5μm、3点曲げ強度が90MPa、石英熱膨張計
による室温から1273Kまでの平均熱膨張係数が4.
9(×10-6/K)の等方性黒鉛材料を作成した。この
等方性黒鉛材料を、50mm角で厚みが10mmの寸法
に加工し、試験片とした。試験片に含まれる灰分は12
ppmであった。 (母材の調製)実施例1と同様の操作を行って炭素質基
体の表層部全面に転化層を250μm形成したものを母
材とした。母材中の転化層の気孔について累積気孔面積
と平均気孔半径を水銀圧入法で測定したところ、各々
1.8(×10-2Mg/m3 )及び0.1μmであっ
た。ICP−MS法で珪素を含浸した上記母材の転化層
に含まれるコバルトの含有率を測定したところ、0.9
ppmであった。市販0.5リットルのビーカーに平均
粒子径0.1μmのダイヤモンドコンパウンドを入れ、
これに純水を加えてダイヤモンドコンパウンドを分散
し、この中に上記母材を入れて超音波振動を10分間与
えてスクラッチを形成した。上記超音波処理を行った母
材を取り出した後、母材の表面粗さをJIS B060
1−1982に示される方法で測定した結果、最大表面
粗さ(Rmax )は0.9μmであった。 (母材上へのダイヤモンド被膜の形成)母材を装置に入
れ、原料ガスとしてメタンガスを使用し、担体ガスとし
て水素ガスを使用し、水素ガス中のメタンガス濃度0.
5体積%としたガスを装置内に流し、装置内圧力を50
トール、基板温度を1200Kとし、ダイヤモンド被膜
を1時間当たり1μm堆積させ、20時間継続して反応
を行って熱フィラメントCVD法で20μmダイヤモン
ド被膜を形成した。
Example 3 (Preparation of Carbonaceous Substrate) The average pore radius was 0.5 μm by the mercury intrusion method, the three-point bending strength was 90 MPa, and the average thermal expansion coefficient from room temperature to 1273 K was 4.
9 (× 10 −6 / K) isotropic graphite material was prepared. This isotropic graphite material was processed into a size of 50 mm square and 10 mm in thickness to obtain a test piece. The ash content in the test piece is 12
ppm. (Preparation of Base Material) The same operation as in Example 1 was performed to form a base material having a converted layer formed on the entire surface layer portion of the carbonaceous substrate in a thickness of 250 μm. When the cumulative pore area and the average pore radius of the pores of the converted layer in the base material were measured by a mercury intrusion method, they were 1.8 (× 10 −2 Mg / m 3 ) and 0.1 μm, respectively. When the content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by the ICP-MS method, it was found to be 0.9%.
ppm. Put a diamond compound having an average particle size of 0.1 μm into a commercially available 0.5 liter beaker,
Pure water was added thereto to disperse the diamond compound, and the above-mentioned base material was put therein, and ultrasonic vibration was applied for 10 minutes to form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B060.
As a result of measurement by the method described in 1-182, the maximum surface roughness (R max ) was 0.9 μm. (Formation of Diamond Coating on Base Material) The base material was placed in an apparatus, methane gas was used as a raw material gas, hydrogen gas was used as a carrier gas, and the methane gas concentration in the hydrogen gas was 0.1%.
A gas having a volume of 5% by volume was flowed into the apparatus, and the internal pressure of the apparatus was set to 50
At a temperature of 1200 K, the thickness of the diamond film was deposited at 1 μm per hour, and the reaction was continued for 20 hours to form a 20 μm diamond film by the hot filament CVD method.

【0034】実施例4 (炭素質基体の調製)水銀圧入法による平均気孔半径が
1.1μm、3点曲げ試験法による曲げ強度が60MP
a、石英熱膨張計による室温から1273Kまでの平均
熱膨張係数が5.0(×10-6/K)の等方性黒鉛材料
を作成した。この等方性黒鉛材料を、50mm角で厚み
が10mmの寸法に加工し、試験片とした。試験片に含
まれる灰分は14ppmであった。 (母材の調製)実施例1と同様の操作を行って炭素質基
体の表層部全面に転化層を250μm形成したものを母
材とした。母材中の転化層の気孔について累積気孔容積
と平均気孔半径を水銀圧入法で測定したところ、各々
3.4(×10-2Mg/m3 )及び0.6μmであっ
た。ICP−MS法で珪素を含浸した上記母材の転化層
に含まれるコバルトの含有率を測定したところ、3.8
ppmであった。市販0.5リットルのビーカーに平均
粒子径が0.1μmのダイヤモンドコンパウンドを分散
し、この中に上記母材を入れて超音波振動を10分間与
えてスクラッチを形成した。上記超音波処理を行った母
材を取り出した後、母材の表面粗さをJISB0601
−1982に示される方法で測定した結果、最大表面粗
さ(Rmax )は1.0μmであった。 (母材上へのダイヤモンド被膜の形成)母材を装置に入
れ、原料ガスとしてメタンガスを使用し、担体ガスとし
て水素ガスを使用し、水素ガス中のメタンガス濃度を
0.5体積%としたガスを装置内に流し、装置内圧力を
50トール、基板温度を1200Kとし、ダイヤモンド
被膜を1時間当たり2μm堆積させ、10時間継続して
反応を行って熱フィラメントCVD法で20μmダイヤ
モンド被膜を形成した。
Example 4 (Preparation of Carbonaceous Substrate) The average pore radius by the mercury intrusion method was 1.1 μm, and the bending strength by the three-point bending test method was 60 MP.
a, An isotropic graphite material having an average coefficient of thermal expansion from room temperature to 1273 K measured by a quartz thermal dilatometer of 5.0 (× 10 −6 / K) was prepared. This isotropic graphite material was processed into a size of 50 mm square and 10 mm in thickness to obtain a test piece. The ash content in the test piece was 14 ppm. (Preparation of Base Material) The same operation as in Example 1 was performed to form a base material having a converted layer formed on the entire surface layer portion of the carbonaceous substrate in a thickness of 250 μm. The cumulative pore volume and average pore radius of the pores of the converted layer in the base material were measured by mercury porosimetry to be 3.4 (× 10 −2 Mg / m 3 ) and 0.6 μm, respectively. When the content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by the ICP-MS method, it was 3.8.
ppm. A diamond compound having an average particle diameter of 0.1 μm was dispersed in a commercially available 0.5 liter beaker, and the above-described base material was put therein, and ultrasonic vibration was applied for 10 minutes to form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B0601.
As a result of measurement according to the method described in -1982, the maximum surface roughness (R max ) was 1.0 μm. (Formation of diamond film on base material) A base material is put into an apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, and a methane gas concentration in the hydrogen gas is set to 0.5% by volume. Was flowed into the apparatus, the pressure in the apparatus was set to 50 Torr, the substrate temperature was set to 1200 K, a diamond film was deposited at 2 μm per hour, and the reaction was continued for 10 hours to form a 20 μm diamond film by hot filament CVD.

【0035】実施例5 (炭素質基体の調製)水銀圧入法による平均気孔半径が
1.1μm、3点曲げ試験法による曲げ強度が60MP
a、石英熱膨張計による室温から1273Kまでの平均
熱膨張係数が4.0(×10-6/K)の等方性黒鉛材料
を作成した。この等方性黒鉛材料を、50mm角で厚み
が10mmの寸法に加工し、試験片とした。試験片に含
まれる灰分は2.1ppmであった。 (母材の調製)実施例1と同様の操作を行って炭素質基
体の表層部全面に転化層を250μm形成したものを母
材とした。母材中の転化層の気孔について累積気孔容積
と平均気孔半径を水銀圧入法で測定したところ、各々
2.8(×10-2Mg/m3 )及び0.4μmであっ
た。ICP−MS法で珪素を含浸した上記母材の転化層
に含まれるコバルトの含有率を測定したところ、0.1
ppmであった。市販0.5リットルのビーカーに平均
粒子径が0.1μmのダイヤモンドを分散し、この中に
上記母材を入れて超音波振動を10分間与えてスクラッ
チを形成した。上記超音波処理を行った母材を取り出し
た後、母材の表面粗さをJIS B0601−1982
に示される測定した結果、最大表面粗さ(Rmax )は
0.9μmであった。 (母材上へのダイヤモンド被膜の形成)母材を装置に入
れ、原料ガスとしてメタンガスを使用し、担体ガスとし
て水素ガスを使用し、水素ガス中のメタンガス濃度を
0.5体積%としたガスを装置内に流し、装置内圧力を
50トール、基板温度を1200Kとし、ダイヤモンド
被膜を1時間当たり2μm堆積させ、10時間継続して
反応を行って熱フィラメントCVD法で20μmダイヤ
モンド被膜を形成した。
Example 5 (Preparation of Carbonaceous Substrate) The average pore radius by the mercury intrusion method was 1.1 μm, and the bending strength by the three-point bending test method was 60 MP.
a, An isotropic graphite material having an average thermal expansion coefficient of 4.0 (× 10 −6 / K) from room temperature to 1273 K measured with a quartz thermal dilatometer was prepared. This isotropic graphite material was processed into a size of 50 mm square and 10 mm in thickness to obtain a test piece. The ash content in the test piece was 2.1 ppm. (Preparation of Base Material) The same operation as in Example 1 was performed to form a base material having a converted layer formed on the entire surface layer portion of the carbonaceous substrate in a thickness of 250 μm. The cumulative pore volume and average pore radius of the pores of the converted layer in the base material were measured by a mercury intrusion method, and were 2.8 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. The content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by the ICP-MS method.
ppm. Diamond having an average particle diameter of 0.1 μm was dispersed in a commercially available 0.5 liter beaker, the above-described base material was put therein, and ultrasonic vibration was applied for 10 minutes to form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B0601-1982.
As a result, the maximum surface roughness (R max ) was 0.9 μm. (Formation of diamond film on base material) A base material is put into an apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, and a methane gas concentration in the hydrogen gas is set to 0.5% by volume. Was flowed into the apparatus, the pressure in the apparatus was set to 50 Torr, the substrate temperature was set to 1200 K, a diamond film was deposited at 2 μm per hour, and the reaction was continued for 10 hours to form a 20 μm diamond film by hot filament CVD.

【0036】実施例6 (炭素質基体の調製)実施例1で作成した試験片を使用
した。 (母材例1の調製)実施例1と同様の操作を行って炭素
質基体の表層部全面に転化層を950μm形成したもの
を母材とした。母材中の転化層の気孔について累積気孔
容積と平均気孔半径を水銀圧入法で測定したところ、各
々2.8(×10-2Mg/m3 )及び0.4μmであっ
た。ICP−MS法で珪素を含浸した上記母材の転化層
に含まれるコバルトの含有率を測定したところ、0.1
ppmであった。市販0.5リットルのビーカーに平均
粒子径が0.1μmのダイヤモンドコンパウンドを入
れ、これに純水を加えてダイヤモンドコンパウンドを分
散し、この中に母材を入れて超音波振動を10分間与え
てスクラッチを形成した。上記超音波処理を行った母材
を取り出した後、母材の表面粗さをJIS B0601
−1982に示される方法で測定した結果、最大表面粗
さ(Rmax )は0.5μmであった。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で20μmダイヤモンド被膜を形成した。
Example 6 (Preparation of carbonaceous substrate) The test piece prepared in Example 1 was used. (Preparation of Base Material Example 1) The same operation as in Example 1 was performed to form a 950 μm inversion layer on the entire surface of the carbonaceous substrate. The cumulative pore volume and average pore radius of the pores of the converted layer in the base material were measured by a mercury intrusion method, and were 2.8 (× 10 −2 Mg / m 3 ) and 0.4 μm, respectively. The content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by the ICP-MS method.
ppm. A diamond compound having an average particle size of 0.1 μm is put into a commercially available 0.5 liter beaker, pure water is added to the diamond compound to disperse the diamond compound, and the base material is put into this, and ultrasonic vibration is applied for 10 minutes. A scratch was formed. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B0601.
As a result of measurement by the method described in -1982, the maximum surface roughness (R max ) was 0.5 μm. (Formation of Diamond Film on Base Material) A 20 μm diamond film was formed in the same manner as in Example 1.

【0037】実施例7 (炭素質基体の調製)実施例1で作成した試験片を使用
した。 (母材の調製)実施例1と同様の操作を行って炭素質基
体の表層部全面に転化層を1.1μm形成したものを母
材とした。母材中の転化層の気孔について累積気孔容積
と平均気孔半径を水銀圧入法で測定したところ、各々
3.3(×10-2Mg/m3 )及び0.8μmであっ
た。ICP−MS法で珪素を含浸した上記母材の転化層
に含まれるコバルトの含有率を測定したところ、2.2
ppmであった。市販0.5リットルのビーカーに平均
粒子径が0.1μmのダイヤモンドを分散し、この中に
上記母材を入れて超音波振動を10分間与えてスクラッ
チを形成した。上記超音波処理を行った母材を取り出し
た後、母材の表面粗さをJIS B0601−1982
に示される方法で測定した結果、最大表面粗さ
(Rmax )は0.5μmであった。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で20μmダイヤモンド被膜を形成した。
Example 7 (Preparation of carbonaceous substrate) The test piece prepared in Example 1 was used. (Preparation of Base Material) The same operation as in Example 1 was carried out to form a base material having a conversion layer of 1.1 μm formed on the entire surface of the carbonaceous substrate. The cumulative pore volume and average pore radius of the pores in the converted layer in the base material were measured by mercury porosimetry to be 3.3 (× 10 −2 Mg / m 3 ) and 0.8 μm, respectively. When the content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by an ICP-MS method, it was 2.2.
ppm. Diamond having an average particle diameter of 0.1 μm was dispersed in a commercially available 0.5 liter beaker, the above-described base material was put therein, and ultrasonic vibration was applied for 10 minutes to form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B0601-1982.
As a result, the maximum surface roughness (R max ) was 0.5 μm. (Formation of Diamond Film on Base Material) A 20 μm diamond film was formed in the same manner as in Example 1.

【0038】実施例8 (炭素質基体の調製)水銀圧入法による平均気孔半径が
1.2μm、3点曲げ試験法による曲げ強度が60MP
a、石英熱膨張計による室温から1273Kまでの平均
熱膨張係数が4.7(×10-6/K)の等方性黒鉛材料
を作成した。この等方性黒鉛材料を、50mm角で厚み
が10mmの寸法に加工し、試験片とした。試験片に含
まれる灰分は50ppmであった。 (母材の調製)実施例1と同様の操作を行って炭素質基
体の表層部全面に転化層を200μm形成したものを母
材とした。母材中の転化層の気孔について累積気孔容積
と平均気孔半径を水銀圧入法で測定したところ、各々
4.9(×10-2Mg/m3 )及び0.8μmであっ
た。ICP−MS法で珪素を含浸した上記母材の転化層
に含まれるコバルトの含有率を測定したところ、9.8
ppmであった。市販0.5リットルのビーカーに平均
粒子けい0.1μmのダイヤモンドコンパウンドを入
れ、これに純水を加えてダイヤモンドコンパンドを分散
し、この中に上記母材を入れて超音波振動を10分間与
えてスクラッチを形成した。上記超音波処理を行った母
材を取り出した後、母材の表面粗さをJIS B060
1−1982に示される方法で測定した結果、最大表面
粗さ(Rmax )は0.5μmであった。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で20μmダイヤモンド被膜を形成した。
Example 8 (Preparation of Carbonaceous Substrate) The average pore radius by the mercury intrusion method was 1.2 μm, and the bending strength by the three-point bending test method was 60 MP.
a, An isotropic graphite material having an average thermal expansion coefficient of 4.7 (× 10 −6 / K) from room temperature to 1273 K measured by a quartz thermal dilatometer was prepared. This isotropic graphite material was processed into a size of 50 mm square and 10 mm in thickness to obtain a test piece. The ash content in the test piece was 50 ppm. (Preparation of Base Material) The same operation as in Example 1 was carried out to form a base material having a converted layer of 200 μm formed on the entire surface of the carbonaceous substrate. When the cumulative pore volume and average pore radius of the pores of the converted layer in the base material were measured by a mercury porosimetry, they were 4.9 (× 10 -2 Mg / m 3 ) and 0.8 μm, respectively. When the content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by an ICP-MS method, 9.8 was obtained.
ppm. A diamond compound having an average particle diameter of 0.1 μm is put into a commercially available 0.5 liter beaker, pure water is added thereto to disperse the diamond compound, and the above-mentioned base material is put therein, and ultrasonic vibration is applied for 10 minutes. A scratch was formed. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B060.
As a result of measurement by the method described in 1-182, the maximum surface roughness (R max ) was 0.5 μm. (Formation of Diamond Film on Base Material) A 20 μm diamond film was formed in the same manner as in Example 1.

【0039】実施例9 (母材の調製)実施例1で作成した母材を使用し、市販
0.5リットルのビーカーに平均粒子径が0.1μmの
ダイヤモンドコンパウンドを入れ、これに純水を加えて
ダイヤモンドコンパウンドを分散し、この中に母材を入
れて超音波振動を10分間与えてスクラッチを形成し
た。上記超音波処理を行った母材を取り出した後、母材
の表面粗さをJIS B0601−1982に示される
方法で測定した結果、最大表面粗さ(Rmax )は0.8
μmであった。 (母材上へのダイヤモンド被膜の形成)母材を装置に入
れ、原料ガスとしてメタンガスを使用し、担体ガスとし
て水素ガスを使用し、水素ガス中のメタンガス濃度を
0.5体積%としたガスを装置内に流し、装置内圧力を
50トール、基板(母材)温度を1200Kとし、2.
45ギガヘルツのマイクロ波を導波管を通して反応管の
中央に導入してダイヤモンド被膜を1時間当たり1μm
堆積させ、1.5時間継続反応をさせてマイクロ波プラ
ズマCVD法でダイヤモンド被膜を1.5μm形成し
た。
Example 9 (Preparation of Base Material) Using the base material prepared in Example 1, a diamond compound having an average particle diameter of 0.1 μm was put into a commercially available 0.5 liter beaker, and pure water was added thereto. In addition, the diamond compound was dispersed, the base material was put therein, and ultrasonic vibration was applied for 10 minutes to form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured by the method described in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.8.
μm. (Formation of diamond film on base material) A base material is put into an apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, and a methane gas concentration in the hydrogen gas is set to 0.5% by volume. 1. The pressure in the apparatus is set to 50 Torr, the temperature of the substrate (base material) is set to 1200 K, and
A microwave of 45 GHz is introduced into the center of the reaction tube through a waveguide to form a diamond coating at 1 μm / hour.
The diamond film was deposited and allowed to react for 1.5 hours to form a diamond film having a thickness of 1.5 μm by microwave plasma CVD.

【0040】実施例10 (母材の調製)実施例1と同じ母材を使用し、市販0.
5リットルのビーカーに平均粒子径が0.1μmのダイ
ヤモンドコンパウンドを入れ、これに純水を加えてダイ
ヤモンドコンパウンドを分散し、この中に上記母材を入
れて超音波振動を10分間与えてスクラッチを形成し
た。上記超音波処理を行った母材を取り出した後、母材
の表面粗さをJIS B0601−1982に示される
方法で測定した結果、最大表面粗さ(Rmax )は0.8
μmであった。 (母材上へのダイヤモンド被膜の形成)母材を装置に入
れ、原料ガスとしてメタンガスを使用し、担体ガスとし
て水素ガスを使用し、水素ガス中のメタンガス濃度を
0.5体積%としたガスを装置内に流し、装置内圧力を
50トール、基板(母材)温度1200Kとし、2.4
5ギガヘルツのマイクロ波を導波管を通して反応管の中
央に導入してダイヤモンド被膜を1時間当たり1μm堆
積させ、100時間継続反応をさせてマイクロ波プラズ
マCVD法でダイヤモンド被膜を100μm形成した。
Example 10 (Preparation of base material) The same base material as in Example 1 was used.
A diamond compound having an average particle diameter of 0.1 μm is put in a 5 liter beaker, pure water is added thereto to disperse the diamond compound, and the above-mentioned base material is put therein, and ultrasonic vibration is applied for 10 minutes to scratch the diamond compound. Formed. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured by the method described in JIS B0601-1982, and as a result, the maximum surface roughness (R max ) was 0.8.
μm. (Formation of diamond film on base material) A base material is put into an apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, and a methane gas concentration in the hydrogen gas is set to 0.5% by volume. And the substrate (base material) temperature was set to 1200 K, and the pressure was set to 2.4 Torr.
A microwave of 5 GHz was introduced into the center of the reaction tube through a waveguide to deposit a diamond film at a thickness of 1 μm per hour, followed by a continuous reaction for 100 hours to form a diamond film of 100 μm by a microwave plasma CVD method.

【0041】比較例1 (母材の調製)実施例1で作成した試験片をCVD装置
に入れ、原料ガスとして四塩化珪素、担体ガスとしてプ
ロパンガスを用い、1800K、ガスを1分間当たり
0.3リットルで試験片の表面に緻密質炭化珪素層を2
00μm形成した。母材中の転化層の気孔について累積
気孔面積と平均気孔半径を水銀圧入法で測定したとこ
ろ、各々2.0(×10-2Mg/m3 )及び0.1μm
であった。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で、ダイヤモンド被膜を1時間当たり1μm堆積
させ、20時間継続反応をさせてマイクロ波プラズマC
VD法でダイヤモンド被膜を20μmを形成した。比較例2 (炭素質基体の調製)水銀圧入法による平均気孔半径が
2.0μm、3点曲げ試験法による曲げ強度が30MP
a、石英熱膨張計による室温から1273Kまでの平均
熱膨張係数が4.7(×10-6/K)の等方性黒鉛材料
を作成した。この等方性黒鉛材料を、50mm角で厚み
が10mmの寸法に加工した後、高純度化し、試験片と
した。試験片に含まれる灰分は10ppmであった。 (母材の調製)実施例1と同じ方法で、試験片の表層部
全面にβ−炭化珪素で200μmの転化層を形成し、こ
れを母材とした。母材中の転化層の気孔について累積気
孔容積と平均気孔半径を水銀圧入法で測定したところ、
各々4.0(×10-2Mg/m3 )及び0.4μmであ
った。ICP−MS法で珪素を含浸した上記母材の転化
層に含まれるコバルトの含有率を測定したところ、1.
8ppmであった。市販0.5リットルのビーカーに平
均粒子径0.1μmのダイヤモンドコンパウンドを入
れ、これの純水を加えてダイヤモンドコンパウンドを分
散し、この中に上記母材を入れて超音波振動を10分間
与えてスクラッチを形成した。上記超音波処理を行った
母材を取り出した後、母材の表面粗さをJIS B06
01−1982に示される方法で測定した結果、最大表
面粗さ(Rmax )は0.5μmであった。 (母材上のダイヤモンド被膜の形成)母材を装置に入
れ、原料ガスとしてメタンガスを使用し、担体ガスとし
て水素ガスを使用し、水素ガス中のメタンガス濃度を
0.5体積%としたガスを装置内に流し、装置内圧力を
50トール、基板(母材)温度を1200Kとし、2.
45ギガヘルツのマイクロ波を導波管を通して反応管の
中央に導入してダイヤモンド被膜を1時間当たり1μm
堆積させ、20時間継続反応をさせてマイクロ波プラズ
マCVD法でダイヤモンド被膜を20μm形成した。
Comparative Example 1 (Preparation of Base Material) The test piece prepared in Example 1 was placed in a CVD apparatus, and silicon tetrachloride was used as a raw material gas, and propane gas was used as a carrier gas, at 1800 K and a gas was supplied at a flow rate of 0.1 kg / min. 3 liters of dense silicon carbide layer on the surface of the test piece
A thickness of 00 μm was formed. When the cumulative pore area and the average pore radius of the pores of the converted layer in the base material were measured by a mercury intrusion method, they were 2.0 (× 10 -2 Mg / m 3 ) and 0.1 μm, respectively.
Met. (Formation of Diamond Coating on Base Material) In the same manner as in Example 1, a diamond coating was deposited at 1 μm per hour, and allowed to react continuously for 20 hours to obtain microwave plasma C.
A 20 μm diamond film was formed by the VD method. Comparative Example 2 (Preparation of carbonaceous substrate) Average pore radius by mercury intrusion method was 2.0 μm and bending strength by three-point bending test method was 30 MP.
a, An isotropic graphite material having an average thermal expansion coefficient of 4.7 (× 10 −6 / K) from room temperature to 1273 K measured by a quartz thermal dilatometer was prepared. This isotropic graphite material was processed into a size of 50 mm square and 10 mm thick, and then highly purified to obtain a test piece. The ash content in the test piece was 10 ppm. (Preparation of Base Material) In the same manner as in Example 1, a 200 μm conversion layer of β-silicon carbide was formed on the entire surface of the test piece, and this was used as a base material. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method,
They were 4.0 (× 10 -2 Mg / m 3 ) and 0.4 μm, respectively. The content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by the ICP-MS method.
It was 8 ppm. A diamond compound having an average particle diameter of 0.1 μm is put into a commercially available 0.5 liter beaker, pure water is added to disperse the diamond compound, the above-described base material is put therein, and ultrasonic vibration is applied for 10 minutes. A scratch was formed. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B06.
The maximum surface roughness (R max ) was 0.5 μm as a result of measurement by the method described in 01-1982. (Formation of diamond coating on base material) A base material is put into an apparatus, methane gas is used as a source gas, hydrogen gas is used as a carrier gas, and a gas having a methane gas concentration of 0.5% by volume in hydrogen gas is used. 1. Flow into the apparatus, set the pressure in the apparatus to 50 Torr, and set the substrate (base material) temperature to 1200 K.
A microwave of 45 GHz is introduced into the center of the reaction tube through a waveguide to form a diamond coating at 1 μm / hour.
The diamond film was deposited and allowed to react continuously for 20 hours to form a diamond film having a thickness of 20 μm by a microwave plasma CVD method.

【0042】比較例3 (炭素質基体の調製)水銀圧入法による平均気孔半径が
0.15μm、3点曲げ試験法による曲げ強度が80M
Pa、石英熱膨張計による室温から1273Kまでの平
均熱膨張係数が4.7(×10-6/K)の等方性黒鉛材
料を作成した。この等方性黒鉛材料を50mm角で厚み
が10mmの寸法に加工した後、高純度化し、試験片と
した。試験片に含まれる灰分は10ppmであった。 (母材の調製)実施例1と同じ方法で、試験片の表層部
全面にβ−炭化珪素で0.8μmの転化層を形成し、こ
れを母材とした。母材中の転化層の気孔について累積気
孔容積と平均気孔半径を水銀圧入法で測定したところ、
各々1.0(×10-2Mg/m3 )及び0.1μmであ
った。IP−MS法で珪素を含浸した上記母材の転化層
に含まれるコバルトの含有率を測定したところ、1.8
ppmであった。市販0.5リットルのビーカーに平均
粒子径が0.1μmのダイヤモンドコンパウンドを入
れ、これに純水を加えてダイヤモンドコンパウンドを分
散し、この中に上記母材を入れて超音波振動を10分間
与えてスクラッチを形成した。上記超音波処理を行った
母材を取り出した後、母材の表面粗さをJIS B06
01−1982に示される方法で測定した結果、最大表
面粗さ(Rmax )は0.5μmであった。 (母材へのダイヤモンド被膜の形成)母材を装置に入
れ、原料ガスとしてメタンガスを使用し、担体ガスとし
て水素ガスを使用し、水素ガス中のメタンガス濃度を
0.5体積%としたガスを装置内に流し、装置内圧力を
50トール、基板(母材)温度を1200Kとし、2.
45ギガヘルツのマイクロ波を導波管を通して反応管の
中央に導入してダイヤモンド被膜を1時間当たり1μm
堆積させ、20時間継続反応をさせてマイクロ波プラズ
マCVD法でダイヤモンド被膜を20μm形成した。
Comparative Example 3 (Preparation of Carbonaceous Substrate) The average pore radius by the mercury intrusion method was 0.15 μm, and the bending strength by the three-point bending test method was 80 M.
An isotropic graphite material having an average thermal expansion coefficient of 4.7 (× 10 −6 / K) from room temperature to 1273 K measured by a Pa and quartz thermal dilatometer was prepared. After processing this isotropic graphite material to a size of 50 mm square and a thickness of 10 mm, it was highly purified and used as a test piece. The ash content in the test piece was 10 ppm. (Preparation of Base Material) In the same manner as in Example 1, a 0.8 μm conversion layer was formed of β-silicon carbide over the entire surface portion of the test piece, and this was used as a base material. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method,
They were 1.0 (× 10 -2 Mg / m 3 ) and 0.1 μm, respectively. When the content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by the IP-MS method, it was 1.8.
ppm. A diamond compound having an average particle diameter of 0.1 μm is placed in a commercially available 0.5-liter beaker, pure water is added thereto to disperse the diamond compound, the base material is placed therein, and ultrasonic vibration is applied for 10 minutes. To form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B06.
The maximum surface roughness (R max ) was 0.5 μm as a result of measurement by the method described in 01-1982. (Formation of Diamond Coating on Base Material) A base material was put into an apparatus, methane gas was used as a source gas, hydrogen gas was used as a carrier gas, and a gas having a methane gas concentration of 0.5% by volume in hydrogen gas was used. 1. Flow into the apparatus, set the pressure in the apparatus to 50 Torr, and set the substrate (base material) temperature to 1200 K.
A microwave of 45 GHz is introduced into the center of the reaction tube through a waveguide to form a diamond coating at 1 μm / hour.
The diamond film was deposited and allowed to react continuously for 20 hours to form a diamond film having a thickness of 20 μm by a microwave plasma CVD method.

【0043】比較例4 (炭素質基体の調製)水銀圧入法による平均気孔半径が
1.1μm、3点曲げ試験法による曲げ強度が60MP
a、石英熱膨張計による室温から1273Kまでの平均
熱膨張係数が5.2(×10-6/K)の等方性黒鉛材料
を作成した。この等方性黒鉛材料を50mm角で厚みが
10mmの寸法に加工した後、高純度化し、試験片とし
た。試験片に含まれる灰分は10ppmであった。 (母材の調製)実施例1と同様な方法で、試験片の表層
部全面にβ−炭化珪素で200μmの転化層を形成し、
これを母材とした。母材中の転化層の気孔について累積
気孔容積と平均気孔半径を水銀圧入法で測定したとこ
ろ、各々4.0(×10-2Mg/m3 )及び0.4μm
であった。ICP−MS法で珪素を含浸した上記母材の
転化層に含まれるコバルトの含有率んを測定したとこ
ろ、1.8ppmであった。市販0.5リットルのビー
カーに平均粒子径が0.1μmのダイヤモンドコンパウ
ンドを入れ、これに純水を加えてダイヤモンドコンパウ
ンドを分散し、この中に上記母材を入れて超音波振動を
10分間与えてスクラッチを形成した。上記超音波処理
を行った母材を取り出した後、母材の表面粗さをJIS
B0601−1982に示される方法で測定した結
果、最大表面粗さ(Rmax )は0.5μmであった。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法でダイヤモンド被膜を20μm形成した。
Comparative Example 4 (Preparation of Carbonaceous Substrate) The average pore radius by the mercury intrusion method was 1.1 μm, and the bending strength by the three-point bending test method was 60 MP.
a, An isotropic graphite material having an average thermal expansion coefficient of 5.2 (× 10 −6 / K) from room temperature to 1273 K by a quartz thermal dilatometer was prepared. After processing this isotropic graphite material to a size of 50 mm square and a thickness of 10 mm, it was highly purified and used as a test piece. The ash content in the test piece was 10 ppm. (Preparation of Base Material) In the same manner as in Example 1, a 200 μm conversion layer of β-silicon carbide was formed on the entire surface of the test piece,
This was used as a base material. When the cumulative pore volume and average pore radius of the pores of the converted layer in the base material were measured by a mercury intrusion method, they were 4.0 (× 10 -2 Mg / m 3 ) and 0.4 μm, respectively.
Met. The content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by ICP-MS method to be 1.8 ppm. A diamond compound having an average particle diameter of 0.1 μm is placed in a commercially available 0.5-liter beaker, pure water is added thereto to disperse the diamond compound, the base material is placed therein, and ultrasonic vibration is applied for 10 minutes. To form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS.
As a result of measurement by the method described in B0601-1982, the maximum surface roughness (R max ) was 0.5 μm. (Formation of Diamond Coating on Base Material) A diamond coating having a thickness of 20 μm was formed in the same manner as in Example 1.

【0044】比較例5 (炭素質基体の調製)水銀圧入法による平均気孔半径が
1.1μm、3点曲げ試験法による曲げ強度が60MP
a、石英熱膨張計による室温から1273Kまでの平均
熱膨張係数が3.7(×10-6/K)の等方性黒鉛材料
を作成した。この等方性黒鉛材料を50mm角で厚みが
10mmの寸法に加工した後、高純度化し、試験片とし
た。試験片に含まれる灰分は10ppmである。 (母材の調製)実施例1と同様な方法で、試験片の表層
部全面にβ−炭化珪素で200μmの転化層を形成し、
これ母材とした。母材中の転化層の気孔について累積気
孔容積と平均気孔半径を水銀圧入法で測定したところ、
各々4.0(×10-2Mg/m3 )及び0.4μmであ
った。ICP−MS法で珪素を含浸した上記母材の転化
層に含まれているコバルトの含有率を測定したところ、
1.8ppm。市販0.5リットルのビーカーに平均粒
子径が0.1μmのダイヤモンドコンパウンドを入れ、
これに純水を加えてダイヤモンドコンパウンドを分散
し、この中に上記母材を入れて超音波振動を10分間与
えてスクラッチを形成した。上記超音波処理を行った母
材を取り出した後、母材の表面粗さをJIS B060
1−1982に示される方法で測定した結果、最大表面
粗さ(Rmax )は0.5μmであった。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で、ダイヤモンド被膜を1時間当たり1μm堆積
させ、20時間継続反応をさせてマイクロ波プラズマC
VD法でダイヤモンド被膜を20μm形成した。
Comparative Example 5 (Preparation of Carbonaceous Substrate) The average pore radius by the mercury intrusion method was 1.1 μm, and the bending strength by the three-point bending test method was 60 MP.
a, An isotropic graphite material having an average thermal expansion coefficient of 3.7 (× 10 −6 / K) from room temperature to 1273 K by a quartz thermal dilatometer was prepared. After processing this isotropic graphite material to a size of 50 mm square and a thickness of 10 mm, it was highly purified and used as a test piece. The ash content in the test piece is 10 ppm. (Preparation of Base Material) In the same manner as in Example 1, a 200 μm conversion layer of β-silicon carbide was formed on the entire surface of the test piece,
This was used as the base material. When the cumulative pore volume and average pore radius of the pores of the conversion layer in the base material were measured by the mercury intrusion method,
They were 4.0 (× 10 -2 Mg / m 3 ) and 0.4 μm, respectively. When the content of cobalt contained in the conversion layer of the base material impregnated with silicon was measured by the ICP-MS method,
1.8 ppm. A diamond compound having an average particle diameter of 0.1 μm is placed in a commercially available 0.5 liter beaker,
Pure water was added thereto to disperse the diamond compound, and the above-mentioned base material was put therein, and ultrasonic vibration was applied for 10 minutes to form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS B060.
As a result of measurement by the method described in 1-182, the maximum surface roughness (R max ) was 0.5 μm. (Formation of Diamond Coating on Base Material) In the same manner as in Example 1, a diamond coating was deposited at 1 μm per hour, and allowed to react continuously for 20 hours to obtain microwave plasma C.
A 20 μm diamond film was formed by the VD method.

【0045】比較例6 (炭素質基体の調製)水銀圧入法による平均気孔半径が
1.1μm、3点曲げ試験法による曲げきょうど60M
Pa、石英熱膨張計による室温から1273Kまでの平
均熱膨張係数が4.7(×10-6/K)の等方性黒鉛材
料を作成した。この等方性黒鉛材料を50mm角で厚み
が10mmの寸法に加工した後、高純度化し、試験片と
した。試験片に含まれる灰分は100ppmであった。 (母材の調製)実施例1と同様な方法で、試験片の表層
部全面にβ−炭化珪素で200μmの転化層を形成し、
これを母材とした。母材中の転化層の気孔について累積
気孔容積と平均気孔半径を水銀圧入法で測定したとこ
ろ、各々4.0(×10-2Mg/m3 )及び0.4μm
であった。ICP−MS法で珪素を含浸した上記母材の
転化層に含まれるコバルトの含有率を測定したところ、
11.8ppmであった。市販0.5リットルのビーカ
ーに平均粒子径が0.1μmのダイヤモンドコンパウン
ドを入れ、これに純水を加えてダイヤモンドコンパウン
ドを分散し、この中に上記母材を入れて超音波振動を1
0分間与えてスクラッチを形成した。上記超音波処理を
行った母材を取り出した後、母材の表面粗さをJIS
B0601−1982に示される方法で測定した結果、
最大表面粗さ(Rmax )は0.5μmであった。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で、ダイヤモンド被膜を1時間当たり1μm堆積
させ、20時間継続反応をさせてマイクロ波プラズマC
VD法でダイヤモンド被膜を20μm形成した。
Comparative Example 6 (Preparation of Carbonaceous Substrate) The average pore radius was 1.1 μm by a mercury intrusion method, and the bending radius was 60 M by a three-point bending test method.
An isotropic graphite material having an average thermal expansion coefficient of 4.7 (× 10 −6 / K) from room temperature to 1273 K measured by a Pa and quartz thermal dilatometer was prepared. After processing this isotropic graphite material to a size of 50 mm square and a thickness of 10 mm, it was highly purified and used as a test piece. The ash content in the test piece was 100 ppm. (Preparation of Base Material) In the same manner as in Example 1, a 200 μm conversion layer of β-silicon carbide was formed on the entire surface of the test piece,
This was used as a base material. When the cumulative pore volume and average pore radius of the pores of the converted layer in the base material were measured by a mercury intrusion method, they were 4.0 (× 10 -2 Mg / m 3 ) and 0.4 μm, respectively.
Met. When the content of cobalt contained in the conversion layer of the base material impregnated with silicon was measured by an ICP-MS method,
It was 11.8 ppm. A diamond compound having an average particle diameter of 0.1 μm is placed in a commercially available 0.5 liter beaker, pure water is added thereto to disperse the diamond compound, and the above-described base material is placed therein, and ultrasonic vibration is performed for 1 minute.
Give for 0 minutes to form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS.
As a result of measurement by the method shown in B0601-1982,
The maximum surface roughness (R max ) was 0.5 μm. (Formation of Diamond Coating on Base Material) In the same manner as in Example 1, a diamond coating was deposited at 1 μm per hour, and allowed to react continuously for 20 hours to obtain microwave plasma C.
A 20 μm diamond film was formed by the VD method.

【0046】比較例7 (炭素質基体の調製)実施例1で作成した試験片を使用
した。 (母材の調製)一方、内径が100mmで肉厚が10m
m、高さが100mmの黒鉛ルツボに、金属珪素0.3
kg充填し、高周波誘導加熱によって1800Kで金属
珪素を溶融した。溶融珪素に試験片を入れて試験片の表
層部全面にβ−炭化珪素で1100μmの転化層を形成
し、これを母材とした。母材中の転化層の気孔について
累積気孔容積と平均気孔半径を水銀圧入法で測定したと
ころ、各々10.0(×10-2Mg/m3 )及び0.7
μmであった。ICP−MS法で珪素を含浸した上記母
材の転化層に含まれるコバルトの含有率を測定したとこ
ろ、1.8ppmであった。市販0.5リットルのビー
カーに平均粒子径が0.1μmのダイヤモンドコンパウ
ンドを入れ、これに純水を加えてダイヤモンドコンパウ
ンドを分散し、この中に上記超音波処理を行った母材を
取り出した後、母材の表面粗さをJIS B0601−
1982に示される方法で測定した結果、最大表面粗さ
(Rmax )は0.5μmであった。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で、ダイヤモンド被膜を1時間当たり1μm堆積
させ、20時間継続反応させてマイクロ波プラズマCV
D法でダイヤモンド被膜を20μm形成した。
Comparative Example 7 (Preparation of Carbonaceous Substrate) The test piece prepared in Example 1 was used. (Preparation of base material) On the other hand, the inner diameter is 100 mm and the thickness is 10 m
m, graphite crucible having a height of 100 mm, metallic silicon 0.3
kg, and metallic silicon was melted at 1800 K by high frequency induction heating. A test piece was put in molten silicon to form a 1100 μm conversion layer of β-silicon carbide over the entire surface of the test piece, and this was used as a base material. When the cumulative pore volume and average pore radius of the pores of the converted layer in the base material were measured by the mercury intrusion method, they were 10.0 (× 10 -2 Mg / m 3 ) and 0.7, respectively.
μm. The content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by ICP-MS to be 1.8 ppm. A diamond compound having an average particle size of 0.1 μm is put in a commercially available 0.5 liter beaker, pure water is added thereto to disperse the diamond compound, and the ultrasonically treated base material is taken out. , The surface roughness of the base material is JIS B0601-
As a result of measurement by the method shown in 1982, the maximum surface roughness (R max ) was 0.5 μm. (Formation of Diamond Film on Base Material) In the same manner as in Example 1, a diamond film was deposited at a thickness of 1 μm per hour, and allowed to react continuously for 20 hours.
A 20 μm diamond film was formed by Method D.

【0047】比較例8 (炭素質基体の調製)実施例1で作成した試験片を使用
した。 (母材の調製)一方、内径が100mmで肉厚が10m
m、高さが100mmの黒鉛ルツボに、金属珪素0.3
kg充填し、高周波誘導加熱によって1800Kで金属
珪素を溶融した。溶融珪素に試験片を入れて試験片の表
層部全面にβ−炭化珪素で200μmの転化層を形成
し、これを母材とした。母材中の転化層の気孔について
累積気孔容積と平均気孔半径を水銀圧入法で測定したと
ころ、各々4.0(×10-2Mg/m3 )及び0.4μ
mであった。ICP−MS法で珪素を含浸した上記母材
の転化層に含まれるコバルトの含有率を測定したとこ
ろ、1.8ppmであった。市販0.5リットルのビー
カーに平均粒子径が0.1μmのダイヤモンドコンパウ
ンドを入れ、これに純水を加えてダイヤモンドコンパウ
ンドを分散し、この中に上記母材を入れて超音波振動を
5分間与えてスクラッチを形成した。上記超音波処理を
行った母材を取り出した後、母材の表面粗さをJIS
B0601−1982に示される方法で測定した結果、
最大表面粗さ(Rmax )は1.3μmであった。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で、ダイヤモンド被膜を1時間当たり1μm堆積
させ、20時間継続反応させてマイクロ波プラズマCV
D法でダイヤモンド被膜を20μm形成した。
Comparative Example 8 (Preparation of Carbonaceous Substrate) The test piece prepared in Example 1 was used. (Preparation of base material) On the other hand, the inner diameter is 100 mm and the thickness is 10 m
m, graphite crucible having a height of 100 mm, metallic silicon 0.3
kg, and metallic silicon was melted at 1800 K by high frequency induction heating. The test piece was put in the molten silicon to form a 200 μm conversion layer of β-silicon carbide on the entire surface of the test piece, and this was used as a base material. When the cumulative pore volume and average pore radius of the pores of the converted layer in the base material were measured by a mercury intrusion method, they were 4.0 (× 10 -2 Mg / m 3 ) and 0.4 μm, respectively.
m. The content of cobalt contained in the converted layer of the base material impregnated with silicon was measured by ICP-MS to be 1.8 ppm. A diamond compound having an average particle diameter of 0.1 μm is placed in a commercially available 0.5 liter beaker, pure water is added thereto to disperse the diamond compound, and the above-described base material is placed therein and subjected to ultrasonic vibration for 5 minutes. To form a scratch. After taking out the base material subjected to the ultrasonic treatment, the surface roughness of the base material was measured according to JIS.
As a result of measurement by the method shown in B0601-1982,
The maximum surface roughness (R max ) was 1.3 μm. (Formation of Diamond Film on Base Material) In the same manner as in Example 1, a diamond film was deposited at a thickness of 1 μm per hour, and allowed to react continuously for 20 hours.
A 20 μm diamond film was formed by Method D.

【0048】比較例9 (母材)実施例1で作成した転化層が200μmの母材
を使用した。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で、ダイヤモンド被膜を1時間当たり0.8μm
堆積させ、1時間継続反応をさせてマイクロ波プラズマ
CVD法でダイヤモンド被膜を0.8μm形成した。
Comparative Example 9 (Base Material) The base material having a conversion layer of 200 μm prepared in Example 1 was used. (Formation of Diamond Coating on Base Material) In the same manner as in Example 1, a diamond coating was formed at 0.8 μm / hour.
The diamond film was deposited and allowed to react for 1 hour to form a 0.8 μm diamond film by microwave plasma CVD.

【0049】比較例10 (母材)実施例1で作成した転化層が200μmの母材
を使用した。 (母材上へのダイヤモンド被膜の形成)実施例1と同様
な方法で、ダイヤモンド被膜を1時間当たり1μm堆積
させ、110時間継続反応をさせてマイクロ波プラズマ
被膜を110μm形成した。
Comparative Example 10 (Base Material) A base material having a conversion layer of 200 μm prepared in Example 1 was used. (Formation of Diamond Coating on Base Material) In the same manner as in Example 1, a diamond coating was deposited at 1 μm per hour, and a continuous reaction was performed for 110 hours to form a microwave plasma coating at 110 μm.

【0050】上記、実施例1乃至実施例10及び比較例
10を表1にまとめた。
The above Examples 1 to 10 and Comparative Example 10 are summarized in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】実験例1 実施例1乃至実施例10で得られた試料について、引き
出し法(図に示す)炭素質基体と炭化珪素及びダイヤモ
ンド被膜の密着性の試験を行い、剥離・クラックの有無
を確認した。
EXPERIMENTAL EXAMPLE 1 The samples obtained in Examples 1 to 10 were subjected to a drawing method (shown in the figure) to test the adhesion between the carbonaceous substrate and the silicon carbide and diamond coatings, and to determine the presence or absence of peeling and cracking. confirmed.

【0053】(引き出し法)直径7.96mm、長さ9
5.0mmのS45Cのステンレス製の棒11を充分の
洗浄した後、接触剤(ポリ酢酸ビニル)12を塗布し、
上記実施例1乃至実施例10及び比較例10で得られた
試料の表面に接着した。この時の接着条件は、443K
で1時間保持し、その後自然放冷して室温まで冷却し
た。この引き倒し棒11とロードセル14をワイヤーで
接触し、図1に示すように水平方向に引っ張った。1つ
の試料について2回ずつ測定を行った。その時の試料の
様子を目視観察した。結果を表2に示す。
(Drawing method) Diameter 7.96 mm, length 9
After sufficiently washing a 5.0 mm S45C stainless steel rod 11, a contact agent (polyvinyl acetate) 12 is applied,
The sample was adhered to the surface of each of the samples obtained in Examples 1 to 10 and Comparative Example 10. The bonding condition at this time is 443K
For 1 hour, and then allowed to cool to room temperature. The pulling bar 11 and the load cell 14 were brought into contact with each other with a wire, and were pulled in the horizontal direction as shown in FIG. The measurement was performed twice for one sample. The state of the sample at that time was visually observed. Table 2 shows the results.

【0054】[0054]

【表2】 [Table 2]

【0055】実験例2 また、上記実施例1乃至実施例10及び比較例10で得
られた試料について、1273Kに急加熱した後、水中
に投じて熱衝撃試験を繰り返して行い、何回で剥離・ク
ラックが発生するかを調べた。その結果も表2に示す。
Experimental Example 2 Further , the samples obtained in Examples 1 to 10 and Comparative Example 10 were rapidly heated to 1273 K, and then thrown in water to repeat the thermal shock test. -It was checked whether cracks occurred. Table 2 also shows the results.

【0056】実施例11 実施例1で作成した炭素質基体を1辺が18.7mmの
正三角形で、厚みが4.7mmのチップ形状に加工し
た。チップの角は面取りを行った。このチップの表層部
を実施例1の方法でチップの全面に200μm炭化珪素
に転化し、更に実施例1の方法でダイヤモンド被膜を2
0μm形成した。
Example 11 The carbonaceous substrate produced in Example 1 was processed into a chip shape having a regular triangle of 18.7 mm on a side and a thickness of 4.7 mm. The corners of the chip were chamfered. The surface layer of this chip was converted into 200 μm silicon carbide over the entire surface of the chip by the method of Example 1, and a diamond coating was further formed by the method of Example 1.
0 μm was formed.

【0057】比較例11 実施例11で作成したチップ材にCVD法で緻密質炭化
珪素被膜を100μm形成し(条件は比較例10と同
様)、その後実施例1と同様な方法でダイヤモンド被膜
を20μm形成した。
COMPARATIVE EXAMPLE 11 A dense silicon carbide film was formed to a thickness of 100 μm on the chip material prepared in Example 11 by the CVD method (the conditions were the same as in Comparative Example 10). Formed.

【0058】実験例3 実施例11及び比較例11で作成したチップを用いて切
削試験を行った。被切削材にはアルミニウムを用いた。
その結果、実施例11で作成したチップは1時間試験し
た後も炭素質基体と炭化珪素の間で剥離は発生しなかっ
たが、比較例11で作成したチップは、使用開始後10
分間で炭素質基体と緻密質炭化珪素の界面で剥離が生じ
使用できなくなった。
Experimental Example 3 A cutting test was performed using the chips prepared in Example 11 and Comparative Example 11. Aluminum was used as the material to be cut.
As a result, the chip prepared in Example 11 did not peel between the carbonaceous substrate and the silicon carbide even after the test for 1 hour, but the chip prepared in Comparative Example 11 was not used for 10 hours after the start of use.
Within minutes, peeling occurred at the interface between the carbonaceous substrate and the dense silicon carbide, making it unusable.

【0059】実施例12 実施例1で作成した炭素質基体を外径240mm、内径
200mm、深さ40mmのすき焼き鍋に加工した後、
実施例1と同様にし、鍋の外底面を200μm炭化珪素
に転化し、その上にダイヤモンド被膜を20μm形成し
た。
Example 12 The carbonaceous substrate prepared in Example 1 was processed into a sukiyaki pan having an outer diameter of 240 mm, an inner diameter of 200 mm, and a depth of 40 mm.
In the same manner as in Example 1, the outer bottom surface of the pot was converted to 200 μm silicon carbide, and a diamond coating was formed thereon to 20 μm.

【0060】比較例12 実施例1で作成した炭素質基体を外径240mm、内径
200mm、深さ40mmのすき焼き鍋に加工した。
Comparative Example 12 The carbonaceous substrate prepared in Example 1 was processed into a sukiyaki pan having an outer diameter of 240 mm, an inner diameter of 200 mm and a depth of 40 mm.

【0061】実験例4 実験例12及び比較例12で作成したすき焼き鍋に水を
一杯満たし、ガスコンロで加熱し、鍋の中の水量が半分
になるまでの時間を測定した。その結果、実施例12で
作成した鍋は30分間であったのに対し、比較例12で
作成したすき焼き鍋は50分間必要であった。
Experimental Example 4 The sukiyaki pans prepared in Experimental Example 12 and Comparative Example 12 were filled with water and heated with a gas stove, and the time until the amount of water in the pan became half was measured. As a result, while the pot prepared in Example 12 took 30 minutes, the sukiyaki pot prepared in Comparative Example 12 required 50 minutes.

【0062】[0062]

【発明の効果】以上説明したように、本発明のうち請求
項1記載の発明のダイヤモンド被覆炭素部材は、炭素質
基体の表層部をCVR(Chemical Vaper Riaction)法に
より炭化珪素に化学構造転化された被覆層、即ちCVD
法による炭化珪素被覆層とは化学構造及び結晶構造的に
全く異なる被覆層で形成した後、その表面にさらにダイ
ヤモンド被膜を形成するように構成したので、従来、炭
素質基体とCVD法により形成された炭化珪素層との間
で発生していたようなクラックや剥離を防止することが
まず可能となる。この結果、母材とダイヤモンド被膜と
の密着性を向上させ、炭素材料自体が有する性質の優位
性を確保しつつダイヤモンド被膜の優れた特性を最大限
有効に発揮させることのできるダイヤモンド被覆炭素部
材を提供できることとなった。
As described above, in the diamond-coated carbon member according to the first aspect of the present invention, the surface layer of the carbonaceous substrate is chemically converted into silicon carbide by a CVR (Chemical Vaper Reaction) method. Coating layer, ie CVD
A silicon carbide coating layer formed by a chemical method and a crystal structure are completely different from a silicon carbide coating layer, and a diamond coating is further formed on the surface thereof. First, it is possible to prevent cracks and peeling occurring between the silicon carbide layer and the silicon carbide layer. As a result, a diamond-coated carbon member capable of improving the adhesion between the base material and the diamond coating and ensuring the superior properties of the carbon material itself and maximally effectively exhibiting the excellent properties of the diamond coating. It can be provided.

【0063】しかもCVR−SiCからなる転化層は、
CVD−SiC層に比べかなりポーラスであって、かつ
表面はかなり起伏に富んでいるため、ダイヤモンド被膜
の前処理であるスクラッチ作業が非常に簡単であり、製
作コストの低減化により安価なダイヤモンド被膜炭素部
材を提供することができる。
Further, the conversion layer made of CVR-SiC is
Compared to the CVD-SiC layer, the surface is considerably porous, and the surface is considerably uneven, so that the scratching operation as a pretreatment of the diamond film is very easy, and the production cost is reduced, so that the diamond-coated carbon is inexpensive. A member can be provided.

【0064】また、請求項2記載の発明のダイヤモンド
被覆炭素部材は、請求項1記載の発明の構成のうち、C
VR−SiC層(転化層)の厚みを1μm以上とし、か
つダイヤモンド被膜の厚みを1μm〜100μmとした
ものである。従って、請求項1記載の発明の効果を一層
確実,顕著に具現でき、かつ経済的なダイヤモンド被覆
炭素部材を提供することができる。
The diamond-coated carbon member according to the second aspect of the present invention is the same as the first aspect of the invention, except that
The thickness of the VR-SiC layer (conversion layer) is 1 μm or more, and the thickness of the diamond coating is 1 μm to 100 μm. Therefore, the effect of the invention described in claim 1 can be more reliably and remarkably realized, and an economical diamond-coated carbon member can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】引き出し法による密着性の試験装置の概要であ
る。
FIG. 1 is an outline of a test apparatus for adhesion by a drawing method.

【図2】本発明のダイヤモンド被膜炭素製品の縦断面図
である。
FIG. 2 is a longitudinal sectional view of the diamond-coated carbon product of the present invention.

【符号の説明】[Explanation of symbols]

11 引き出し棒 12 接着材 13 試料 14 ロードセル 21 炭素質基体 22 CVR法により炭化珪素に転化した転化層 23 ダイヤモンド被膜 REFERENCE SIGNS LIST 11 drawer rod 12 adhesive 13 sample 14 load cell 21 carbonaceous substrate 22 conversion layer converted to silicon carbide by CVR method 23 diamond coating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 合田 克典 香川県三豊郡詫間町松崎2791 東洋炭素株 式会社詫間事業所内 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Katsunori Goda 2791 Matsuzaki, Takuma-cho, Mitoyo-gun, Kagawa Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素質基体の表面に化学気相反応により
炭化珪素に転化された被覆層が形成され、その表面にさ
らにダイヤモンド被膜が形成されてなることを特徴とす
るダイヤモンド被覆炭素部材。
1. A diamond-coated carbon member comprising a carbonaceous substrate having a coating layer converted to silicon carbide by a chemical vapor reaction formed on a surface thereof, and further having a diamond coating formed on the surface thereof.
【請求項2】 炭化珪素に転化された被覆層の厚みが1
μm以上であり、かつダイヤモンド被膜の厚みが1μm
乃至100μmである請求項1記載のダイヤモンド被膜
炭素部材。
2. The coating layer converted to silicon carbide has a thickness of 1
μm or more, and the thickness of the diamond coating is 1 μm
The diamond-coated carbon member according to claim 1, which has a thickness of from 1 to 100 µm.
JP22441196A 1996-08-06 1996-08-06 Diamond-coated carbon member Pending JPH1053871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22441196A JPH1053871A (en) 1996-08-06 1996-08-06 Diamond-coated carbon member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22441196A JPH1053871A (en) 1996-08-06 1996-08-06 Diamond-coated carbon member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006347555A Division JP2007138303A (en) 2006-12-25 2006-12-25 Diamond-coated carbon member and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JPH1053871A true JPH1053871A (en) 1998-02-24

Family

ID=16813355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22441196A Pending JPH1053871A (en) 1996-08-06 1996-08-06 Diamond-coated carbon member

Country Status (1)

Country Link
JP (1) JPH1053871A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469881B1 (en) * 2001-08-21 2005-02-02 가부시끼가이샤 도시바 Carbon film-coated member
JP2007138303A (en) * 2006-12-25 2007-06-07 Toyo Tanso Kk Diamond-coated carbon member and method for manufacturing the same
WO2008035468A1 (en) * 2006-09-19 2008-03-27 Kyushu University, National University Corporation THIN NANODIAMOND FILM HAVING n-TYPE CONDUCTIVITY AND PROCESS FOR PRODUCING THE SAME
CN111763924A (en) * 2020-06-18 2020-10-13 太原理工大学 Silicon carbide-silicon dioxide/diamond multilayer composite self-supporting film and preparation method thereof
CN115572961A (en) * 2022-10-20 2023-01-06 哈尔滨工业大学 Method for preparing high-thermal-conductivity diamond/metal-based composite material by microwave-assisted air pressure infiltration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469881B1 (en) * 2001-08-21 2005-02-02 가부시끼가이샤 도시바 Carbon film-coated member
WO2008035468A1 (en) * 2006-09-19 2008-03-27 Kyushu University, National University Corporation THIN NANODIAMOND FILM HAVING n-TYPE CONDUCTIVITY AND PROCESS FOR PRODUCING THE SAME
JP5124781B2 (en) * 2006-09-19 2013-01-23 国立大学法人九州大学 Nano-diamond thin film having n-type conductivity and method for producing the same
JP2007138303A (en) * 2006-12-25 2007-06-07 Toyo Tanso Kk Diamond-coated carbon member and method for manufacturing the same
CN111763924A (en) * 2020-06-18 2020-10-13 太原理工大学 Silicon carbide-silicon dioxide/diamond multilayer composite self-supporting film and preparation method thereof
CN111763924B (en) * 2020-06-18 2022-10-18 太原理工大学 Silicon carbide-silicon dioxide/diamond multilayer composite self-supporting film and preparation method thereof
CN115572961A (en) * 2022-10-20 2023-01-06 哈尔滨工业大学 Method for preparing high-thermal-conductivity diamond/metal-based composite material by microwave-assisted air pressure infiltration
CN115572961B (en) * 2022-10-20 2023-05-23 哈尔滨工业大学 Method for preparing diamond composite material by microwave-assisted air pressure infiltration

Similar Documents

Publication Publication Date Title
KR940009659B1 (en) Polycrystalline diamond tool and method of producting polycrystalline diamond tool
US5190823A (en) Method for improving adhesion of synthetic diamond coatings to substrates
US5855974A (en) Method of producing CVD diamond coated scribing wheels
JPH0535221B2 (en)
WO2003044121A1 (en) Functionally graded coatings for abrasive particles and use thereof in vitreous matrix composites
EP0546754B1 (en) Method for producing CVD diamond film
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
US5626908A (en) Method for producing silicon nitride based member coated with film of diamond
JPH1053871A (en) Diamond-coated carbon member
JP2007138303A (en) Diamond-coated carbon member and method for manufacturing the same
JPS61291493A (en) Diamond coated hard material
May et al. Preparation of solid and hollow diamond fibres and the potential for diamond fibre metal matrix composites
JPS61261480A (en) Diamond coated member
JP2675218B2 (en) Polycrystalline diamond tool and its manufacturing method
EP0435272B1 (en) Diamond-coated bodies and process for preparation thereof
JP2558448B2 (en) Diamond coated cutting tools
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JPH07153370A (en) Discharge tube
JPH08104597A (en) Diamond laminated film and member with the same
JP2002222803A (en) Corrosion resistant member for manufacturing semiconductor
JPH03115572A (en) Improvement of adhesive property of synthetic diamond film on a base
JP3212057B2 (en) Diamond coated substrate and method for producing the same
JPH02192483A (en) Diamond silicon carbide composite
JPH07150358A (en) Diamond coating method by microwave plasma cvd
JP2008144273A (en) Method for producing hard carbon-coated member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080128