JP5396918B2 - カーボネート基含有化合物及びその(共)重合体の製造方法 - Google Patents

カーボネート基含有化合物及びその(共)重合体の製造方法 Download PDF

Info

Publication number
JP5396918B2
JP5396918B2 JP2009050208A JP2009050208A JP5396918B2 JP 5396918 B2 JP5396918 B2 JP 5396918B2 JP 2009050208 A JP2009050208 A JP 2009050208A JP 2009050208 A JP2009050208 A JP 2009050208A JP 5396918 B2 JP5396918 B2 JP 5396918B2
Authority
JP
Japan
Prior art keywords
group
formula
reaction
compound represented
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009050208A
Other languages
English (en)
Other versions
JP2009242381A (ja
Inventor
秀直 森下
篤 須藤
治男 西田
剛 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2009050208A priority Critical patent/JP5396918B2/ja
Publication of JP2009242381A publication Critical patent/JP2009242381A/ja
Application granted granted Critical
Publication of JP5396918B2 publication Critical patent/JP5396918B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polymerization Catalysts (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、カーボネート基含有化合物及びその(共)重合体の製造方法に関する。
ポリカーボネート系樹脂は、従来から、自動車部品、照明機器、電気部品など透明性が要求される成形品の材料として、広く用いられている樹脂である。
カーボネート基含有化合物は、該ポリカーボネート系樹脂の原料であり、そのモノマーとしての有用性から、種々のカーボネート基含有化合物が合成されている。
一方、ノルボルネン系化合物は、付加重合体、開環重合体のモノマーとして知られており、重合に際して分子量の制御が簡便なモノマーであるという利点がある。
そのような、カーボネート基含有化合物としては、下記式(β)
Figure 0005396918
で表されるカーボネート基含有化合物が知られている。
当該カーボネート基含有化合物の製造方法としては、1,3−シクロペンタジエンと下記式(6)
Figure 0005396918
で表されるカーボネート化合物とを反応させる製造方法が既に知られている(特許文献1)。しかし、当該製造方法は、高圧条件、165℃の高温、反応時間48時間を必要とするという効率上の大きな問題があった。
米国特許第6,380,447号明細書
本発明の課題は、カーボネート基含有化合物及びその(共)重合体を効率よく製造する方法を提供することにある。
本発明者らは、カーボネート基含有化合物の製造方法について鋭意研究を行ったところ、意外にも、下記式(1)
Figure 0005396918
(式中、B1〜B3は、それぞれ独立に、水素原子、炭素数1〜10のアルキル基、炭素数3〜10のシクロアルキル基、炭素数6〜12のアリール基、炭素数1〜10のアルコキシル基から選ばれる基を示し、mは0又は1の整数を示す。)
で表されるエポキシ化合物と二酸化炭素とを反応させることにより、効率よく一般式(2)
Figure 0005396918
(式中、B1〜B3及びmは、前記と同じ。)
で表されるカーボネート基含有化合物を製造できることを見出し、本発明を完成した。
すなわち本発明は、第一に、上記式(1)で表されるエポキシ化合物と二酸化炭素とを反応させることを特徴とする上記式(2)で表されるカーボネート基含有化合物の製造方法を提供するものである。
本発明は、第二に、前記カーボネート基含有化合物を重合又は共重合させることを特徴とするノルボルネン系(共)重合体の製造方法を提供するものである。
本発明のカーボネート基含有化合物の製造方法によれば、分子量制御が簡便なモノマーとして有用な式(2)で表されるカーボネート基含有化合物を、効率よく製造できる。
また、本発明の重合体又は共重合体の製造方法によれば、カーボネート基含有化合物の(共)重合体を、効率よく製造できる。
カーボネート基含有化合物の製造方法
本発明のカーボネート基含有化合物の製造方法を、原料から反応式で示せば次の通りである。
Figure 0005396918
(式(3)中、B1〜B3及びmは、前記と同じ。)
すなわち、式(3)で表されるカルバルデヒド化合物と式(4)で表される硫化メチレン化合物とを反応させ(工程<A>)、得られる式(1)で表されるエポキシ化合物と二酸化炭素とを反応させることにより、式(2)で表されるカーボネート基含有化合物が得られる(工程<B>)。ここで、エポキシ化合物(1)は、他の方法により得ることもできるが、高純度のものが得られ、安価且つ簡便である点で、上記反応により得るのが好ましい。
式(1)〜(3)中、B1〜B3で示される炭素数1〜10のアルキル基としては、炭素数1〜10の直鎖又は分岐鎖のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、iso−プロピル基、2−メチルプロピル基、n−ブチル基、tert−ブチル基、sec-ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デカニル基等が挙げられる。
また、B1〜B3で示される炭素数3〜10のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基、シクロノニル基、シクロデカニル基等が挙げられる。
また、式(1)〜(3)中、B1〜B3で示される炭素数6〜12のアリール基としては、フェニル基、ナフチル基、インデニル基等が挙げられる。
また、式(1)〜(3)中、B1〜B3で示される炭素数1〜10のアルコキシル基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、tert−ブトキシ基等が挙げられる。
また、式(1)〜(3)中、B1〜B3としては水素原子が好ましく、mとしては、0が好ましい。
また、式(1)〜(3)で表される化合物は、不斉中心を有し、S体及びR体から選ばれる異性体が存在するが、本発明においては、これらのいずれでもよく、ラセミ体であってもよい。なお、これら化合物は、単独で用いてもよく、二種以上を混合して用いてもよい。
すなわち、本発明のカーボネート基含有化合物の特に好ましい製造方法は、原料から反応式で示せば次の通りである。
Figure 0005396918
また、式(α)〜(γ)中、波線は、当該結合部位の立体配置が決定されている場合、決定されていない場合及びラセミ体である場合のいずれも含む意味である。
工程<A>は、式(3)で表されるカルバルデヒド化合物と式(4)で表される硫化メチレン化合物とを反応させ、式(1)で表されるエポキシ化合物を得る反応である。以下、工程<A>について説明する。
式(3)で表されるカルバルデヒド化合物は、公知の方法によって得ることができ、市販品を用いることもできる。
一方、式(4)で表される硫化メチレン化合物は、公知の方法によって得ることができ、市販品を用いることもできるが、操作の簡便性の点から、下記式(5)
Figure 0005396918
(式中、Xはハロゲン原子を示す。)
で表されるトリメチルスルフィドと強塩基とを反応させて得るのが好ましい。
強塩基としては、例えば、アルカリ金属ヒドリド、アルキル金属、アルキル金属アミド、アルカリ金属アルコキシド、アルカリ金属水酸化物等が挙げられ、アルカリ金属ヒドリド、アルキル金属、アルカリ金属アルコキシドが好ましく、アルカリ金属アルコキシドがより好ましい。また、アルカリ金属アルコキシドとしては、カリウム−tert−ブトキシド、ナトリウム−tert−ブトキシド、ナトリウムメトキシド、ナトリウムエトキシド等が挙げられ、ナトリウムメトキシド、ナトリウムエトキシドが好ましい。
Xで表されるハロゲン原子としては、塩素原子、炭素原子、ヨウ素原子が挙げられるが、ヨウ素原子が好ましい。
式(5)で表されるトリメチルスルフィドと強塩基との反応は、式(3)で表されるカルバルデヒド化合物と式(4)で表される硫化メチレン化合物との反応系と別途反応させてもよく、当該系中で反応させてもよい。
上記反応は、溶媒存在下、溶媒非存在下いずれでも行うことができるが、円滑な式(5)で表されるトリメチルスルフィドと強塩基との反応の点から、溶媒存在下で行うことが好ましい。
溶媒は、特に限定されないが、ジメチルスルホキシド(DMSO)、テトラヒドロフラン、ジエチルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ヘキサン、アセトニトリル、ニトロメタン、エタノール、イソプロピルアルコール、メタノールが好ましく、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、テトラヒドロフランがより好ましく、ジメチルスルホキシドが特に好ましい。
上記反応の反応時間は、5分〜48時間が好ましく、10分〜24時間がより好ましく、30分〜4時間が特に好ましい。上記反応の反応温度は、−70℃〜200℃が好ましく、−20℃〜100℃がより好ましく、20℃〜40℃が特に好ましい。また、上記反応の反応圧力は1〜2気圧程度で行うことが好ましく、特には大気圧下で行うことが好ましい。
式(3)で表されるカルバルデヒド化合物と式(4)で表される硫化メチレン化合物との反応は、溶媒存在下、溶媒非存在下いずれでも行うことができるが、円滑な式(3)で表されるカルバルデヒド化合物と式(4)で表される硫化メチレン化合物との反応の点から、溶媒存在下で行うことが好ましい。
溶媒は、特に限定されないが、ジメチルスルホキシド(DMSO)、テトラヒドロフラン、ジエチルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ヘキサン、アセトニトリル、ニトロメタン、エタノール、イソプロピルアルコール、メタノールが好ましく、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、テトラヒドロフランがより好ましく、ジメチルスルホキシドが特に好ましい。
上記反応の反応時間は、10分〜72時間が好ましく、30分〜24時間がより好ましく、2時間〜5時間が特に好ましい。上記反応の反応温度は、−70℃〜150℃が好ましく、−20℃〜100℃がより好ましく、20℃〜35℃が特に好ましい。また、上記反応の反応圧力は1〜2気圧程度で行うことが好ましく、特には大気圧下で行うことが好ましい。
本発明方法は、円滑な炭素−炭素結合生成反応の促進の点から、不活性ガス雰囲気下で行うことが好ましい。不活性ガスは、特に限定されないが、例えば、アルゴンガス、窒素ガス、ヘリウムガス等が挙げられ、窒素ガスが好ましい。
工程<B>は、式(1)で表されるエポキシ化合物と二酸化炭素とを反応させることにより、式(2)で表されるカーボネート基含有化合物を得る反応である。以下、工程<B>について説明する。
本反応において、二酸化炭素の使用量は、反応時間の遅延や反応速度の低下が起こらない量を適宜選択すればよいが、式(1)で表されるエポキシ化合物に対して、1〜100当量、好ましくは1.5〜20当量、さらに好ましくは2〜5当量用いるのが好ましい。
また、二酸化炭素は、公知の方法によって得ることができ、市販品を用いることもできる。
式(1)で表されるエポキシ化合物と二酸化炭素との反応は、ハロゲン化リチウム、ハロゲン化ナトリウム又はハロゲン化カリウム等のアルカリ金属ハロゲン化物の存在下で行うのが好ましく、円滑な式(1)で表されるエポキシ化合物と二酸化炭素との反応の点から、ハロゲン化リチウムがより好ましく、臭化リチウムと塩化リチウムがさらに好ましく、臭化リチウムが特に好ましい。
また、二酸化炭素は、二酸化炭素ガスを系中に導入してもよいが、反応系中で二酸化炭素を発生させて反応させてもよい。
上記反応は、溶媒存在下、溶媒非存在下いずれでも行うことができるが、円滑な式(1)で表されるエポキシ化合物と二酸化炭素との反応の点から、溶媒存在下で行うことが好ましい。
溶媒は、特に限定されないが、N−メチルピロリドン(NMP)、テトラヒドロフラン(THF)、N,N−ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシド(DMSO)、ニトロメタン等の極性溶媒が好ましく、N−メチルピロリドン、テトラヒドロフラン、N,N−ジメチルホルムアミド、ジメチルスルホキシドがより好ましく、N−メチルピロリドンが特に好ましい。
上記反応の反応時間は、10分〜96時間が好ましく、2時間〜24時間がより好ましく、12〜16時間が特に好ましい。上記反応の反応温度は、−70℃〜200℃が好ましく、25℃〜120℃がより好ましく、90℃〜110℃が特に好ましい。また、上記反応の反応圧力は1〜2気圧程度で行うことが好ましく、特には大気圧下で行うことが好ましい。
式(2)で表されるカーボネート基含有化合物は、ろ過、洗浄、乾燥、再結晶、遠心分離、各種溶媒による抽出、クロマトグラフィー等の通常の手段を適宜組み合わせて、反応系から、単離、精製することで分離することができる。
ノルボルネン系(共)重合体の製造方法
本発明の(共)重合体の製造方法は、前記の製造方法により得られたカーボネート基含有化合物を重合又は共重合させるものである(以下、工程<C>ともいう)。
重合又は共重合の反応としては、通常の(共)重合反応であれば限定されないが、付加(共)重合、開環(共)重合が挙げられる。
これら共重合可能な他の単量体としては、環状オレフィン構造を有する化合物であれば特には限定されないが、例えば、下記式(7)で表される環状オレフィン化合物が挙げられる。共重合可能な他の単量体は、単独で又は2種以上用いることができる。
Figure 0005396918
(式(7)において、A1からA4は、それぞれ独立に、水素原子、炭素数1〜10のアルキル基、シクロアルキル基、アリール基、アルコキシル基、トリアルキルシリル基、トリアルキルシロキシシリル基から選ばれた原子もしくは基、または加水分解性のシリル基、オキセタニル基、アシルオキシ基、アルコキシカルボニル基、トリアルキルシロキシカルボニル基から選ばれた極性基を有する有機基である。また、A1とA2またはA1とA3とが、それぞれが結合する炭素原子と共に脂環構造、芳香環構造、酸無水物基またはカルボンイミド基を形成していてもよい。また、mは0または1の整数である。)
付加(共)重合による重合体の製造は、公知の付加(共)重合反応であれば特に限定されず、本発明製造方法により得られたカーボネート基含有化合物を含む単量体組成物を、重合触媒を用いて付加重合させることによって製造することができる。また、必要に応じて重合反応用溶媒及び/又は分子量調節剤を用いて製造することができる。
付加(共)重合に用いられる重合触媒としては、通常付加重合に用いられる重合触媒であれば限定されるものではなく、例えば、チタニウム系化合物、ジルコニウム系化合物、ハフニウム系化合物等の4〜6族遷移金属触媒;パラジウム系化合物、ニッケル系化合物、コバルト系化合物等の8〜10族遷移金属触媒などが挙げられ、それぞれ単独で、あるいは二種以上を組み合わせて用いることができ、また、これらの触媒系では、必要に応じて助触媒を用いてもよい。助触媒としては、例えば、メチルアルミノキサン、ポリイソブチルアルミノキサン等のアルミノキサン類;B(C653、BF3・(C252O、[C65NH(CH32+[B(C654-、[(C653C]+[B(C654-、Li+[B(C654-等のボロン化合物;トリシクロペンチルホスフィン、ジシクロペンチル(イソプロピル)ホスフィン、ジシクロペンチルフェニルホスフィン、ジシクロペンチルシクロオクチルホスフィン、トリシクロヘキシルホスフィン、ジシクロヘキシル(イソプロピル)ホスフィン、ジシクロヘキシル(tert−ブチル)ホスフィン、ジシクロヘキシルフェニルホスフィン、ジシクロヘキシル(2−エチルヘキシル)ホスフィン、ジシクロヘキシル(o−トリル)ホスフィン等のホスフィン化合物などが挙げられ、それぞれ単独で、あるいは二種以上を組み合わせて用いることができる。
4〜6族遷移金属触媒としては、例えば、TiCl3、TiCl4等を用いるチグラー−ナッタ触媒;(C552TiCl2、(C552ZrCl2、(C552Zr(CH32等の有機金属錯体を用いるメタロセン触媒などが挙げられる。
8〜10族遷移金属触媒としては、例えば、酢酸コバルト(II)、コバルト(II)アセチルアセトナート、コバルト(II)テトラフルオロボレート、塩化コバルト、コバルト(II)ベンゾエート等のコバルト化合物;酢酸ニッケル、ニッケルアセチルアセトネート、炭酸ニッケル、塩化ニッケル、ニッケルエチルヘキサノエート、ニッケロセン、NiCl2[P(C653]2、ビスアリルニッケル、酸化ニッケル等のニッケル化合物;塩化パラジウム、臭化パラジウム、酸化パラジウム、PdCl2[P(C653]2、PdCl2(C65CN)2、PdCl2(CH3CN)2、[Pd(CH3CN)4][BF42、[Pd(C25CN)4][BF42、パラジウムアセチルアセトナート、酢酸パラジウム等のパラジウム化合物などが挙げられる。
付加(共)重合に用いられる重合溶媒としては、重合に供される単量体組成物や触媒等が溶解してかつ触媒が失活することがなく、また、生成した付加重合体が溶解するものであれば特に限定されないが、例えば、シクロヘキサン、シクロヘプタン、シクロペンタン、メチルシクロペンタン等の脂環式炭化水素溶媒;ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素溶媒;ニトロメタン、ニトロベンゼン、アセトニトリル、ベンゾニトリル等の含窒素炭化水素溶媒;クロロブタン、ブロムヘキサン、ジクロロメタン、1,2−ジクロロエタン、1,1−ジクロロエタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素溶媒から選ばれた溶媒が挙げられる。これらは単独で又は2種以上を混合して用いることができる。
付加重合に用いられる分子量調節剤としては、例えば、エチレン、プロペン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−ノネン、1−デセン等のα−オレフィン類;シクロペンテン、3−メチルシクロペンテン、3−エチルシクロペンテン、3−イソプロピルシクロペンテン、3−n−プロピルシクロペンテン、4−メチルシクロペンテン、4−エチルシクロペンテン、4−イソプロピルシクロペンテン、4−フェニルシクロペンテン等のシクロペンテン環を有する化合物類;シクロオクタ−1,5−ジエン、3−メチルシクロオクター1,5−ジエン、3−エチルシクロオクタ−1,5−ジエン、シクロオクタ−1,4−ジエン、シクロヘキサ−1,4−ジエン等のシクロアルカンジエン環を有する化合物が挙げられる。
付加(共)重合における重合触媒の使用量は、カーボネート基含有化合物に対し、0.000001等量以上0.002当量以下であり、0.000002等量以上0.001当量以下が好ましい。
付加重合における重合溶媒の使用量は、例えば、カーボネート基含有化合物に対し、0等量以上1000当量以下程度である。
付加重合における分子量調節剤の使用量は、例えば、カーボネート基含有化合物に対し、0.001等量以上0.5当量以下程度である。
開環(共)重合による重合体の製造は、公知の開環メタセシス(共)重合反応であれば特に限定されず、カーボネート基含有化合物を含む単量体組成物を、重合触媒を用いて開環重合させることによって製造することができる。また、必要に応じて重合反応用溶媒及び/又は分子量調節剤を用いて製造することができる。
開環(共)重合に用いられる重合触媒としては、ルテニウム、ロジウム、パラジウム、イリジウム、白金などの白金族化合物や、以下に示すようなメタセシス触媒が挙げられ、ルテニウム化合物と、以下に示すメタセシス触媒が好ましい。
メタセシス触媒は、(A)Wを有する化合物、Moを有する化合物、およびReを有する化合物からなる群より選ばれた少なくとも1種の化合物(以下、化合物(A)という)と、
(B)デミングの周期律表IA族元素(たとえばLi、Na、Kなど)、IIA族元素(たとえば、Mg、Caなど)、II B族元素(たとえば、Zn、Cd、Hgなど)、IIIA族元素(たとえば、B、Alなど)、IV A族元素(たとえば、Si、Sn、Pbなど)、またはIV B族元素(たとえば、Ti、Zrなど)を有する化合物であって、この元素と炭素との結合またはこの元素と水素との結合を少なくとも1つ有する化合物から選ばれる少なくとも1種の化合物(以下、化合物(B)という)との組み合わせからなる触媒である。また、触媒の活性を高めるために、後述の添加剤(C)をさらに添加したものであってもよい。
化合物(A)としては、W、MoあるいはReのハロゲン化物、オキシハロゲン化物、アルコキシハロゲン化物、アルコキシド、カルボン酸塩、(オキシ)アセチルアセトネート、カルボニル錯体、アセトニトリル錯体、ヒドリド錯体、およびその誘導体、あるいはこれらの組合せが挙げられるが、Wを有する化合物およびMoを有する化合物、特にこれらのハロゲン化物、オキシハロゲン化物およびアルコキシハロゲン化物が、重合活性、実用性の点から好ましい。また、反応によって前記化合物を生成する2種以上の化合物の混合物を用いてもよい。さらに、これらの化合物は適当な錯化剤、例えばP(C655、C55Nなどによって錯化されていてもよい。
化合物(A)の具体例としては、例えば、WCl6、WCl5、WCl4、WBr6、WF6、WI6、MoCl5、MoCl4、MoCl3、ReCl3、WOCl4、MoOCl3、ReOCl3、ReOBr3、W(OC656、WCl2(OC654、Mo(OC252Cl3、Mo(OC255、MoO2(acac)2、W(OCOR)5、W(OC252Cl3、W(CO)6、Mo(CO)6、Re2(CO)10、ReOBr3・P(C653、WCl5・P(C653、WCl6・C55N、W(CO)5・P(C653、W(CO)3・(CH3CN)3などが挙げられる。このうち、MoCl5、Mo(OC252Cl3、WCl6、W(OC252Cl3が好ましい。
化合物(B)としては、例えば、n−C45Li、n−C511Na、C55Na、CH3MgI、C25MgBr、CH3MgBr、n−C37MgCl、(C653Al、t−C49MgCl、CH2=CHCH2MgCl、(C252Zn、(C252Cd、CaZn(C254、(CH33B、(C253B、(n−C493B、(CH33Al、(CH32AlCl、(CH33Al2Cl3、CH3AlCl2、(C253Al、LiAl(C252、(C253Al−O(C252、(C252AlCl、C25AlCl2、(C252AlH、(iso−C492AlH、(C252AlOC25、(iso−C493Al、(C253Al2Cl3、(CH34Ga、(CH34Sn、(n−C494Sn、(C253SiH、(n−C6133Al、(n−C4173Al、LiH、NaH、B26、NaBH4、AlH3、LiAlH4、BiH4およびTiH4などが挙げられる。また、反応によってこれらの化合物を生成する2種以上の化合物の混合物を用いることもできる。このうち、(CH33Al、(CH32AlCl、(CH33Al2Cl3、CH3AlCl2、(C253Al、(C252AlCl、(C251.5AlCl1.5、C2H5AlCl2、(C252AlH、(C252AlOC25、(C252AlCN、(C373Al、(iso−C493Al、(iso−C492AlH、(C6133Al、(C8173Al、(C655Alが好ましい。
化合物(A)および化合物(B)とともに用いることのできる添加剤(C)としては、アルコール類、アルデヒド類、ケトン類、アミン類などが好ましい。
化合物(C)の具体例としては、単体ホウ素、BF3、BCl3、B(O−n−C493、B(OC253、BF、B23、H3BO3などのホウ素の非有機金属化合物、Si(OC254などのケイ素の非有機金属化合物;アルコール類、ヒドロパーオキシド類およびパーオキシド類;水;酸素;アルデヒドおよびケトンなどのカルボニル化合物およびその重合物;エチレンオキシド、エピクロルヒドリン、オキセタンなどの環状エーテル類;N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類、アニリン、モルホリン、ピペリジンなどのアミン類およびアゾベンゼンなどのアゾ化合物;N−ニトロソジメチルアミン、N−ニトロソジフェニルアミンなどのN−ニトロソ化合物;トリクロロメラミン、N−クロロサクシノイミド、フェニルスルフェニルクロリドなどのS−ClまたはN−Cl基を含む化合物が挙げられる。
開環(共)重合に用いられる重合溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等のアルカン類;シクロヘキサン、シクロヘプタン、デカリン、ノルボルナン等のシクロアルカン類;ベンゼン、トルエン、キシレン、クメン等の芳香族炭化水素:クロロブタン、ブロムヘキサン、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン、ジクロロベンゼン、トリフルオロメチルベンゼン等のハロゲン化化合物;酢酸エチル等の飽和カルボン酸エステル;ジブチルエーテル、テトラヒドロフラン、ジメトキシエタン等のエーテル類などが挙げられ、ハロゲン化化合物、飽和カルボン酸エステルが好ましい。
開環(共)重合に用いられる分子量調節剤としては、例えば、エチレン、プロペン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−ノネン、1−デセン等のα−オレフィン類などが挙げられ、特に1−ブテン、1−ヘキセンが好ましい。
開環重合における重合触媒の使用量は、例えば、メタセシス触媒の場合は、カーボネート基含有化合物に対し、0.0000001等量以上0.9当量以下であり、0.000001等量以上0.1当量以下が好ましく、0.00001等量以上0.01当量以下がより好ましい。
開環重合における重合溶媒の使用量は、例えば、カーボネート基含有化合物に対し、0等量以上10000当量以下程度である。
開環重合における分子量調節剤の使用量は、例えば、カーボネート基含有化合物に対し、0.001等量以上0.4当量以下程度である。
開環重合体は、前記カーボネート基含有化合物単独で、もしくは前記カーボネート基含有化合物と共重合可能な他の単量体とを開環重合させて得ることができるが、ポリブタジエン、ポリイソプレンなどの共役ジエン化合物、スチレン−ブタジエン共重合体、エチレン−非共役ジエン共重合体、ポリノルボルネンなど、主鎖に炭素−炭素間二重結合を2つ以上含む不飽和炭化水素系ポリマーなどの存在下でノルボルネン系化合物を含む単量体組成物を開環重合させてもよい。
また、上記重合又は共重合(工程<C>)により得られたノルボルネン系(共)重合体を、アミン化合物と反応させることにより、ヒドロキシウレタン構造を側鎖に有するノルボルネン系(共)重合体を得ることができる。
具体的には、付加(共)重合体、開環(共)重合体に含まれる環状カーボネート構造がアミン化合物との反応によって開環し、ヒドロキシウレタン構造(−C(OH)COCH2N=)を有するノルボルネン系(共)重合体が得られる。
また、得られたヒドロキシウレタン構造を有するノルボルネン系(共)重合体を酸化剤による酸化、空気酸化、またはポリカルボン酸化合物を用いて脱水縮合によりノルボルネン系(共)重合体の架橋体を形成することもできる。
なお、アミン化合物としてジアミン等のポリアミン化合物を用いることで、ノルボルネン(共)重合体の架橋体を得ることもできる。
アミン化合物としては、1級アミン、2級アミン、3級アミンが挙げられ、これらのうち一種用いてもよく、二種以上用いてもよい。
1級アミンの具体例としては、n−ブチルアミン、イソブチルアミン、トリエチレンテトラミン、ベンジルアミン、p−クロロベンジルアミン、p−(tert−ブチル)フェニルメチルアミン、アニリン、キトサンが挙げられ、n−ブチルアミン、イソブチルアミン、ベンジルアミン、p−クロロベンジルアミン、p−(tert−ブチル)フェニルメチルアミン、が好ましく、n−ブチルアミン、イソブチルアミン、ベンジルアミン、p−クロロベンジルアミン、p−(tert−ブチル)フェニルメチルアミンがより好ましい。
2級アミンの具体例としては、ジメチルアミン、ジエチルアミン、ジブチルアミン、モルホリンが挙げられ、ジエチルアミンがより好ましい。
3級アミンの具体例としては、トリエチルアミンが挙げられる。
これらのうち、アミン化合物の好適な例としては、炭素数1〜10のアルキル基を有する直鎖又は分岐鎖の1級及び2級アミン、環状アミン、芳香族アミン等が挙げられ、1級アミン、2級アミンがより好ましく、カーボネート基との反応性の点で、1級アミンがさらに好ましい。
上記アミン化合物の添加量は、特に限定されないが、工程<C>で得られた付加(共)重合体、開環(共)重合体100重量部に対して0.01重量部〜5重量部であることが好ましく、0.05重量部〜1重量部であることがより好ましい。
また、本工程は、溶媒存在下で行うのが好ましく、当該溶媒としては、特に限定されないが、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等のアルカン類;シクロヘキサン、シクロヘプタン、デカリン、ノルボルナン等のシクロアルカン類;ベンゼン、トルエン、キシレン、クメン等の芳香族炭化水素;クロロブタン、ブロムヘキサン、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン、ジクロロベンゼン、トリフルオロメチルベンゼン等のハロゲン化化合物;酢酸エチル等の飽和カルボン酸エステル;ジブチルエーテル、テトラヒドロフラン、ジメトキシエタン等のエーテル類;N−メチルピロリドン、N,N−ジメチルホルムアミド、アセトニトリル、ニトロメタン等の含窒素化合物;ジメチルスルホキシド等の含硫黄化合物等が挙げられ、ハロゲン化化合物、飽和カルボン酸エステル、エーテル類、含窒素化合物、含硫黄化合物が好ましく、ハロゲン化化合物、エーテル類がより好ましく、具体的には、クロロベンゼン、ジクロロメタンが特に好ましい。
上記反応の反応時間は、1分〜240時間が好ましく、5分〜96時間がより好ましく、15分〜48時間が特に好ましい。上記反応の反応温度は、−70〜250℃が好ましく、−15〜200℃がより好ましく、20〜150℃が特に好ましい。また、上記反応の反応圧力は1〜2気圧程度で行うことが好ましく、大気圧下で行うのがより好ましい。
(共)重合反応及びアミン化合物との反応終了後は、溶媒留去、再沈殿等の公知の手段によりノルボルネン系(共)重合体及び架橋体を採取することができる。
以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本発明は、下記実施例に限定されるものではない。
実施例1
式(1)で表されるエポキシ化合物の合成
よく乾燥させた1Lのナスフラスコへ、乳鉢ですりつぶした79.64gのトリメチルスルホニウムヨージド;(CH33SIの粉末を投入し、蒸留したジメチルスルホキシド(DMSO)400mlを加えて、窒素気流下にて攪拌した。減圧蒸留(10mmHg、54℃)した5−ノルボルネン−2−カルバルデヒドを35.6ml加え、さらに蒸留ジメチルスルホキシド50mlを、反応容器の壁についた試薬を洗い流しながら加えた。反応容器内の固形物がすべて溶解したのを確認した後、39.2gのカリウム−tert−ブトキシドを反応容器へすばやく投入し、大気圧条件下で窒素気流下、室温で3.5時間攪拌した。攪拌終了後、反応液を600mlの氷水へ注入し、10分間攪拌して反応を終了させ、そこへジエチルエーテル300mlを加えて攪拌し、生成物を抽出した。この混合液を分液し、油層を食塩水で二回洗浄した。洗浄後の油層を、硫酸マグネシウムを加えて脱水し、ろ過した後、エバポレーターにて溶媒を減圧留去した。生成物は、減圧蒸留にて精製(71−72℃/12.7mmHg)し、32.2gの目的化合物を得た。12.7mmHgまで減圧し、71−72℃の留分を目的の化合物として得た。収率は81%であった。
1H−NMR、13C−NMR、IR、GC−MSより、得られた生成物が目的の式(1)で表されるエポキシ化合物であることを同定した。
スペクトルデータ:IR(neat)νmax3053(C−H,stretching),1333,1253,871(epoxy−C−O),834(epoxy−C−O),707cm-11H−NMR(CDCl3)δ 6.22−5.98(m,2H,vinyl),3.06−2.42(m,5H,epoxy−CH2,epoxy−CH,1
−CH,2−CH),1.96−0.75(m,5H,3−CH2,4−CH,7−CH2);13C−NMR(CDCl3)δ (mixture of 4 diastereomers)137.64,137.33,137.30,136.82,136.15,135.98,132.71,132.15,55.71,55.68,55.65,54.70,49.64,49.35,47.16,46.97,46.63,46.27,45.98,45.26,45.19,45.09,44.82,44.77,42.47,42.23,42.20,42.04,41.98,41.61,41.47,40.66,29.77,29.05,28.69,28.42;GC−MS(EI)m/z136(M+).
実施例2
式(2)で表されるカーボネート基含有ノルボルネン化合物の合成
ジムロートを装着した100mlのナスフラスコに、5.44gの実施例1で得られたエポキシ化合物を入れ、蒸留したN−メチルピロリドン(NMP)を40ml加えた後、容器内を二酸化炭素気流によって二酸化炭素を充填した。336.7mgのリチウムブロミド:LiBrを反応容器にすばやく加えた後、二酸化炭素を充填したゴム風船を装着し、油浴で100℃に加熱した。一晩攪拌を行った後、反応液を約140mlの氷水に注入して反応を終了させた。混合液にジクロロメタン約100mlを加えて激しく攪拌した後、分液操作を行い、有機層を取り出した。水層は、再びジクロロメタン約20mlを加えて抽出操作を行い、その有機層を、前の分液操作で得られた有機層溶液に加えた。得られた有機層溶液は、蒸留水で二回洗浄し、無水硫酸マグネシウムを加えて乾燥させ、ろ過後、エバポレーターにてその溶媒を減圧留去した。残存する液体を減圧蒸留し、6.05gの目的化合物を得た(121℃/0.1mmHg)。
収率は84%であった。1H−NMR、13C−NMR、IR、EI−MSより、得られた生成物が目的の一般式(2)で表されるカーボネート基含有ノルボルネン化合物であることを同定した。
スペクトルデータ:IR(neat)νmax2966(C−H,stretching),1785(C=O,stretching),1160(C−O,stretching),1053(C−O,stretching),772,716cm-11H−NMR(CDCl3)δ 6.30−5.83(m,2H,vinyl),4.67−4.05(m,3H,cyclic−carbonate−CH and−CH2),3.15−2.52(m,2H,1,4−CH),2.46−0.50ppm(m,5H,2−CH,3−CH2,7−CH2);13C−NMR(CDCl3)δ (mixture of 4 diastereomers)139.24,138.30,137.70,136.91,135.94,135.41,132.43,130.50,81.98,81.21,80.46,80.04,69.44,68.92,68.85,68.78,49.61,48.92,45.37,44.74,44.01,43.42,43.37,43.33,43.31,43.21,43.02,42.98,42.13,41.95,41.81,41.72,29.26,29.13,27.74,27.05ppm;MS(EI)m/z180(M+).
実施例3
式(2)で表されるカーボネート基含有ノルボルネン化合物を用いた付加重合体の合成(1)
使用するトルエンは、蒸留し、窒素を1時間バブリングして脱気を行なった。実施例2で得られたカーボネート基含有ノルボルネン化合物は、使用前に減圧蒸留で精製した後、2Mのトルエン溶液に調製し、これを凍結脱気して反応に供じた。 5−ブチル−2−ノルボルネン(以下、C4NBともいう。)は、使用前に、アルミナカラムに通した後、減圧蒸留で精製し、モレキュラーシーブ4Aを加えて凍結脱気を行った。
窒素雰囲気のグローブボックス内にて、0.0005 mol/Lに調製された酢酸パラジウム/トルエン溶液30mlに、0.01 mg/Lのトリシクロヘキシルホスフィン/トルエン溶液1.5mlを加えて、30分以上攪拌して、パラジウム錯体/トルエン溶液を調製した。また、別の容器にて、17mgのフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート([Ph3C][B(C6F5)4])を取り、トルエン9.2mlを加えて、[Ph3C][B(C6F5)4]/トルエン溶液(0.002mol/L)を調製した。パラジウム錯体/トルエン溶液、[Ph3C][B(C6F5)4]/トルエン溶液ともに、容器を密閉した後、グローブボックスから取り出した。
窒素雰囲気のグローブボックス内にて、10 mlのねじ口・耐圧バイアル瓶に、実施例2で得られたカーボネート基含有ノルボルネン化合物の2Mトルエン溶液を0.5ml、C4NBを175μl(150mg、1mmol)入れ、トルエン2.35mlを加えて、テフロン(登録商標)ライナー栓と穴あきスクリューキャップで密栓し、グローブボックス外に取り出した。
反応容器に、窒素風船を取り付けた針を刺しこむことで容器内の圧力を大気圧に保ち、パラジウム錯体/トルエン溶液4.2mlをシリンジにて注入し、5分以上静置した後、[Ph3C][B(C6F5)4]/トルエン溶液1.0mlをシリンジにてすばやく注入し、窒素風船付きの針を取り外して、25℃の恒温槽内にて、振盪機で振盪した。56時間振盪後、反応容器を開封し、反応液を、エバポレーターで約3mlまで濃縮した後に攪拌中のメタノール40mlへ滴下し、白色固体の分散液を得た。ろ過によって白色固体を取り出し、真空乾燥(約30℃)して付加共重合体63.6mgを得た。収率は19%であった。
1H−NMR測定によって、ブチル基のメチル基由来のシグナル(0.85ppm)と環状カーボネート由来のブロードなシグナル(3.8−4.8ppm)を確認。IR測定により、C=Oの伸縮振動バンド(1816cm-1)を確認した。1H−NMRスペクトルから共重合体のC4NBと実施例2で得られたカーボネート基含有ノルボルネン化合物の組成比を算出(C4NB/実施例2で得られたカーボネート基含有ノルボルネン化合物=77/23)した。GPC(溶媒:クロロホルム)測定により分子量を算出(Mn = 12000、Mw = 44000:ポリスチレン換算)した。
スペクトルデータ:IR (neat) νmax 2952, 2921, 2870, 2858 (each C−H, stretching), 1816 (C=O, stretching), 1155, 1068 (each C−O, stretching) cm-11H-NMR (CDCl3) δ4.80-3.80 (d, broadening, cyclic-carbonate-CH and -CH2), 3.00-0.40 ppm (m, broadening; CH and CH2 signals of main chain and butyl-side chain including CH3 broadening singlet signal at 0.85 ppm).
実施例4
式(2)で表されるカーボネート基含有ノルボルネン化合物を用いた付加重合体の合成(2)
実施例2で得られた環状カーボネート含有ノルボルネン化合物の2Mトルエン溶液を0.25ml、C4NBを260μl(224.9mg、1.5mmol)使用することで、これらモノマー比を変化させた以外は実施例3と同様に反応を行った。56時間の反応を終了後、反応容器を開封し、反応液を攪拌中のメタノール(50ml)へ滴下し、白色固体の沈殿物を得た。ろ過によって白色固体を取り出し、真空乾燥(約30℃)して付加共重合体128.4mgを得た。収率は41%であった。1H−NMR測定によって、ブチル基のメチル基由来のシグナル(0.85ppm)と環状カーボネート由来のブロードなシグナル(3.9−4.8ppm)を確認。IR測定により、C=Oの伸縮振動バンド(1819cm-1)を確認した。1H−NMRスペクトルから共重合体のC4NBと実施例2で得られたカーボネート基含有ノルボルネン化合物の組成比を算出(C4NB/実施例2で得られたカーボネート基含有ノルボルネン化合物=94/6)した。GPC(溶媒:クロロホルム)測定により分子量を算出(Mn = 32000、Mw = 125000:ポリスチレン換算)した。
スペクトルデータ:IR (neat) νmax 2952, 2921, 2869, 2855 (each C−H, stretching), 1819 (C=O, stretching), 1157, 1068 (each C−O, stretching)cm-11H-NMR (CDCl3) δ4.80-3.90 (d, broadening; cyclic-carbonate-CH and -CH2),3.00-0.40 ppm (m, broadening; CH and CH2 signals of main chain and butyl-side chain including CH3 broadening singlet signal at 0.85 ppm).
実施例5
式(2)で表されるカーボネート基含有ノルボルネン化合物を用いた開環メタセシス共重合体の合成(1)
溶媒のジクロロメタンは、水素化カルシウム存在下で二時間還流した後、常圧蒸留し、モレキュラーシーブ4Aを加えてから窒素で30分間バブリングしたものを使用した。5−ブチル−2−ノルボルネン(以下、C4NBともいう。)は、使用前に、アルミナカラムに通した後、減圧蒸留で精製し、モレキュラーシーブ4Aを加えて凍結脱気を行った。また、実施例2で得られたカーボネート基含有ノルボルネン化合物は、使用前に減圧蒸留で精製した後、2Mのジクロロメタン溶液を調製し、これを凍結脱気して反応に供じた。
窒素雰囲気のグローブボックス内にて、0.05mol/Lに調製されたグラブス触媒第一世代/ジクロロメタン溶液を調製した。密閉容器に封入した後、グローブボックスから取り出した。
窒素雰囲気のグローブボックス内にて、10mlのねじ口・耐圧バイアル瓶に実施例2で得られたカーボネート基含有ノルボルネン化合物の2Mジクロロメタン溶液を0.5ml(1mmol)、C4NBを175μl(150mg、1mmol)入れ、ジクロロメタン2.1mlを加えた後、攪拌子を投入してテフロン(登録商標)ライナー栓と穴あきスクリューキャップで密栓し、グローブボックス外に取り出した。
反応容器中の溶液を攪拌しながら、グラブス触媒第一世代/ジクロロメタン溶液0.4mlをシリンジにてすばやく反応容器内へ注入し、室温下で攪拌して重合反応を行った。2.5時間反応後、ピバルアルデヒド0.25mlを反応容器内へ注入し、室温下、約40分間攪拌して反応を終了させた。反応容器を開封した後、反応溶液を50mlのメタノールへ滴下し、灰色の固体の沈殿物および分散液を得た。ろ過によって灰色固体を取り出し、真空乾燥(約50℃)してメタセシス開環共重合体319.8mgを得た。収率97%。1H−NMR測定によって、ブチル基のメチル基由来のシグナル(0.84ppm)
と環状カーボネート由来のブロードなシグナル(4.0−4.9ppm)を確認。IR測定により、C=Oの伸縮振動バンド(1817cm-1)を確認した。1H−NMRスペクトルから共重合体のC4NBと実施例2で得られたカーボネート基含有ノルボルネン化合物の組成比を算出(C4NB/実施例2で得られたカーボネート基含有ノルボルネン化合物=50/50)した。GPC(溶媒:クロロホルム)測定により分子量を算出(Mn = 20000、Mw = 34000:ポリスチレン換算)した。
スペクトルデータ:IR (neat) νmax 2952, 2925, 2868, 2856 (each C−H, stretching), 1801 (C=O, stretching), 1169, 1067 (each C−O, stretching) cm-1; 1H-NMR (CDCl3) δ5.70-5.00 (m, broadening, H-C=C-H of main chain), 4.90-4.00 (m, broadening, cyclic-carbonate -CH and -CH2), 3.30-0.60 ppm (m, broadening, CH and CH2 signals of main chain and butyl-side chain including CH3 broadening singlet signal at 0.84 ppm).
実施例6
式(2)で表されるカーボネート基含有ノルボルネン化合物を用いた開環メタセシス共重合体の合成(2)
実施例2で得られた環状カーボネート含有ノルボルネン化合物の2Mジクロロメタン溶液を1.0ml(2mmol)使用した以外は実施例5と同様に行なって、メタセシス開環共重合体351.0mgを得た。収率は97%であった。1H−NMR測定によって、主鎖の二重結合炭素と結合するプロトンのシグナル(5.7−5.0ppm)と環状カーボネート由来のブロードなシグナル(4.0−4.9ppm)を確認。IR測定により、C=Oの伸縮振動バンド(1788cm-1)を確認した。
スペクトルデータ:IR (neat) νmax 2931, 2867 (each C−H, stretching), 1788 (C=O, stretching), 1167, 1063 (each C−O, stretching) cm-1; 1H-NMR (CD2Cl2) δ5.40-4.90 (m, broadening, H-C=C-H), 4.70-3.80 (m, broadening, cyclic-carbonate-CH and -CH2), 3.10-0.80 ppm (m, broadening, CH and CH2 signals of main chain).
上記から明らかなように、本発明によれば、常圧下、100℃、約16時間の条件で、式(2)で表されるカーボネート基含有ノルボルネン化合物を高収率にて得ることができた。
実施例7
環状カーボナート側鎖へのアミンの付加反応:付加重合で得られる 5−ブチル−2−ノルボルネン(C4NB)/環状カーボナート含有ノルボルネン(=94/6)共重合体の高分子反応
クロロベンゼンは、水素化カルシウムを加えて一時間還流した後に常圧蒸留し、さらに窒素気流で1時間バブリングしたものを使用した。
反応容器(容量30mlの試験管)にC4NB/環状カーボナート含有ノルボルネン重合体49.5mg(0.33mmol、組成比;ブチル基/カーボナート基=94/6、分子量(GPC、溶媒:クロロホルムより算出、ポリスチレン換算);Mn=32,000、Mw=125,000)および攪拌子を入れ、反応容器内を真空条件にした後、窒素を容器内に充填した。この操作をさらに二回繰り返すことで、容器内の気体を窒素に置換した。シリンジ操作にて、クロロベンゼン0.3ml、ベンジルアミン0.05mlを反応容器にすばやく加えた後、内容物が溶けるまで室温下で攪拌した。窒素雰囲気下、油浴にて120℃に加熱し、36時間攪拌して反応を行った。反応後、反応液をメタノール(25ml)へ滴下して、白色固体の分散液(白濁液)を得た。分散液をろ過して白色の固体を取り出し、真空乾燥(約40℃)して生成物41.5mgを得た。1H−NMR測定によって、ベンジルアミンの環状カーボナートへの付加反応によって生じるウレタン構造由来のN−Hシグナル(5.0ppm)とベンジル位由来のシグナル(4.3ppm)を確認した。IR測定により、ウレタン部位の二種の構造異性体に由来する二つのC=O伸縮振動バンド(1715、1735cm-1)を確認し、さらに、環状カーボナートのC=O伸縮由来の振動バンド(1820cm-1)が反応以前と比べて大きく減少していることを確認した。IRスペクトルから環状カーボナート基の反応率(80%)および生成物の組成比(ブチル基/環状カーボネート/ヒドロキシウレタン=94/1/5)を算出した。GPC(溶媒:クロロホルム)測定により分子量を算出(Mn=39000、Mw96000:ポリスチレン換算)した。
スペクトルデータ:IR (neat) νmax 3460 (N−H, stretching), 2951, 2922, 2858 (each C−H, stretching), 1805 (C=O, stretching), 1517 (C−N, stretching), 1466, 1456, 1378 (each C−H), 729, 697 cm-11H-NMR (CDCl3) δ 5.00 (s, broadening; NH), 4.33 (s, broadening; benzyl-CH2), 2.60-0.40 ppm (m, broadening; CH and CH2 signals of main chain and butyl-side chain including CH3 broadening singlet signal at 0.9 ppm).

Claims (8)

  1. 下記式(1)
    Figure 0005396918
    (式中、B1〜B3は、それぞれ独立に、水素原子、炭素数1〜10のアルキル基、炭素数3〜10のシクロアルキル基、炭素数6〜12のアリール基、炭素数1〜10のアルコキシル基から選ばれる基を示し、mは0又は1の整数を示す。)
    で表されるエポキシ化合物と二酸化炭素とをアルカリ金属ハロゲン化物の存在下で反応させ下記式(2)
    Figure 0005396918
    (式中、B1〜B3及びmは前記と同じ。)
    で表されるカーボネート基含有化合物を得、
    次いで、該カーボネート基含有化合物を、開環メタセシス重合又は開環メタセシス共重合させることを特徴とするノルボルネン系(共)重合体の製造方法。
  2. 式(1)で表されるエポキシ化合物と二酸化炭素とを溶媒存在下で反応させる請求項1記載の製造方法。
  3. 式(1)で表されるエポキシ化合物と二酸化炭素との反応時間が、10分〜96時間である請求項1又は2記載の製造方法。
  4. 式(1)で表されるエポキシ化合物と二酸化炭素との反応温度が、−70〜200℃である請求項1〜3のいずれか1項記載の製造方法。
  5. 式(1)で表されるエポキシ化合物と二酸化炭素との反応圧力が、1〜2気圧である請求項1〜4のいずれか1項記載の製造方法。
  6. 式(1)で表されるエポキシ化合物を、下記式(3)
    Figure 0005396918
    (式中、B1〜B3は、それぞれ独立に、水素原子、炭素数1〜10のアルキル基、炭素数3〜10のシクロアルキル基、炭素数6〜12のアリール基、炭素数1〜10のアルコキシル基から選ばれる基を示し、mは0又は1の整数を示す。)
    で表されるカルバルデヒド化合物と下記式(4)
    Figure 0005396918
    で表される硫化メチレン化合物とを反応させて得ものである請求項1〜5のいずれか1項記載の製造方法。
  7. 式(4)で表される硫化メチレン化合物を、下記式(5)
    Figure 0005396918
    (式中、Xはハロゲン原子を示す。)
    で表されるトリメチルスルフィドと強塩基とを反応させて得ものである請求項記載の製造方法。
  8. 開環メタセシス重合反応又は開環メタセシス共重合反応を、白金族化合物及び/又はメタセシス触媒の存在下で行う請求項1〜7のいずれか1項記載の製造方法。
JP2009050208A 2008-03-14 2009-03-04 カーボネート基含有化合物及びその(共)重合体の製造方法 Expired - Fee Related JP5396918B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050208A JP5396918B2 (ja) 2008-03-14 2009-03-04 カーボネート基含有化合物及びその(共)重合体の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008065675 2008-03-14
JP2008065675 2008-03-14
JP2009050208A JP5396918B2 (ja) 2008-03-14 2009-03-04 カーボネート基含有化合物及びその(共)重合体の製造方法

Publications (2)

Publication Number Publication Date
JP2009242381A JP2009242381A (ja) 2009-10-22
JP5396918B2 true JP5396918B2 (ja) 2014-01-22

Family

ID=41304723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050208A Expired - Fee Related JP5396918B2 (ja) 2008-03-14 2009-03-04 カーボネート基含有化合物及びその(共)重合体の製造方法

Country Status (1)

Country Link
JP (1) JP5396918B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157585B2 (ja) * 2008-03-28 2013-03-06 Jsr株式会社 カーボネート基含有ノルボルネン系(共)重合体の製造方法
KR101880151B1 (ko) * 2017-07-12 2018-07-20 주식회사 삼양사 폴리노보넨-폴리카보네이트 공중합체 및 그 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600710A (en) * 1985-03-14 1986-07-15 G. D. Searle & Co. β-Adrenergic receptor agonist alkylaminoalkyl pyridinemethanol derivatives
JPH1180143A (ja) * 1997-09-11 1999-03-26 Sumitomo Chem Co Ltd 1−アルキル−1−アリールオキシランの製造法
US6380447B1 (en) * 2000-06-09 2002-04-30 Wake Forest University Diels-alder adducts of epoxybutene and epoxybutene derivatives
US6350837B1 (en) * 2000-06-09 2002-02-26 Eastman Chemical Company Copolymerization of norbornene and functional norbornene monomers
CA2422055A1 (en) * 2000-09-11 2002-03-21 Sepracor, Inc. Ligands for monoamine receptors and transporters, and methods of use thereof (neurotransmission)
AR038117A1 (es) * 2002-01-14 2004-12-29 Upjohn Co Agentes antivirales derivados de la 4- oxo-4,7 -dihidrofuro [2,3-b]piridin-5-carboxamida
CN1369488A (zh) * 2002-01-25 2002-09-18 中国科学院上海有机化学研究所 合成环状碳酸酯或恶唑烷酮类化合物的新方法
WO2004069793A2 (en) * 2003-01-28 2004-08-19 Bristol-Myers Squibb Company Novel 2-substituted cyclic amines as calcium sensing receptor modulators
EP1603901B1 (en) * 2003-03-07 2008-10-15 MERCK SHARP & DOHME LTD. Tetrahydropyran compounds as tachykinin antagonists

Also Published As

Publication number Publication date
JP2009242381A (ja) 2009-10-22

Similar Documents

Publication Publication Date Title
EP0215922A1 (en) Organolanthanide catalysts
JP5662491B2 (ja) 環状オレフィン系高分子化合物、その製造方法および選択的水素化方法
ITMI970657A1 (it) Catalizzatore per la polomerizzazione di olefine e procedimento per la polimerizzazione di olefine utilizzando lo stesso
KR100922182B1 (ko) 리빙 개환 복분해 중합을 이용한 다면체 올리고머릭실세스퀴옥산을 포함하는 양친매성 노보넨계 블록 공중합체및 이의 제조방법
Ren et al. Unsymmetrical diarylamido-based rare-earth alkyl complexes: their synthesis and catalytic performance in isoprene polymerization
JP2002509961A (ja) 新規な位置規則的コポリマー及びその製造方法
JP5396918B2 (ja) カーボネート基含有化合物及びその(共)重合体の製造方法
JP5380867B2 (ja) エポキシ基含有ノルボルネン化合物及びその(共)重合体の製造方法
Wappel et al. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands
JP2009280728A (ja) エポキシ基含有重合体およびその誘導体の製造方法
EP2614091B1 (en) Catalyst for polymerizing norbornene monomers and a method for producing norbornene polymer
JP2010254880A (ja) 架橋重合体
JP2000336152A (ja) 片末端に官能基を有するジシクロペンタジエンの開環重合体及びその製造法
CN104592425B (zh) 一种环庚三烯基稀土金属催化剂、制备方法及应用
Diether et al. Rare-earth metal-promoted (double) C–H-bond activation of a lutidinyl-functionalized alkoxy ligand: formation of [ONC] pincer-type ligands and implications for isoprene polymerization
JP5212164B2 (ja) 新規ジチオカーボナートノルボルネン及びその(共)重合体
Li et al. Aluminum Complexes Stabilized by Piperazidine‐Bridged Bis (phenolate) Ligands: Syntheses, Structures, and Application in the Ring‐Opening Polymerization of ε‐Caprolactone
US8143429B2 (en) Process for producing organic transition metal complex compound, metathesis catalyst produced by using the same, ring-opening metathesis polymer obtainable with the metathesis catalyst, and process for producing the polymer
Song et al. Synthesis and characterization of novel neutral nickel complexes bearing fluorinated salicylaldiminato ligands and their catalytic behavior for vinylic polymerization of norbornene
US6426396B2 (en) Process for producing poly (cyclic conjugated diene)
JP5213717B2 (ja) 環状オレフィン重合体製造用触媒
WO2012057135A1 (ja) ノルボルネン系モノマー重合用触媒及びノルボルネン系重合体の製造方法
US20030166804A1 (en) Trivalent organic lanthanoid complex, catalyst for production of (meth) acrylic polymer, and (meth) acrylic polymer
JPH10292008A (ja) α−オレフィンの重合方法
TWI445712B (zh) 金屬氫化物錯合體,環狀烯烴系開環聚合物之氫化方法及環狀烯烴系開環聚合物氫化物之製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5396918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees