JP5391290B2 - テクスチャレベルに基づく量子化調整 - Google Patents

テクスチャレベルに基づく量子化調整 Download PDF

Info

Publication number
JP5391290B2
JP5391290B2 JP2012021885A JP2012021885A JP5391290B2 JP 5391290 B2 JP5391290 B2 JP 5391290B2 JP 2012021885 A JP2012021885 A JP 2012021885A JP 2012021885 A JP2012021885 A JP 2012021885A JP 5391290 B2 JP5391290 B2 JP 5391290B2
Authority
JP
Japan
Prior art keywords
picture
encoder
block
quantization
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012021885A
Other languages
English (en)
Other versions
JP2012085367A (ja
JP2012085367A5 (ja
Inventor
ツォ シーピン
リン チー−ルン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Corp
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Publication of JP2012085367A publication Critical patent/JP2012085367A/ja
Publication of JP2012085367A5 publication Critical patent/JP2012085367A5/ja
Application granted granted Critical
Publication of JP5391290B2 publication Critical patent/JP5391290B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

本発明は、映像におけるテクスチャレベルに基づいて量子化を調整する技術及びツールに関する。
DVD、インターネットを介した音楽配信及びデジタルカメラがますます普及するのに伴い、デジタルメディアが一般的になっている。エンジニアは、品質を保ちながら、様々な技術を用いて、デジタル音声、映像及び画像を効率的に処理する。こうした技術を理解するために、音声、映像及び画像情報がコンピュータにおいてどのようにして表され処理されるかを理解することが助けとなる。
I.コンピュータにおけるメディア情報の表現
コンピュータは、メディア情報を、その情報を表す一連の数字として処理する。例えば、ある1つの数字は、ピクチャの各基本小領域に対する明るさの強度または赤、緑もしくは青など、色成分の強度を表すことができ、その結果、ピクチャのデジタル表現は、このような数字の1つまたは複数の配列からなる。このような各数字は、サンプルと呼ぶこともできる。カラー画像の場合、従来は、各要素領域の色を表すのに複数のサンプルを使ったが、通常は3つのサンプルが使われる。要素領域用のこうしたサンプルの組は、ピクセルと呼ぶことができ、「ピクセル」という言葉は、「ピクチャ要素」という概念を指す短縮形である。例えば、1つのピクセルは、要素領域を表すのに必要な赤、緑及び青色光の強度を表す3つのサンプルからなり得る。このようなピクセルタイプは、RGBピクセルと呼ばれる。(映像に対する)サンプルの深さ、解像度及びフレームレートを含むいくつかの要因が、メディア情報の品質に影響する。
サンプルの深さは、サンプルを表すのに使うことができる数の範囲を示す、一般にビット単位で測定される属性である。サンプル用により多くの値が可能な場合、強度のより微妙な変化及び/またはより大きな範囲の値を数がとらえ得るので、品質はより高くなり得る。解像度は概して、ある程度の継続期間(音声の場合)または空間(画像もしくは個々のビデオピクチャの場合)に渡るサンプルの数を指す。解像度がより高い画像は、他の画像よりくっきりと見え、より認識可能な有用な細部を含む傾向にある。フレームレートは、映像に対する時間分解能に関する一般的な用語である。フレームレートがより高い映像は、自然物の滑らかな動きを他の映像よりうまくまねる傾向にあり、同様に、時間的次元でのより詳細な細部を含むものと見なすことができる。こうした要因すべてに対して、高品質のための妥協点は、表1が示すような、サンプル深さ、解像度及びフレームレートを表すのに必要なビットレートによって情報を格納し伝送するコストである。
Figure 0005391290
高品質映像(HDTVなど)を格納し送るには高ビットレートが必要なのにも関わらず、企業及び消費者は、高品質コンテンツを作成し、配信し、再生するために、コンピュータにますます依存している。こうした理由により、技術者は、圧縮(ソース符号化及びソース復号化とも呼ばれる)を用いてデジタル映像のビットレートを削減する。圧縮により、情報をより低いビットレートの形にコンバートすることによって情報を格納し伝送するコストが下がる。圧縮において損失をなくすことができる場合は、映像の品質は低下しないが、ビットレートの減少は、映像の複雑さによって制限を受ける。または、圧縮において損失があり得る場合は、映像の品質は低下するが、ビットレートの減少はより目ざましい。圧縮解除(復号化とも呼ばれる)は、圧縮された形から、元の情報のバージョンを復元する。「コーデック」とは、エンコーダ/デコーダシステムである。
概して、映像圧縮技術は、「イントラ(intra)」圧縮、及び「インター(inter)」すなわち予測圧縮を含む。映像フレームではイントラ圧縮技術は、一般にIフレームまたはキーフレームと呼ばれる個々のフレームを圧縮する。インター圧縮技術は、先行フレーム及び/または後続フレームを参照してフレームを圧縮し、インター圧縮されたフレームは一般に予測フレーム、Pフレーム、またはBフレームと呼ばれる。
II.Windows(登録商標)Media Videoバージョン8及びバージョン9におけるインター圧縮及びイントラ圧縮
本件特許出願人のWindows(登録商標) Media Videoバージョン8[WMV8]は、ビデオエンコーダ及びビデオデコーダを含む。WMV8エンコーダは、イントラ圧縮及びインター圧縮を使用し、WMV8デコーダは、イントラ圧縮解除及びインター圧縮解除を使用する。Windows(登録商標) Media Videoバージョン9[WMV9]では、多くの操作に対して同様のアーキテクチャを使用する。
A.イントラ圧縮
図1は、WMV8エンコーダにおける、キーとなるフレーム中のサンプルのブロック105の、ブロックに基づいたイントラ圧縮100を示す。ブロックとは、1組のサンプル、例えば、8×8配置のサンプルである。WMV8エンコーダは、キーとなるビデオフレームを8×8ブロックに分け、ブロック105などの個々のブロックに8×8離散コサイン変換(DCT)110を適用する。DCTとは、8×8ブロックのサンプル(空間情報)を、周波数情報である8×8ブロックのDCT係数115にコンバートするタイプの周波数変換である。DCT演算自体は、無損失(lossless)またはほぼ無損失である。ただし、元のサンプル値に比較して、DCT係数は、エンコーダが圧縮するのにより効率的である。というのは、重要な情報のほとんどが低周波係数(従来通りには、ブロック115の左上)に集中し、高周波係数の多く(従来通りには、ブロック115の右下)が、ゼロまたはゼロに近い値を有するからである。
エンコーダは次いで、DCT係数を量子化し(120)、結果として、8×8ブロックの量子化されたDCT係数125を生じる。量子化は損失性(lossy)である。低周波数DCT係数は、比較的高い値をもつ傾向にあるので、量子化は通常、結果として精度を損なわせるが、係数の情報を完全には損なわせない。一方、高周波数DCT係数は、ゼロまたはゼロに近い値をもつ傾向にあるので、高周波係数の量子化は通常、結果として、値がゼロの隣接領域を生じる。さらに、いくつかのケースでは、高周波数DCT係数は、低周波数DCT係数より粗く量子化され、結果として、高周波数DCT係数の精度/情報をより多く損なわせる。
エンコーダは次いで、無損失圧縮の形をしたエントロピーエンコーディング用に8×8ブロックの量子化されたDCT係数125を用意する。エントロピーエンコーディングの正確なタイプは、係数がDC係数(最低周波数)、最上位行または左列にあるAC係数(他の周波数)、それとも別のAC係数であるかに応じて変わり得る。
エンコーダは、DC係数126を、隣接する8×8ブロックのDC係数136との差分としてエンコードする。このブロックは、エンコードされたブロックの以前エンコードされた隣(例えば、最上位または左)にある。(図1は、フレーム中の、エンコードされたブロックの左に位置している隣のブロック135を示す)。エントロピーエンコーダは、その差分をエンコードする(140)。
エントロピーエンコーダは、左列または最上位行のAC係数を、隣接する8×8ブロックの対応する左列または最上位行との差分としてエンコードすることができる。これは、AC係数予測の例である。図1は、左列137の(実際には、左に)隣接するブロック135との差分147としてエンコードされた、左列127のAC係数を示す。差分符号化により、差分係数がゼロ値をもつ機会が増える。残っているAC係数は、ブロック125の量子化されたDCT係数からのものである。
エンコーダは、8×8ブロック145の量子化されたAC DCT係数を、1次元配列155に取り込み(150)、次いで、取り込まれたAC係数を、ランレングス符号化160の変形を用いてエントロピー符号化する。エンコーダは、1つまたは複数のラン/レベル/ラストテーブル165からエントロピーコードを選択し、エントロピーコードを出力する。
B.インター圧縮
WMV8エンコーダにおけるインター圧縮は、ブロックベースでの動き補償予測符号化を使用し、この予測符号化の後には、見逃しエラー(residual error)の変換符号化が続く。図2及び図3は、WMV8エンコーダにおける、予測フレームに対するブロックに基づいたインター圧縮を示す。具体的には、図2は、予測フレーム210に対する動き推定を示し、図3は、予測フレームの、動きを補償したブロックに対する予測残差(prediction residual)の圧縮を示す。
例えば、図2では、WMV8エンコーダは、予測フレーム210中のマクロブロック215用の動きベクトルを計算する。動きベクトルを計算するために、エンコーダは、参照フレーム230のサーチエリア235内をサーチする。サーチエリア235内部で、エンコーダは、完全に一致する候補マクロブロックを見つけるために、予測フレーム210にあるマクロブロック215を、様々な候補マクロブロックと比較する。エンコーダは、一致するマクロブロック用の(エントロピー符号化された)動きベクトルを指定する情報を出力する。動きベクトルは、動きベクトル予測子を参照して差分符号化される。
動きベクトル予測子に差分を加えることによって動きベクトルを再構成した後、デコーダは、参照フレーム230からの情報を使ってマクロブロック215に対する予測マクロブロックを計算するために動きベクトルを使う。参照フレーム230は、エンコーダ及びデコーダで利用可能な、先行して再構成されたフレームである。予測が完全であることはまれなので、エンコーダは通常、予測マクロブロックとマクロブロック215自体の間の、ピクセル差分からなるブロック(エラーブロックまたは残差ブロックとも呼ばれる)をエンコードする。
図3は、WMV8エンコーダにおける、エラーブロック335の計算及びエンコードの例を示す。エラーブロック335は、予測ブロック315と元の現在のブロック325との間の差分である。エンコーダは、エラーブロック335にDCT340を適用し、その結果、係数からなる8×8ブロック345を生じさせる。エンコーダは次いで、DCT係数を量子化(350)し、その結果、量子化されたDCT係数355からなる8×8ブロックを生じさせる。エンコーダは、8×8ブロック355を走査(360)して1次元配列365にし、そうすることによって、係数が、概して最も低い周波数から最も高い周波数の順に並べられるようにする。エンコーダは、ランレングス符号化370の変形を用いて、走査された係数をエントロピー符号化する。エンコーダは、1つまたは複数のラン/レベル/ラストテーブル375からエントロピーコードを選択し、エントロピーコードを出力する。
図4は、インター符号化ブロック用の対応する復号化処理400の例を示す。図4を要約すると、デコーダが、1つまたは複数のラン/レベル/ラストテーブル415を用いた可変長復号化410、及びランレングス復号化420を用いて、予測残差を表すエントロピー符号化情報を復号する(410、420)。デコーダは、エントロピー復号された情報を格納する1次元配列425を逆走査(430)して、2次元ブロック435にする。デコーダは、データを逆量子化し逆DCTし(共に440)、その結果、再構成されたエラーブロック445を生じさせる。別個の動き補償経路において、デコーダは、参照フレームからの置換のための動きベクトル情報455を用いて、予測ブロック465を計算する。デコーダは、予測ブロック465を、再構成されたエラーブロック445と組み合わせて(470)、再構成されたブロック475を形成する。エンコーダは、逆量子化、逆DCT、動き補償及び参照フレームとして使用するためにフレームを復元するための合成も実施する。
III.損失性圧縮及び量子化
先行セクションでは、量子化、損失性圧縮のための機構、及び無損失圧縮とも呼ばれるエントロピー符号化に言及した。無損失圧縮は、忠実性を全く低下させずに情報から冗長性を除去することによって、情報のビットレートを削減する。例えば、すべてが正確に同じ色合いの赤である、一連の10個の連続したピクセルは、特定の色合いの赤に対するコードとして、10という数は連続したピクセルの「ランレングス」として表すことができ、この連続は、圧縮解除によって、その色合いの赤に対するコード及びその色合いの赤を有する指示された数(10)の連続したピクセルから完璧に復元される。無損失圧縮技術は、品質を全く犠牲にせずにビットレートを削減するが、ビットレートを一定の点まで削減し得るだけである。ビットレートの低下は、ソースエントロピーと呼ばれる、入力データの統計的特徴抽出における、固有の量の変動性によって制限される。
対照的に、損失性圧縮を用いると、品質はある程度損なわれるが、到達する可能性のあるビットレートの低下はより劇的である。例えば、それぞれがわずかに異なる色合いの赤である一連の10個のピクセルは、正確に同じ特定の近似の赤色の10個のピクセルとして近似することができる。損失性圧縮技術を用いると、ビットレートを、無損失圧縮技術より削減することができるが、ビットレート削減の一部は、品質を低下させることによって達成され、損なわれた品質は完全に回復することができない。損失性圧縮はしばしば、損失性圧縮が情報の近似を確立し無損失圧縮技術が近似を表すのに適用されるシステム設計において、無損失圧縮とともに用いられる。例えば、それぞれがわずかに異なる色合いの赤である一連の10個のピクセルは、ある特定の色合いの赤に対するコードとして、10という数は連続したピクセルのランレングスとして表すことができる。概して、エンコーダは、品質とビットレートとの兼ね合いをはかるために、量子化を変化させる。比較的粗い量子化により、結果として品質がより大きく低下されるが、ビットレートもより大きく削減される。圧縮解除において、元の連続は次いで、近似された同じ赤色の10個のピクセルとして復元されることになる。
可能な一定義によると、量子化は、損失性圧縮に共通して使われる不可逆マップ関数の近似に使われる用語であり、特定された1組の可能な出力値があり、その1組の可能な出力値の各メンバは、結果としてその特定の出力値を選択させる、関連づけられた1組の入力値を有する。スカラーまたはベクトル、一様または非一様、及び適応または非適応量子化を含む、様々な量子化技術が開発されている。
A.スカラー量子化法
可能な一定義によると、スカラー量子化法とは、入力値xの、時には復元された値と呼ばれる、被量子化値Q[x]への近似機能的マッピングx→Q[x]である。図5は、スカラー量子化法用の「階段」I/O関数500を示す。水平軸は、実数入力変数xに対する数直線であり、垂直軸は、対応する被量子化値Q[x]を示す。数直線は、閾値510などの閾値によって分割される。1対の隣接閾値の間の所与の範囲内のxの各値には、同じ被量子化値Q[x]が割り当てられる。例えば、範囲520内のxの各値には、同じ被量子化値530が割り当てられる。(ある閾値で、可能な2つの被量子化値の一方が、システムに応じて入力xに割り当てられる)。全体的に、被量子化値Q[x]は、不連続な階段パターンを呈する。マッピングが数直線に沿って続く距離は、システムに依存し、通常、有限個数の閾値の後に終わる。数直線上の閾値の配置は、(図5に示すように)均一に間隔をあけてもよく、不均一に間隔をあけてもよい。
スカラー量子化法は、2つの別個の段階に分解することができる。第1の段階は分類法段階であり、ここで分類法関数マッピングx→Α[x]は、入力xを、整数値であることが多い量子化索引Α[x]にマップする。本質的に、分類法は、入力数直線またはデータセットをセグメント化する。図6Aは、汎用化された分類法600及びスカラー量子化法用の閾値を示す。図5のように、実数変数xに対する数直線は、閾値610などの閾値によってセグメント化される。範囲620など、所与の範囲内のxの各値には、同じ被量子化値Q[x]が割り当てられる。図6Bは、分類法650及びスカラー量子化法用の閾値の数字の例を示す。
第2段階では、リコンストラクタ機能マッピングk→β[k]が、各量子化索引kを復元値β[k]にマップする。本質的に、リコンストラクタは、分類法によって判定される各領域の復元のために、入力数線分に相対したある特定の高さを有するステップを配置する(または、データセット値のサブセットを選択する)。リコンストラクタ機能マッピングは、例えば、ルックアップテーブル使って実装することができる。全体的に、分類法は、以下のようなリコンストラクタに関する。
Q[x]=β[Α[x]] (1)
一般的な使用において、「量子化」という用語はしばしば、エンコーディング中に実施される分類法段階を説明するのに使われる。「逆量子化」という用語は、同様に、エンコーディングまたは復号化どちらの間に実施されるのかに関わらず、リコンストラクタ段階を説明するのに使われる。
このような量子化法を使うことによって混入される歪みは、差分に基づく歪み測度d(x−Q[x])で計算することができる。通常、このような歪み測度は、x−Q[x]がゼロからそれるのに従ってd(x−Q[x])が増大するプロパティを有し、通常は各復元値は対応する分類領域の範囲内にあるので、関数方程式Q[x]=xによって形成されることになる直線は、階段図(図5に示す)のすべてのステップを通過することになり、したがってQ[Q[x]]は通常、Q[x]に等しくなる。概して、量子化法は、量子化法が結果として、所与のビットレートの出力に対して他の量子化法より低い平均値の歪みを生じる場合、速度歪み期間中に比較的深く検討される。より形式的には、量子化法は、ソースランダム変数Xに対して、期待される(すなわち、平均または統計的中央)値の歪み測度
Figure 0005391290
がΑ[X]の等価な、またはより低いエントロピーHに対してより低い場合、より深く検討される。最も共通して使われる歪み測度は、二乗エラー歪み測度であり、d(|x−y|)=|x−y|2である。二乗エラー歪み測度が使われるとき、歪み測度
Figure 0005391290
の期待値は、平均二乗エラーと呼ばれる。
B.デッドゾーン+均一閾値量子化法
不均一量子化法は、すべての分類法領域に対して、均一に間隔をあけられていない閾値を有する。可能な一定義によると、デッドゾーンプラス均一閾値量子化法(「DZ+UTQ」)は、ゼロ入力値(デッドゾーン(「DZ」)と呼ばれる)を含むものを除くすべての分類法領域に対して均一に間隔をあけられた閾値をもつ量子化法である。一般的な意味では、DZサイズが他の分類法領域とは異なるので、DZ+UTQは、不均一量子化法である。
DZ+UTQは、2つのパラメータに基づいて表現することができる分類法索引マッピング規則x→Α[x]を有する。図7は、DZ+UTQに対する階段I/O関数700を示し、図8Aは、汎用化された分類法800及びDZ+UTQに対する閾値を示す。0より大きいパラメータsは、DZ以外のすべてのステップに対するステップサイズを示す。数学的に、i≠0に関して、すべてのsiはsに等しい。0以上のパラメータzは、DZサイズと、他のステップのサイズとの比を示す。数学的に、s0=z・sである。図8Aにおいて、zは2なので、DZは、他の分類ゾーンの2倍の広さである。
DZ+UTQに対する索引マッピング規則x→Α[x]は、
Figure 0005391290
と表現することができ、上式(2)で、
Figure 0005391290
は、引数以下の最小の整数を示し、sign(x)は、
Figure 0005391290
として定義される関数である。
図8Bは、分類法850及びs=1、z=2のDZ+UTQに対する閾値の数字の例を示す。図5、図6A、図6Bは、z=1の特殊なケースのDZ+UTQを示す。UTQ形の量子化法は、様々な統計ソースに対して良好な性能をもつ。具体的には、DZ+UTQ形は、ラプラシアンソースとして知られる統計的ランダム変数ソースに対して最適である。
一部のシステム設計(図示せず)では、DZ+UTQ分類規則を十分に特徴づけるために、追加検討する必要があり得る。実用的な理由により、分類関数Α[x]から結果として生じ得る値の範囲を、何らかの合理的な有限範囲に限定する必要があり得る。この限定は、クリッピングと呼ばれる。例えば、いくつかのこのようなシステムでは、分類規則は、より厳密に、
Figure 0005391290
と定義することができ、上式(4)で、gはΑ[x]の絶対値に対する極限値である。
各量子化索引に対する復元値を判定するのに、異なる復元規則を用いることができる。相互運用性の達成にのみ焦点を当てている標準及び製品仕様ではしばしば、必ずしも分類規則を特定せずに復元値を指定する。言い換えると、一部の仕様では、機能的マッピングx→Α[x]を定義せずに機能的マッピングk→β[k]を定義している場合がある。これにより、標準/仕様に準拠するように構築されたデコーダが、情報を正しく復元することができる。対照的に、エンコーダにはしばしば、依然として標準/仕様に準拠したままで、望み通りに分類法を変更する自由が与えられる。
量子化閾値を調整する多数のシステムが開発されている。多くの標準及び製品は、単純化するために、(例えば、典型的な単純分類規則のための)典型的な中央値復元規則に対応する復元値を指定する。しかし、分類のために、閾値は実際には、一定の入力値がより一般的な(したがって、より低いビットレートの)索引にマップされるように調整される場合があり、復元値は最適により近づく。
多くのシステムでは、量子化の程度は、量子化ステップサイズによって測定される。比較的粗い量子化では、より広範囲の入力値に対応する、より大きい量子化ステップサイズを用いる。比較的細かい量子化では、比較的小さい量子化ステップサイズを用いる。しばしば、シグナリング及び復元のために、量子化ステップサイズは、最小の量子化ステップサイズの倍数としてパラメータ化される。
C.量子化アーチファクト
上述したように、損失性圧縮は、品質の低下を引き起こす傾向にある。例えば、わずかに異なる値の一連の10個のサンプルは、正確に同じ特定の近似値をもつ10個のサンプルとして、量子化を用いて近似することができる。この種類の量子化は、一連の10個のサンプルをエンコードするためのビットレートを削減し得るが、元の10個のサンプルの細部が損なわれる。
いくつかのケースでは、量子化は、詳細部の単純損失より人工的に見え視覚的に混乱させる傾向にある、可視的なアーチファクトを生じる。例えば、平滑な、テクスチャ加工されていないコンテンツは、輪郭化アーチファクト(contouring artifacts)、すなわち異なる2つの量子化出力値の領域の間に現れるアーチファクトの影響を受けやすい。というのは、人間の視覚システムは、平滑コンテンツにおける微妙な変化(特に輝度の違い)に敏感だからである。上記の例を用いて、一連の10個のサンプルの輝度値が第1のサンプルから第10のサンプルまで徐々に、継続的に変わるケースを検討する。量子化は、最初の5個のサンプル値を1つの値として、最後の5個のサンプル値を別の値として近似することができる。この種類の量子化は、マスキング効果によりテクスチャ加工されたエリア内で可視的なアーチファクトを作成し得るが、平滑領域では、2組の5個のサンプルの間の復元された画像中に可視線またはステップを作成し得る。
IV.VC−1における差分量子化
差分量子化において、エンコーダは、ピクチャの異なる部分に対して、量子化ステップサイズ(本明細書では、量子化パラメータまたは一部の実装形態ではQPとも呼ぶ)を変化させる。通常、マクロブロックレベルまたは他のサブピクチャレベルでのQPを変化させることを伴う。エンコーダは、QPをどのようにして変化させるかの決定を行い、そうした決定を、必要に応じてデコーダに信号通知する。
例えば、VC−1エンコーダは、任意選択で、圧縮のための差分量子化を選ぶ。エンコーダは、QPが個々のピクチャ中のマクロブロックの間で変わり得るかどうかを示すために、ピクチャレベルの上のシンタクスレベルでビットストリーム要素(DQUANT)を送る。エンコーダは、ピクチャQPを示すために、ピクチャレベルのビットストリーム要素、すなわちPQINDEXを送る。DQUANT=0の場合、PQINDEXによって指し示されるQPは、ピクチャ中のすべてのマクロブロックに対して使われる。DQUANT=1または2の場合、同じピクチャ中の異なるマクロブロックを、異なるQPに対して使うことができる。
VC−1エンコーダは、差分量子化に対して複数の手法を用いることができる。1つの手法では、ただ2つの異なるQPがピクチャに対して使われる。これは、二値差分量子化と呼ばれる。例えば、ピクチャエッジにあるマクロブロックに対して1つのQPが使われ、ピクチャのそれ以外の部分にあるマクロブロックに対して別のQPが使われる。これは、全体的な表示品質を保つのに詳細部が比較的重要でない、ピクチャエッジでビットを節約するのに有用であり得る。または、マクロブロックごとに信号通知される1ビット値が、使用可能な2つのQP値のどちらをマクロブロックに対して使うべきか示す。多値差分量子化と呼ばれる別の手法では、より多数の異なるQPを、ピクチャ中の個々のマクロブロックに対して使うことができる。
エンコーダは、DQUANTが非ゼロのとき、ピクチャレベルのビットストリーム要素、すなわちVOPDQUANTを送る。VOPDQUANTは、可能性としては、ピクチャのどの部分が、ピクチャQP以外のQPを使うことができるかを示すDQPROFILEを含む他の要素からなる。異なる任意のマクロブロックがピクチャQP以外のQPを使うことができることをDQPROFILEが示す場合、ビットストリーム要素DQBILEVELが存在する。DQBILEVEL=1の場合、各マクロブロックは、2つのQPの一方を使う(二値量子化)。DQBILEVEL=0の場合、各マクロブロックは、どのQPを使ってもよい(多値量子化)。
ビットストリーム要素MQDIFFは、二値量子化用のマクロブロックに対する1ビットセレクタを信号通知するために、マクロブロックレベルで送られる。多値量子化の場合、MQDIFFは、ピクチャQPとマクロブロックQPまたはマクロブロックに対するエスケープ符号化された絶対QPとの間の差分を示す。
V.他の標準及び製品
多数の国際標準では、ビデオデコーダの側面及び圧縮された映像情報用の形式を指定している。直接的に、または暗黙により、こうした標準では、一定のエンコーダの詳細も指定しているが、他のエンコーダ詳細は特定されていない。一部の標準では、静止画像の圧縮/圧縮解除に対処し、他の標準では、音声の圧縮/圧縮解除に対処している。多数の企業では、音声、静止画像及び映像用のエンコーダ及びデコーダを生産している。他の様々な種類の信号(例えば、ハイパースペクトル画像、グラフィックス、テキスト、財務情報など)も、圧縮技術を用いて、普通に表され、格納され、または伝送される。
様々な映像標準では、異なるピクチャタイプに対して異なる量子化ステップサイズの使用を認め、レート及び品質管理のための量子化ステップサイズの変化を認めている。
標準では通常、量子化法の設計を十分には指定していない。ほとんどが、エンコーダ分類規則x→Α[x]及び/またはデコーダ復元規則k→β[k]において、何らかの変形を認めている。DZ比z=2以上の使用は、いくつかのエンコーディング設計において暗黙であった。例えば、一部の標準における、予測される領域に対する復元値の間隔をあけることは、z≧2の使用を含意している。標準にあるこうした例における復元値は、z=2であるDZ+UTQ分類の使用のために、適切に間隔をあけられる。z=1(または少なくともz<2)に基づく設計が、いくつかの標準では量子化に使われてきた。こうしたケースにおいて、復元値は、ゼロの辺りで、かつゼロから離れて等しく間隔をあけられる。
デジタル映像に対する映像圧縮の決定的な重要性が明らかになっているので、映像圧縮が十分に発展した分野であることは意外ではない。しかし、従来の映像圧縮技術の利益がどのようなものであっても、以下に述べる技術及びツールの利点は有していない。
本出願は、映像におけるテクスチャレベルに基づいて量子化を調整する技術及びツールを記載する。
例えば、ビデオエンコーダが、エンコーディング中にビットを割り振るときの平滑領域用の適応平滑化閾値及び平滑領域の時間分析を用いて、映像の知覚品質を向上させる。
本要約は、詳細な説明においてさらに後で説明する一そろいの概念を、簡素化された形で導入するためにある。本要約は、本特許請求対象の主要な特徴または本質的な特徴を識別することは意図しておらず、本特許請求対象の範囲を限定するのに使われることも意図していない。
一態様において、ビデオエンコーダは、ビデオピクチャシーケンス中の現在のビデオピクチャの現在の平滑領域(例えば、階調傾斜領域)を識別する。シーケンスは、先行ピクチャの表示が現在のピクチャの表示の前に起こり、将来ピクチャの表示が現在のピクチャの表示の後に起こる表示順序を有する。エンコーダは、現在の平滑領域に対して時間分析を実施する。時間分析は、先行及び/または将来ピクチャの少なくとも1つの中にある対応する領域が平滑であるかどうか判定することを含む。時間分析に少なくとも部分的に基づいて、エンコーダは、現在の平滑領域内で、量子化を調整する(例えば、輪郭化アーチファクトの混入を避けるように、量子化ステップサイズを低下させる)。時間分析は、調整可能な数の将来ピクチャに対して実施することができる。時間分析は、現在のピクチャに時間的により近い将来ピクチャの対応する領域における平滑性に、より大きな重みがあるとし得る。エンコーダは、テクスチャマップを分析して、現在の平滑領域を識別することができ、時間分析における平均輝度値を分析することができる。
別の態様では、ビデオエンコーダは、ビデオピクチャシーケンスに対する差分量子化間隔(例えば、一定または適応的に調整可能な間隔)を判定し、該間隔は間隔番号を含む。エンコーダは、シーケンス中の予測された差分量子化ピクチャに対する差分量子化を実施するときに間隔を用いる。間隔に従い、エンコーダは、予測された差分量子化ピクチャの1つの後の、少なくともその間隔番号の予測ピクチャに対する差分量子化をスキップする。例えば、差分量子化は、第1の予測ピクチャ用の1つまたは複数の差分量子化ステップサイズを選択すること、及び第2の予測ピクチャ用の1つまたは複数の差分量子化ステップサイズを変更することを含み、1つまたは複数の差分量子化ステップサイズは、第1の予測ピクチャ用のピクチャ量子化ステップサイズとは異なり、第2の予測ピクチャは、第1の予測ピクチャからの間隔の外にある。
別の態様では、ビデオエンコーダは、現在のビデオピクチャにおけるテクスチャを(例えば、テクスチャマップを分析することによって)分析し、分析されたテクスチャに少なくとも部分的に基づいて、現在のピクチャ用の平滑化閾値を設定する。エンコーダは、現在のピクチャのテクスチャデータを平滑化閾値と比較し、平滑化閾値に従い、現在のピクチャ中の少なくとも1つの平滑領域の発見に基づいて、現在のピクチャの少なくとも一部に対する差分量子化を調整する。エンコーダは、ブロック階調値の階調値ヒストグラムにスライディングウィンドウを適用することによって、テクスチャを分析することができる。差分量子化を調整するために、エンコーダは、現在のピクチャ中の平坦なブロックのパーセンテージを判定し、このパーセンテージを1つまたは複数のパーセント閾値と比較することができる。あるいは、エンコーダは、現在のピクチャ中のテクスチャ領域内の分離された平坦なブロックを識別し、分離された平坦なブロック向けの差分量子化をスキップすることができる。
上記及び他の目的、特徴及び利点は、添付の図面を参照して進められる以下の詳細な説明から、より明らかになるであろう。
8×8ブロックのサンプルの、ブロックに基づいたイントラフレーム圧縮を示す図である。 ビデオエンコーダにおける動き推定を示す図である。 ビデオエンコーダにおける8×8ブロックの予測残差に対するブロックに基づいた圧縮を示す図である。 ビデオエンコーダにおける8×8ブロックの予測残差に対するブロックに基づいた圧縮解除を示す図である。 スカラー量子化法用の階段I/O関数を示すチャートである。 スカラー量子化法用の分類法及び閾値を示すチャートである。 スカラー量子化法用の分類法及び閾値を示すチャートである。 DZ+UTQに対する階段I/O関数を示すチャートである。 DZ+UTQに対する分類法及び閾値を示すチャートである。 DZ+UTQに対する分類法及び閾値を示すチャートである。 説明したいくつかの実施形態を実装することができる適切なコンピューティング環境を示すブロック図である。 説明したいくつかの実施形態を実装することができる、一般化したビデオエンコーダシステムを示すブロック図である。 説明したいくつかの実施形態において用いられるマクロブロック形式を示す図である。 適応ビデオエンコーディング方法を示すフローチャートである。 ブロックに対する輝度及び彩度データを用いたピクセル階調の計算を示す図である。 図13のブロックに対する複数のピクセル階調を示すヒストグラムグラフである。 例示的ブロック値特徴抽出フレームワークを示すグラフである。 テクスチャ情報に基づく差分量子化を適用する汎用化された技術を示すフローチャートである。 時間分析を用いてテクスチャDQ決定を行う技術を示すフローチャートである。 パーセント閾値及び分離平滑ブロックフィルタリングを使ってテクスチャDQ決定を行う技術を示すフローチャートである。 高テクスチャピクチャに対するテクスチャレベル閾値を選択的に調整する技術を示すフローチャートである。 適応テクスチャレベル閾値を判定する例示的疑似コードを示すコード図である。 階調傾斜領域の2つの例を示す図である。 階調傾斜領域、テクスチャ加工された領域、シャープエッジ領域及び平坦領域を有する例示的フレームを示す図である。 図22Aの階調傾斜領域内の輪郭化アーチファクトを示す図である。 図22Bの輪郭化アーチファクトのマクロブロックレベルの細部を示す図である。 汎用化された領域に基づく階調傾斜検出技術を示すフローチャートである。 一実装形態による例示的階調傾斜検出装置を示すブロック図である。 異常な階調傾斜方向を引き起こす可能性があるフィルム粒子を有する階調傾斜領域の4:1ダウンサンプリングを示す図である。 16×16コンパスオペレータKH、KVを示す式図である。 図26のコンパスオペレータを使って領域に対する階調方向を計算する例示的疑似コードを示すコード図である。 階調傾斜領域に対する一貫性チェックを実施する技術を示すフローチャートである。 バケット投票技術におけるバケットを示す図である。 1つまたは複数の非ゼロAC係数を維持するのを助けるためのマクロブロックQPを選択する例示的技術を示すフローチャートである。 量子化及び逆量子化後の、階調傾斜領域内の3つの隣接ブロックにおけるDCシフトを示す図である。 DCシフトエリア内での輪郭化アーチファクトの混入を削減し、または避けるように量子化を調整する汎用化された技術を示すフローチャートである。 量子化アーチファクトの混入を削減し、または避けるようにDCシフトエリア内での量子化を適応させる複合技術を示すフローチャートである。
本出願は、映像の効率的な圧縮のための技術及びツールに関する。記載する様々な実施形態において、ビデオエンコーダは、ビデオをエンコードする技術、及びビットストリーム形式または異なる層もしくはレベルを含むシンタクスとともに使用するための、対応するシグナリング技術を組み込んでいる。記載する技術及びツールのいくつかは、インターレースまたはプログレッシブフレームに適用することができる。
本明細書において記載する実装形態に対する様々な代替形態が可能である。例えば、フローチャート図を参照して記載する技術は、フローチャートに示す段階の順序を変更することによって、あるいは特定の段階を繰り返しまたは省くことなどによって、変えることができる。例えば、分析における初期段階(例えば、ピクチャに対するテクスチャ情報を取得することや、平滑領域を検出する際にテクスチャ分析を実施すること)は、以降の段階(例えば、ピクチャ用のエンコーディングの決定を行うことや、平滑領域を検出する際に時間分析を実施すること)が始まる前に完了してもよく、異なる段階に対する動作は、ブロック単位、マクロブロック単位、または他の領域単位で交互に行ってもよい。別の例として、いくつかの実装形態は具体的なマクロブロック形式を参照して記載してあるが、他の形式を用いてもよい。
様々な技術及びツールは、組み合わせても、それぞれ独立しても用いることができる。異なる実施形態が記載した技術及びツールの1つまたは複数を実装する。本明細書において記載するいくつかの技術及びツールは、ビデオエンコーダにおいても、ビデオエンコーディングに具体的に限定されない他の何らかのシステムにおいても用いることができる。
I.コンピューティング環境
図9は、説明する実施形態のいくつかを実装することができる適切なコンピューティング環境900の一般化した例を示す。コンピューティング環境900は、使用または機能の範囲に対するどのような限定を示すことも意図していない。というのは、こうした技術及びツールは、多様な汎用または専用コンピューティング環境において実装することができるからである。
図9を参照すると、コンピューティング環境900は、少なくとも1つの処理ユニット910及びメモリ920を含む。図9において、この最も基本的な構成930は、破線内に含まれている。処理ユニット910は、コンピュータ実行可能命令を実行し、実プロセッサでも仮想プロセッサでもよい。多重処理システムでは、処理能力を向上するために、複数の処理ユニットがコンピュータ実行可能命令を実行する。メモリ920は、揮発性メモリ(例えば、レジスタ、キャッシュ、RAM)、不揮発性メモリ(例えば、ROM、EEPROM、フラッシュメモリなど)、またはこの2つの何らかの組合せでよい。メモリ920は、記載した技術及びツールの1つまたは複数を有するビデオエンコーダを実装するソフトウェア980を格納する。
コンピューティング環境は、追加の特徴を有することもできる。例えば、コンピューティング環境900は、記憶装置940、1つまたは複数の入力デバイス950、1つまたは複数の出力デバイス960、及び1つまたは複数の通信接続970を含む。バス、コントローラ、またはネットワークなどの相互接続機構(図示せず)が、コンピューティング環境900のコンポーネントを相互接続する。一般に、オペレーティングシステムソフトウェア(図示せず)が、コンピューティング環境900において実行される他のソフトウェアのための動作環境を提供し、コンピューティング環境900のコンポーネントの活動を調整する。
記憶装置940は、取外し可能でも固定型でもよく、磁気ディスク、磁気テープまたはカセット、CD−ROM、DVD、あるいは情報を格納するのに使うことができるとともにコンピューティング環境900においてアクセスすることができる他のどの媒体も含む。記憶装置940は、ビデオエンコーダを実装するソフトウェア980用の命令を格納する。
入力デバイス(群)950は、キーボード、マウス、ペン、またはトラックボールなどのタッチ式入力デバイス、音声入力デバイス、走査デバイス、あるいはコンピューティング環境900への入力を実現する別のデバイスでよい。音声またはビデオエンコードのためには、入力デバイス(群)950は、サウンドカード、ビデオカード、TVチューナカードでも、アナログまたはデジタルの形で、あるいはコンピューティング環境900に音声またはビデオサンプルを読み込ませるCD−ROMまたはCD−RWで音声またはビデオ入力を受け入れる類似のデバイスでもよい。出力デバイス(群)960は、ディスプレイ、プリンタ、スピーカ、CDライタ、またはコンピューティング環境900からの出力を実現する別のデバイスでよい。
通信接続(群)970は、別の計算エンティティへの、通信媒体を介した通信を可能にする。こうした通信媒体は、コンピュータ実行可能命令、音声またはビデオ入出力、あるいは他のデータなどの情報を、変調データ信号の形で伝える。変調データ信号とは、情報を信号にエンコードするような方式で設定または変更される信号特性の1つまたは複数を有する信号である。限定ではなく例として、通信媒体は、電気、光学、RF、赤外線、音響、または他のキャリアを有して実現される有線または無線技術を含む。
こうした技術及びツールは、コンピュータ可読媒体という一般的な状況において説明することができる。コンピュータ可読媒体は、コンピューティング環境においてアクセスすることができる、利用可能などの媒体でもよい。限定ではなく例として、コンピューティング環境900の場合、コンピュータ可読媒体は、メモリ920、記憶装置940、通信媒体、及び上記のどの組合せも含む。
こうした技術及びツールは、コンピュータ実行可能命令、例えばコンピューティング環境において、ターゲットである実プロセッサまたは仮想プロセッサ上で実行される、プログラムモジュールに含まれるコンピュータ実行可能命令という一般的な状況で説明することができる。概して、プログラムモジュールは、特定のタスクを実施し、または特定の抽象データ型を実装する、ルーチン、プログラム、ライブラリ、オブジェクト、クラス、コンポーネント、データ構造などを含む。プログラムモジュールの機能は、様々な実施形態での要望に応じて、組み合わせることも、プログラムモジュールの間に振り分けることもできる。プログラムモジュール用のコンピュータ実行可能命令は、ローカルまたは分散コンピューティング環境において実行することができる。
提示として、詳細な説明では、コンピューティング環境におけるコンピュータ動作を記述するのに、「決定する」及び「分析する」のような用語を用いる。こうした用語は、コンピュータによって実施される動作を高度に抽象化したものであり、人間によって実施される行為と混同すべきではない。こうした用語に対応する実際のコンピュータ動作は、実装形態に応じて変わる。
II.一般化したビデオエンコーダ
図10は、説明するいくつかの実施形態を実装することができる、一般化したビデオエンコーダ1000のブロック図である。エンコーダ1000は、現在のピクチャ1005を含む一連のビデオピクチャを受け取り、圧縮された映像情報1095を、記憶装置、バッファ、または通信接続への出力として生じる。出力ビットストリームの形式は、Windows(登録商標) Media VideoまたはVC−1形式、MPEG−x形式(例えば、MPEG−1、MPEG−2、もしくはMPEG−4)、H.26x形式(例えば、H.261、H.262、H.263、もしくはH.264)、あるいは他の形式でよい。
エンコーダ1000は、ビデオピクチャを処理する。ピクチャという用語は概して、ソースの、符号化されたまたは復元された画像データを指す。プログレッシブ映像の場合、ピクチャは、プログレッシブ映像フレームである。インターレース映像の場合、ピクチャは、コンテキストに応じて、インターレース映像フレーム、フレームの上位フィールド、またはフレームの下位フィールドを指し得る。エンコーダ1000はブロックに基づき、フレームに対して4:2:0のマクロブロック形式を使用する。図11に示すように、マクロブロック1100は、4つの8×8輝度(またはluma)ブロック(Y1からY4)及び2つの8×8彩度(またはchroma)ブロック(U及びV)を含み、こうした彩度ブロックは、4つの輝度ブロックと同じ位置に配置されるが、従来の4:2:0マクロブロック形式に従って水平及び垂直方向の解像度が半分である。フィールドに対しては、同じまたは異なるマクロブロック組織及び形式を使うことができる。こうした8×8のブロックは、異なる段階、例えば、周波数変換段階及びエントロピー符号化段階でさらに下位分割することができる。エンコーダ1000は、8×8ブロック及び16×16マクロブロックとは異なるサイズまたは構成のサンプルの組に対して、操作を実施することができる。あるいは、エンコーダ1000は、オブジェクトに基づき、または異なるマクロブロックまたはブロック形式を使用する。
図10に戻ると、エンコーダシステム1000は、予測ピクチャ及びイントラ符号化されたキーピクチャを圧縮する。提示として、図10は、エンコーダシステム1000を通過するキーピクチャ用の経路、及び予測ピクチャ用の経路を示す。エンコーダシステム1000のコンポーネントの多くは、キーピクチャ及び予測ピクチャ両方の圧縮に使われる。そうしたコンポーネントによって実施される正確な動作は、圧縮される情報のタイプに応じて変わり得る。
予測ピクチャ(例えば、プログレッシブPフレームまたはBフレーム、インターレースPフィールドまたはBフィールド、あるいはインターレースPフレームまたはBフレーム)は、1つまたは複数の他のピクチャ(一般に、参照ピクチャまたはアンカと呼ばれる)からの予測(または差)によって表される。予測残差とは、予測されたものと元のピクチャの間の差である。対照的に、キーピクチャ(例えば、プログレッシブIフレーム、インターレースIフィールド、またはインターレースIフレーム)は、他のピクチャを参照せずに圧縮される。
現在のピクチャ1005が予測ピクチャである場合、動き推定装置1010は、1つまたは複数の参照ピクチャ、例えばピクチャストア1020にバッファリングされている、圧縮解除された先行ピクチャ1025を参照して、マクロブロックまたは現在のピクチャ1005の他のサンプルの組の動きを推定する。現在のピクチャ1005が双方向予測ピクチャである場合、動き推定装置1010は、現在のピクチャ1005における動きを、圧縮解除された最大4つの参照ピクチャ(例えば、インターレースBフィールド用)を参照して推定する。一般に、動き推定装置は、時間的に先行する1つまたは複数の参照ピクチャ、及び1つまたは複数の将来の参照ピクチャを参照して、Bピクチャにおける動きを推定するが、Bピクチャは、異なる時間方向から予測される必要はない。エンコーダシステム1000は、多様な参照ピクチャ用に別々のストア1020及び1022を使うことができる。
動き推定装置1010は、1サンプル、1/2サンプル、1/4サンプル、または他のインクリメントによって動きを推定することができ、動き推定の精度を、ピクチャ単位または他の単位で切り換えることができる。動き推定装置1010(及び補償装置1030)も、(例えば、双三次と双線形の間の)参照ピクチャサンプル補間タイプを、フレームごとに、または他の単位で切り換えることができる。動き推定の精度は、水平方向及び垂直方向において同じでも異なってもよい。動き推定装置1010は、差分動きベクトル情報などの動き情報1015をサイド情報として出力する。エンコーダ1000は、例えば、動きベクトル用に1つまたは複数の予測子を計算すること、動きベクトルと予測子の間の差分を計算すること、及び差分をエントロピー符号化することによって、動き情報1015をエンコードする。動きベクトルを再構成するために、動き補償装置1030は、予測子を差分動きベクトル情報と合成する。
動き補償装置1030は、再構成されたピクチャ(群)1025に再構成された動きベクトルを適用して、動きが補償された現在のピクチャ1035を形成する。ただし、予測が完璧であることはまれであり、動きが補償された現在のピクチャ1035と元の現在のピクチャ1005との間の差が予測残差1045である。以降のピクチャ復元の間、予測残差1045は、動きが補償された現在のピクチャ1035に加えられて、元の現在のピクチャ1005により近い復元ピクチャを取得する。ただし、損失性圧縮では、何らかの情報が依然として元の現在のピクチャ1005から失われる。あるいは、動き推定装置及び動き補償装置は、別のタイプの動き推定/補償を適用する。
周波数変換装置1060は、空間ドメイン映像情報を周波数ドメイン(すなわち、スペクトル)データに変換する。ブロックベースのビデオピクチャに対して、周波数変換装置1060は、サンプルデータまたは予測残差データのブロックにDCT、DCTの変形、または他のブロック変換を適用し、周波数変換係数のブロックを生じる。代替的には、周波数変換装置1060は、フーリエ変換など別の従来の周波数変換を適用し、あるいはウェーブレットまたはサブバンド分析を用いる。周波数変換装置1060は、8×8、8×4、4×8、4×4または他のサイズの周波数変換を適用することができる。
量子化装置1070が次いで、スペクトルデータ係数のブロックを量子化する。量子化装置1070は、ピクチャ単位または他の単位(例えば、マクロブロック単位)によって変わるステップサイズで、スペクトルデータに均一なスカラー量子化を適用する。あるいは、量子化装置1070は、スペクトルデータ係数に別のタイプの量子化、例えば、均一でない量子化、ベクトル量子化、または非適応量子化を適用し、あるいは周波数変換を使わないエンコーダシステムにおいて、空間ドメインデータを直接量子化する。ある実装における量子化に関連する技術及びツールは以下で説明する。
適応量子化に加え、エンコーダ1000は、フレームドロップ、適応フィルタリング、またはレート制御のための他の技術を使うことができる。
エンコーダ1000は、特定のタイプの情報をもたない(例えば、マクロブロックに対する差分動きベクトルも残差情報ももたない)マクロブロックである、スキップされたマクロブロックに対して特殊なシグナリングを用いることができる。
再構成された現在のピクチャが、後続の動き推定/補償用に必要とされる場合、逆量子化装置1076が、量子化されたスペクトルデータ係数に対して逆量子化を実施する。逆周波数変換装置1066が次いで、周波数変換装置1060の動作の逆を実施し、(予測ピクチャに対する)再構成された予測残差、または再構成されたキーピクチャを生じる。現在のピクチャ1005がキーピクチャだった場合、再構成されたキーピクチャは、再構成された現在のピクチャ(図示せず)と見なされる。現在のピクチャ1005が予測ピクチャだった場合、再構成された予測残差が、動き補償された現在のピクチャ1035に追加されて、再構成された現在のピクチャを形成する。ピクチャストア1020、1022の一方または両方が、動きが補償された予測に使うために、再構成された現在のピクチャをバッファリングする。いくつかの実施形態では、エンコーダは、再構成されたフレームに非ブロック化フィルタを適用して、ピクチャにおける不連続及び他のアーチファクトを適合的に平滑化する。
エントロピーコーダ1080が、量子化装置1070の出力、ならびに特定のサイド情報(例えば、動き情報1015、量子化ステップサイズ(QP))を圧縮する。一般的なエントロピー符号化技術は、算術符号化、差分符号化、ハフマン符号化、ランレングス符号化、LZ符号化、ディクショナリ符号化及び上記の組合せを含む。エントロピーコーダ1080は一般に、異なる種類の情報(例えば、DC係数、AC係数、異なる種類のサイド情報)に対して異なる符号化技術を使用し、ある特定の符号化技術において、複数のコードテーブルの中から選択を行うことができる。
エントロピーコーダ1080は、多重化装置(MUX)1090に、圧縮された映像情報1095を提供する。MUX1090は、バッファを含むことができ、バッファレベル指示子(indicator)は、コントローラにフィードバックすることができる。MUX1090の前または後で、圧縮された映像情報1095は、ネットワークを介した伝送用にチャネル符号化することができる。チャネル符号化は、圧縮された映像情報1095に、誤差検出及び修正データを適用することができる。
コントローラ(図示せず)は、動き推定装置1010、周波数変換器1060、量子化装置1070、逆量子化装置1076、エントロピーコーダ1080及びバッファ1090など、様々なモジュールから入力を受け取る。コントローラは、エンコーディング中に中間結果を評価し、例えば、歪みを推定し、他の速度歪み分析を実施する。コントローラは、動き推定装置1010、周波数変換器1060、量子化装置1070及びエントロピーコーダ1080などのモジュールと連携して、エンコーディング中に符号化パラメータを設定し変更する。エンコーダは、エンコーディング中に異なる符号化パラメータ選択肢を評価するとき、異なるパラメータ設定を評価するために、特定の段階(例えば、量子化及び逆量子化)を繰り返し実施することができる。エンコーダは、ある段階で、次の段階に進む前に、パラメータを設定することができる。あるいは、エンコーダは、異なる符号化パラメータを連帯して評価してもよい。評価されるべき符号化パラメータ決定のツリー及び対応するエンコーディングのタイミングは、実装に依存する。
エンコーダ1000内部のモジュールの間に示される関係は、エンコーダ内の情報の全体的な流れを示す。他の関係は、単純化するために図示していない。具体的には、図10は通常は、ビデオシーケンス、ピクチャ、マクロブロック、ブロックなどに対して使われるエンコーダ設定、モード、テーブルなどを示すサイド情報を見せない。このようなサイド情報は、完成されると、出力ビットストリームに入れて、通常はサイド情報のエントロピーエンコーディングの後に送られる。
ビデオエンコーダの特定の実施形態は通常、汎用化されたエンコーダ1000の変形または補完バージョンを用いる。実装及び所望される圧縮のタイプに応じて、エンコーダのモジュールは、追加し、省略し、多様なモジュールに分け、他のモジュールと結合し、かつ/または同様のモジュールと置き換えることができる。例えば、コントローラは、エンコーダの異なるモジュールに関連づけられた多様なコントローラモジュールに分けることができる。代替実施形態では、異なるモジュール及び/または他の構成のモジュールを有するエンコーダが、記載した技術の1つまたは複数を実施する。
III.知覚モデルを用いた映像コンテンツの特徴抽出
映像コンテンツは、知覚モデルを用いて特徴づけることができる。このことは、エンコーダが異なる種類の映像コンテンツに対して適切なエンコーディング決定を行うのを助け得る。エンコーダは、エンコーディング前にピクチャを分析して、ピクチャの異なる部分(例えば、ブロック、マクロブロックなど)におけるコンテンツの特徴抽出(characterization)を行うことができる。例えば、青い空など、ビデオピクチャの比較的平滑な部分は、歪みを混入させるのには比較的受容可能でないと特徴づけることができる。というのは、一定の種類の品質劣化(例えば、量子化アーチファクト)が、平滑領域内で人間によってより簡単に知覚されるからである。対照的に、歪みは概して、テクスチャ領域内で比較的目立ちにくい(したがって、より受容可能)。
図12を参照すると、図10を参照して上述したようなビデオエンコーダが、ビデオピクチャの部分(例えば、マクロブロックのブロック、マクロブロック、または他の領域)を(例えば、平滑領域、エッジ領域、テクスチャ領域などとして)特徴づけ、特徴抽出に従って1つまたは複数のエンコーディング技術を適応させるプロセス1200において、適応エンコーディング技術を実装する。記載した技術の多くは、ブロック、マクロブロックまたは他の領域上など、ピクチャ内部の適応エンコーディングを提供する。こうした技術は、画像の異なる部分を分類しそれに従ってエンコードするのに、情報を用いる。より具体的には、ビデオエンコーダが、コンテンツをその知覚特性に基づいて分類するために、ピクチャの部分を特徴づける。
段階1210で、ビデオエンコーダは、ビデオピクチャの1つまたは複数の部分を特徴づける。例えば、エンコーダは、ビデオピクチャのブロックを、ブロック内部の強度分散に基づいて特徴づける。一実装形態では、エンコーダは、ブロックまたはブロックのダウンサンプリングされたバージョン中のピクセルに対して、ピクセルとその隣接ピクセルとの間の差分の和を計算する。この差分値の和は、ピクセルとその周辺ピクセルとの間の強度分散を測定する。例えば、周辺ピクセルは、ピクセルの上または下、左または右、あるいは対角線など、ピクセルに隣接する、またはほぼ隣接する他の2つ以上のピクセルを含む。ピクセルの強度とその周辺ピクセルの強度との間の差分は、輝度及び/または彩度データにおける差分に基づいて計算される。言い換えると、差分は、輝度サンプル及び/または彩度サンプルを用いて計算される。計算された平均差分値は、ピクセル(例えば、ピクセル階調)に割り当てられる。差分値は、ブロック中のピクセルに対して(例えば、ブロック階調)、またはそのサブサンプリングされた何らかのセットに対して、このようにして計算される。ブロック中のピクセルに割り当てられた差分値は、ブロック値を表現することができる、ブロックに対する特徴抽出または分類(例えば、平滑、エッジ、またはテクスチャ。テクスチャまたは非テクスチャ。平滑または非平滑、など)を判定するために評価される。一例では、ブロック中のピクセルに対するピクセル階調は、ブロックの階調に対する中央差分値(例えば、ブロック中央値)を判定するために評価される。したがって、ブロック内部のピクセルの間の強度差により、ブロック、マクロブロック、または他のビデオピクチャ領域に対する強度分散を測定する。
ブロック中央値は、ブロック値を判定するのに必要とされない。強度分散またはブロック特徴抽出は、ブロック中のピクセルに割り当てられた差分値に対する平均値(例えば、ブロック平均)にも基づき得る。ブロック中央値または平均は、ブロックを分類するのに使うことができ、かつ/または、より微細化された制御機能への入力として使うことができる。特徴抽出または制御機能は、エンコーディングの1つまたは複数の側面を適応的に変化させる。
あるいは、ブロックを特徴づけるための強度分散を計算する代わりに、エンコーダは、別の基準値を用いる。
段階1220で、エンコーダは、特徴抽出に基づいて、ビデオピクチャを適応的にエンコードする。一実装形態では、輪郭化アーチファクトの除去または削減のためのエンコーディング技術が、ブロックの特徴抽出に基づいて実施される。例えば、階調傾斜検出、DCシフト検出、AC係数保存及び適応差分量子化が、一定の平滑領域に対して実施され、テクスチャ加工された領域が、ビットレートを保護するためにより強く量子化される。
図12は、ピクチャの多様な部分に対する適応エンコーディング段階1220に先行する特徴抽出段階1210を示すが、こうした段階は、ピクチャにおいてブロック単位で繰り返し起こっても、他の何らかの単位で並べられてもよい。
段階1230で、エンコーダは、適応エンコードされたビットストリームを信号通知する。ブロック特徴抽出に基づいてエンコードするためにエンコーダによって差分量子化が使われる場合、例えば、ビデオエンコーダは、ビデオデコーダに差分量子化を信号通知するシグナリング方式を用いて情報を圧縮されたビットストリームの中にエンコードする。
段階1240で、対応するビデオデコーダが、ビデオピクチャに関するエンコードされたデータを含む、適応エンコードされたビットストリームを読む。例えば、ビデオデコーダは、信号通知された差分量子化情報を読む。段階1250で、デコーダは、圧縮されたビットストリームを復号化し、例えば、信号通知された差分量子化情報に従ってブロックを逆量子化する。
A.ブロックに基づいた例示的特徴抽出
図13は、輝度及び/または彩度データを用いてブロックを特徴づける、ブロックに基づいた操作を示す図である。輝度ブロック「Y」(1302)は、4:2:0のマクロブロック形式の、8×8ブロックのマクロブロックである。そうすることが必要なわけではないが、この例では、ピクセルブロック向けの対応する彩度ブロック1304、1306も、階調ブロック1308を計算する際に使われる。そうすることが必要なわけではないが、この例に示すように、輝度ブロック1302は、因子2で水平に、かつ垂直に(例えば、サンプルのペアの単純平均化によって)ダウンサンプリングされて(1312)、4×4次元の彩度ブロックに合致する輝度ブロック1310を作成する。
ダウンサンプリングされた輝度ブロック1310に示すように、ピクセル1314に対する輝度サンプルの強度値は、ダウンサンプリングされた輝度ブロック1310中のピクセル1314に近い4ピクセルに対するサンプルと比較され、ピクセル1314に対するサンプルとその周辺の垂直及び水平ピクセルに対するサンプルとの間の差分の平均和が計算される。この例では、ピクセル1314は、位置Y’(r,c)に位置する。その周辺ピクセルと比較した、このピクセル1314向けの輝度強度値に対する差分の平均和は、以下のようになる。
I(r,c)=[|Y’(r,c)−Y’(r,c−1)|+|Y’(r,c)−Y’(r−1、c)|+|Y’(r,c)−Y’(r,c+1)|+|Y’(r,c)−Y(r+1,c)|]/4 (5)
上に示すように、Y’(r,c)は、ダウンサンプリングされたブロックY’中の行r及び列cにあるピクセル1314の輝度成分である。LI(r,c)は、ピクセル1314が、ブロックY’中のその隣のピクセルとは輝度強度がどの程度異なるかを指し示す。この輝度強度差の測定値は、ピクセル階調の例である。
任意選択で、彩度データ1304、1306は、強度差を判定するために、輝度データの代わりに独自に検討することもでき、輝度データと一緒に検討することもできる。ピクセル1314の輝度強度値及び彩度強度値に対する差の平均和は、以下の式に示すように、周辺ピクセルに対するサンプルの強度値における差の平均として表すことができる。
I(r,c)={[|Y’(r,c)−Y’(r,c−1)|+|Y’(r,c)−Y’(r−1,c)|+|Y’(r,c)−Y’(r,c+1)|+|Y’(r,c)−Y’(r+1,c)|]+[|U(r,c)−U(r,c−1)|+|U(r,c)−U(r−1、c)|+|U(r,c)−U(r,c+1)|+|U(r,c)−U(r+1,c)|]+[|V(r,c)−V(r,c−1)|+|V(r,c)−V(r−1、c)|+|V(r,c)−V(r,c+1)|+|V(r,c)−V(r+1,c)|]}/12 (6)
I(r,c)は、ダウンサンプリングされたブロック中の(r,c)に位置するピクセルに対するピクセル階調の例であり、ピクセル階調は、ピクセル1314が、その周辺にある隣のピクセルとは輝度及び彩度強度がどの程度異なるかを指示する。この例では、ピクセル階調値GI(r,c)は、直接的に垂直または水平なピクセルに基づくが、近隣にある他のピクセルは検討しない。他のピクセルデータは、他の変形におけるピクセル階調の作成において検討できることも企図される。例えば、対角線ピクセルは、与えられた配置の一部、またはその代わりと見なすことができよう。あるいは、より長い範囲(例えば、2または3ピクセル)に渡る強度差を検討することもできよう。
I(r,c)は、単一のピクセルが、その隣とは輝度及び彩度強度がどの程度異なるかを指し示す。ブロック全体に対する強度分散を特徴づけるために、ブロック内部の複数のまたはすべてのピクセルに対して同じ分析が実施される。このような一例において、複数のピクセル階調のブロック1308が作成され、そこからブロック階調が導出される。上述したように、ピクセル階調またはブロック階調の計算は、輝度比較のみ、彩度比較のみ、または輝度及び彩度比較の両方を合わせて含み得る。
そうすることが望ましい場合、GI(r,c)を見つけるための上記の式は、欠けているブロック境界値を明らかにするように変形させることができる。例えば、ブロック外のサンプルは、境界値を明らかにするように式GI(r,c)を適応させる場合、ブロック内部の他の隣接サンプルと同じになるように外挿することも、仮定することもできる。あるいは、例えば、式の分母を通分することができ、例えば特定の方向の周辺サンプルがブロック外であるときは、そうした周辺サンプルは、比較において無視してよい。図示したように、複数のピクセル階調のブロック1308は、そのブロック中のすべてのピクセルに対するピクセル階調データを提供し得る。あるいは、複数のピクセル階調のブロック1308は、そのブロック中のすべてのピクセルに対するピクセル階調データを含み得るわけではない。
図14は、図13のブロック1308中の複数のピクセル階調のヒストグラムである。より具体的には、ヒストグラム1400は、ブロックがどのように特徴づけられ、または値をつけられるかを視覚化する。この例では、30より下の8個のピクセル階調値、及び30より上の8個のピクセル階調値がある。したがって、このブロック階調に対する中央値は30である。(偶数個の候補の場合、中央値は、2つの中間候補値の平均として、または2つの中間候補値の一方もしくは他方として計算することができる)。中央値は、ブロックを平滑、テクスチャまたはエッジとして特徴づけるのに使うことができる。当然ながら、ピクセル階調または複数のピクセル階調のブロックが取得されると、ブロックを特徴づけるのに、他の基準を用いることもできる。例えば、ブロックは、ピクセル階調値の平均によって特徴づけることができる。ブロック値は、割り当てられると、特徴抽出方式において(例えば、平滑または非平滑。平滑、テクスチャ、エッジなど)、またはより微細化された制御機能において使うことができる。ブロック値は、適応エンコーディング戦略においてブロックがどのように扱われるか判定するのに使うことができる。
ブロック値は、複数のピクセル階調を並べ替え、並べられた値から中央階調値を選択することによって選択することができる。例えば、ブロック内部の1組のピクセル階調、例えば{10、14、28、36、38}は、その組の中の中央値ピクセル階調、すなわち28に等しい、割り当てられたブロック値を有する。別の例では、ブロック値は、数値例に先行するその組の中の平均階調、すなわち25.2に基づいて判定される。当然ながら、こうした組は、完全なブロック階調またはそのサブセットから取得することができる。
C.特徴抽出情報の例示的な使用
図15は、図13、14の例に続く、例示的ブロック特徴抽出フレームワークのグラフである。図示したように、0から最大30までを含む範囲のブロック値をもつブロックが、平滑ブロックとして特徴づけられることになる。30より大きいが60以下の範囲のブロック値をもつブロックは、テクスチャブロックとして特徴づけられることになり、60より大きいブロック値をもつブロックは、エッジブロックとして特徴づけられることになる。
あるいは、エンコーダは、別の特徴抽出フレームワーク、例えば、ブロックまたはビデオピクチャの他の部分に対する他の及び/または追加の特徴抽出を含むものを用いる。異なる階調及び基準に対して、フレームワークは、スケール及び/または次元数が変わり得る。
エンコーダは、エンコーディング決定を行うとき、ブロックまたはビデオピクチャの他の部分の特徴抽出を用いることができる。表2は、例示的適応符号化方式の特徴を、図15を参照して記載したブロック特徴抽出に関係づける。図示したように、異なるように特徴づけられたブロックは、1つまたは複数の適応特徴によって異なるように扱われる。
Figure 0005391290
表2に示す様々な適応特徴については、本文書全体を通して論じ、後でさらに論じる。あるいは、エンコーダは、ブロック特徴抽出への、適応特徴決定の別のマッピングを用いる。さらに、本明細書において記載するいくつかの特徴は、映像コンテンツの特徴抽出を検討する必要はない。
IV.テクスチャレベルに基づく差分量子化
差分量子化において、エンコーダは、ピクチャの異なる部分に対して、量子化ステップサイズ(本明細書では、量子化パラメータまたは一部の実装形態ではQPとも呼ぶ)を変化させる。通常、マクロブロックまたは他のサブピクチャレベルでのQPを変化させることを伴う。エンコーダは、QPをどのようにして変化させるかの決定を行い、そうした決定を、必要に応じてデコーダに信号通知することができる。
以前のエンコーダでは、二値差分量子化(2つのQPの間で変化させる)及び多値差分量子化(3つ以上のQPの間で変化させる)を用いていた。例えば、ある二値差分量子化手法では、ピクチャエッジにあるマクロブロックに対して1つのQPが使われ、ピクチャのそれ以外の部分にあるマクロブロックに対して別のQPが使われる。これは、全体的な表示品質を保つのに詳細部が比較的重要でない、ピクチャエッジでビットを節約するのに有用であり得る。多値差分量子化手法では、より多数の異なるQPを、ピクチャ中の個々のマクロブロックに対して使うことができる。例えば、エンコーダは、マクロブロックに対してQPを選び、現在のピクチャに対するQPとマクロブロックに対するQPとの間の差分を信号通知することができる。
量子化アーチファクトに対する知覚感度は、空間及び時間ドメイン両方におけるビデオのテクスチャレベルと大いに関連する。高テクスチャレベルはしばしば、品質劣化及び量子化アーチファクトを隠し得るマスキング効果を結果として生じる。ただし、テクスチャレベルがより低い領域(例えば、平滑領域)では、劣化及び量子化アーチファクトは、より可視的である。以前のエンコーダでは、ビデオピクチャの一部の部分(例えば、ピクチャエッジ)に対して量子化調整を行っていたが、本明細書において記載するより包括的なコンテンツに基づく差分量子化戦略により、多くのシナリオにおいて速度歪み性能が向上する。
したがって、記載する技術及びツールの多くでは、テクスチャに基づく差分量子化(本明細書では、テクスチャDQと呼ばれる)を用いて、様々なテクスチャレベルに基づいてビットを割り振り、より優れた知覚品質を達成する。テクスチャDQから、テクスチャ情報に基づいて、かついくつかのケースでは、時間分析情報など他の情報に基づいて映像を符号化するための異なるQPが選ばれる。エンコーダは、テクスチャ情報(及び可能であれば他の情報)を分析し、ピクチャ中の8×8ブロックやまたはマクロブロックなど、適切な領域(テクスチャDQ領域)にテクスチャDQを適用する。記載する技術及びツールの多くでは、潜在テクスチャDQ領域として平滑領域に焦点を当てる。平滑領域は、平坦な領域(不変またはほぼ不変の色のエリア)及び階調傾斜領域(領域に渡る、不変またはほぼ不変の速度で変化する色のエリア)を含む。平滑領域は、ノイズ、フィルム粒子、または他の色変化の小さいエリアに割り込まれても、平滑と見なすことができる。
図16は、テクスチャ情報に基づいて差分量子化を適用する、汎用化された技術1600を示すフローチャートである。図10のエンコーダ1000などのエンコーダまたは他のツールが、技術1600を実施する。
段階1610で、エンコーダは、現在のピクチャのテクスチャ情報(例えば、異なる領域が平滑、エッジ、またはテクスチャ領域のいずれであるかを示す特徴抽出やブロック値)を取得する。段階1620で、エンコーダは、現在のピクチャ中のテクスチャDQ領域(例えば、輪郭化アーチファクトが存在し得る平滑領域)またはテクスチャDQ領域群を見つける。段階1630で、エンコーダは、テクスチャDQ領域(群)にテクスチャDQを適用し、ピクチャをエンコードする。例えば、平滑領域が、高テクスチャ領域より小さいQPで符号化される。エンコードするべきより多くのピクチャがある場合、エンコーダは、段階1640で次のピクチャを入手し、必要に応じて次のピクチャにテクスチャDQを選択的に適用する。エンコーダは、ビデオピクチャに対するエンコードされたデータを、例えば記憶装置、通信接続、またはバッファに出力する。
領域が平滑領域として扱われるべきかどうか判定するのに、異なるテクスチャDQ領域検出技術を用いることができる。例えば、エンコーダは、ある特定の領域がテクスチャDQ領域と見なされるべきかどうか判定するのに、異なるテクスチャ基準及び/または異なるテクスチャ閾値を用いることができる(かつ、閾値を適応的に調整することができる)。より優れた知覚ビデオ品質のためのビットを割り振るのに、適応量子化値マッピングを用いることができる。差分量子化決定は、時間分析にも基づき得る(すなわち、将来ピクチャを考察して、長期にわたる領域の特性に基づく決定を行う)。
差分量子化決定は、イントラピクチャ及び予測ピクチャ両方に対して行うことができる。予測ピクチャの場合、差分量子化ピクチャの間のPピクチャ及びBピクチャ差分量子化間隔を制御することができる。さらに、優的な(dominant)高テクスチャエリアが存在する場合のピクチャのテクスチャを観察することによって、平滑領域テクスチャ閾値を、比較的小さいQPで(優的な高テクスチャエリアに比較して)比較的平滑な領域を符号化するように緩和することができる。
上のセクションIIIで図12〜15を参照して記載したのと同様の技術は、現在のピクチャに対するテクスチャマップを生成するのに用いることができる。例えば、エンコーダは、セクションIIIで記載したように、ピクチャに対するテクスチャレベル用の階調を、ピクチャに対するY、U、Vチャネル中の第1の導出物(差)として算出する。マクロブロック形式が4:2:0の場合、算出プロセスを高速化するために、エンコーダは、Yチャネルを2:1の因子で水平及び垂直にダウンサンプリングすることができる。エンコーダは、各ピクセルに対するY、U、Vの階調を水平及び垂直方向両方に合計する。最大解像度の8×8ブロックの場合、エンコーダは、ダウンサンプリングされたピクチャ中の対応する4×4ブロックにおける階調の和の平均を計算して、ブロック階調値として使う。階調の平均の計算は、計算上、セクションIIIで記載した中央値の計算より複雑でない。
あるいは、エンコーダは、ピクチャのテクスチャ情報を、他の何らかのやり方で取得する。例えば、エンコーダは、階調を算出する異なる階調方向を選び、輝度チャネルに対してのみ階調を算出する、などを行う。テクスチャ情報は、どのようにして取得されまたは算出されようとも、次いで、テクスチャDQ決定を行うのに使うことができる。
テクスチャマップは、ピクチャの相異なる部分のテクスチャレベルを示す。例えば、テクスチャマップは、ピクチャ中の平滑領域(例えば、ブロック、マクロブロック、エッジ、または他のエリア)及びテクスチャ加工された領域を識別するのに使うことができる。記載した差分量子化技術は、テクスチャマップ中の情報に基づいて、ピクチャの適切な部分に対して実施することができる。あるいは、エンコーダは、最初にテクスチャマップを作成することなく、テクスチャ情報を用いる。
A.時間分析(temporal analysis)
現在のビデオピクチャからのテクスチャ情報に加えて、正確な差分量子化決定を行うのに、時間分析を用いることができる。時間分析を用いる理由の1つは、平滑領域がいくつかのピクチャに渡って平滑なままである場合、特に他のピクチャが動き補償において平滑領域を参照するとき、平滑領域に対して比較的小さいQPを使う際の影響力が、より大きくなるからである。逆に、平滑ブロックが将来ピクチャ中の高テクスチャまたはエッジブロックで置き換えられた場合、比較的小さいQPを使うことの利益が1つ失われる。したがって、エンコーダは、現在のピクチャ中に平滑領域を見つけた後で将来ピクチャを考察し、領域の平滑性が将来ピクチャ中でどのように変わるかに基づいて差分量子化決定を行う。エンコーダは、先行ピクチャ、例えば、表示順序において現在のビデオピクチャに先行するBピクチャを考察するが、動き補償において現在のビデオピクチャを参照することもできる。
図17は、時間分析を用いてテクスチャDQ決定を行う例示的技術1700を示す。図10のエンコーダ1000などのエンコーダまたは他のツールが、技術1700を実施する。
段階1710で、エンコーダは、ビデオシーケンスにある現在のピクチャ中の現在のブロックに対してテクスチャ分析を実施する。例えば、エンコーダは、ブロックの階調情報を考察する。エンコーダは、階調情報を、ブロックに対する階調閾値と比較し、ブロックを平滑または非平滑(例えば、テクスチャ、エッジ)と分類することができ、この場合、階調閾値は、固定され、または現在のピクチャまたはビデオシーケンスの他の部分に対して動的に設定される。あるいは、エンコーダは、現在のピクチャ中の他の何らかの部分向けにテクスチャ分析を実施する。
段階1720で、エンコーダは時間分析を実施する。エンコーダは、自動的に、または現在のブロックが平滑ブロックと分類された場合のみ、時間分析を実施することができる。例えば、エンコーダは、現在のピクチャ中の平滑ブロックが、将来ピクチャ中で平滑なままであるかどうか判定する。平滑な場合、現在のピクチャ中の平滑領域は、後で比較的小さいQPで符号化される。あるいは、エンコーダは、現在のピクチャ中の平滑ブロックが先行ピクチャ中、または先行及び将来のピクチャ両方の中でも平滑だったかどうか判定する。
エンコーダが分析する先行及び/または将来のピクチャの数は、実装に応じて変わり得る。平滑領域が将来ピクチャ(例えば、次のピクチャまたは他の何らかの時間的に近いピクチャ)中で、テクスチャ加工された領域で置き換えられた場合、現在のピクチャ中の平滑領域は、より大きいQPで符号化することができよう。というのは、比較的小さいQPを使うことの利点は、おそらく持続性がないからである。一実装形態では、差分量子化決定を行う際、時間的により近いピクチャが、より離れたピクチャより重く重みづけされる。エンコーダが考察する先行及び/または将来ピクチャの重みづけ及び数は、実装に応じて変わり得る。
算出を簡単にするために、エンコーダは、将来ピクチャ中の現在のブロックと、対応するブロックを比較するための単一の値を見つけることができる。例えば、輝度値は平滑ブロック中でかなり一貫性があるので、将来ピクチャ中の対応するブロックの類似を測定するために、ブロックに対する輝度値の平均値が算出される。以下の例式(7)で、将来ピクチャ中の対応するブロックの将来の平滑性の「強度」S(t)は、現在のブロック中の平均輝度値と将来ピクチャ中の対応するブロックとの間の重みづけされた絶対差、2つの将来ピクチャ中の対応するブロックの平均輝度値などの和によって算出される。
Figure 0005391290
上式(7)で、nは時間的な「先見」ピクチャの総数であり、C(n)は、2/(n*(n+1))となるように定義される規格化因子であり、M(t)は、時間tでのピクチャ中のブロック(または対応するブロック)に対する輝度値の平均値である。エンコーダは、将来の平滑性の代わりに、またはそれに加えて、過去の平滑性を測定することもできる。あるいは、エンコーダは、平滑性の時間分析において別の重みづけシステム及び/または平滑性基準値を用いる。
図17を再度参照すると、段階1730で、エンコーダは、テクスチャ分析及び時間分析の結果を用いて、ブロックをテクスチャDQブロックと分類するかどうか判定する。例えば、エンコーダは、平滑ブロック(ただし他のブロックではなく)に対する平滑性強度S(t)を計算し、平滑性強度S(t)を時間平滑化閾値と比較する。時間平滑化閾値は、固定することもでき、動的に設定することもできる。
図17において、エンコーダが、現在のブロックが平滑ブロックであること、及び先行及び/または将来ピクチャ中の対応するブロックも平滑であることを発見した場合、エンコーダは、段階1740で、テクスチャDQブロックのカウントに現在のブロックを加える。エンコーダは、テクスチャDQブロックのカウントを使って、ピクチャに対してテクスチャDQを実施するかどうか判定することができる。あるいは、エンコーダは、時間分析を他の何らかのやり方で用いて、テクスチャDQ決定を行う。
分析するべきブロックがそれ以上ある場合、エンコーダは、段階1750で次のブロックを入手し、図17に示すプロセスを繰り返す。これは、エンコーダが現在のビデオピクチャのブロックを評価するまで続く。その時点で、エンコーダは、エンコーディング決定において平滑ブロックのカウントまたは時間分析の他の結果を用いる。
図17は、ブロック単位での時間分析を実施するエンコーダを示すが、代替的には、エンコーダは、時間分析をマクロブロック単位で、または他の何らかの領域単位で実施する。
B.テクスチャDQ閾値及び分離平滑ブロックフィルタリング
エンコーダが時間分析を用いても用いなくても、エンコーダは、テクスチャDQをいつ適用するか決定する際、他のいくつかの機構を用いることができる。エンコーダは、DQを実施するかどうかについての決定を行い、行う場合、テクスチャDQ領域に対してQPがどの程度細かければよいか決定するのに、1つまたは複数の普及閾値(例えば、ピクチャ中の平滑ブロックのパーセンテージ)を使うことができる。例えば、ピクチャ中の平滑ブロックの数またはパーセンテージが閾値より上の場合、エンコーダは、平滑コンテンツを小さいQPでエンコードするあまりに多くのビットを費やすことを避けるために、比較的粗いステップサイズを選ぶことができる。エンコーダは、平滑ブロックの数またはパーセンテージが、ピクチャ中で少しでもテクスチャDQを使うのに十分かどうか判定するためのより低い閾値も有し得る。
別のビットレート削減法は、特定の平滑ブロックが、大部分がテクスチャ加工された領域内にあるときは、そうした平滑ブロックをテクスチャブロックとして扱うことである。これは分離平滑ブロックフィルタリングと呼ぶことができる(平滑ブロックは、このようにしてフィルタリングされるように完全に「分離される」必要があるわけではないが)。例えば、テクスチャ加工されたブロックで囲まれる平滑ブロックは、テクスチャ加工されたブロックより小さいQPで符号化される必要はない。というのは、平滑ブロック中の量子化アーチファクトは、テクスチャ加工された周辺コンテンツによっておそらくマスクされるからである。その結果、エンコーダは、分離平滑ブロックに対してテクスチャDQを実施しないことを選ぶことができる。エンコーダは、ピクチャ中の平滑ブロックの数またはパーセンテージを算出するときに、分離平滑ブロックを軽視してもよい。
図18は、閾値及び分離平滑ブロックフィルタリングを用いてテクスチャDQ決定を行う例示的技術1800を示す。図10のエンコーダ1000などのエンコーダまたは他のツールが、技術1800を実施する。
段階1810で、エンコーダは、現在のピクチャ中に平滑ブロックを見つける。例えば、エンコーダは、図17を参照して記載したテクスチャ分析及び時間分析を実施する。あるいは、エンコーダは、他の何らかのやり方で、現在のピクチャ中に平滑ブロックを見つける。
段階1820で、エンコーダは、分離平滑ブロックフィルタリングを実施する。例えば、エンコーダは、現在のピクチャ中で非平滑ブロックによって囲まれる単平滑ブロックを削除する。エンコーダは、異なる多くの決定モデルを使って、分離平滑ブロックフィルタリングを実施することができる。例えば、エンコーダは、平滑ブロックを、そのすべての隣接ブロックがテクスチャ加工されたブロックであるときのみ、テクスチャ加工されたブロックとして扱うことを選ぶことができる。あるいは、エンコーダは、平滑ブロックを、その一定数の隣接ブロックがテクスチャ加工されている場合に、テクスチャ加工されたブロックとして扱うことを選ぶことができる。あるいは、エンコーダは、分離平滑ブロックを、より大きい(例えば、2もしくは3)グループごとにまとめて、かつ/またはブロック(群)が分離されるかどうかについての他の何らかのテストを用いて削除する。
段階1830で、エンコーダは、ピクチャ中の平滑ブロックのパーセンテージを、低閾値(例えば、ピクチャ中の総ブロックの1〜2%)と突き合わせる。平滑ブロックのパーセンテージが低閾値を下回る場合、エンコーダは、このピクチャに対してテクスチャDQが使われないと判定する(段階1840)。平滑ブロックのパーセンテージが低閾値を上回る場合、エンコーダは、段階1850で、パーセンテージを、高閾値と突き合わせる。この高い方の閾値が、平滑ブロックに対するQPを選ぶのに使われる。パーセンテージが高閾値より高い場合、エンコーダは、テクスチャDQを実施するが、ビットレートを削減するために、平滑ブロックに対して、比較的粗いQPを選ぶ(段階1860)。パーセンテージが高閾値より低い場合、エンコーダは、平滑ブロックに対して比較的細かいQPを選ぶ(段階1870)。分析するべきピクチャがそれ以上ある場合(段階1880)、エンコーダは、他のピクチャに対してプロセスを繰り返すことができる。閾値の数及び閾値パーセンテージ値は、実装に応じて変わり得る。
代替的には、エンコーダは、テクスチャDQ閾値を用いずに分離平滑ブロックフィルタリングを実施し、または分離平滑ブロックフィルタリングなしでテクスチャDQ閾値を使う。あるいは、エンコーダは、分離平滑ブロックフィルタリングなしで、またはDQ閾値を使わずにテクスチャDQを実施する。
C.適応テクスチャレベル閾値
エンコーダは、固定されたテクスチャレベルまたは平滑化閾値を使って、所与のブロックがテクスチャDQブロック(例えば、平滑ブロック)と見なされるべきかどうか判定することができる。DQシグナリングのビットレートコスト(例えば、「すべてのマクロブロック」二値DQシグナリングシナリオにおいて、マクロブロックごとに1ビット)及びピクチャのいくつかの部分を比較的小さいQPで量子化するビットレートコストを考慮に入れると、閾値は、テクスチャDQのコストに対するチェックとして作用する。例えば、エンコーダは、(図13、14を参照して記載した技術または他の何らかの技術を用いて)ブロックに対するブロック値を取得し、ブロック値を固定されたテクスチャレベル/平滑化閾値(例えば、図15を参照して記載した閾値)と比較する。
エンコーダは、テクスチャレベル/平滑化閾値を適応的に変更することもできる。例えば、平滑ブロックの知覚性はたくさんの高テクスチャコンテンツを有するピクチャ中で変わり得るので、ブロックを平滑ブロックと分類するテクスチャレベル閾値は、中間テクスチャまたは高テクスチャピクチャ中で緩和してよい。これは、適応テクスチャレベル閾値の例である。エンコーダは、ある閾値範囲内の、いくつかの異なる閾値を選択させる。一実装形態では、平滑ブロックに対する適応テクスチャレベル閾値は、ブロック値14とブロック値30の間で変化させることができる。異なるテクスチャレベル閾値に対して、異なる差分量子化マッピングを用いることができる。適応テクスチャレベル閾値は、より平滑な領域内で品質を向上させるために、より高いテクスチャフレーム中のより平滑な領域にビットを割り振るのに有用であり得る。
図19は、高テクスチャピクチャに対するテクスチャレベル閾値を選択的に調整する技術1900を示す。図10のエンコーダ1000などのエンコーダまたは他のツールが、技術1900を実施する。エンコーダは、ピクチャ中の優的な高テクスチャコンテンツの存在を検出することによって、テクスチャレベル閾値を調整するかどうか判定する。一実装形態では、高テクスチャコンテンツの検出は、テクスチャヒストグラムにおけるサイズが10のスライディングウィンドウ中のテクスチャ「エネルギー」の算出によって実装される。
図19を参照すると、エンコーダは、適応テクスチャレベル閾値技術1900における段階1910で、ピクチャのテクスチャ情報(例えば、テクスチャレベルヒストグラム)を取得する。例えば、エンコーダは、上述したようにテクスチャマップを取得し、情報からテクスチャレベルヒストグラムを作成する。
段階1920で、エンコーダは、ピクチャが高テクスチャピクチャであるかどうかチェックする。ピクチャが高テクスチャピクチャの場合、エンコーダは、段階1930で、ピクチャに対するテクスチャレベル閾値を調整する。ピクチャが高テクスチャピクチャでない場合、エンコーダは、テクスチャレベル閾値を調整せずにピクチャを処理する(段階1940)。エンコーダは次いで、他のピクチャに対するテクスチャレベル閾値を分析し選ぶことができる(段階1950)。あるいは、エンコーダは、ピクチャ中の異なるレベルの高テクスチャコンテンツに対して、スライド式の異なるテクスチャレベル閾値を適用する。
例えば、ピクチャ中の優的な高テクスチャコンテンツの程度をチェックするために、エンコーダは、ピクチャに対するテクスチャヒストグラムを計算する。エンコーダは、テクスチャヒストグラムにおけるスライディングウィンドウを適用して、テクスチャエネルギーを算出し、ピークまたは顕著な高テクスチャ帯域を判定する。式(8)は、エンコーダがウィンドウにおけるテクスチャエネルギーを算出するための一方法を示す。スライディングウィンドウは、最小テクスチャレベル閾値g0(デフォルトで30)からスライドし始め、エンコーダは、g0でのウィンドウ値W(g)を計算する。スライディングウィンドウは、そのウィンドウに対するテクスチャエネルギーの算出の後に右へ1シフトし、エンコーダは、新規値g0で始まる次のウィンドウ値W(g)を計算する。これは、エンコーダがヒストグラムにおいて表されるテクスチャレベルの最大に達するまで続く。
F(g)をピクセルごとのテクスチャレベルのヒストグラムとする。E(g)を、そのテクスチャレベルに対するテクスチャエネルギーとし、E(g)=F(g)*gである。エンコーダは、スライディングウィンドウのテクスチャエネルギーW(g)を以下のように算出する。
Figure 0005391290
最大スライディングウィンドウエネルギーW(g)が、全体的なピクチャエネルギーのある特定のパーセント閾値を超えた場合、その最大スライディングウィンドウエネルギーW(g)に対するg0が、平滑領域に対する閾値を調整するのに使われる。
図20は、g0からの新しい適応平滑領域閾値を判定するのに使われる疑似コード2000を示す。g0が100を超える場合、適応閾値は30に設定される。エンコーダは、g0が30より小さいかどうかもチェックし、小さい場合、適応閾値を14に設定する。30≦g0<100の場合、適応閾値は、テーブルg_iFlatThTableにある値に設定される。ビデオ品質を保つのを助けるために、最後の適応閾値との新しい適応閾値の最大差は、シーン変更キーピクチャを除くすべてのピクチャに対して+/−4を上限とする。適応平滑閾値は、テクスチャ加工されたブロックを識別するのに使われる閾値を超えるべきでない。例えば、図20において、最高適応閾値は30である。
あるいは、エンコーダは、他の何らかのやり方で(例えば、異なるテクスチャ強度またはエネルギー基準値で、スライディングウィンドウなしで、異なるように構成されたスライディングウィンドウで、テーブルまたは他のデータ構造中の異なる閾値で、適応閾値の間の差に上限を設けずに、他の何らかのやり方で適応閾値における差に上限を設けて、など)、テクスチャレベル閾値を適応的に調整する。
D.Iピクチャ及びPピクチャの差分量子化
記載した差分量子化技術及びツールは、イントラピクチャ及び予測ピクチャ上で単独でも、組み合わせても用いることができる。Iピクチャ差分量子化(IピクチャDQ)という用語は、Iピクチャへの差分量子化の適用を指し、Pピクチャ差分量子化(PピクチャDQ)という用語は、Pピクチャへの差分量子化の適用を指す。IピクチャDQを使用すると、結果としてより高い品質Iピクチャを生じ、品質の向上は、これらIピクチャに従属する予測ピクチャに対して、より長く保つことができる。PピクチャDQは、イントラ及びインターブロック両方においてPピクチャの品質をさらに向上させ得るが、そうしたPピクチャの品質は、予測の元になるピクチャの品質にも依存することになる。同様に、以後の予測ピクチャの品質に与えるPピクチャDQの影響力は、以後の予測ピクチャの、予測の元になるピクチャとの類似性に依存することになる。
E.差分量子化間隔
IピクチャDQ及びPピクチャDQは両方とも、本明細書において記載する技術の1つまたは複数を用いて、異なるテクスチャレベルブロックに対して異なるQPを適用するかどうか決定する。品質とビット使用の釣合いをとるために、PピクチャDQに対して費やされるビットの量を制御するのに、PピクチャDQ間隔を用いることができる。例えば、エンコーダは、n≧1であるn個のPピクチャごとに、1つに対してPピクチャDQを使うことを選ぶが、差分量子化Pピクチャの間の間隔中のピクチャに対してはPピクチャDQをスキップする。エンコーダは、いくつかのPピクチャの知覚品質を向上させるように、差分量子化用にビットを費やし、そうした品質向上は、他の予測ピクチャに持ち越される。同時に、DQ間隔は、エンコーダが予測ピクチャの差分量子化用に費やすビットの全体数を制限するのを助ける。
代替的には、エンコーダは別の間隔を選択する。例えば、エンコーダは、Iピクチャごとにただ1つのPピクチャに対してPピクチャDQを使うことを選んでも、他の何らかの間隔を選んでもよい。間隔は、固定でも適応でもよい。例えば、エンコーダは、エンコードされるコンテンツのタイプに基づいて、PピクチャDQ間隔を適応的に調整してよい。
V.階調傾斜検出
映像圧縮において混入される可視的な様々なアーチファクトのうち、輪郭化が、量子化によって引き起こされ得る特定の1つのアーチファクトである。輪郭化アーチファクトは、そうでなければ連続する、非常に平滑な領域であるもの、例えば空、水などにおける、構造化された階調の不連続として、人間の目によって知覚される。このような不連続は、非常に混乱させるものとなる場合があり、ピクチャの他の部分が可視的な歪みがほとんどなく符号化されていても、人間観察者に、ピクチャ全体がひどく歪んでいると結論づけさせる可能性がある。
階調傾斜領域は、輪郭化アーチファクトを生じさせ得る。一定義によると、領域が平滑または比較的平滑であるが領域内部でピクセル値が徐々に変わる場合、領域は、階調傾斜領域であると見なされる。したがって、階調傾斜領域及び平面領域が両方とも平滑領域であると見なされるが、階調傾斜領域は、平面領域とは異なる。一定義によると、平面領域は、平面領域全体を通して不変または比較的不変なピクセル値によって特徴づけられる。階調傾斜領域は通常、はっきりとしたエッジ及び広範なテクスチャ細部を欠いている。
図21は、階調傾斜領域の2つの例を示す。各領域内の階調傾斜方向は、矢印で表される。階調傾斜領域2100内で、輝度値は、領域の上から下に向かって徐々に増大する。階調傾斜領域2100内の傾斜の方向は、領域の各部分において同じである。階調傾斜領域2110内で、輝度値は、領域の中心からエッジに向かって徐々に増大する。階調傾斜の方向は、階調傾斜領域2110内部で変化する。ただし、狭い近隣にある各点での階調傾斜方向は、中心点を含む近隣を除いた、近隣にある他の点での階調傾斜方向の小さい角θ内である。図21に示すように、階調傾斜領域は、階調傾斜方向が領域全体において不変の領域、及び階調傾斜方向が近隣において小さく変化する領域を含む。
図22Aは、階調傾斜領域2210、テクスチャ加工された領域2220、シャープエッジ領域2230及び平坦領域2240を有する例示的ピクチャ2200を示す図である。図22Bは、階調傾斜領域2210内での量子化の結果を示す図である。現在見えている(例えば、マクロブロック2250内部の)バンド効果は、輪郭アーチファクトである。図22Cは、マクロブロック2250の詳細を示す。マクロブロック2250中の輝度サンプルの上半分に対する変換係数の量子化は、DC値68に起因する均一な値を結果として生じる。マクロブロック2250中の輝度サンプルの下半分に対する変換係数の量子化は、DC値70に起因する均一な値を結果として生じる。したがって、輝度サンプルに対する変換係数の量子化により、マクロブロック2250中の上半分の8×8ブロックと下半分の8×8ブロックとの間の可視的な輪郭アーチファクトが作成されている。
多くの既存ビデオエンコーダでは、ピクチャ中の輪郭化アーチファクトを削減しようとする試みにおいてビデオピクチャ全体に適用される技術を用いている。このような技術は、特に輪郭化アーチファクトをほとんどまたは全く含まない領域内で、ビットの浪費を結果として生じ得る。したがって、記載するいくつかの技術及びツールにより、エンコーダは、輪郭化アーチファクトが起こりそうな階調傾斜領域を検出することができる。階調傾斜領域が検出されると、エンコーダは、階調傾斜領域内での輪郭化アーチファクトの混入を削減し、または避ける符号化決定(例えば、QPの調整)を行うことができる。そうすることによって、エンコーダは、ビットをより効果的に割り振り、より優れた表示品質を達成することができる。
階調傾斜領域を検出するために、エンコーダは、以下の技術の1つまたは複数を実装することができる。
1.検出された領域(群)内での輪郭化アーチファクトの混入の削減または除去に注目した符号化決定を用いた階調傾斜領域検出。
2.計算コストを削減し、かつ/またはフィルム粒子などの異常があるにも関わらず正確な階調傾斜領域検出を可能にするための、領域に基づく階調推定及びダウンサンプリング。
3.局所的な近隣における漸進階調変化を検出するための階調一貫性チェック。
4.ピクチャ中の階調傾斜領域(群)の存在に関するバイナリ決定を行うためのバケット投票(bucket voting)。
5.エンコーダが適切な符号化決定を行うのを助けるための(例えば、マクロブロックレベルでの)階調傾斜マスク及び階調方向マップの生成。
図23は、汎用化された領域に基づく階調傾斜検出技術2300を示す。図10のエンコーダ1000などのエンコーダまたは他のツールが、技術2300を実施する。いくつかのケースでは、領域に基づく階調傾斜検出技術2300は、ピクチャ中の各ピクセルに対する階調傾斜方向を見つける必要をなくすことによって、階調傾斜コンテンツのより速い検出を可能にする。例えば、ピクチャは、同じサイズの非重複矩形領域に分けられる。領域のサイズは、実装形態に応じて変わり得る。一実装形態では、領域は、16×16マクロブロック(4つの8×8ブロック)である。好ましくは、領域は、マクロブロック整列を可能にするサイズである。
段階2310で、エンコーダは、現在の領域が平滑領域であるかどうかチェックする。例えば、それに割り当てられたブロック階調値が30より小さい場合、エンコーダは、8×8ブロックが平滑として特徴づけられるピクチャのテクスチャマップを用い、またはエンコーダは、セクションIIIまたはIVで記載した別の技術を用いて、現在の領域が平滑であるかどうかチェックする。領域が多様なブロックを含むとき、領域は、領域内に含まれるすべてのブロックが平滑である場合は(または代替的には、ほぼ最小数のブロックが平滑である場合は)平滑領域であると見なされる。異なる実装形態では、ある特定の領域またはブロックが平滑であるかどうか判定するための異なる基準を用いてよい。例えば、ピクチャがダウンサンプリングされる場合、領域が平滑であるかどうか判定するための基準は、異なり得る。
領域が平滑でない場合、次の領域が処理される(段階2320)。平滑領域に対して、エンコーダは、段階2330で階調方向を見つける。例えば、エンコーダは、図26、27を参照して記載したような技術を用いて階調方向を見つける。あるいは、エンコーダは、他の何らかの技術を用いて階調方向を見つける。
段階2340で、エンコーダは、領域に対する階調方向を見つけるのに用いられる技術及び基準に依存する閾値及び/または決定実行論理を使って、領域に対して階調傾斜決定を行う。処理されるべき領域がそれ以上ある場合、エンコーダは、次の領域を処理する(段階2320)。一実装形態では、ピクチャ中の異なる領域に対する初期階調方向を計算した後、エンコーダは、ピクチャ中でスライディングウィンドウを適用することによって、異なる領域内に階調傾斜が存在するかどうかを示すバイナリマスクを生成する。バイナリマスクにおける情報により、エンコーダは、正確な階調傾斜決定を行うことができる。
図24は、図10に示したようなビデオエンコーダ内の例示的な階調傾斜領域(gradient slope region)検出装置(GSR検出装置)2400のブロック図である。GSR検出装置2400は、現在のピクチャ2405から入力としてピクセルデータを入手する。
ピクチャサイズ及び可能性としては他の因子に応じて、GSR検出装置2400は、ダウンサンプリングモジュール2410においてダウンサンプリングを実施するかどうか判定する。例示的ダウンサンプリング技術については、後で説明する。
階調算出器2420は、(おそらくはダウンサンプリングされた)ピクセルデータ及びテクスチャマップ2425を入力として入手し、平滑領域に対する階調を算出する。例えば、階調算出器2420は、図26、27を参照して記載したような技術を用い、または他の何らかの技術を用いる。階調算出における例示的領域サイズは16×16であるが、領域のサイズは、実装に応じて変わり得る。ダウンサンプリングが適用されるかどうか、及びどの程度適用されるかに応じて、階調が算出される対象の領域は、元のピクチャ2405中で異なる量のエリアを表し得る。階調算出器2420は、平滑領域に対する階調方向を示すマップまたは他のデータ構造を出力する。
一貫性チェッカー2430は、平滑領域に対する算出された階調を入手し、例えば、後で説明するように、そうした階調の角の一貫性をチェックする。一貫性チェッカー2430は、一貫性マップまたは算出された階調に対する一貫性情報を示す他のデータ構造を生じる。
決定モジュール2440は、(一貫性チェックの後で)追加の決定規則を使って、平滑領域が階調傾斜領域と見なされるべきかどうか判定する。例示的決定規則及び基準については、後で説明する。決定モジュール2440は、一貫性マップまたは一貫性情報を示す他のデータ構造を検討し、算出された階調方向または他の情報を検討してもよい。決定モジュール2440は、階調算出において使われる領域サイズと同じまたは異なるサイズの領域に対する、マップまたは他のデータ構造における決定情報を出力する。
各領域に対する決定は、マスクジェネレータ2450に与えられ、マスクジェネレータ2450は、ピクチャ中の領域に対する階調傾斜決定を示す階調傾斜マスク及び/またはバイナリ階調傾斜決定マスク2495を生じる。例えば、マスク2495は、各階調傾斜領域に対して「1」に等しいビット及び他の領域に対して「0」に等しいビットを含む。算出された階調を入力として受諾し、マスクジェネレータ2450は、ダウンサンプリング及びマスク決定を明らかにする、元のピクチャの異なる領域に対する最終的な階調傾斜を示す別のマスク2495を生じ得る。GSR検出装置2400が、階調算出の前にダウンサンプリングを実施すると、マスクジェネレータ2450は、ダウンサンプリングされた領域に対する階調傾斜を、元のピクチャの対応する領域に割り当てることができる。
GSR検出装置2400のコンポーネントは、図24において別々のモジュールとして示してあるが、こうしたコンポーネントの機能は、実装形態に応じて、異なるモジュールに再構成し、結合し、または分けることができる。さらに、GSR検出装置2400のコンポーネントは、他の実装形態では省略することができる。例えば、ダウンサンプリングは必要とされない。GSR検出装置は、テクスチャマップを入力としてとる必要がなく、その代わりに、領域が平滑であるかどうかの指示を他の何らかのソースから受け取ることができる。GSR検出装置は、一貫性チェッカーを使う必要がない。GSR検出装置は、領域が階調傾斜領域であるかどうかについて何らかの種類の決定を行うことになるが、決定がどのようにして行われるかの詳細(決定モジュールにおける決定規則を含む)は、実装に応じて変わり得る。階調傾斜決定は、バイナリマスクに含まれる必要はなく、他の何らかのやり方で、エンコーダの他の部分に伝達することができる。
A.ダウンサンプリングを用いた領域に基づく階調方向推定
計算コストを削減するために、領域に対する階調方向を見つけるのに先立って、ダウンサンプリングを用いることができる。一実装形態では、元のピクチャ幅が1280より大きく高さが720より大きい場合、元のピクチャは、4:1ダウンサンプリングされる。例えば、ピクチャ幅が1920ピクセルかつピクチャ高さが1080ピクセルの1080p配置において、デコーダは、幅が480ピクセルかつ高さが270ピクセルのダウンサンプリングされたピクチャを生じる。
通常、ダウンサンプリングされたピクチャは、同じサイズの複数の非重複矩形領域に分けられる。例えば、ダウンサンプリングの後、各16×16領域は、元の最大解像度ピクチャの4つのマクロブロック(16ブロック)に対応する。ダウンサンプリングされたピクチャ中の領域は、領域が対応する少なくとも12個のブロックが平滑である場合、平滑領域であると見なされる。領域サイズは、実装に依存し、階調推定における領域と元のピクチャ中の領域との間の関係は、ダウンサンプリング比に応じて変化する。
ダウンサンプリングは、フィルム粒子などの異常が存在するのにも関わらず、階調傾斜領域検出の正確さを向上させるのにも有用である。例えば、図25に示すようなDC値のブロックをもつ、ピクチャの一部分2500を検討する。ピクチャ部分2500の大部分は、ピクチャ部分の上から下に向かって徐々に増大するDC値で示したように、一貫した階調傾斜方向を有する。ただし、白いサンプル値は、最大解像度で異常な階調傾斜方向を生じるフィルム粒子によって影響を受けるDC値を表す。単純2:1ダウンサンプリングを水平かつ垂直に行うことにより、暗色の縁のあるサンプル値が、階調傾斜方向を算出するのに使われる。ダウンサンプリングされた値は一貫した階調傾斜を保つので、フィルム粒子は、階調傾斜の検出に影響を与えない。
ダウンサンプリングは、他のピクチャ解像度に対して用いることができ、他のダウンサンプリング比も用いることができる。
B.階調傾斜方向の算出
一実装形態では、平滑領域に対する階調傾斜方向を算出するために、(図26において定義される)2つの16×16コンパスオペレータKH及びKVが領域に適用される。こうすることにより、領域に対して2つの階調gX、gYが生じ、一方は水平方向用で一方は垂直方向用である。16×16領域に対して、コンパスオペレータは、領域の一部の値に正の重み、及び領域の他の値に負の重みを与える。あるいは、コンパスオペレータは、階調を他の何らかのやり方で計算する。
θで示される、階調方向の角度表示は、2つの階調から導出され、[0、255]内の整数にマップされる。図27の疑似コード2700は、図26のコンパスオペレータを使って、領域に対する階調方向を計算する例示的手順(
Figure 0005391290
は、要素ごとの積を示す)を示す。領域がテクスチャ加工された領域またはエッジ領域の場合、ルーチンは−2を返す。領域が平滑だが平坦である(領域に対する階調gX及びgY向けの低絶対値によって指示される)場合、ルーチンは−1を返す。それ以外の場合、ルーチンは、階調傾斜を、同じ逆正接値に対する傾斜方向の間を区別するためのオフセット(例えば、正の逆正接値が、右上傾斜、それとも左下傾斜を示すのか)を用いて、水平階調gXに対する垂直階調gYの逆正接として計算し、傾斜値の範囲を正の数として表す。
あるいは、階調方向は、他の何らかのやり方で計算される。例えば、エンコーダは、異なるコンパスオペレータ、傾斜領域に対する異なる閾値、傾斜を計算するための異なる論理、及び/または傾斜情報の異なる表現を用いる。
C.近隣階調一貫性チェック
エンコーダは、領域が階調傾斜領域と見なされるべきかどうかについて正確な決定を行うのを助けるために、領域に対する階調一貫性チェックを実施することができる。階調一貫性チェックは、階調傾斜コンテンツ検出における「虚報」を避けるのを助ける。一実装形態では、階調傾斜一貫性チェックは、階調傾斜の一貫性を判定するための、3×3スライディングウィンドウ(3領域かける3領域)の使用を伴う。
図28は、階調傾斜領域に対する一貫性チェックを実施する技術を示す。図10のエンコーダ1000などのエンコーダまたは他のツールが、技術2800を実施する。
段階2810で、エンコーダは、スライディングウィンドウをピクチャ中の現在の領域に位置決めする。段階2820で、エンコーダは、スライディングウィンドウ中の領域の階調方向をチェックする。次いで、段階2830で、エンコーダは、現在の領域に対する一貫性決定を行う。例えば、(可能性としてはダウンサンプリングされた)ピクチャ中の検出された平滑領域の階調方向を与えられて、階調一貫性チェックが、3×3の隣接領域を含むスライディングウィンドウを用いて実施される。ウィンドウは、ラスタ走査順に動かされることにより、ウィンドウは、(例えば、ウィンドウを領域上でセンタリングし、一貫性チェックを実施し、次いで、ウィンドウをピクチャを横断するように左から右に動かすことによって)ピクチャ中の領域上に位置決めされる。所与のウィンドウ値に対して、一貫性チェックは、ウィンドウ内部の9個すべての領域の最大階調方向と最小階調方向(例えば、図27を参照)との間の差が、32より小さくなる(傾斜が0から255の数で表されるとき、45度に等しい)よう要求する。この条件が満たされる場合、3×3組の領域に対する移動するウィンドウの値は1となり、満たされない場合は0となる。あるいは、エンコーダは、異なる機構を用いて、例えば、異なるサイズのスライディングウィンドウ、最大傾斜〜最小傾斜に対する異なる傾斜範囲閾値、傾斜一貫性に対する分散などの異なる測度、及び/または異なるチェックパターンを用いて、傾斜方向の一貫性をチェックし、あるいは領域の組とは反対の各領域に対するスライディングウィンドウ値を計算する。一貫性チェックは、異なる表現の傾斜情報に対しては変化する。
エンコーダは次いで、次の領域の組を処理することができる(段階2840)。出力として、エンコーダは、マスクまたは決定情報を示す他のデータ構造を生じる。例えば、エンコーダは、スライディングウィンドウを位置決めし、ピクチャ中の領域の組に対して一貫性チェックを実施し、領域の各組に1(一貫した傾斜)または0という決定を割り当てることによって取得されたバイナリ一貫性マスク(本明細書では、consistencyMaskと呼ばれる)を生じる。
任意選択で、エンコーダは、決定情報に対してさらに処理を実施する。一部の実装形態では、エンコーダは、ピクチャに対する階調一貫性決定を改善するのを助けるために、一貫性マスクに対するモーフォロジー演算(morphological operation)を実施する。2つの可能なモーフォロジー演算は、Erode及びDilateである。
例えば、Erode演算は、consistencyMask中のすべてのビットに対して実施され、その後にDilate演算が続く。Erode演算において、最も近い4つのピクセル(ここでは、consistencyMask中の値)中で、複数が最初に0の印をつけられた場合、最初に1の印をつけられたビットには、0の印がつけられる。Dilate演算において、最も近い4つのピクセル中で、複数が最初に1の印をつけられた場合、最初に0の印をつけられたビットには、1の印がつけられる。
あるいは、エンコーダは、モーフォロジー演算も決定情報の他の後処理も使わずにマスクを生成する。
D.決定規則及びバケット投票
一貫性チェックを実施した後でも、平滑領域の発生率は相当低い場合もあり、平滑領域が相当分離される場合もあるので、平滑領域を特別にエンコードするのは非効率的であろう。例えば、モーフォロジー演算を適用した後でも、依然として、差分量子化を必要としないように十分に分離される、consistencyMaskで表される階調傾斜領域が存在する場合がある。一部の実装形態において、エンコーダは、決定規則(例えば、バケット投票を含む)を使って、ピクチャ中の階調傾斜領域にDQが適用されるべきかどうか決定するのを助ける。図24のGSR検出装置2400では、決定モジュール2440がこのような決定を行う。
一実装形態では、エンコーダは、現在のピクチャが、consistencyMaskに基づく重要な階調傾斜を含むかどうかに関する1つまたは複数のバイナリ決定を行う。マスクconsistencyMaskは、同じサイズの25個の矩形領域(バケットと呼ばれる)に分けられ、各行に5バケット、各列に5バケットがある。(したがって、「バケット」領域は、決定に使われる領域及び階調算出に使われる領域より大きい)。各バケット内部の1がカウントされる。Buckets[i][j]を、場所(i,j)でバケットに含まれる1の数とし、0≦i,j≦4である。水平及び垂直バケットの見積もり、すなわち、それぞれバケットの各列中の1の数及びバケットの各行中の1の数も、以下の関係によって算出される。
Figure 0005391290
本実装形態において、ピクチャは、以下の条件のどれかが満たされる場合、重要な階調傾斜を含むものと見なされる。
1.(バケット分散に関係なく)consistencyMaskにおけるピクセルの少なくとも6%が1の印をつけられている、あるいは
2.バケットの1つまたは複数において、ピクセルの少なくとも75%が1の印をつけられている、あるいは
3.バケット見積もりの1つまたは複数において、ピクセルの少なくとも20%が1の印をつけられている。
例えば、サイズが960×1440のダウンサンプリングされたピクチャに対する16×16領域は、サイズが20×30のマスクで表され(各値は、ダウンサンプリングされたピクチャの3×3組の領域用)、マスクは、25バケットに分けられ、各バケットは、一貫性マスクの24領域に対応する。各バケットは、総計が25×24=600ビットであるconsistencyMaskのうち24ビットを含む。エンコーダは、図29に示すように分散した、各バケット中の1の数をカウントする。エンコーダは、1の総数がすべてのビットの6%より大きいかどうかチェックする。この場合、(図29に示す)1の総数は83であり、これはすべてのビットの6%より大きい。したがって、この場合のエンコーダは、上記条件1を満たすことにより、バケット見積もりをスキップするはずである。1の総数が条件1に対する閾値より下だった場合、エンコーダは、いずれかのバケット中のビットの75%が1である(条件2)かどうかチェックし、必要な場合は、水平及び垂直バケット見積もり(条件3)をチェックして、階調傾斜領域であると指示される領域が、後で説明するマクロブロックレベル階調傾斜マスクなど、階調傾斜マスク及び決定マスクが生成されるべきようなものであるかどうか判定する。
あるいは、エンコーダは、マスクconsistencyMaskまたは他の表現における一貫性情報を処理する、他の決定規則を使う。例えば、条件1、2、3に示すパーセント閾値は、実装に応じて変わり得る。あるいは、条件の1つまたは複数が省略され、または条件が、他の条件(例えば、バケット見積もりに対する異なる方向など)で順序付けられ、置き換えられ、もしくは補完される。一貫性情報のチェックとは別に、エンコーダは、DQがピクチャ中の階調傾斜領域に適用されるべきかどうか、またはどの程度のDQが適用されるべきか決定する際、階調値及び/または他の情報を検討することもできる。別の代替形態として、エンコーダは、こうした決定規則を完全に省いても、単に階調傾斜マスクを生成する際にconsistencyMaskを使ってもよい。
E.マクロブロックレベル階調傾斜マスク生成
階調傾斜情報を、以後のエンコーダ決定実行に有用な形で提供するために、エンコーダは、情報をマップ、マスク、または他のデータ構造に入れる。情報は、階調傾斜領域存在/不在情報ならびに階調傾斜領域に対する実際の階調方向値を含み得る。
階調傾斜存在/不在情報に対しては、階調傾斜領域が検出された場合、エンコーダは、階調傾斜マスクを生じる。例えば、エンコーダは、領域レベルマスク(consistencyMaskなど)を元のピクチャに対するマクロブロックレベルに戻すようにコンバートすることによって、マクロブロックレベル階調傾斜マスク(本明細書では、MBSlopeMaskと呼ばれる)を生じることにより、可能なダウンサンプリングを検討する。consistencyMask中の各値は、元のピクチャ中の9つのマクロブロック、またはピクチャが4:1ダウンサンプリングされている場合は36のマクロブロックに対応することに留意されたい。consistencyMask中の、値が1の各ビットに対しては、エンコーダは、平滑でないマクロブロックを除く、MBSlopeMask中の対応するマクロブロックに1の印をつける。平滑性チェックはやはり、階調傾斜検出における虚報を避けるのを助ける。例えば、一実装形態では、エンコーダは、テクスチャマップを使ってマクロブロック中のブロックに関するテクスチャ情報を取得し、マクロブロックは、マクロブロック内部の4つすべてのブロックが平滑である場合のみ、平滑と見なされる。
あるいは、エンコーダは、階調決定情報を他の何らかの形で提供し、かつ/またはマクロブロック平滑性に対して他の何らかの決定を用いる。
階調方向情報に対して、各領域の階調方向を、それに対応するすべての平滑なマクロブロックを割り当てることによって、階調方向マップが生成される。そうする際、エンコーダは、階調算出前のダウンサンプリングによる、元のピクチャのマクロブロックと階調領域との間の可能なサイズ差を明らかにする。
生成された階調傾斜マスク及び階調方向マップは次いで、エンコーダにおいて、より優れた符号化決定を行うのに使われる。概して、階調傾斜領域検出装置によって生成された結果は、エンコーダによって、他の符号化決定を行うのに用いることができる。例えば、エンコーダは、生成された階調傾斜マスク及び/または階調方向マップに基づいて量子化決定を行うことができる。可能なエンコーダ決定のいくつかについては、後で説明する。
VI.非ゼロAC係数を維持するための量子化調整
通常、ピクチャは、エンコーダ内のレート制御ユニットによってピクチャレベル量子化パラメータを割り当てられる。同じピクチャレベルQPを使うと、高度にテクスチャ加工されたマクロブロックを表すのに使われるビットの量は通常、低テクスチャ加工されたマクロブロックを表すのに使われるビットの量よりはるかに大きい(10〜50倍も大きい)。しかし、人間の視覚システムは、高度にテクスチャ加工された密なエリア内では、歪みに対して、低くテクスチャ加工された平滑なエリア内よりも鈍感なので、低テクスチャ加工されたマクロブロックに対しては比較的小さいQP、及び高度にテクスチャ加工されたマクロブロックに対してはより大きいQPを使うことは意味のあることである。
このことは、マクロブロックを人間の視覚の重要性によって分類し(通常、ブロックの分散またはブロック内部の階調の強度を用いる)、目標数のビットを、何らかの知覚重みづけに比例して割り当てる、よく用いられる戦略につながる。修正されるべき、各マクロブロックに対する量子化パラメータは、ピクチャレベル量子化法を重みづけによって修正することによって選択される。
変化が非常に少ない平滑領域内では、ブロックがしばしば、妥当な低さのQPでも、DC係数のみの(非ゼロAC係数は残らない)エネルギーをもつように量子化されることが、実験により示されている。驚くべきことに、極度に平滑な領域内の隣接ブロック中のDC値は、ブロックごとに1だけ変化し、知覚されるブロック状の、輪郭化アーチファクトは、絶対項におけるこのような小さい差で予期するよりずっと激しい。そうでなければ満足に符号化されていたピクチャ中の比較的小さい領域内でのこのタイプのアーチファクトの出現により、ピクチャ全体に対する知覚される全体的品質が低下させられる。
従来の速度歪みに基づくとともに知覚に基づくマクロブロックQP選択技術は、この状況をうまく扱わない。速度歪みの最適化により、平滑ブロックは、絶対項における歪みが小さいので満足に符号化されたと見なされることになり、したがって、こうしたブロックに対してそれ以上ビットが費やされることはない。一方、典型的な知覚に基づく方法では、マクロブロックを知覚クラスに分類し、マクロブロックの知覚クラスに従って、事前定義されたオフセットをピクチャレベル量子化パラメータに加え、または引くことによって、量子化パラメータを各マクロブロックに割り当てる。事前定義されたオフセットが非常に強度(例えば、平滑領域に対するQPを1に削減する)でない限り、このような方法は、変化の小さい平滑ブロックが単一の非ゼロDC係数に量子化されず、すべてのAC係数がゼロに量子化されることを保証できない。しかし、非常に強度なオフセットの設定により、知覚品質を向上させるのにビットを必要としなくてもよいマクロブロック中で費やされるビットが増加する場合があり、ビットレートを非効率的に上昇させ、エンコーダによってレート制御用に選択されたピクチャレベル量子化パラメータと衝突する。
したがって、後で説明するいくつかの技術及びツールは、ブロッキングまたは輪郭アーチファクトの混入を削減し、または取り除くのに十分なビットが平滑領域に割り振られるように、ピクチャ中でビットを選択的に、思慮深く割り振る。
例えば、エンコーダは、Iピクチャ中の各マクロブロックに対してQPを算出し、量子化パラメータを選択して、平滑ブロックに十分なビットを割り振り、そうすることによって、Iピクチャにおける、知覚されるブロッキングアーチファクトを削減する。1つまたは複数の平滑ブロックを有する各マクロブロックに対して、マクロブロックのブロックごとに量子化された少なくともN個の非ゼロAC係数があるように、QPが選択され、ここでNは1以上の整数である。しばしば、維持されるAC係数は、変換の最低周波数AC基底関数に対する係数であり、この関数は、漸進値の変化をブロックに渡り水平に及び/または垂直に特徴づける。これは、特に変化が少ない平滑領域に対して、各ブロックの、知覚される表示品質をもち直す傾向にある。一実装形態では、エンコーダは、依然としてAC係数を所望通りに維持する、ピクチャQPを超えない最大QPを選択する。非ゼロAC係数が維持されない状況(例えば、非常に平坦なブロック)があり得る。ただし、概して、このように、エンコーダは、比較的小さいQPでビットを費やすことに過度に積極的ではなく、ピクチャQPとの衝突を削減し、または避ける。
妥当なN値により、選択されたQPは、ほとんどのマクロブロックに対して変わらない。すなわち、ほとんどのマクロブロックに対してはピクチャQPと同じであり、ごくわずかの平滑ブロックが影響を受ける。Nの妥当な値は1、2、3または4である。選択されたQPは、低テクスチャのマクロブロックに対して比較的変わりやすい。一実装形態では、N=1または2であると、ピクチャのビットレートが増大し過ぎずに、知覚される品質が向上する。
図30は、1つまたは複数の非ゼロAC係数を維持するのを助けるためのマクロブロックQPを選択する例示的技術3000を示す。図10のエンコーダ1000などのエンコーダまたは他のツールが、技術3000を実施する。
段階3010で、エンコーダは、マクロブロックの各輝度ブロックのN番目に大きいAC係数を見つける。例えば、N=2の場合、エンコーダは、16×16マクロブロックの4つの8×8ブロックそれぞれの2番目に大きいAC係数を見つける。AC(0)、AC(1)、AC(2)、AC(3)を、それぞれ、4つの輝度ブロック0、1、2、3に対するN番目に大きい係数とする。マクロブロック中の異なるブロック組織の場合、N番目の係数は、マクロブロック中のより多くの、またはより少ないブロックに由来する。
段階3020で、エンコーダは、こうしたN番目の係数値のうち、最小のものを見つける。4つのブロックのうちN番目の係数に対して、ACmin=min(AC(0)、AC(1)、AC(2)、AC(3))である。他のブロック番号に対しては、ACminは異なるやり方で計算される。
段階3030で、エンコーダは、マクロブロックに対するQPを、ACminがそのQPに対するデッドゾーン閾値外となるように設定する。デッドゾーン閾値は、QPの値が量子化に使われるときにAC係数をゼロに量子化する「カットオフ」閾値である。デッドゾーン閾値は通常、所与のQPに対して所定であり、それに比例する。デッドゾーン閾値は、0と第1の復元ポイントとの間のいずれかのポイントで選択される。エンコーダが、均一量子化法または不均一量子化法のどちらかを使うとき、第1の復元ポイントは、QP値、及び均一それとも不均一量子化が用いられるかに依存する。一実装形態では、第1の復元ポイントは、量子化された係数レベル=1の復元された値であり、レベルは、均一量子化用には2*QPであり、不均一量子化用には3*QPである。均一量子化の場合、カットオフ閾値は0と2*QPの間となる。不均一量子化の場合、カットオフ閾値は0と3*QPの間となる。例えば、デッドゾーン閾値Z(QP)は、均一量子化用にはZ(QP)=6*QP/5、不均一量子化用にはZ(QP)=2*QPとして選択される。あるいは、他のカットオフ閾値を使うこともできる。
AC係数ACは、Abs(AC)<Z(QP)の場合、ゼロに量子化される。マクロブロック向けにQPを設定する(段階3030)ために、エンコーダは、ACminをQPの候補値に対するZ(QP)と比較し、ピクチャQPで開始し、量子化法に対する最小QPに達し(例えば、QP=1)または不等式Abs(ACmin)>=Z(QP)が満たされるまでQPを減少させることによって、少なくともN個のAC係数を維持することになる、マクロブロック向けQP(QPm)を見つけることができる。不等式Abs(ACmin)>=Z(QP)が満たされる場合、エンコーダは、マクロブロックに対する閾値QPを、不等式を満たす第1のQP(すなわち、最高適格QP)となるように設定する。あるいは、エンコーダは、他の論理を用いて、マクロブロックに対するQPを計算し、例えば、最低QPから始め、またはQP値のバイナリサーチを用いる。
マクロブロック中のすべてのブロックを量子化するためのQPmを用いるプロセスは、無制約ビットレート量子化と呼ぶことができる。制約ビットレート量子化技術において、エンコーダは、上述したように、単独でマクロブロックの輝度ブロックそれぞれに対して所望の数の非ゼロAC係数を生じるのに必要とされる最大QP(ピクチャQP以下)を判定する(例えば、それぞれ、ブロック0、1、2、3に対してQP0、QP1、QP2、QP3)。その結果、QPmは、QP0、QP1、QP2、QP3の最小に等しくなる。ビット使用を削減するために、エンコーダは、QPmの代わりにブロックi(i=0、1、2、3、など)を量子化するのにQPiを使うことができる。マクロブロック全体に対して単一のQPを指定するエンコーダにおいて、エンコーダは代わりに、QPmを使ってブロックを量子化するとき、各ブロックi用のQPiを使って量子化される際に非ゼロであるAC係数だけを保持すればよく、それにより、ブロック中の他のAC係数がQPmによる量子化で維持されることになっても、所与のブロック中の最上位のN個の非ゼロAC係数のみを保存する。図30に示す量子化プロセスに対して、各輝度ブロックに対する量子化プロセスは、2パスプロセスとして実施することができる。最初のパスにおいて、エンコーダは、係数がZ(QPi)より小さい場合はDCT係数をゼロに「閾値化」し、それ以外の場合は、同じDCT係数を保持する。次いで、「閾値化」されたDCT係数は、QPmを使う同じやり方で量子化される。
あるいは、エンコーダは、非ゼロAC係数を他の何らかのやり方で維持する。例えば、エンコーダは、マクロブロック単位以外の単位(例えば、ブロック単位)でQPを選択することができる。エンコーダは、Iピクチャ、Pピクチャ、またはBピクチャ、あるいはその組合せに対するAC係数を維持することができる。
可能な最小QPで、量子化された非ゼロ係数の数がNより小さい場合、Nは、それにしたがって調整してよい。
VII.DCシフトに対する差分量子化
典型的な損失性エンコーディングシナリオでは、量子化されたすべてのDC及びAC係数を、逆量子化後に正確に回復することができるわけではない。例えば、一部のビデオコーデックでは、DC係数値は、いくつかのQP及びDC係数値に対して1だけシフトする(すなわち、事前量子化値に対して相対して1だけ増大または低下する)。この現象はDCシフトの例である。いくつかのDC係数値の表現は、1つまたは複数のより低いQPでの量子化及び逆量子化を通して無損失であるが、他の、より高いQPでは損失性である。
AC係数すべてが0に量子化され、DC係数を正確に回復することができない、いくつかのブロックを有する領域は、DCシフトエリア内で可視的な輪郭化アーチファクトを呈する。輪郭化アーチファクトのあるこのような領域はしばしば、空、水または光線など、平滑な階調傾斜領域である。図31は、量子化及び逆量子化後の階調傾斜領域内の3つの隣接し合うブロックにおけるDCシフトを示す図である。階調傾斜領域内の3つの隣接し合うブロック3102、3104、3106のDC値は、それぞれ、量子化より前には68、69、70である。量子化及び逆量子化の後、ブロック3104のDC値は70にシフトされる。図31に示すように、3つの隣接し合うブロックのDC値は現在、68、70、70である。このようなブロックが階調傾斜領域内にあるとき、量子化されたDC値は、知覚可能な輪郭化アーチファクトを引き起こし得る。例えば、図22A〜Cを再度参照すると、階調傾斜領域2210が量子化されており、結果として、図22Bにおいて可視的な輪郭化アーチファクトを生じる。図22Cに示すように、マクロブロック2250の上半分のブロックに対するDC係数の量子化は、結果として、DC値68から復元された均一な値を生じ、下半分のブロックに対するDC係数の量子化は、結果として、DC値70から復元された均一な値を生じる。
したがって、後で説明するいくつかの技術及びツールは、ビデオエンコーダによって、DCシフトエリアを検出し、DCシフトエリアへの輪郭化アーチファクトの混入を削減し、または避けるように量子化を調整するのに用いられる。
図32は、DCシフトエリアへの輪郭化アーチファクトの混入を削減し、または避けるように量子化を調整する、汎用化された技術3200を示すフローチャートである。図10のエンコーダ1000などのエンコーダまたは他のツールが技術3200を実施する。
段階3210で、エンコーダは、シフトエリアを検出する。DCシフトエリアの検索は、前の階調傾斜検出で手伝うことができる。例えば、エンコーダは、後で説明するように、1つまたは複数の階調傾斜領域を検出し(または以前計算された階調傾斜検出情報を用い)、次いで、階調傾斜領域(群)内のDCシフトブロックを識別することによって、DCシフトエリアを検出する。
段階3220で、エンコーダは、DCシフトエリア内の量子化を調整する。例えば、エンコーダは、DCシフトによって引き起こされる輪郭化アーチファクトの混入を削減し、または避けるために、差分量子化(DQ)を用いて、DCシフトブロックを符号化することができる。エンコーダは、いくつかのマクロブロック(DCシフトブロックを有するもの)に対するQPを削減するが、他のブロック用のQPは変更しない。DCシフトブロックを有するマクロブロック用のQPを削減することにより、マクロブロック用のDC値を無損失に保つのが助けられ、そうすることによって、輪郭化アーチファクトの混入を削減しまたは避けることができる。エンコーダは、二値DQまたは多値DQを使って、DCシフト問題を解決することができ、そうすることによって、ビット使用を制御しながら表示品質を向上させる。分析するべきピクチャがそれ以上ある場合、エンコーダは、次のピクチャを処理する(段階3230)。
あるいは、エンコーダは、DCシフトエリア向けの量子化を、マクロブロック単位で、または他の何らかの単位で調整する。
A.階調傾斜検出
階調傾斜検出は、ピクチャ中の1つまたは複数の階調傾斜領域を識別するのに用いることができる。階調傾斜領域(群)は、特に量子化後に領域(群)内のブロックが非ゼロDC係数値及びゼロだけのAC係数をもつ時、輪郭化アーチファクトを呈する傾向にある。見つけられると、このような領域(群)は、輪郭化アーチファクトの原因となり得るDCシフトブロックに対してチェックしてよい。
例えば、エンコーダは、本明細書において記載した技術(セクションV)または他の何らかの技術を用いて階調傾斜領域を見つける。ブロック中の非ゼロのみの係数が量子化後にDC係数である場合、エンコーダは、そのブロックを、DCシフトエリア調整用の候補として扱う。あるいは、エンコーダは、追加ブロックを、DCシフトエリア調整用の候補として検討する。
B.DCシフトブロックの識別
エンコーダは、特定の候補ブロックを、DCシフトブロックとして識別する。DCシフトブロックの識別は、ブロックを圧縮するのに使われる量子化法及びQPの詳細に依存する。例えば、いくつかの復元されたDC係数が、あるQPでの元の値からシフトするが、比較的粗いQPでシフトする。
あるエンコーダにおける異なるQP用のDCシフト係数の例を、以下のテーブルに挙げる。テーブルは、QPの異なる値に対するDCシフトを呈するDC係数値を示し、QPは、パラメータPQIndex(及び、可能性としては、ハーフステップパラメータ)から明示的に、またはパラメータPQIndex(及び、可能性としては、ハーフステップパラメータ)から暗黙的に導出される。テーブルに列挙されていないDC値は、例示的エンコーダにおける指示されたQPに対して無損失であり、3を下回るQPに対するDC値(テーブルには示していない)はすべて無損失である。例示的エンコーダは、テーブルに示すものより高いQPに対して、DCシフト調整を実施しない。例示的エンコーダにおいて、DC係数の量子化は、異なる量子化法(例えば、均一、不均一)に対して同じである。どのDC係数値がDCシフト係数であるかは、異なるビデオコーデックにおいて異なる。DZ係数の量子化が異なる量子化法において異なる場合、異なる量子化法(例えば、均一、不均一)が、結果として、異なるシフトパターンを生じ得る。
Figure 0005391290
Figure 0005391290
Figure 0005391290
Figure 0005391290
Figure 0005391290
表3に示すDCシフト係数を有する例示的エンコーダは概して、テクスチャ加工された領域に対して、平滑領域とは異なるQPを使う。例示的エンコーダは通常、3〜5の範囲のQPを使って、平滑領域をエンコードする。上の表3に示すように、QP3〜5に対して、シフトされたDC値はすべて、元のDC値より1多い。他のエンコーダは、テクスチャ領域と比較して、平滑領域用に異なるQPを使い得る。
DCシフトブロックが検出される際の輪郭化アーチファクトの混入を削減し、または避けるのを助けるために、例示的エンコーダは、DC値をマクロブロック中で無損失に保つためのDCシフトブロックを含むそうしたマクロブロック用のQPを変更する。具体的には、例示的エンコーダは、DCシフトブロックを含むマクロブロック用QPをQP=2に削減する。(他のエンコーダは、DCシフトエリア向けに他の何らかのQPを使い得る)。概して、エンコーダは結果として、マクロブロックのブロックのDC係数を無損失に取り扱うことになる、使用可能な最大QPを選択することができる。
エンコーダは、階調傾斜領域(群)内のDCシフトブロックを判定するために、ブロックごとの平均輝度値を算出する。というのは、平均輝度値は、(変換における拡張を補償した後の)DCシフト値に対応するからである。平均輝度値により、エンコーダは、どのブロックがDCシフトを有するか推定し、または予測する。あるいは、エンコーダは、現実のDC値を算出し、それらの値をDCシフトテーブル中でルックアップして、どのブロックがシフトを有するかを正確に識別する。
エンコーダは、階調傾斜領域(群)内で、特定の分離DCシフトブロックを排除するための追加処理を実施することができる。例示的エンコーダにおいて、現在のブロックが、階調傾斜領域内に配置されたDCシフトブロックと識別されると、周辺にある4つの隣接ブロックがチェックされる。周辺にある4つの隣接ブロックのいずれかが平滑ブロックであり、現在のブロックのシフトされたDC値より低いDC値をもつ場合、エンコーダは、DC値を無損失に保つために、現在のブロックを含むマクロブロックに対してQP=2を使う。代替的には、エンコーダは、隣接ブロックのチェックを行わず、または、隣接ブロックの他の何らかの配置をチェックして、DCシフトエリア用のQPを変化させるかどうか判定する。
C.多値差分量子化コストモデル
二値DQ及び多値DQは通常、異なるビットレートコストを有する。一実装形態では、「すべてのマクロブロック」二値DQにおけるピクチャQPまたは代替QPを信号通知するのに、マクロブロックごとに1ビットが使われ、多値DQにおけるピクチャQPまたは代替QPを信号通知するのに、マクロブロックごとに少なくとも3ビットが使われる。
エンコーダは、多値DQを使ってDCシフトブロックを含む平滑領域内のQPを削減させることができるが、エンコーダはその代わりに、二値DQシナリオにおいて、すべての平滑領域用のQPを(例えば、QP=2に)調整し、ピクチャの残りには比較的粗いピクチャQPを使うことを選ぶことができる。例えば、エンコーダは、多値DQのシグナリングコストが二値DQのコストに相対して高すぎることがわかった場合、上記のことを行うことができる。
一実装形態では、それぞれQP=3、4、5、6からQP=2に進む平滑ブロックのコストを算出するのに、以下のテーブルが使われる。
g_iSmoothBlockDiffQPCost[4]={18、22、28、36}
このテーブルは、二値DQコストB(QP)のコスト算出の以下の例において使われる。
B(QP)=counts_of_total_MBs+(counts_of_biLevel_Dquan_MBs−counts_of_DC_Shift_Blocks)*g_iSmoothBlockDiffQPCost[QP−3]
コストB(QP)は、マクロブロックごとの二値コストシグナリングのコストを明らかにし、ブロックに対して3、4、5、または6ではなくQP=2を使う際の増大したビットコストを推定する。多値DQコストM(QP)は、以下のように算出される。
M(QP)=(counts_of_frameQP_MBs*3)+(counts_of_biLevel_Dquan_MBs−counts_of_DC_Shift_Blocks)*8+(counts_of_DC_Shift_Blocks*3)
コストM(QP)は、多値DQのシグナリングコストを明らかにし、それにより、いくつかのマクロブロック量子化パラメータに対するエスケープ符号化を仮定する。B(qp)<M(qp)の場合、二値DQが使われることになり、すべての平滑ブロックに対してQP=2が使われることになる。それ以外の場合、多値DQが使われることになる。
あるいは、エンコーダは、異なるタイプまたは構成のDQに対して、他のコストモデルを使う。あるいは、エンコーダは、DCシフトブロックが検出されると、ピクチャ全体に対するQPを削減し、または他の何らかの技術を用いて、DCシフトブロックが検出されるときに輪郭化アーチファクトの混入を削減し、または避けるように量子化を変更する。
D.ピクチャQP切換え
例示的な一エンコーダでは、多値DQは、ピクチャQPからピクチャQP+6までのどのQPを信号通知するのにも3ビットを必要とする。この範囲外のどのQPも、エスケープ符号化により8ビットで信号通知されることになる。平滑領域用に使われる代替QPは一般に、ピクチャQPより小さく、したがってエスケープ符号化を必要とする。
したがって、ピクチャQPを切り換えることにより、多値DQに対する符号化オーバーヘッドをセーブすることができる。例えば、エンコーダは、上述した多値DQコストモデルを使ってピクチャQPを選ぶことができる。例えば、3値のシナリオ(例えば、ピクチャQP、平滑領域QP及びDCシフトQP)の場合、ピクチャQP用の異なる候補値に対して多値DQコストが計算される。エンコーダは、オーバーヘッドコストが最小のピクチャQPを選択することができる。
あるいは、エンコーダは、他の基準を使ってピクチャQPを切り換え、またはピクチャQP切換えを実施しない。
E.高テクスチャマクロブロック用の粗い量子化
多値DQを使うという決定が行われた場合、ピクチャQPより高い(比較的粗い)QPを高テクスチャマクロブロックに割り当てることによって、高テクスチャマクロブロック用に粗い量子化を用いることができる。ピクチャに対して多値DQを(例えば、DCシフトマクロブロックに対して比較的小さいQPを使うために)使うという決定は、ピクチャQPより高いマクロブロックごとの粗いQPを信号通知するための追加オーバーヘッドコストがないことを意味する。例えば、ピクチャQP+1は、量子化レベルでの目立ちやすい差を避けるために、粗いQPとして使うことができ、または他の何らかのQPを使うこともできる。テクスチャ閾値は、現在のピクチャ用に多値DQを使うことをエンコーダが決定した後で、どのマクロブロックが粗いQPで量子化されることになるか判定するのに使うことができる。
あるいは、エンコーダは、他の基準を使って、特定の領域(例えば、マクロブロック)が粗いQPを使うべきかどうか判定し、または粗いQPを使わない。
F.DCシフト量子化のための例示的技術
図33は、DCシフトエリア内での量子化を、量子化アーチファクトの混入を削減し、または避けるように適合させる複合技術3300を示すフローチャートである。図10のエンコーダ1000などのエンコーダまたは他のツールが、技術3300を実施する。この複合技術は、上述した態様のいくつかを組み合わせた例である。他の技術では、この例を参照して記載した態様すべては用いず、または態様を異なる順序もしくは代替的なやり方で実施する。
段階3310で、エンコーダは、例えば、セクションVで記載したように、現在のピクチャ中の1つまたは複数の階調傾斜領域を検出する。段階3320で、エンコーダは、階調傾斜領域(群)内のDCシフトブロックを、例えばDCシフトテーブルを使って検出する。
エンコーダは次いで、ピクチャをどのようにして量子化するか決定する。段階3330で、エンコーダは、ピクチャに対して二値DQを使うかどうか決定する。二値DQを使う場合、エンコーダは、DCシフトエリア(段階3340)及び他の平滑エリア用のピクチャQPより小さいQPを使う。二値DQを使わない場合、段階3350で、エンコーダは、ピクチャに対して多値DQを使うかどうか決定する。多値DQを使う場合、エンコーダは、DCシフトエリア用のピクチャQPより小さいQPを使い(段階3360)、他の平滑エリアに対しては異なるQPを使うことができ、高テクスチャマクロブロックが存在する場合は、高テクスチャマクロブロックに対して粗いQP(ピクチャQPより大きいようなものなど)を使う(段階3370)。エンコーダが、二値DQも多値DQも選ばない場合、エンコーダは、ピクチャQPを削減し、削減されたピクチャQPをDCシフトエリア(段階3380)ならびに他のエリアに対して使う。あるいは、二値DQ及び多値DQのコストが両方とも高すぎる場合、エンコーダは、DCシフトエリアに対するQP削減をスキップする。エンコーダが、量子化方式を選んだら、エンコーダは、段階3390でピクチャを圧縮し、処理されるべきピクチャがどれか残っている場合は、次のピクチャを処理する(段階3395)。
以上、様々な実施形態を参照して本発明の原理を説明し示したが、こうした様々な実施形態は、このような原理から逸脱することなく、構成及び細部において変更できることが理解されよう。本明細書において説明したプログラム、処理、または方法は、特にそう示さない限り、特定のどのタイプのコンピューティング環境にも関連せず、限定されないことを理解されたい。様々なタイプの汎用または専用コンピューティング環境が、本明細書において説明した教示とともに使うことができ、そうした教示に従って動作を実施することができる。ソフトウェアで示した実施形態の要素は、ハードウェアでも実装することができ、その逆も可能である。
本発明の原理を適用することができる可能な多くの実施形態を鑑み、本発明として、このようなすべての実施形態が添付の特許請求の範囲及び等価物の範囲及び精神内であると主張する。

Claims (7)

  1. ビデオエンコーダで使用する方法であって、
    ビデオピクチャシーケンスに対する差分量子化間隔を判定することであって、前記差分量子化間隔は間隔番号によって示されることと、
    前記ビデオピクチャシーケンス中の複数の予測された差分量子化ピクチャに対する差分量子化を実施するときに前記差分量子化間隔を用いることであって、前記差分量子化間隔により、前記エンコーダは、前記差分量子化が実施される予測された差分量子化ピクチャの間の予測ピクチャに対する差分量子化をスキップする、ことと、
    前記ビデオピクチャシーケンスに対するエンコードされたデータを出力すること
    を含むことを特徴とする方法。
  2. 前記差分量子化は、
    前記複数の予測された差分量子化予測ピクチャのうち前記差分量子化が実施される第1の予測ピクチャ用の1つまたは複数の差分量子化ステップサイズを選択することであって、前記1つまたは複数の差分量子化ステップサイズは、前記第1の予測ピクチャ用のピクチャ量子化ステップサイズとは異なる、ことと、
    前記複数の予測された差分量子化予測ピクチャのうち前記差分量子化が実施される第2の予測ピクチャ用の前記1つまたは複数の差分量子化ステップサイズを前記第1の予測ピクチャ用の1つまたは複数の差分量子化ステップサイズとは異なるように変えることであって、前記第2の予測ピクチャは、前記第1の予測ピクチャから前記差分量子化間隔だけ離れている、ことと
    を含むことを特徴とする請求項1に記載の方法。
  3. 前記複数の予測された差分量子化ピクチャは、少なくとも1つのPピクチャを含むことを特徴とする請求項1に記載の方法。
  4. 前記複数の予測された差分量子化ピクチャは、少なくとも1つのBピクチャを含むことを特徴とする請求項1に記載の方法。
  5. 前記差分量子化間隔は一定間隔であることを特徴とする請求項1に記載の方法。
  6. 前記差分量子化間隔は、適応的に調整可能な間隔であることを特徴とする請求項1に記載の方法。
  7. 請求項1に記載の方法をコンピュータに実施させるコンピュータ実行可能命令を格納したことを特徴とするコンピュータ可読記録媒体。
JP2012021885A 2006-04-07 2012-02-03 テクスチャレベルに基づく量子化調整 Expired - Fee Related JP5391290B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/400,788 2006-04-07
US11/400,788 US7995649B2 (en) 2006-04-07 2006-04-07 Quantization adjustment based on texture level

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009504355A Division JP5124562B2 (ja) 2006-04-07 2007-04-09 テクスチャレベルに基づく量子化調整

Publications (3)

Publication Number Publication Date
JP2012085367A JP2012085367A (ja) 2012-04-26
JP2012085367A5 JP2012085367A5 (ja) 2012-09-20
JP5391290B2 true JP5391290B2 (ja) 2014-01-15

Family

ID=38581430

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009504355A Expired - Fee Related JP5124562B2 (ja) 2006-04-07 2007-04-09 テクスチャレベルに基づく量子化調整
JP2012021885A Expired - Fee Related JP5391290B2 (ja) 2006-04-07 2012-02-03 テクスチャレベルに基づく量子化調整

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009504355A Expired - Fee Related JP5124562B2 (ja) 2006-04-07 2007-04-09 テクスチャレベルに基づく量子化調整

Country Status (6)

Country Link
US (2) US7995649B2 (ja)
EP (1) EP2005754B1 (ja)
JP (2) JP5124562B2 (ja)
KR (1) KR101323066B1 (ja)
CN (2) CN101416512B (ja)
WO (1) WO2007117707A1 (ja)

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983835B2 (en) 2004-11-03 2011-07-19 Lagassey Paul J Modular intelligent transportation system
US7801383B2 (en) 2004-05-15 2010-09-21 Microsoft Corporation Embedded scalar quantizers with arbitrary dead-zone ratios
GB0500805D0 (en) * 2005-01-14 2005-02-23 Snell & Wilcox Ltd Image processing
US8422546B2 (en) * 2005-05-25 2013-04-16 Microsoft Corporation Adaptive video encoding using a perceptual model
JP5006633B2 (ja) * 2006-03-10 2012-08-22 キヤノン株式会社 画像符号化装置、画像符号化方法、プログラム及び記憶媒体
US8130828B2 (en) 2006-04-07 2012-03-06 Microsoft Corporation Adjusting quantization to preserve non-zero AC coefficients
US7974340B2 (en) 2006-04-07 2011-07-05 Microsoft Corporation Adaptive B-picture quantization control
US7995649B2 (en) 2006-04-07 2011-08-09 Microsoft Corporation Quantization adjustment based on texture level
US8059721B2 (en) 2006-04-07 2011-11-15 Microsoft Corporation Estimating sample-domain distortion in the transform domain with rounding compensation
US8503536B2 (en) 2006-04-07 2013-08-06 Microsoft Corporation Quantization adjustments for DC shift artifacts
US8711925B2 (en) 2006-05-05 2014-04-29 Microsoft Corporation Flexible quantization
US7714873B2 (en) * 2006-06-29 2010-05-11 Microsoft Corporation Strategies for compressing textures
US7683910B2 (en) * 2006-06-29 2010-03-23 Microsoft Corporation Strategies for lossy compression of textures
US8238424B2 (en) 2007-02-09 2012-08-07 Microsoft Corporation Complexity-based adaptive preprocessing for multiple-pass video compression
US20080212599A1 (en) * 2007-03-01 2008-09-04 Qualcomm Incorporated Methods and systems for encoding data in a communication network
US8498335B2 (en) 2007-03-26 2013-07-30 Microsoft Corporation Adaptive deadzone size adjustment in quantization
US20080240257A1 (en) * 2007-03-26 2008-10-02 Microsoft Corporation Using quantization bias that accounts for relations between transform bins and quantization bins
JPWO2008117541A1 (ja) * 2007-03-28 2010-07-15 パナソニック株式会社 符号化レート変換装置および符号化レート変換方法
US8243797B2 (en) 2007-03-30 2012-08-14 Microsoft Corporation Regions of interest for quality adjustments
AU2007201403A1 (en) * 2007-03-30 2008-10-16 Canon Kabushiki Kaisha Improvement for Spatial Wyner Ziv coding
US8442337B2 (en) 2007-04-18 2013-05-14 Microsoft Corporation Encoding adjustments for animation content
US8331438B2 (en) 2007-06-05 2012-12-11 Microsoft Corporation Adaptive selection of picture-level quantization parameters for predicted video pictures
EP2018070A1 (en) * 2007-07-17 2009-01-21 Thomson Licensing Method for processing images and the corresponding electronic device
US8139081B1 (en) * 2007-09-07 2012-03-20 Zenverge, Inc. Method for conversion between YUV 4:4:4 and YUV 4:2:0
US20090074058A1 (en) * 2007-09-14 2009-03-19 Sony Corporation Coding tool selection in video coding based on human visual tolerance
EP2229782A2 (en) * 2008-01-14 2010-09-22 Thomson Licensing Methods and apparatus for de-artifact filtering using multi-lattice sparsity-based filtering
US8189933B2 (en) * 2008-03-31 2012-05-29 Microsoft Corporation Classifying and controlling encoding quality for textured, dark smooth and smooth video content
CN101557514B (zh) * 2008-04-11 2011-02-09 华为技术有限公司 一种帧间预测编解码方法、装置及系统
US8897359B2 (en) 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding
US20100014777A1 (en) * 2008-07-19 2010-01-21 Headplay (Barbados) Inc. System and method for improving the quality of compressed video signals by smoothing the entire frame and overlaying preserved detail
US20100014596A1 (en) * 2008-07-19 2010-01-21 Headplay (Barbados) Inc. Systems and methods for improving the quality of compressed video signals by smoothing block artifacts
US8077773B2 (en) 2008-07-19 2011-12-13 Worldplay (Barbados) Inc. Systems and methods for highly efficient video compression using selective retention of relevant visual detail
US8139883B2 (en) * 2008-07-29 2012-03-20 Sony Corporation System and method for image and video encoding artifacts reduction and quality improvement
CN101677398A (zh) * 2008-09-19 2010-03-24 三星电子株式会社 场景切换码率控制方法
AU2008240343B2 (en) * 2008-10-31 2012-04-19 Canon Kabushiki Kaisha Rate-distortion control in DVC with no feedback
US20100114871A1 (en) * 2008-10-31 2010-05-06 University Of Southern California Distance Quantization in Computing Distance in High Dimensional Space
US8635357B2 (en) * 2009-09-08 2014-01-21 Google Inc. Dynamic selection of parameter sets for transcoding media data
JP5556996B2 (ja) * 2010-01-06 2014-07-23 ソニー株式会社 画像処理装置および方法
CN101872414B (zh) * 2010-02-10 2012-07-25 杭州海康威视软件有限公司 可去除虚假目标的人流量统计的方法及系统
WO2011140556A1 (en) * 2010-05-07 2011-11-10 Yale University Sparse superposition encoder and decoder for communications system
KR20120016991A (ko) * 2010-08-17 2012-02-27 오수미 인터 프리딕션 방법
KR101682137B1 (ko) 2010-10-25 2016-12-05 삼성전자주식회사 텍스처 및 움직임 감지를 사용한 시간적으로-일관된 변이 추정을 위한 방법 및 장치
US9271005B2 (en) * 2011-02-24 2016-02-23 Vixs Systems, Inc. Multi-pass video encoder and methods for use therewith
KR20120100836A (ko) * 2011-03-03 2012-09-12 한국전자통신연구원 변환 계수 스캔 방법 및 그 장치
WO2012118358A2 (ko) * 2011-03-03 2012-09-07 한국전자통신연구원 변환 계수 스캔 방법 및 그 장치
KR102349348B1 (ko) 2011-06-14 2022-01-10 엘지전자 주식회사 영상 정보 인코딩 및 디코딩 방법
JP5745175B2 (ja) * 2011-06-28 2015-07-08 サムスン エレクトロニクス カンパニー リミテッド 適応的な量子化パラメータ差分値を用いた映像の符号化及び復号化方法と装置
WO2013003823A1 (en) * 2011-06-30 2013-01-03 Huawei Technologies, Co., Ltd. Lossless coding and associated signaling methods for compound video
US20130142250A1 (en) * 2011-12-06 2013-06-06 Broadcom Corporation Region based classification and adaptive rate control method and apparatus
US10205953B2 (en) * 2012-01-26 2019-02-12 Apple Inc. Object detection informed encoding
US9363510B2 (en) 2012-03-02 2016-06-07 Qualcomm Incorporated Scan-based sliding window in context derivation for transform coefficient coding
US9491475B2 (en) 2012-03-29 2016-11-08 Magnum Semiconductor, Inc. Apparatuses and methods for providing quantized coefficients for video encoding
GB2501535A (en) * 2012-04-26 2013-10-30 Sony Corp Chrominance Processing in High Efficiency Video Codecs
CN103428523B (zh) * 2012-05-22 2015-07-08 华为技术有限公司 评估视频质量的方法和装置
US9978156B2 (en) 2012-10-03 2018-05-22 Avago Technologies General Ip (Singapore) Pte. Ltd. High-throughput image and video compression
US10812829B2 (en) 2012-10-03 2020-10-20 Avago Technologies International Sales Pte. Limited 2D block image encoding
EP2904806B1 (en) 2012-10-03 2020-09-02 Avago Technologies International Sales Pte. Limited 2d block image encoding
US9883180B2 (en) * 2012-10-03 2018-01-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Bounded rate near-lossless and lossless image compression
US9805442B2 (en) 2012-10-03 2017-10-31 Avago Technologies General Ip (Singapore) Pte. Ltd. Fine-grained bit-rate control
US9813711B2 (en) 2012-10-03 2017-11-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Hybrid transform-based compression
US9445109B2 (en) 2012-10-16 2016-09-13 Microsoft Technology Licensing, Llc Color adaptation in video coding
KR101491591B1 (ko) * 2012-11-05 2015-02-09 주식회사 케이티 웹앱 가상화 서비스를 제공하는 가상화 서버 및 웹앱 가상화 서비스 제공을 위한 데이터 전송방법
CN103024383B (zh) * 2012-12-14 2016-02-10 北京工业大学 一种基于hevc框架的帧内无损压缩编码方法
CN103051901B (zh) * 2013-01-14 2015-10-28 北京华兴宏视技术发展有限公司 视频数据编码装置和视频数据编码方法
TWI524782B (zh) * 2013-01-17 2016-03-01 瑞昱半導體股份有限公司 影像處理裝置與影像處理方法
CN110047499B (zh) * 2013-01-29 2023-08-29 弗劳恩霍夫应用研究促进协会 低复杂度音调自适应音频信号量化
US9363517B2 (en) 2013-02-28 2016-06-07 Broadcom Corporation Indexed color history in image coding
US9392286B2 (en) 2013-03-15 2016-07-12 Magnum Semiconductor, Inc. Apparatuses and methods for providing quantized coefficients for video encoding
US9998750B2 (en) * 2013-03-15 2018-06-12 Cisco Technology, Inc. Systems and methods for guided conversion of video from a first to a second compression format
CN104077796B (zh) * 2013-03-28 2017-01-18 北京京东方光电科技有限公司 一种将二维图像转换为三维图像的方法和装置
US20150016509A1 (en) * 2013-07-09 2015-01-15 Magnum Semiconductor, Inc. Apparatuses and methods for adjusting a quantization parameter to improve subjective quality
US9344218B1 (en) 2013-08-19 2016-05-17 Zoom Video Communications, Inc. Error resilience for interactive real-time multimedia applications
US20150172660A1 (en) * 2013-12-17 2015-06-18 Magnum Semiconductor, Inc. Apparatuses and methods for providing optimized quantization weight matrices
US9794575B2 (en) 2013-12-18 2017-10-17 Magnum Semiconductor, Inc. Apparatuses and methods for optimizing rate-distortion costs in video encoding
US9930346B2 (en) * 2014-04-15 2018-03-27 Qualcomm Incorporated System and method for flatness detection for display stream compression (DSC)
US9380312B2 (en) * 2014-07-14 2016-06-28 Apple Inc. Encoding blocks in video frames containing text using histograms of gradients
US9911179B2 (en) 2014-07-18 2018-03-06 Dolby Laboratories Licensing Corporation Image decontouring in high dynamic range video processing
EP2980793A1 (en) * 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Encoder, decoder, system and methods for encoding and decoding
US9549188B2 (en) * 2014-07-30 2017-01-17 Intel Corporation Golden frame selection in video coding
US10979705B2 (en) * 2014-08-08 2021-04-13 Qualcomm Incorporated Method for video coding with spatial prediction mode for multi-mode video coding
US10531103B2 (en) 2014-10-16 2020-01-07 Purdue Research Foundation Video coding using a saliency map
US10034005B2 (en) 2015-06-05 2018-07-24 Sony Corporation Banding prediction for video encoding
CL2015002576A1 (es) * 2015-09-10 2016-05-06 Tecnologia Vvd Limitada Método de compresión de imagen y video por vectorización y un dispositivo ejecutor de dicho método en formato de circuito integrado o chip, para equipos móviles y fijos.
US10559106B2 (en) * 2015-11-16 2020-02-11 Huawei Technologies Co., Ltd. Video smoothing method and apparatus
US10574988B2 (en) * 2015-11-19 2020-02-25 Qualcomm Incorporated System and methods for reducing slice boundary visual artifacts in display stream compression (DSC)
US10499056B2 (en) 2016-03-09 2019-12-03 Sony Corporation System and method for video processing based on quantization parameter
TWI610558B (zh) * 2016-05-26 2018-01-01 晨星半導體股份有限公司 位元分配方法及視訊編碼裝置
KR20180056313A (ko) 2016-11-18 2018-05-28 삼성전자주식회사 텍스처를 처리하는 방법 및 장치
US10593122B1 (en) * 2017-01-24 2020-03-17 Amazon Technologies, Inc. Mirroring edge pixels
US10580167B1 (en) * 2017-01-24 2020-03-03 Amazon Technologies, Inc. Excluding masked regions of virtual reality (VR) frames from encoder processing
CN108629237B (zh) * 2017-03-21 2021-11-05 中山大学 基于h.264/avc加密视频的运动异常检测方法
US10674158B2 (en) * 2017-06-15 2020-06-02 Beamr Imaging Ltd Method and system of video coding optimization
US10484695B2 (en) 2017-10-23 2019-11-19 Google Llc Refined entropy coding for level maps
KR102242675B1 (ko) * 2017-11-13 2021-04-22 한국전자통신연구원 양자화 방법 및 장치
US10827173B2 (en) * 2017-11-13 2020-11-03 Electronics And Telecommunications Research Institute Method and apparatus for quantization
US10694205B2 (en) * 2017-12-18 2020-06-23 Google Llc Entropy coding of motion vectors using categories of transform blocks
GB2570710B (en) * 2018-02-05 2022-10-12 Sony Corp Data encoding and decoding
US10805629B2 (en) * 2018-02-17 2020-10-13 Google Llc Video compression through motion warping using learning-based motion segmentation
US10645418B2 (en) 2018-04-13 2020-05-05 Google Llc Morphological anti-ringing filter for lossy image compression
US10645381B2 (en) 2018-04-30 2020-05-05 Google Llc Intra-prediction for smooth blocks in image/video
CN109034235B (zh) * 2018-07-20 2021-09-28 安徽理工大学 一种基于多特征的集成svm噪点检测方法
CN109286817B (zh) * 2018-09-19 2020-12-22 上海电力学院 一种视频编码中dct系数的量化失真信息处理方法
CN109448065B (zh) * 2018-10-11 2023-07-25 北京理工大学 一种基于梯度分块自适应测量的压缩感知方法
CN111050169B (zh) * 2018-10-15 2021-12-14 华为技术有限公司 图像编码中量化参数的生成方法、装置及终端
WO2020111981A1 (en) 2018-11-26 2020-06-04 Huawei Technologies Co., Ltd. Apparatus and method for chrominance quantization parameter derivation
CN114885158B (zh) * 2018-12-21 2023-10-20 华为技术有限公司 位置相关预测组合的模式相关和大小相关块级限制的方法和装置
CN110430430B (zh) * 2019-08-08 2021-07-06 浙江芯昇电子技术有限公司 图像处理方法及装置、存储介质、电子装置
TWI740326B (zh) * 2019-12-26 2021-09-21 宏碁股份有限公司 電腦系統及其影像補償方法
US11490083B2 (en) 2020-02-05 2022-11-01 Qualcomm Incorporated Learned low-complexity adaptive quantization for video compression
US12058348B2 (en) 2020-04-17 2024-08-06 Qualcomm Incorporated Parallelized rate-distortion optimized quantization using deep learning
CN111770330B (zh) * 2020-06-10 2022-11-04 北京达佳互联信息技术有限公司 图像压缩方法、装置以及电子设备
US11381830B2 (en) 2020-06-11 2022-07-05 Tencent America LLC Modified quantizer
CN112505065B (zh) * 2020-12-28 2022-11-04 上海工程技术大学 一种实现室内无人机对大部件表面缺陷进行检测的方法
CN114727108A (zh) * 2021-01-04 2022-07-08 北京金山云网络技术有限公司 量化因子调整方法、装置、电子设备及存储介质
CN114125451B (zh) * 2021-12-01 2022-12-06 锐宸微(上海)科技有限公司 视频编码方法、视频编码装置及影像处理装置
CN114554204A (zh) * 2022-01-20 2022-05-27 珠海全志科技股份有限公司 一种编码图像画质调节方法及装置

Family Cites Families (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US762026A (en) 1902-10-24 1904-06-07 Ver Chemische Werke Actien Ges Process of making fatty acids.
GB897363A (en) 1958-08-13 1962-05-23 Harries Television Res Ltd Improvements in or relating to display devices
FR2532138B1 (fr) 1982-08-20 1986-10-10 Thomson Csf Procede de compression de debit de donnees successivement transmises entre un emetteur et un recepteur de television et systeme mettant en oeuvre le procede
FR2562364B1 (fr) 1984-04-03 1987-06-19 Thomson Csf Procede et systeme de compression de debit de donnees numeriques transmises entre un emetteur et un recepteur de television
CA1327074C (en) 1985-02-28 1994-02-15 Tokumichi Murakami Interframe adaptive vector quantization encoding apparatus and video encoding transmission apparatus
EP0250533B1 (en) 1985-12-24 1993-01-27 British Broadcasting Corporation Method of coding a video signal for transmission in a restricted bandwidth
DE3735349A1 (de) 1986-10-18 1988-04-28 Toshiba Kawasaki Kk Bildpresservorrichtung
JP2783534B2 (ja) 1986-11-13 1998-08-06 キヤノン株式会社 符号化装置
US4774574A (en) 1987-06-02 1988-09-27 Eastman Kodak Company Adaptive block transform image coding method and apparatus
US6563875B2 (en) 1987-12-30 2003-05-13 Thomson Licensing S.A. Adaptive method of encoding and decoding a series of pictures by transformation, and devices for implementing this method
US4821119A (en) 1988-05-04 1989-04-11 Bell Communications Research, Inc. Method and apparatus for low bit-rate interframe video coding
US4965830A (en) 1989-01-17 1990-10-23 Unisys Corp. Apparatus for estimating distortion resulting from compressing digital data
US5128758A (en) 1989-06-02 1992-07-07 North American Philips Corporation Method and apparatus for digitally processing a high definition television augmentation signal
US5179442A (en) 1989-06-02 1993-01-12 North American Philips Corporation Method and apparatus for digitally processing a high definition television augmentation signal
US5241395A (en) 1989-08-07 1993-08-31 Bell Communications Research, Inc. Adaptive transform coding using variable block size
JPH0828875B2 (ja) 1989-08-21 1996-03-21 三菱電機株式会社 符号化装置および復号化装置
US5144426A (en) 1989-10-13 1992-09-01 Matsushita Electric Industrial Co., Ltd. Motion compensated prediction interframe coding system
US5210623A (en) 1989-12-21 1993-05-11 Eastman Kodak Company Apparatus and method for quantizing and/or reconstructing multi-dimensional digital image signals
JP2841765B2 (ja) 1990-07-13 1998-12-24 日本電気株式会社 適応ビット割当て方法及び装置
US5146324A (en) 1990-07-31 1992-09-08 Ampex Corporation Data compression using a feedforward quantization estimator
US5303058A (en) 1990-10-22 1994-04-12 Fujitsu Limited Data processing apparatus for compressing and reconstructing image data
JPH0813138B2 (ja) 1990-11-28 1996-02-07 松下電器産業株式会社 画像符号化装置
US5136377A (en) 1990-12-11 1992-08-04 At&T Bell Laboratories Adaptive non-linear quantizer
JP3187852B2 (ja) 1991-02-08 2001-07-16 ソニー株式会社 高能率符号化方法
US5333212A (en) 1991-03-04 1994-07-26 Storm Technology Image compression technique with regionally selective compression ratio
US5317672A (en) 1991-03-05 1994-05-31 Picturetel Corporation Variable bit rate speech encoder
EP0514688A2 (en) 1991-05-21 1992-11-25 International Business Machines Corporation Generalized shape autocorrelation for shape acquisition and recognition
EP0514663A3 (en) 1991-05-24 1993-07-14 International Business Machines Corporation An apparatus and method for motion video encoding employing an adaptive quantizer
DE69222766T2 (de) 1991-06-04 1998-05-07 Qualcomm, Inc., San Diego, Calif. System zur adaptiven kompression der blockgrössen eines bildes
JP3152765B2 (ja) * 1991-10-31 2001-04-03 株式会社東芝 画像符号化装置
TW241350B (ja) 1991-11-07 1995-02-21 Rca Thomson Licensing Corp
US5253058A (en) 1992-04-01 1993-10-12 Bell Communications Research, Inc. Efficient coding scheme for multilevel video transmission
JP3245977B2 (ja) 1992-06-30 2002-01-15 ソニー株式会社 ディジタル画像信号の伝送装置
JP3348310B2 (ja) 1992-09-28 2002-11-20 ソニー株式会社 動画像符号化方法および動画像符号化装置
US5663763A (en) 1992-10-29 1997-09-02 Sony Corp. Picture signal encoding method and apparatus and picture signal decoding method and apparatus
KR0166722B1 (ko) 1992-11-30 1999-03-20 윤종용 부호화 및 복호화방법 및 그 장치
JP3406336B2 (ja) 1992-12-15 2003-05-12 ソニー株式会社 画像符号化装置、画像符号化方法、画像復号化装置、および画像復号化方法
TW224553B (en) 1993-03-01 1994-06-01 Sony Co Ltd Method and apparatus for inverse discrete consine transform and coding/decoding of moving picture
US5412429A (en) 1993-03-11 1995-05-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Picture data compression coder using subband/transform coding with a Lempel-Ziv-based coder
US5510785A (en) 1993-03-19 1996-04-23 Sony Corporation Method of coding a digital signal, method of generating a coding table, coding apparatus and coding method
US5861921A (en) 1993-03-29 1999-01-19 Canon Kabushiki Kaisha Controlling quantization parameters based on code amount
KR960010196B1 (ko) 1993-06-04 1996-07-26 배순훈 인간의 시각특성을 이용한 디씨(dc) 변환계수 양자화기
US5880775A (en) * 1993-08-16 1999-03-09 Videofaxx, Inc. Method and apparatus for detecting changes in a video display
GB2281465B (en) 1993-08-27 1997-06-04 Sony Uk Ltd Image data compression
US5724097A (en) 1993-10-18 1998-03-03 Mitsubishi Denki Kabushiki Kaisha Adaptive quantization of video based on edge detection
US6104751A (en) 1993-10-29 2000-08-15 Sgs-Thomson Microelectronics S.A. Apparatus and method for decompressing high definition pictures
BE1007807A3 (nl) 1993-11-30 1995-10-24 Philips Electronics Nv Inrichting voor het coderen van een videosignaal.
JP3224465B2 (ja) 1993-12-22 2001-10-29 シャープ株式会社 画像符号化装置
US5537440A (en) 1994-01-07 1996-07-16 Motorola, Inc. Efficient transcoding device and method
KR0183688B1 (ko) 1994-01-12 1999-05-01 김광호 영상부호화방법 및 장치
US5587708A (en) 1994-01-19 1996-12-24 Industrial Technology Research Institute Division technique unified quantizer-dequantizer
US5592226A (en) 1994-01-26 1997-01-07 Btg Usa Inc. Method and apparatus for video data compression using temporally adaptive motion interpolation
JP3197420B2 (ja) * 1994-01-31 2001-08-13 三菱電機株式会社 画像符号化装置
US5654760A (en) 1994-03-30 1997-08-05 Sony Corporation Selection of quantization step size in accordance with predicted quantization noise
CN1127562A (zh) 1994-04-22 1996-07-24 索尼公司 视频信号编码方法及设备和视频信号译码设备
KR0148154B1 (ko) 1994-06-15 1998-09-15 김광호 움직임크기에 따른 동영상데이타의 부호화방법 및 장치
JP3954656B2 (ja) 1994-09-29 2007-08-08 ソニー株式会社 画像符号化装置及び方法
US5802213A (en) 1994-10-18 1998-09-01 Intel Corporation Encoding video signals using local quantization levels
US5539469A (en) 1994-12-30 1996-07-23 Daewoo Electronics Co., Ltd. Apparatus for determining motion vectors through the use of an adaptive median filtering technique
US5724456A (en) 1995-03-31 1998-03-03 Polaroid Corporation Brightness adjustment of images using digital scene analysis
US5781788A (en) 1995-05-08 1998-07-14 Avc Technology, Inc. Full duplex single clip video codec
US5623424A (en) 1995-05-08 1997-04-22 Kabushiki Kaisha Toshiba Rate-controlled digital video editing method and system which controls bit allocation of a video encoder by varying quantization levels
US5793371A (en) 1995-08-04 1998-08-11 Sun Microsystems, Inc. Method and apparatus for geometric compression of three-dimensional graphics data
KR100304660B1 (ko) 1995-09-22 2001-11-22 윤종용 누적에러처리를통한비디오신호부호화방법및부호화기
US5970173A (en) 1995-10-05 1999-10-19 Microsoft Corporation Image compression and affine transformation for image motion compensation
CA2187044C (en) 1995-10-06 2003-07-01 Vishal Markandey Method to reduce perceptual contouring in display systems
US5819035A (en) 1995-10-20 1998-10-06 Matsushita Electric Industrial Co., Ltd. Post-filter for removing ringing artifacts of DCT coding
US6160846A (en) 1995-10-25 2000-12-12 Sarnoff Corporation Apparatus and method for optimizing the rate control in a coding system
US6571019B1 (en) 1995-10-26 2003-05-27 Hyundai Curitel, Inc Apparatus and method of encoding/decoding a coded block pattern
US5926791A (en) 1995-10-26 1999-07-20 Sony Corporation Recursively splitting the low-frequency band with successively fewer filter taps in methods and apparatuses for sub-band encoding, decoding, and encoding and decoding
US5761088A (en) 1995-12-18 1998-06-02 Philips Electronics North America Corporation Method and apparatus for channel identification using incomplete or noisy information
US5878166A (en) 1995-12-26 1999-03-02 C-Cube Microsystems Field frame macroblock encoding decision
US5835145A (en) 1996-01-19 1998-11-10 Lsi Logic Corporation Conversion system using programmable tables for compressing transform coefficients
JP3067628B2 (ja) * 1996-01-19 2000-07-17 日本電気株式会社 画像符号化装置
US5731837A (en) 1996-01-25 1998-03-24 Thomson Multimedia, S.A. Quantization circuitry as for video signal compression systems
JP3521596B2 (ja) 1996-01-30 2004-04-19 ソニー株式会社 信号符号化方法
US6957350B1 (en) 1996-01-30 2005-10-18 Dolby Laboratories Licensing Corporation Encrypted and watermarked temporal and resolution layering in advanced television
US5682152A (en) 1996-03-19 1997-10-28 Johnson-Grace Company Data compression using adaptive bit allocation and hybrid lossless entropy encoding
US5786856A (en) 1996-03-19 1998-07-28 International Business Machines Method for adaptive quantization by multiplication of luminance pixel blocks by a modified, frequency ordered hadamard matrix
US5764803A (en) 1996-04-03 1998-06-09 Lucent Technologies Inc. Motion-adaptive modelling of scene content for very low bit rate model-assisted coding of video sequences
US5850482A (en) 1996-04-17 1998-12-15 Mcdonnell Douglas Corporation Error resilient method and apparatus for entropy coding
US5739861A (en) 1996-05-06 1998-04-14 Music; John D. Differential order video encoding system
US5815097A (en) 1996-05-23 1998-09-29 Ricoh Co. Ltd. Method and apparatus for spatially embedded coding
CN1183769C (zh) 1996-05-28 2005-01-05 松下电器产业株式会社 图像预测编码/解码装置和方法以及记录媒体
US5809178A (en) 1996-06-11 1998-09-15 Apple Computer, Inc. Elimination of visible quantizing artifacts in a digital image utilizing a critical noise/quantizing factor
US6865291B1 (en) 1996-06-24 2005-03-08 Andrew Michael Zador Method apparatus and system for compressing data that wavelet decomposes by color plane and then divides by magnitude range non-dc terms between a scalar quantizer and a vector quantizer
CA2208950A1 (en) 1996-07-03 1998-01-03 Xuemin Chen Rate control for stereoscopic digital video encoding
KR100242637B1 (ko) 1996-07-06 2000-02-01 윤종용 동보상된 영상의 블록화효과 및 링잉노이즈 감소를 위한 루프필터링방법
WO1998009436A1 (en) 1996-08-30 1998-03-05 Sony Corporation Device, method, and medium for recording still picture and animation
FR2753330B1 (fr) 1996-09-06 1998-11-27 Thomson Multimedia Sa Procede de quantification pour codage video
US6348945B1 (en) 1996-09-06 2002-02-19 Sony Corporation Method and device for encoding data
KR100297830B1 (ko) 1996-11-09 2001-08-07 윤종용 영상단위별 비트발생량 조절 장치 및 방법
US6233017B1 (en) 1996-09-16 2001-05-15 Microsoft Corporation Multimedia compression system with adaptive block sizes
GB2317525B (en) * 1996-09-20 2000-11-08 Nokia Mobile Phones Ltd A video coding system
JPH10107644A (ja) 1996-09-26 1998-04-24 Sony Corp 量子化装置および方法、並びに、符号化装置および方法
JP3934712B2 (ja) 1996-09-27 2007-06-20 日本ビクター株式会社 映像信号符号化方法及び装置
KR100303685B1 (ko) * 1996-09-30 2001-09-24 송문섭 영상 예측부호화 장치 및 그 방법
GB2318472B (en) 1996-10-09 2000-11-15 Sony Uk Ltd Processing encoded signals
KR100198788B1 (ko) 1996-12-09 1999-06-15 정선종 차동 펄스 부호 변조기를 포함한 양자화/역양자화 회로
KR100355324B1 (ko) 1996-12-12 2002-11-18 마쯔시다덴기산교 가부시키가이샤 화상부호화장치및화상복호화장치
JP4032446B2 (ja) * 1996-12-12 2008-01-16 ソニー株式会社 映像データ圧縮装置およびその方法
JPH10174103A (ja) 1996-12-13 1998-06-26 Matsushita Electric Ind Co Ltd 画像符号化装置、符号化画像記録媒体、画像復号化装置、画像符号化方法、および符号化画像伝送方法
US6243497B1 (en) 1997-02-12 2001-06-05 Sarnoff Corporation Apparatus and method for optimizing the rate control in a coding system
US6347116B1 (en) 1997-02-14 2002-02-12 At&T Corp. Non-linear quantizer for video coding
US5969764A (en) 1997-02-14 1999-10-19 Mitsubishi Electric Information Technology Center America, Inc. Adaptive video coding method
DE69838639T2 (de) 1997-02-14 2008-08-28 Nippon Telegraph And Telephone Corp. Prädiktives kodierungs- und dekodierungsverfahren für dynamische bilder
US6373894B1 (en) 1997-02-18 2002-04-16 Sarnoff Corporation Method and apparatus for recovering quantized coefficients
US6118817A (en) 1997-03-14 2000-09-12 Microsoft Corporation Digital video signal encoder and encoding method having adjustable quantization
US5844613A (en) 1997-03-17 1998-12-01 Microsoft Corporation Global motion estimator for motion video signal encoding
US6633611B2 (en) 1997-04-24 2003-10-14 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for region-based moving image encoding and decoding
US6058215A (en) 1997-04-30 2000-05-02 Ricoh Company, Ltd. Reversible DCT for lossless-lossy compression
US6088392A (en) 1997-05-30 2000-07-11 Lucent Technologies Inc. Bit rate coder for differential quantization
FI107496B (fi) 1997-07-18 2001-08-15 Nokia Mobile Phones Ltd Kuvan kompressointi
KR100244290B1 (ko) 1997-09-09 2000-02-01 구자홍 저속 전송에서의 동영상을 위한 디블록킹 필터링 방법
US6091777A (en) 1997-09-18 2000-07-18 Cubic Video Technologies, Inc. Continuously adaptive digital video compression system and method for a web streamer
AU1062999A (en) 1997-09-29 1999-04-23 Rockwell Semiconductor Systems, Inc. System and method for compressing images using multi-threshold wavelet coding
US6295379B1 (en) 1997-09-29 2001-09-25 Intel Corporation DPCM image compression with plural quantization table levels
KR100511693B1 (ko) 1997-10-23 2005-09-02 미쓰비시덴키 가부시키가이샤 화상 복호화 장치
US6493385B1 (en) 1997-10-23 2002-12-10 Mitsubishi Denki Kabushiki Kaisha Image encoding method, image encoder, image decoding method, and image decoder
JP4531871B2 (ja) 1997-10-30 2010-08-25 富士通セミコンダクター株式会社 画像情報処理装置及び符号装置
US6731811B1 (en) 1997-12-19 2004-05-04 Voicecraft, Inc. Scalable predictive coding method and apparatus
KR100243430B1 (ko) 1997-12-31 2000-02-01 구자홍 적응형 양자화 제어방법
US6275527B1 (en) 1998-01-14 2001-08-14 Conexant Systems, Inc. Pre-quantization in motion compensated video coding
US6654417B1 (en) 1998-01-26 2003-11-25 Stmicroelectronics Asia Pacific Pte. Ltd. One-pass variable bit rate moving pictures encoding
CA2260578C (en) 1998-01-27 2003-01-14 At&T Corp. Method and apparatus for encoding video shape and texture information
US6360017B1 (en) 1998-03-05 2002-03-19 Lucent Technologies Inc. Perceptual-based spatio-temporal segmentation for motion estimation
US6249614B1 (en) 1998-03-06 2001-06-19 Alaris, Inc. Video compression and decompression using dynamic quantization and/or encoding
KR100281463B1 (ko) * 1998-03-14 2001-02-01 전주범 물체 기반 부호화 시스템의 보조 정보 부호화 장치
TW501022B (en) 1998-03-16 2002-09-01 Mitsubishi Electric Corp Moving picture coding system
US6278735B1 (en) 1998-03-19 2001-08-21 International Business Machines Corporation Real-time single pass variable bit rate control strategy and encoder
US6115689A (en) 1998-05-27 2000-09-05 Microsoft Corporation Scalable audio coder and decoder
US7313318B2 (en) 1998-06-17 2007-12-25 Victor Company Of Japan, Limited Video signal encoding and recording apparatus with variable transmission rate
US6212232B1 (en) 1998-06-18 2001-04-03 Compaq Computer Corporation Rate control and bit allocation for low bit rate video communication applications
JP2000013794A (ja) 1998-06-23 2000-01-14 Mitsubishi Electric Corp 動画像符号化装置、動画像符号化方法、動画像復号装置、および動画像復号方法
US6275614B1 (en) 1998-06-26 2001-08-14 Sarnoff Corporation Method and apparatus for block classification and adaptive bit allocation
US20020001412A1 (en) 1998-07-21 2002-01-03 Hewlett-Packard Company System for variable quantization in jpeg for compound documents
AU717480B2 (en) 1998-08-01 2000-03-30 Korea Advanced Institute Of Science And Technology Loop-filtering method for image data and apparatus therefor
US6389171B1 (en) 1998-08-14 2002-05-14 Apple Computer, Inc. Method and apparatus for a digital video cassette (DVC) decode system
KR100281967B1 (ko) 1998-08-31 2001-02-15 전주범 공간 상관성을 이용한 영상 부호화 장치 및 그 방법
US6256423B1 (en) 1998-09-18 2001-07-03 Sarnoff Corporation Intra-frame quantizer selection for video compression
US6546049B1 (en) 1998-10-05 2003-04-08 Sarnoff Corporation Parameterized quantization matrix adaptation for video encoding
AU743246B2 (en) 1998-11-04 2002-01-24 Mitsubishi Denki Kabushiki Kaisha Image decoder and image encoder
US6393155B1 (en) 1998-11-04 2002-05-21 International Business Machines Corporation Error reduction in transformed digital data
US6256422B1 (en) 1998-11-04 2001-07-03 International Business Machines Corporation Transform-domain correction of real-domain errors
US6584154B1 (en) 1998-11-26 2003-06-24 Oki Electric Industry Co., Ltd. Moving-picture coding and decoding method and apparatus with reduced computational cost
US6418166B1 (en) 1998-11-30 2002-07-09 Microsoft Corporation Motion estimation and block matching pattern
US6223162B1 (en) 1998-12-14 2001-04-24 Microsoft Corporation Multi-level run length coding for frequency-domain audio coding
US6473534B1 (en) 1999-01-06 2002-10-29 Hewlett-Packard Company Multiplier-free implementation of DCT used in image and video processing and compression
US6760482B1 (en) 1999-02-19 2004-07-06 Unisearch Limited Method for visual optimisation of embedded block codes to exploit visual masking phenomena
US6370502B1 (en) 1999-05-27 2002-04-09 America Online, Inc. Method and system for reduction of quantization-induced block-discontinuities and general purpose audio codec
FR2794563B1 (fr) 1999-06-04 2002-08-16 Thomson Multimedia Sa Procede d'adressage de panneau d'affichage au plasma
JP2001008215A (ja) 1999-06-24 2001-01-12 Victor Co Of Japan Ltd 動画像符号化装置及びその方法
US6490319B1 (en) 1999-06-22 2002-12-03 Intel Corporation Region of interest video coding
US6263022B1 (en) 1999-07-06 2001-07-17 Philips Electronics North America Corp. System and method for fine granular scalable video with selective quality enhancement
WO2001006794A1 (en) 1999-07-20 2001-01-25 Koninklijke Philips Electronics N.V. Encoding method for the compression of a video sequence
US6408026B1 (en) 1999-08-06 2002-06-18 Sony Corporation Deadzone quantization method and apparatus for image compression
FI107495B (fi) 1999-08-13 2001-08-15 Nokia Multimedia Network Termi Menetelmä ja järjestely koodatun digitaalisen kuvabittivirran volyymin tai tahdin pienentämiseksi
JP2001136535A (ja) 1999-08-25 2001-05-18 Fuji Xerox Co Ltd 画像符号化装置および量子化特性決定装置
US6788740B1 (en) 1999-10-01 2004-09-07 Koninklijke Philips Electronics N.V. System and method for encoding and decoding enhancement layer data using base layer quantization data
US6693645B2 (en) 1999-12-01 2004-02-17 Ivast, Inc. Optimized BIFS encoder
US6765962B1 (en) 1999-12-02 2004-07-20 Sarnoff Corporation Adaptive selection of quantization scales for video encoding
US6456744B1 (en) 1999-12-30 2002-09-24 Quikcat.Com, Inc. Method and apparatus for video compression using sequential frame cellular automata transforms
FI116819B (fi) 2000-01-21 2006-02-28 Nokia Corp Menetelmä kuvien lähettämiseksi ja kuvakooderi
US6738423B1 (en) 2000-01-21 2004-05-18 Nokia Mobile Phones Ltd. Method for encoding and decoding video information, a motion compensated video encoder and a corresponding decoder
US6600836B1 (en) 2000-01-28 2003-07-29 Qualcomm, Incorporated Quality based image compression
JP2001245303A (ja) * 2000-02-29 2001-09-07 Toshiba Corp 動画像符号化装置および動画像符号化方法
US7035473B1 (en) 2000-03-01 2006-04-25 Sharp Laboratories Of America, Inc. Distortion-adaptive visual frequency weighting
JP4254017B2 (ja) * 2000-03-10 2009-04-15 ソニー株式会社 画像符号化装置及び方法
CN1366778A (zh) 2000-04-27 2002-08-28 皇家菲利浦电子有限公司 视频压缩
US7289154B2 (en) 2000-05-10 2007-10-30 Eastman Kodak Company Digital image processing method and apparatus for brightness adjustment of digital images
US6876703B2 (en) 2000-05-11 2005-04-05 Ub Video Inc. Method and apparatus for video coding
US6747660B1 (en) 2000-05-12 2004-06-08 Microsoft Corporation Method and system for accelerating noise
US6873654B1 (en) 2000-05-16 2005-03-29 Redrock Semiconductor, Inc Method and system for predictive control for live streaming video/audio media
JP2001358948A (ja) 2000-06-15 2001-12-26 Canon Inc 画像処理方法及び装置
US7023922B1 (en) 2000-06-21 2006-04-04 Microsoft Corporation Video coding system and method using 3-D discrete wavelet transform and entropy coding with motion information
US6593925B1 (en) 2000-06-22 2003-07-15 Microsoft Corporation Parameterized animation compression methods and arrangements
US7177358B2 (en) 2000-06-27 2007-02-13 Mitsubishi Denki Kabushiki Kaisha Picture coding apparatus, and picture coding method
US20020021756A1 (en) 2000-07-11 2002-02-21 Mediaflow, Llc. Video compression using adaptive selection of groups of frames, adaptive bit allocation, and adaptive replenishment
JP4256574B2 (ja) 2000-08-04 2009-04-22 富士通株式会社 画像信号符号化方法および画像信号符号化装置
JP3825615B2 (ja) 2000-08-11 2006-09-27 株式会社東芝 動画像符号化装置および動画像符号化方法およびプログラムを記録した媒体
JP3561485B2 (ja) 2000-08-18 2004-09-02 株式会社メディアグルー 符号化信号分離・合成装置、差分符号化信号生成装置、符号化信号分離・合成方法、差分符号化信号生成方法、符号化信号分離・合成プログラムを記録した媒体および差分符号化信号生成プログラムを記録した媒体
US6678422B1 (en) 2000-08-30 2004-01-13 National Semiconductor Corporation Method and apparatus for image data compression with low memory requirement
US6834080B1 (en) 2000-09-05 2004-12-21 Kabushiki Kaisha Toshiba Video encoding method and video encoding apparatus
KR100355829B1 (ko) 2000-12-13 2002-10-19 엘지전자 주식회사 영상의 공간적 유사성을 이용한 dpcm 영상 부호화 장치
US7058127B2 (en) 2000-12-27 2006-06-06 International Business Machines Corporation Method and system for video transcoding
WO2002054777A1 (en) 2000-12-28 2002-07-11 Koninklijke Philips Electronics N.V. Mpeg-2 down-sampled video generation
US6757429B2 (en) 2001-02-21 2004-06-29 Boly Media Communications Inc. Method of compressing digital images
US8374237B2 (en) 2001-03-02 2013-02-12 Dolby Laboratories Licensing Corporation High precision encoding and decoding of video images
FR2822284B1 (fr) 2001-03-13 2004-01-02 Thomson Multimedia Sa Procede d'affichage d'images video sur panneau d'affichage a plasma et panneaux d'affichage a plasma correspondant
US6832005B2 (en) 2001-03-23 2004-12-14 Microsoft Corporation Adaptive encoding and decoding of bi-level images
US6831947B2 (en) 2001-03-23 2004-12-14 Sharp Laboratories Of America, Inc. Adaptive quantization based on bit rate prediction and prediction error energy
WO2002080575A1 (en) * 2001-03-29 2002-10-10 Sony Corporation Image processing apparatus, image processing method, image processing program, and recording medium
US6687294B2 (en) 2001-04-27 2004-02-03 Koninklijke Philips Electronics N.V. Distortion quantizer model for video encoding
US7206453B2 (en) 2001-05-03 2007-04-17 Microsoft Corporation Dynamic filtering for lossy compression
US6882753B2 (en) 2001-06-04 2005-04-19 Silicon Integrated Systems Corp. Adaptive quantization using code length in image compression
US6909745B1 (en) 2001-06-05 2005-06-21 At&T Corp. Content adaptive video encoder
US6704718B2 (en) 2001-06-05 2004-03-09 Microsoft Corporation System and method for trainable nonlinear prediction of transform coefficients in data compression
US6975680B2 (en) 2001-07-12 2005-12-13 Dolby Laboratories, Inc. Macroblock mode decision biasing for video compression systems
US7042941B1 (en) 2001-07-17 2006-05-09 Vixs, Inc. Method and apparatus for controlling amount of quantization processing in an encoder
US7079692B2 (en) 2001-07-24 2006-07-18 Koninklijke Philips Electronics N.V. Reduced complexity video decoding by reducing the IDCT computation in B-frames
US7801215B2 (en) 2001-07-24 2010-09-21 Sasken Communication Technologies Limited Motion estimation technique for digital video encoding applications
US6987889B1 (en) 2001-08-10 2006-01-17 Polycom, Inc. System and method for dynamic perceptual coding of macroblocks in a video frame
US7110455B2 (en) 2001-08-14 2006-09-19 General Instrument Corporation Noise reduction pre-processor for digital video using previously generated motion vectors and adaptive spatial filtering
JP4392782B2 (ja) 2001-08-21 2010-01-06 Kddi株式会社 低レート映像符号化における量子化制御方法
US6977659B2 (en) 2001-10-11 2005-12-20 At & T Corp. Texture replacement in video sequences and images
US6810083B2 (en) 2001-11-16 2004-10-26 Koninklijke Philips Electronics N.V. Method and system for estimating objective quality of compressed video data
KR100643453B1 (ko) 2001-11-17 2006-11-10 엘지전자 주식회사 오브젝트 기반 비트율 제어방법
US6993200B2 (en) 2001-11-20 2006-01-31 Sony Corporation System and method for effectively rendering high dynamic range images
US7295609B2 (en) 2001-11-30 2007-11-13 Sony Corporation Method and apparatus for coding image information, method and apparatus for decoding image information, method and apparatus for coding and decoding image information, and system of coding and transmitting image information
JP4254147B2 (ja) 2001-11-30 2009-04-15 ソニー株式会社 画像情報符号化方法及び装置、並びにプログラム及び記録媒体
WO2003053066A1 (en) 2001-12-17 2003-06-26 Microsoft Corporation Skip macroblock coding
CN101448162B (zh) 2001-12-17 2013-01-02 微软公司 处理视频图像的方法
US6763068B2 (en) 2001-12-28 2004-07-13 Nokia Corporation Method and apparatus for selecting macroblock quantization parameters in a video encoder
WO2003056839A1 (en) 2001-12-31 2003-07-10 Stmicroelectronics Asia Pacific Pte Ltd Video encoding
US6985529B1 (en) 2002-01-07 2006-01-10 Apple Computer, Inc. Generation and use of masks in MPEG video encoding to indicate non-zero entries in transformed macroblocks
US20030128754A1 (en) 2002-01-09 2003-07-10 Hiroshi Akimoto Motion estimation method for control on the basis of scene analysis in video compression systems
US6647152B2 (en) 2002-01-25 2003-11-11 Thomson Licensing S.A. Method and system for contouring reduction
US7430303B2 (en) 2002-03-29 2008-09-30 Lockheed Martin Corporation Target detection method and system
US7116831B2 (en) 2002-04-10 2006-10-03 Microsoft Corporation Chrominance motion vector rounding
RU2322770C2 (ru) 2002-04-23 2008-04-20 Нокиа Корпорейшн Способ и устройство для указания параметров квантователя в системе видеокодирования
WO2003091850A2 (en) 2002-04-26 2003-11-06 The Trustees Of Columbia University In The City Of New York Method and system for optimal video transcoding based on utility function descriptors
US7242713B2 (en) 2002-05-02 2007-07-10 Microsoft Corporation 2-D transforms for image and video coding
US20030215011A1 (en) 2002-05-17 2003-11-20 General Instrument Corporation Method and apparatus for transcoding compressed video bitstreams
US7145948B2 (en) 2002-05-29 2006-12-05 Koninklijke Philips Electronics N.V. Entropy constrained scalar quantizer for a Laplace-Markov source
JP2004023288A (ja) * 2002-06-13 2004-01-22 Kddi R & D Laboratories Inc 動画像符号化のための前処理方式
US6961376B2 (en) 2002-06-25 2005-11-01 General Instrument Corporation Methods and apparatus for rate control during dual pass encoding
US7280700B2 (en) 2002-07-05 2007-10-09 Microsoft Corporation Optimization techniques for data compression
US7599579B2 (en) 2002-07-11 2009-10-06 Ge Medical Systems Global Technology Company, Llc Interpolated image filtering method and apparatus
US6947045B1 (en) 2002-07-19 2005-09-20 At&T Corporation Coding of animated 3-D wireframe models for internet streaming applications: methods, systems and program products
US6891548B2 (en) * 2002-08-23 2005-05-10 Hewlett-Packard Development Company, L.P. System and method for calculating a texture-mapping gradient
US20060256867A1 (en) 2002-09-06 2006-11-16 Turaga Deepak S Content-adaptive multiple description motion compensation for improved efficiency and error resilience
US6795584B2 (en) 2002-10-03 2004-09-21 Nokia Corporation Context-based adaptive variable length coding for adaptive block transforms
US6807317B2 (en) 2002-10-25 2004-10-19 Motorola, Inc. Method and decoder system for reducing quantization effects of a decoded image
US7139437B2 (en) 2002-11-12 2006-11-21 Eastman Kodak Company Method and system for removing artifacts in compressed images
GB0228556D0 (en) 2002-12-06 2003-01-15 British Telecomm Video quality measurement
US7099389B1 (en) 2002-12-10 2006-08-29 Tut Systems, Inc. Rate control with picture-based lookahead window
US8054880B2 (en) 2004-12-10 2011-11-08 Tut Systems, Inc. Parallel rate control for digital video encoder with multi-processor architecture and picture-based look-ahead window
JP4214771B2 (ja) 2002-12-12 2009-01-28 ソニー株式会社 画像処理装置およびその方法と符号化装置
KR20040058929A (ko) 2002-12-27 2004-07-05 삼성전자주식회사 Dtc 기반의 개선된 동영상 부호화 방법 및 그 장치
KR100584552B1 (ko) 2003-01-14 2006-05-30 삼성전자주식회사 동영상 부호화 및 복호화 방법과 그 장치
US7212571B2 (en) 2003-01-31 2007-05-01 Seiko Epson Corporation Method and apparatus for DCT domain filtering for block based encoding
EP1445958A1 (en) 2003-02-05 2004-08-11 STMicroelectronics S.r.l. Quantization method and system, for instance for video MPEG applications, and computer program product therefor
KR100539923B1 (ko) * 2003-02-10 2005-12-28 삼성전자주식회사 화상통화시 화자의 영상을 구분하여 차등적 부호화할 수있는 비디오 엔코더 및 이를 이용한 비디오신호의 압축방법
JP3984178B2 (ja) * 2003-02-13 2007-10-03 日本電信電話株式会社 映像符号化方法、映像符号化装置、映像符号化プログラム及びそのプログラムを記録した記録媒体
KR100977713B1 (ko) 2003-03-15 2010-08-24 삼성전자주식회사 영상신호의 글자 인식을 위한 전처리 장치 및 방법
SG140441A1 (en) 2003-03-17 2008-03-28 St Microelectronics Asia Decoder and method of decoding using pseudo two pass decoding and one pass encoding
EP1465349A1 (en) 2003-03-31 2004-10-06 Interuniversitair Microelektronica Centrum Vzw Embedded multiple description scalar quantizers for progressive image transmission
WO2005004335A2 (en) 2003-06-25 2005-01-13 Georgia Tech Research Corporation Cauchy-distribution based coding system and method
US7512180B2 (en) 2003-06-25 2009-03-31 Microsoft Corporation Hierarchical data compression system and method for coding video data
US7200277B2 (en) 2003-07-01 2007-04-03 Eastman Kodak Company Method for transcoding a JPEG2000 compressed image
US7194031B2 (en) 2003-07-09 2007-03-20 Silicon Integrated Systems Corp. Rate control method with region of interesting support
US8218624B2 (en) 2003-07-18 2012-07-10 Microsoft Corporation Fractional quantization step sizes for high bit rates
US7609763B2 (en) 2003-07-18 2009-10-27 Microsoft Corporation Advanced bi-directional predictive coding of video frames
US7426308B2 (en) 2003-07-18 2008-09-16 Microsoft Corporation Intraframe and interframe interlace coding and decoding
US7602851B2 (en) 2003-07-18 2009-10-13 Microsoft Corporation Intelligent differential quantization of video coding
US7343291B2 (en) 2003-07-18 2008-03-11 Microsoft Corporation Multi-pass variable bitrate media encoding
US20050013498A1 (en) 2003-07-18 2005-01-20 Microsoft Corporation Coding of motion vector information
JP4388771B2 (ja) 2003-07-18 2009-12-24 三菱電機株式会社 動画像復号装置、および動画像復号方法
US7383180B2 (en) 2003-07-18 2008-06-03 Microsoft Corporation Constant bitrate media encoding techniques
US7738554B2 (en) 2003-07-18 2010-06-15 Microsoft Corporation DC coefficient signaling at small quantization step sizes
US7580584B2 (en) 2003-07-18 2009-08-25 Microsoft Corporation Adaptive multiple quantization
US20050024487A1 (en) 2003-07-31 2005-02-03 William Chen Video codec system with real-time complexity adaptation and region-of-interest coding
KR100505699B1 (ko) 2003-08-12 2005-08-03 삼성전자주식회사 실시간 가변 비트율 제어로 화질을 개선시키는 비디오인코더의 인코딩율 제어기, 이를 구비한 비디오 데이터전송 시스템 및 그 방법
US7924921B2 (en) 2003-09-07 2011-04-12 Microsoft Corporation Signaling coding and display options in entry point headers
JP5280003B2 (ja) 2003-09-07 2013-09-04 マイクロソフト コーポレーション 映像コーデックにおけるスライス層
US7724827B2 (en) 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
US20050084013A1 (en) 2003-10-15 2005-04-21 Limin Wang Frequency coefficient scanning paths
US20050105612A1 (en) 2003-11-14 2005-05-19 Sung Chih-Ta S. Digital video stream decoding method and apparatus
US8223844B2 (en) 2003-11-14 2012-07-17 Intel Corporation High frequency emphasis in decoding of encoded signals
JP4063205B2 (ja) * 2003-11-20 2008-03-19 セイコーエプソン株式会社 画像データ圧縮装置及びエンコーダ
EP1536647A1 (en) 2003-11-26 2005-06-01 STMicroelectronics Limited A video decoding device
KR20050061762A (ko) 2003-12-18 2005-06-23 학교법인 대양학원 부호화 모드 결정방법, 움직임 추정방법 및 부호화 장치
US7391809B2 (en) 2003-12-30 2008-06-24 Microsoft Corporation Scalable video transcoding
KR100556340B1 (ko) 2004-01-13 2006-03-03 (주)씨앤에스 테크놀로지 영상 부호화 장치
US20050190836A1 (en) 2004-01-30 2005-09-01 Jiuhuai Lu Process for maximizing the effectiveness of quantization matrices in video codec systems
PL1709801T3 (pl) 2004-01-30 2013-02-28 Panasonic Ip Corp America Sposób dekodowania video z wykorzystaniem adaptacyjnych macierzy kwantyzacji
US7492820B2 (en) 2004-02-06 2009-02-17 Apple Inc. Rate control for video coder employing adaptive linear regression bits modeling
EP1564997A1 (en) 2004-02-12 2005-08-17 Matsushita Electric Industrial Co., Ltd. Encoding and decoding of video images based on a quantization with an adaptive dead-zone size
EP1718080A4 (en) 2004-02-20 2011-01-12 Nec Corp BILDCODE PROCESS, DEVICE AND CONTROL PROGRAM THEREFOR
JP4273996B2 (ja) 2004-02-23 2009-06-03 ソニー株式会社 画像符号化装置及び方法、並びに画像復号装置及び方法
JP2005260467A (ja) * 2004-03-10 2005-09-22 Konica Minolta Opto Inc 画像処理装置
US8503542B2 (en) 2004-03-18 2013-08-06 Sony Corporation Methods and apparatus to reduce blocking noise and contouring effect in motion compensated compressed video
US7689051B2 (en) 2004-04-15 2010-03-30 Microsoft Corporation Predictive lossless coding of images and video
JP4476104B2 (ja) * 2004-04-22 2010-06-09 三洋電機株式会社 符号化回路
US7801383B2 (en) 2004-05-15 2010-09-21 Microsoft Corporation Embedded scalar quantizers with arbitrary dead-zone ratios
US20050259729A1 (en) 2004-05-21 2005-11-24 Shijun Sun Video coding with quality scalability
US20050276493A1 (en) 2004-06-01 2005-12-15 Jun Xin Selecting macroblock coding modes for video encoding
CN100361534C (zh) * 2004-06-14 2008-01-09 厦门华侨电子股份有限公司 视频编码解码系统中用于去除块效应的方法及装置
CN102595131B (zh) 2004-06-18 2015-02-04 汤姆逊许可公司 用于对图像块的视频信号数据进行编码的编码器
US20070230565A1 (en) 2004-06-18 2007-10-04 Tourapis Alexandros M Method and Apparatus for Video Encoding Optimization
FR2872973A1 (fr) 2004-07-06 2006-01-13 Thomson Licensing Sa Procede ou dispositif de codage d'une sequence d'images sources
US7606427B2 (en) 2004-07-08 2009-10-20 Qualcomm Incorporated Efficient rate control techniques for video encoding
KR100678949B1 (ko) 2004-07-15 2007-02-06 삼성전자주식회사 비디오 코딩 및 디코딩 방법, 비디오 인코더 및 디코더
RU2377737C2 (ru) 2004-07-20 2009-12-27 Квэлкомм Инкорпорейтед Способ и устройство для преобразования с повышением частоты кадров с помощью кодера (ea-fruc) для сжатия видеоизображения
US7474316B2 (en) 2004-08-17 2009-01-06 Sharp Laboratories Of America, Inc. Bit-depth extension of digital displays via the use of models of the impulse response of the visual system
US20060056508A1 (en) 2004-09-03 2006-03-16 Phillippe Lafon Video coding rate control
WO2006031737A2 (en) 2004-09-14 2006-03-23 Gary Demos High quality wide-range multi-layer compression coding system
DE102004059993B4 (de) 2004-10-15 2006-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Erzeugen einer codierten Videosequenz unter Verwendung einer Zwischen-Schicht-Bewegungsdaten-Prädiktion sowie Computerprogramm und computerlesbares Medium
US20060098733A1 (en) 2004-11-08 2006-05-11 Kabushiki Kaisha Toshiba Variable-length coding device and method of the same
US20060104350A1 (en) 2004-11-12 2006-05-18 Sam Liu Multimedia encoder
JP2006140758A (ja) 2004-11-12 2006-06-01 Toshiba Corp 動画像符号化方法、動画像符号化装置および動画像符号化プログラム
US7620103B2 (en) 2004-12-10 2009-11-17 Lsi Corporation Programmable quantization dead zone and threshold for standard-based H.264 and/or VC1 video encoding
US8031768B2 (en) 2004-12-15 2011-10-04 Maxim Integrated Products, Inc. System and method for performing optimized quantization via quantization re-scaling
EP1675402A1 (en) 2004-12-22 2006-06-28 Thomson Licensing Optimisation of a quantisation matrix for image and video coding
US8325799B2 (en) 2004-12-28 2012-12-04 Nec Corporation Moving picture encoding method, device using the same, and computer program
US7653129B2 (en) 2004-12-28 2010-01-26 General Instrument Corporation Method and apparatus for providing intra coding frame bit budget
US20080187042A1 (en) 2005-01-07 2008-08-07 Koninklijke Philips Electronics, N.V. Method of Processing a Video Signal Using Quantization Step Sizes Dynamically Based on Normal Flow
US20060188014A1 (en) 2005-02-23 2006-08-24 Civanlar M R Video coding and adaptation by semantics-driven resolution control for transport and storage
US7724972B2 (en) 2005-03-01 2010-05-25 Qualcomm Incorporated Quality metric-biased region-of-interest coding for video telephony
KR100763178B1 (ko) 2005-03-04 2007-10-04 삼성전자주식회사 색 공간 스케일러블 비디오 코딩 및 디코딩 방법, 이를위한 장치
US8325797B2 (en) 2005-04-11 2012-12-04 Maxim Integrated Products, Inc. System and method of reduced-temporal-resolution update for video coding and quality control
US7876833B2 (en) 2005-04-11 2011-01-25 Sharp Laboratories Of America, Inc. Method and apparatus for adaptive up-scaling for spatially scalable coding
CN101120593A (zh) 2005-04-13 2008-02-06 诺基亚公司 可扩展性信息的编码、存储和信号发送
US7620252B2 (en) 2005-04-22 2009-11-17 Hewlett-Packard Development Company, L.P. System and method for compressing an image
US7657098B2 (en) 2005-05-02 2010-02-02 Samsung Electronics Co., Ltd. Method and apparatus for reducing mosquito noise in decoded video sequence
US7684632B2 (en) 2005-05-16 2010-03-23 Hewlett-Packard Development Company, L.P. Estimating image compression quantization parameter values
US8422546B2 (en) 2005-05-25 2013-04-16 Microsoft Corporation Adaptive video encoding using a perceptual model
CN100358364C (zh) * 2005-05-27 2007-12-26 上海大学 基于h.264的精细颗粒可伸缩编码的码率控制方法
JP5404038B2 (ja) 2005-07-01 2014-01-29 ソニック ソリューションズ リミテッド ライアビリティー カンパニー マルチメディア信号エンコーディングに使用される方法、装置およびシステム
KR100667806B1 (ko) 2005-07-07 2007-01-12 삼성전자주식회사 영상 부호화 및 복호화 방법 및 장치
US20070009042A1 (en) 2005-07-08 2007-01-11 Robert Craig Video game system using pre-encoded macro-blocks in an I-frame
MX2008000906A (es) 2005-07-21 2008-03-18 Thomson Licensing Metodo y aparato para la prediccion ponderada para la codificacion escalable de video.
US20070147497A1 (en) 2005-07-21 2007-06-28 Nokia Corporation System and method for progressive quantization for scalable image and video coding
US20070053603A1 (en) 2005-09-08 2007-03-08 Monro Donald M Low complexity bases matching pursuits data coding and decoding
US8879635B2 (en) 2005-09-27 2014-11-04 Qualcomm Incorporated Methods and device for data alignment with time domain boundary
US7778476B2 (en) 2005-10-21 2010-08-17 Maxim Integrated Products, Inc. System and method for transform coding randomization
US7889790B2 (en) 2005-12-20 2011-02-15 Sharp Laboratories Of America, Inc. Method and apparatus for dynamically adjusting quantization offset values
WO2007094100A1 (ja) 2006-02-13 2007-08-23 Kabushiki Kaisha Toshiba 動画像符号化/復号化方法及び装置並びにプログラム
JP4529919B2 (ja) 2006-02-28 2010-08-25 日本ビクター株式会社 適応量子化装置及び適応量子化プログラム
US8848789B2 (en) 2006-03-27 2014-09-30 Qualcomm Incorporated Method and system for coding and decoding information associated with video compression
US8503536B2 (en) 2006-04-07 2013-08-06 Microsoft Corporation Quantization adjustments for DC shift artifacts
US8059721B2 (en) 2006-04-07 2011-11-15 Microsoft Corporation Estimating sample-domain distortion in the transform domain with rounding compensation
US20070237237A1 (en) 2006-04-07 2007-10-11 Microsoft Corporation Gradient slope detection for video compression
US8130828B2 (en) 2006-04-07 2012-03-06 Microsoft Corporation Adjusting quantization to preserve non-zero AC coefficients
JP2007281949A (ja) 2006-04-07 2007-10-25 Matsushita Electric Ind Co Ltd 画像符号化装置、画像符号化復号システム、画像符号化方法、および画像符号化復号方法
US7974340B2 (en) 2006-04-07 2011-07-05 Microsoft Corporation Adaptive B-picture quantization control
US7995649B2 (en) 2006-04-07 2011-08-09 Microsoft Corporation Quantization adjustment based on texture level
US8711925B2 (en) 2006-05-05 2014-04-29 Microsoft Corporation Flexible quantization
EP1871113A1 (en) 2006-06-20 2007-12-26 THOMSON Licensing Method and apparatus for encoding video enhancement layer with multiresolution color scalability
US7885471B2 (en) 2006-07-10 2011-02-08 Sharp Laboratories Of America, Inc. Methods and systems for maintenance and use of coded block pattern information
US7840078B2 (en) 2006-07-10 2010-11-23 Sharp Laboratories Of America, Inc. Methods and systems for image processing control based on adjacent block characteristics
US8773494B2 (en) 2006-08-29 2014-07-08 Microsoft Corporation Techniques for managing visual compositions for a multimedia conference call
US7885476B2 (en) 2006-12-14 2011-02-08 Sony Corporation System and method for effectively performing an adaptive encoding procedure
US8238424B2 (en) 2007-02-09 2012-08-07 Microsoft Corporation Complexity-based adaptive preprocessing for multiple-pass video compression
WO2008102601A1 (ja) 2007-02-23 2008-08-28 Panasonic Corporation 権利情報移動方法、コンテンツ再生装置、半導体装置
US20080240257A1 (en) 2007-03-26 2008-10-02 Microsoft Corporation Using quantization bias that accounts for relations between transform bins and quantization bins
US8498335B2 (en) 2007-03-26 2013-07-30 Microsoft Corporation Adaptive deadzone size adjustment in quantization
US8243797B2 (en) 2007-03-30 2012-08-14 Microsoft Corporation Regions of interest for quality adjustments
US8442337B2 (en) 2007-04-18 2013-05-14 Microsoft Corporation Encoding adjustments for animation content
TW200845723A (en) 2007-04-23 2008-11-16 Thomson Licensing Method and apparatus for encoding video data, method and apparatus for decoding encoded video data and encoded video signal
US8331438B2 (en) 2007-06-05 2012-12-11 Microsoft Corporation Adaptive selection of picture-level quantization parameters for predicted video pictures
US8542730B2 (en) 2008-02-22 2013-09-24 Qualcomm, Incorporated Fast macroblock delta QP decision
US8189933B2 (en) 2008-03-31 2012-05-29 Microsoft Corporation Classifying and controlling encoding quality for textured, dark smooth and smooth video content
US8897359B2 (en) 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding

Also Published As

Publication number Publication date
US20070248164A1 (en) 2007-10-25
CN101416512B (zh) 2011-05-25
KR20090006080A (ko) 2009-01-14
EP2005754A4 (en) 2014-01-22
US20110255595A1 (en) 2011-10-20
JP2009533900A (ja) 2009-09-17
JP2012085367A (ja) 2012-04-26
US7995649B2 (en) 2011-08-09
CN101416512A (zh) 2009-04-22
CN101931815B (zh) 2013-01-09
CN101931815A (zh) 2010-12-29
US8767822B2 (en) 2014-07-01
EP2005754B1 (en) 2017-01-18
EP2005754A1 (en) 2008-12-24
WO2007117707A1 (en) 2007-10-18
KR101323066B1 (ko) 2013-10-29
JP5124562B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5391290B2 (ja) テクスチャレベルに基づく量子化調整
JP5039777B2 (ja) Dcシフトアーチファクトに対する量子化調整
US8130828B2 (en) Adjusting quantization to preserve non-zero AC coefficients
US8442337B2 (en) Encoding adjustments for animation content
US8243797B2 (en) Regions of interest for quality adjustments
US20070237237A1 (en) Gradient slope detection for video compression
US8331438B2 (en) Adaptive selection of picture-level quantization parameters for predicted video pictures
US8189933B2 (en) Classifying and controlling encoding quality for textured, dark smooth and smooth video content
US7974340B2 (en) Adaptive B-picture quantization control
US8422546B2 (en) Adaptive video encoding using a perceptual model
WO2020240509A1 (en) Pre-processing for video compression
JP2000059782A (ja) 空間領域デジタル画像の圧縮方法
JP2001346208A (ja) 画像信号復号化装置および方法
WO2024076273A1 (en) Object-based qp adaptation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees