JP5375162B2 - イオン交換装置 - Google Patents

イオン交換装置 Download PDF

Info

Publication number
JP5375162B2
JP5375162B2 JP2009034594A JP2009034594A JP5375162B2 JP 5375162 B2 JP5375162 B2 JP 5375162B2 JP 2009034594 A JP2009034594 A JP 2009034594A JP 2009034594 A JP2009034594 A JP 2009034594A JP 5375162 B2 JP5375162 B2 JP 5375162B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
storage chamber
coolant
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009034594A
Other languages
English (en)
Other versions
JP2010192225A (ja
Inventor
浩司 久米
明司 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2009034594A priority Critical patent/JP5375162B2/ja
Publication of JP2010192225A publication Critical patent/JP2010192225A/ja
Application granted granted Critical
Publication of JP5375162B2 publication Critical patent/JP5375162B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、燃料電池システムに用いられるイオン交換装置に係り、詳しくは燃料電池の冷却回路や加湿回路等において、冷却液や純水に溶出された不純物イオンを除去するためのイオン交換装置に関する。
燃料電池システムは、水素と大気中の酸素とを電気化学的に反応させることによって電気を発生させるもので、次世代自動車等の高効率の動力源として期待されている。
燃料電池システムにおいては、水素と酸素を反応させる燃料電池を冷却するために、ポンプによって冷却液を強制的に循環させる冷却液循環配管が設けられている。この冷却液循環配管等から不純物イオンが冷却液に溶出すると、冷却液の電気伝導度が上昇し、燃料電池で発電された電気が冷却液を通して外部に漏洩して発電効率の低下を招く。このため、循環配管には、冷却液中の不純物イオンを除去するイオン交換装置が設けられている。
上記のイオン交換装置は、円筒状のケースの内部にイオン交換樹脂を収容しているため、ケースの内部を通過する冷却液がイオン交換樹脂に触れることによって不純物イオンを除去する際に、イオン交換樹脂によって圧力損失が生じる。この圧力損失が高くなると、前記ポンプの容量を大きくしなければならず、燃料電池で発電された電力がポンプによって消費される率が大きくなり、発電効率が低下する。従って、冷却液循環配管に組み込まれたイオン交換装置内の圧力損失は低い方が望ましい。
一方、ケースの内部のイオン交換樹脂の収容量を少なくして、冷却液の圧力損失を低減した場合には、イオン交換装置のイオンを除去する性能、つまりイオン交換効率が低下して、適正なイオン交換を行うことが難しい。
以上のようなイオン交換装置の特性から明らかなように、1種類のイオン交換装置で、圧力損失を低くすることと、イオン交換効率を高くすることとを両立させることは難しい。
従って、低い圧力損失を重視するイオン交換装置と、高いイオン交換効率を重視するイオン交換装置との2種類のイオン交換装置を個別に製造し、燃料電池システムの運転条件に応じて、適正なイオン交換装置を選択して使用するようになっていた。このため、イオン交換装置の種類が多くなり、製造及び保管作業が面倒であるという問題があった。
上記の問題に対処するため、特許文献1に開示されたイオン交換フィルタが提案されている。この交換フィルタは、流体の流入口及び流出口が形成された1種類のケースを用意する。又、前記ケースの内部に収容可能に形成され、かつ圧力損失が高く、かつイオン交換効率が高いカートリッジと、圧力損失が低く、かつイオン交換効率が低いカートリッジとの2種類のカートリッジを用意する。そして、2種類のカートリッジのいずれか一方を選択してケースに収容することによって、圧力損失が高く、かつイオン交換効率が高い交換効率重視のイオン交換フィルタを得たり、該交換効率重視のイオン交換フィルタよりも圧力損失が低く、かつイオン交換効率が低い低圧力損失重視のイオン交換フィルタを得たりすることができるようになっている。
特開2005−161117号公報
ところが、上記従来のイオン交換フィルタは、圧力損失が高く、かつイオン交換効率が高いカートリッジと、圧力損失が低く、かつイオン交換効率が低いカートリッジとの最低2種類のカートリッジが必要となり、部品点数が多くなり、取り扱いが面倒であるという問題があった。
又、イオン交換フィルタのケースに対し、2種類のカートリッジのいずれか一方を選択して収容するという作業も面倒であった。
さらに、燃料電池の運転中にはイオン交換フィルタのカートリッジの交換作業ができないので、燃料電池の運転負荷が変化した場合に、ケース内のイオン交換樹脂の状態を、イオン交換効率が高い交換効率重視の状態と、圧力損失が低い低圧力損失重視の状態との間で変化させることができないという問題があった。
本発明の目的は、上記従来の技術に存する問題点を解消して、燃料電池の運転負荷に応じて、流体に浮遊するイオン交換樹脂を、圧力損失が高く、かつイオン交換効率が高い交換効率重視の状態と、圧力損失が低く、かつイオン交換効率が低い低圧力損失重視の状態との間で適正に変化させることができるイオン交換装置を提供することにある。
上記問題点を解決するために、請求項1に記載の発明は、流体の流入口及び流出口が形成されたケースの内部に粒子状をなす複数のイオン交換樹脂の流出を防止する上流側及び下流側の流出防止網を配設して、両流出防止網の間に前記イオン交換樹脂を収容する収容室を形成し、該収容室に前記イオン交換樹脂を収容室内で移動可能に収容した燃料電池システムに用いられるイオン交換装置において、前記各イオン交換樹脂に収容室の流体の流動圧力によって該イオン交換樹脂を移動させる受圧突部を設け、前記受圧突部は翼をなし、円柱状のイオン交換樹脂の外周面に所定のピッチで軸心方向と平行に延びるように、かつ放射方向に突出するように形成されていることを要旨とする。
請求項2に記載の発明は、流体の流入口及び流出口が形成されたケースの内部に粒子状をなす複数のイオン交換樹脂の流出を防止する上流側及び下流側の流出防止網を配設して、両流出防止網の間に前記イオン交換樹脂を収容する収容室を形成し、該収容室に前記イオン交換樹脂を収容室内で移動可能に収容した燃料電池システムに用いられるイオン交換装置において、前記各イオン交換樹脂に収容室の流体の流動圧力によって該イオン交換樹脂を移動させる受圧突部を設け、前記受圧突部は、球状のイオン交換樹脂の球面に対し、リング状に形成されていることを要旨とする。
請求項3に記載の発明は、請求項2において、前記受圧突部は複数であって、それらは交差するように形成されていることを要旨とする。
請求項に記載の発明は、請求項1〜3のいずれか1項において、前記受圧突部は、イオン交換樹脂と一体に形成されていることを要旨とする
(作用)
この発明は、ケースの内部の収容室を流動する流体の流速が変化することによって、収容室に収容された複数のイオン交換樹脂の受圧突部が受ける流体の圧力が変化するので、各イオン交換樹脂の収容室内での移動量が変化する。ケースの内部を流れる流体の流速が遅い場合には、イオン交換樹脂の受圧突部が受ける流体の圧力が小さいので、粒子状の複数のイオン交換樹脂がケース内で互いに接近することなく、単位容積当たりに浮遊するイオン交換樹脂の密度が低くなる。このため、各イオン交換樹脂相互間の間隔が大きい状態に保持され、流体の有効通路断面積が狭くなることはなく、従って、イオン交換樹脂による流体の圧力損失が低く、かつイオン交換樹脂の表面に流体が触れる量も少なくなって、イオン交換効率が低い低圧力損失重視の状態に保たれる。
一方、ケースの内部を流れる流体の流速が速い場合には、イオン交換樹脂の受圧突部が受ける流体の圧力が大きくなって、複数のイオン交換樹脂がケースの流出口側に移動され、単位容積当りに浮遊するイオン交換樹脂の密度が高くなり、その結果、各イオン交換樹脂相互間の間隔が小さい状態に保持され、流体の有効通路断面積が狭くなる。従って、流体の圧力損失が高くなるとともに、流体がイオン交換樹脂の表面に触れる量が多くなって、イオン交換効率が高い交換効率重視の状態となる。
本発明によれば、燃料電池の運転負荷に応じて、ケースの内部の流体に浮遊するイオン交換樹脂を、圧力損失が高く、かつイオン交換効率が高い交換効率重視の状態と、圧力損失が低く、かつイオン交換効率が低い低圧力損失重視の状態との間で無段階的に変化させることができる。
この発明の燃料電池システムの冷却回路に用いられるイオン交換装置を具体化した一実施形態を示す停止状態の縦断面図。 イオン交換樹脂の斜視図。 低負荷運転状態におけるイオン交換装置内のイオン交換樹脂の浮遊状態を示す縦断面図。 高負荷運転状態におけるイオン交換装置内のイオン交換樹脂の浮遊状態を示す縦断面図。 燃料電池システムの略体回路図。 イオン交換樹脂の製造装置を示す縦断面図。 イオン交換樹脂の成型パイプの横断面図。 冷却液の流量と、冷却液の圧力損失との関係を示すグラフ。 (a)〜(g)は、イオン交換樹脂の別の実施形態を示す斜視図。
以下、本発明を電気自動車の燃料電池の冷却システムのイオン交換装置として具体化した一実施形態を図1〜図8にしたがって説明する。
図5に示す燃料電池11の内部には図示しないが燃料極、酸化剤極及び両極間に介在された固体電解質膜により構成された発電セルが多層に積層されている。前記燃料極側には、水素ガスを燃料として供給するための水素ガス供給系(図示しない)が接続されている。前記酸化剤極側には、酸化剤として酸素ガスを含む空気を供給するための空気供給系(図示しない)が接続されている。そして、燃料電池11内の各発電セルに供給された水素ガスと酸素ガスとが化学的に反応して発電が行われるようになっている。
前記燃料電池11には発電が行われている状態で、該燃料電池11の発電セルの冷却を行う流体としての冷却液をポンプ13により循環させる循環配管12が接続されている。この実施形態では、前記冷却液として水にエチレングリコールを含有させて長寿命化を図った液体が用いられている。前記ポンプ13の上流側の循環配管12には、前記燃料電池11内で発電セルの冷却に用いられ、熱交換により加熱された高温の冷却液を冷却するための熱交換器14が接続されている。この熱交換器14は循環配管12に接続されたラジエータ15と、ラジエータ15に空気を吹き付けて高温の冷却液を冷却するための送風ファン16とにより構成されている。この実施形態では、前記ラジエータ15及び送風ファン16は、電気自動車の例えば走行用モータ或いは各種の制御機器等が発生する熱を熱交換により冷却するための冷却回路に用いられているラジエータに並設されている。
前記ポンプ13が駆動されて燃料電池11内の発電セルに冷却液が供給され、燃料電池11の冷却が行われると、冷却液の中に含まれるエチレングリコールが加熱分解される。すると、最終的に冷却液内にはマイナスの不純物イオンとプラスの不純物イオンとが溶出されることになる。この不純物イオンは電荷をもっているので、この不純物イオンにより冷却液としての電気伝導度が高くなり、燃料電池11で発電された電気が冷却液を通して外部に漏洩する虞がある。このため、前記循環配管12に対し前記ポンプ13と並列にバイパス配管17が接続されている。このバイパス配管17の途中には冷却液に含まれる不純物イオンを吸着除去するためのイオン交換装置18が直列に接続されている。
上記イオン交換装置18について説明すると、図1に示すように、円筒状をなすケース本体19の下端外周部にはフランジ部19aが形成され、該フランジ部19aにはシールリング20を介して冷却液の流入口21aを有する下部蓋板21の上部外周縁に形成されたフランジ部21bが接合されている。前記フランジ部19a,21bはボルト22及びナット23によって締結されている。前記ケース本体19の上端外周縁にはフランジ部19bが形成され、該フランジ部19bにはシールリング20を介して冷却液の流出口24aを有する上部蓋板24の下部外周縁に形成されたフランジ部24bが接合されている。前記フランジ部19b,24bは、同じくボルト22及びナット23によって締結されている。前記ケース本体19、下部蓋板21及び上部蓋板24によって、有底・有蓋円筒状のケース30が形成されている。
前記ケース本体19のフランジ部19aと、下部蓋板21のフランジ部21bとの間には、前記ケース本体19の内部に収容された多数のイオン交換樹脂25の下方(流入口21a)への流出を阻止する下部流出防止網26の外周縁に接合された取付リング27が介在されている。同じく前記ケース本体19のフランジ部19bと、上部蓋板24のフランジ部24bとの間にも、前記イオン交換樹脂25の上方(流出口24a)への流出を阻止する上部流出防止網28の外周縁に接合された取付リング29が介在されている。前記ケース本体19、下部流出防止網26及び上部流出防止網28によって、ケース30の内部にイオン交換樹脂25用の収容室Rが区画形成されている。
前記イオン交換樹脂25は、図2に示すように、短円柱状に形成され、その外周面には、冷却液の流動圧力によってイオン交換樹脂25を冷却液中において移動させ易くするための平翼状の複数の受圧突部31が一体に成形されている。前記受圧突部31は、円柱状のイオン交換樹脂25の外周面に、所定の等ピッチで該イオン交換樹脂25の軸心方向と平行に延びるとともに、かつ放射方向に指向するように長四角板状に成形されている。
前記各イオン交換樹脂25の直径は、例えば500μm〜600μmの範囲に設定され、イオン交換樹脂25の軸線方向の長さも、例えば500μm〜600μmの範囲に設定されている。又、受圧突部31の高さは、例えば300μm〜400μmの範囲に設定されている。前記下部流出防止網26及び上部流出防止網28の網目は、イオン交換樹脂25の流出を防止するため、例えば100μm〜200μmの範囲に設定されている。前記収容室Rには、マイナスのイオンを吸着するアニオンタイプのイオン交換樹脂25と、プラスのイオンを吸着するカチオンタイプのイオン交換樹脂25とが混在するように収容されている。
前記ケース本体19の収容室Rの全容積をV1、イオン交換樹脂25及び受圧突部31の全体積をV2、前記全容積V1から前記全体積V2を減算した空隙の容積をV3とすると、以下の式で表されるように空隙率εの範囲が50〜70%の範囲に設定されている。
ε={ V3/(V1−V2)} ×100
次に、図6及び図7に基づいて、前記受圧突部31を備えたイオン交換樹脂25の成型装置について説明する。
図6に示すように、貯水槽41の底板には、筒状の成型パイプ42の上端開口縁が貯水槽41と連通するように接続されている。該成型パイプ42の下端開口縁には、横円筒状のパイプよりなる二液供給用の液供給配管43の中間部に形成された開口縁に連通するように接続されている。前記成型パイプ42の長さ寸法は、例えば5mm〜8mの範囲に設定されている。成型パイプ42の横断面形状は、図7に示すように、円筒状の成型通路42aと、該通路42aの内周面に対し、図6に示すように、前記成型通路42aの中心軸線と平行に、かつ成型通路42aの円周方向に等ピッチで形成された四条の成形溝42bとにより形成されている。前記成型パイプ42の上部左右両側には、一対のカッター44がアクチュエータ45によって互いに前記成型パイプ42の内部に出没可能に配設されている。前記成型パイプ42とカッター44の先端部との間には、図示しないが貯水槽41内の水やイオン交換樹脂が外部に流出するのを防止するシール機構が設けられている。
次に、上記の成型装置を用いて、イオン交換樹脂25を成型する動作について説明する。
カチオンタイプ及びアニオンタイプの前記イオン交換樹脂25を生成する液体Aとして、スチレンが用いられ、液体Bとしてジビニルベンゼンが用いられる。
図6において、図示しない液体A,Bの供給機構により前記液供給配管43の両端開口から所定の圧力及び流量で液体Aと、液体Bとを供給し、液供給配管43と成型パイプ42の合流部で、前記液体Aと液体Bを混合して、混合液体を成型パイプ42内に流入させる。成型パイプ42内の混合された液体A,Bが反応して、イオン交換樹脂が生成される。この生成されたイオン交換樹脂は、成型パイプ42の通路42a及び成形溝42bによって図2に示すイオン交換樹脂25及び受圧突部31が直列に一体に連結された棒状(これをイオン交換樹脂原形という)となる。前記成型パイプ42の長さ寸法が長く(例えば5mm〜8mm)形成されているので、該成型パイプ42内を上方に移動する間に生成されたイオン交換樹脂原形が硬化する。成型パイプ42内の上側に移動され、かつ硬化されたイオン交換樹脂原形の上端部を、前記アクチュエータ45を作動させてカッター44によって所定長さに切断して、図2に示す受圧突部31を備えたイオン交換樹脂25を製造し、これを貯水槽41の内部に押し出す。
以上の動作を繰り返し行うことにより、図2に示す受圧突部31を有するイオン交換樹脂25を量産する。このイオン交換樹脂25に次工程で付着させる交換基を相違させることによって、アカチオンタイプ及びアニオンタイプのイオン交換樹脂25とする。
次に、前記のように構成された燃料電池システムの冷却回路のイオン交換装置の動作について説明する。
図1は、燃料電池システムの運転が停止され、イオン交換装置18のケース内の収容室R内の冷却液が静止されている状態を示す。この状態においては冷却液の比重よりもイオン交換樹脂25の比重が大きいので、各イオン交換樹脂25は、収容室Rの下部に沈降して堆積された状態となっている。この状態において、図5に示す燃料電池システムの運転が開始されると、燃料電池11に供給された水素ガスと酸素ガスが反応して発電が行われる。発電された直流電流は、インバータにより交流電流に変換され、電気自動車の走行用のモータの駆動に用いられる。
一方、燃料電池11が運転されると、冷却システムのポンプ13が起動され、循環配管12内の冷却液が図5の矢印方向に循環され、熱交換器14によって冷却された冷却液が燃料電池11内に供給され、燃料電池11の発電により生じた熱が冷却液により吸熱されて、燃料電池11が冷却される。吸熱して高温となった冷却液は再び熱交換器14により冷却されて、燃料電池11の冷却に再利用される。
循環配管12内の冷却液は燃料電池11内の発電セルが発生する熱により加熱されることになるので、該冷却液に含まれるエチレングリコールが加熱分解されて不純物イオンが生成される。この不純物イオンを含んだ循環配管12内の冷却液の一部がバイパス配管17から図3又は図4に示すようにイオン交換装置18の下部蓋板21の流入口21aからケース30の内部に流入する。該ケース30内に流入した冷却液は、収容室R内を上方に流動し、上部の流出口24aからバイパス配管17を通して循環配管12に導かれる。収容室R内のアニオン及びカチオンタイプのイオン交換樹脂25によりマイナス及びプラスの不純物イオンが吸着除去される。
図5に示す燃料電池システムの発電動作が行われ、運転条件が通常の負荷状態においては、ポンプ13によって燃料電池11に供給される冷却液の供給量は、高負荷状態と比較して少ない。このため、循環配管12及びバイパス配管17を流れる冷却液の流速が低流速となっている。この状態においては、図3に示すようにイオン交換装置18の収容室Rを流れる冷却液の流速も低いので、イオン交換樹脂25の受圧突部31が受ける冷却液の流動圧力が低い。従って、収容室Rの各イオン交換樹脂25は、上方向に移動しようとする力が弱く、各イオン交換樹脂25は収容室R内の中間領域及び上側領域において互いに分散されて、適度に離隔した浮遊状態となっている。このため、収容室R内の各イオン交換樹脂25の相互間隔、すなわち冷却液の有効通路断面積が広い状態に保持され、冷却液の圧力損失が小さく、イオン交換樹脂25による冷却液の圧力損失が低くなるとともに、冷却液が各イオン交換樹脂25の表面に触れる量も少なく、各イオン交換樹脂25によるイオン交換効率も低い低圧力損失重視の状態に保たれる。
反対に、燃料電池システムが高負荷で運転されている状態においては、循環配管12及びバイパス配管17内を流れる冷却液の流速が速くなって、図4に示すように各イオン交換樹脂25の受圧突部31が受ける冷却液の流動圧力が高い。従って、各イオン交換樹脂25は収容室Rの上側領域に移動されて、各イオン交換樹脂25の相互間隔が短くなり、冷却液の有効通路断面積が減少し、イオン交換樹脂25による冷却液の流動抵抗が大きくなる。この結果、冷却液の圧力損失が高くなるとともに、冷却液が密集状態にある各イオン交換樹脂25の表面に触れる量が多くなって、イオン交換効率が高い状態、つまり交換効率重視の状態に保たれる。
図8は横軸に冷却液の流量をとり、縦軸に冷却液の圧力損失をとったものである。このグラフから明らかなように、従来のように、イオン交換装置に用いるイオン交換樹脂の形状が単なる球体である場合には、二点鎖線で示すように冷却液の流量が増大すると、圧力損失が緩やかに上昇する。一方、イオン交換樹脂25に受圧突部31を形成した場合には、図8の実線で示すように冷却液の流量が増大するに伴って、圧力損失が急激に上昇し、冷却液が低流速でもイオン交換樹脂25による冷却液の圧力損失が急激に上昇する。
収容室R内に従来の球状のみのイオン交換樹脂を多数個収容し、冷却液の流動圧力を受け易くすることによって、図8に示す実施形態のイオン交換装置18と同様の特性が得られるようにすることもできる。しかし、この場合には、イオン交換樹脂の量を多くしなければならないので、材料費のコストアップとなる。
上記実施形態の燃料電池の冷却システムのイオン交換装置18によれば、以下のような効果を得ることができる。
(1)上記実施形態では、イオン交換装置18の収容室Rの内部に受圧突部31を有する複数の粒子状のイオン交換樹脂25を冷却液中において流動可能に収容した。このため、受圧突部31が冷却液の流動圧力を受けてイオン交換樹脂25が動き易くなり、燃料電池11が通常の負荷で運転されて、イオン交換装置18の収容室R内を流れる冷却液の速度が低速であっても、図3に示すようにイオン交換樹脂25が収容室Rの中間領域に互いに所定の間隔で離隔した浮遊状態に保持される。又、燃料電池11が高負荷で運転されて、前記収容室R内を流れる冷却液の速度が速くなると、図4に示すようにイオン交換樹脂25が収容室Rの上側領域に互いに接近した状態に保持される。従って、燃料電池11の運転負荷に応じて、収容室Rの内部の冷却液に浮遊するイオン交換樹脂25を、圧力損失が高く、かつイオン交換効率が高い交換効率重視の状態と、圧力損失が低く、かつイオン交換効率が低い低圧力損失重視の状態との間で適正に変化させることができる。
(2)上記実施形態では、図2に示すようにイオン交換樹脂25の外周面に板状をなす四枚の受圧突部31を一体に成型したので、冷却液の流動圧力を受け易くなり、冷却液内でイオン交換樹脂25をより効果的に移動させることができる。
(3)上記実施形態では、図6及び図7に示すように、成型パイプ42の横断面形状を円筒状の成型通路42aと、四条の成形溝42bとにより形成したので、図2に示す形状(丸十字状)の受圧突部31を備えたイオン交換樹脂25を一体的に容易に成形することができる。
なお、本実施形態は以下のように変更してもよい。
・図9(a)に示すように、球状のイオン交換樹脂25の球面にリング状の二枚の受圧突部31を十字状に一体成形したり、図9(b)に示すように、球状のイオン交換樹脂25の球面にリング状の一枚の受圧突部31を一体成形したり、図9(c)に示すように、イオン交換樹脂25の受圧突部31の横断面をV字状に成形したりしてもよい。図9(a)に示すイオン交換樹脂25は、受圧突部31が十字状になっているので、冷却液の流動圧力を受け易く、イオン交換樹脂25の移動がより適正に行われる。
・図9(d)又は(e)に示すように、球状又はサイコロ状のイオン交換樹脂25の中心部に別体で形成された受圧突部31を貫通してもよい。この受圧突部31として例えばイオン交換機能をもたない樹脂系材料を用いるが、受圧突部31を金属材料で形成して、その表面に樹脂系材料をコーティングしてもよい。
・図9(f)に示すように、イオン交換樹脂25及び受圧突部31を金平糖のように形成したり、図9(g)に示すように星形に形成したり、その他、図示しないが、イオン交換樹脂25の表面に少なくとも一箇所に突起状、板状等の受圧突部を形成したりする等、任意の形状の受圧突部31としてもよい。
・図示しないが、イオン交換樹脂25の表面に対し複数の受圧突部31を互いに交差するように形成してもよい。
・図示しないが、ケース30の形状を円筒状以外に、三角筒、四角筒、五角筒、あるいは多角筒にしたり、円錐台筒状にしたりしてもよい。
・図示しないが、燃料電池11に供給される燃料ガス及び酸化剤ガスを加湿する際にも、電気伝導度の低い純水を供給する必要がある。この加湿用の純水中の電気伝導度を下げるために設けられた純水中のイオンを除去するイオン交換装置に適用してもよい。
・前記実施形態では、電気自動車の燃料電池システムに具体化したが、生産工場、一般家庭の発電用の燃料電池システムの冷却システムに具体化してもよい。
R…収容室、18…イオン交換装置、21a…流入口、24a…流出口、25…イオン交換樹脂、30…ケース、31…受圧突部。

Claims (4)

  1. 流体の流入口及び流出口が形成されたケースの内部に粒子状をなす複数のイオン交換樹脂の流出を防止する上流側及び下流側の流出防止網を配設して、両流出防止網の間に前記イオン交換樹脂を収容する収容室を形成し、該収容室に前記イオン交換樹脂を収容室内で移動可能に収容した燃料電池システムに用いられるイオン交換装置において、
    前記各イオン交換樹脂に収容室の流体の流動圧力によって該イオン交換樹脂を移動させる受圧突部を設け、
    前記受圧突部は翼をなし、円柱状のイオン交換樹脂の外周面に所定のピッチで軸心方向と平行に延びるように、かつ放射方向に突出するように形成されていることを特徴とするイオン交換装置。
  2. 流体の流入口及び流出口が形成されたケースの内部に粒子状をなす複数のイオン交換樹脂の流出を防止する上流側及び下流側の流出防止網を配設して、両流出防止網の間に前記イオン交換樹脂を収容する収容室を形成し、該収容室に前記イオン交換樹脂を収容室内で移動可能に収容した燃料電池システムに用いられるイオン交換装置において、
    前記各イオン交換樹脂に収容室の流体の流動圧力によって該イオン交換樹脂を移動させる受圧突部を設け、
    前記受圧突部は、球状のイオン交換樹脂の球面に対し、リング状に形成されていることを特徴とするイオン交換装置。
  3. 請求項において、前記受圧突部は複数であって、それらは交差するように形成されていることを特徴とするイオン交換装置。
  4. 請求項1〜3のいずれか1項において、前記受圧突部は、イオン交換樹脂と一体に形成されていることを特徴とするイオン交換装置。
JP2009034594A 2009-02-17 2009-02-17 イオン交換装置 Expired - Fee Related JP5375162B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034594A JP5375162B2 (ja) 2009-02-17 2009-02-17 イオン交換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034594A JP5375162B2 (ja) 2009-02-17 2009-02-17 イオン交換装置

Publications (2)

Publication Number Publication Date
JP2010192225A JP2010192225A (ja) 2010-09-02
JP5375162B2 true JP5375162B2 (ja) 2013-12-25

Family

ID=42818042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034594A Expired - Fee Related JP5375162B2 (ja) 2009-02-17 2009-02-17 イオン交換装置

Country Status (1)

Country Link
JP (1) JP5375162B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187440A (ja) * 2011-03-08 2012-10-04 Toyota Boshoku Corp イオン交換樹脂用のカートリッジハウジング
JP6617685B2 (ja) 2016-11-22 2019-12-11 豊田合成株式会社 イオン交換器
JP6694378B2 (ja) 2016-12-26 2020-05-13 本田技研工業株式会社 燃料電池発電システムの純水精製装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487793U (ja) * 1990-11-30 1992-07-30
JP3465385B2 (ja) * 1994-12-14 2003-11-10 松下電器産業株式会社 軟水化装置
JP2005081199A (ja) * 2003-09-05 2005-03-31 Nissan Motor Co Ltd イオン交換樹脂フィルタ
JP4102744B2 (ja) * 2003-11-28 2008-06-18 東洋▲ろ▼機製造株式会社 イオン交換フィルタ
JP2005327571A (ja) * 2004-05-13 2005-11-24 Ebara Ballard Corp イオン交換樹脂カラムおよび燃料電池発電システム
JP2005353376A (ja) * 2004-06-09 2005-12-22 Japan Storage Battery Co Ltd 固体高分子形燃料電池用の電極の製造方法
JP2008027684A (ja) * 2006-07-20 2008-02-07 Toyota Motor Corp イオン交換器

Also Published As

Publication number Publication date
JP2010192225A (ja) 2010-09-02

Similar Documents

Publication Publication Date Title
US7261816B2 (en) Ion-exchange filter
US8518254B2 (en) Coolant demineralizer for a fuel cell vehicle
CA2811875C (en) Lithium accumulator
JP2006278332A (ja) 二次電池モジュール
US8709251B2 (en) Coolant demineralizer for fuel cell vehicle
Madani et al. A review of thermal management and safety for lithium ion batteries
JP5375162B2 (ja) イオン交換装置
CN111312954B (zh) 一种电动汽车电池热管理装置及热管理方法
US10581092B2 (en) Fuel cell cooling system ion exchanger having introduction device for partitioning coolant in communicating pipe
JPWO2013054758A1 (ja) イオン交換器及びイオン交換器を備える冷却装置
JP2011083744A (ja) 冷却水供給装置のイオン交換器
JP5297278B2 (ja) イオン交換器
US11050068B2 (en) Ion exchanger
JP5021868B2 (ja) 固体高分子型燃料電池システム
US9614234B2 (en) Ion-exchange equipment
CN103811782B (zh) 用于燃料电池的冷却装置
KR102003541B1 (ko) 레독스 흐름전지용 복합 전극 및 이의 제조방법
US20120145550A1 (en) Apparatus for removing ions in cooling water for fuel cell vehicle
JP4815105B2 (ja) 燃料電池用イオン除去フィルタ及びその製造方法
JP2012187439A (ja) イオン交換器
KR20140111066A (ko) 리튬 공기전지 시스템 및 이를 포함하는 자동차
JP5446712B2 (ja) イオン交換樹脂及びイオン交換樹脂の形状保持方法
JP2010182509A (ja) 燃料電池の冷却システム
JP5262839B2 (ja) 燃料電池の冷却システム
KR101978472B1 (ko) 레독스 흐름전지용 복합 전극 및 이의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees