JP5372879B2 - Earthquake disaster prevention system - Google Patents

Earthquake disaster prevention system Download PDF

Info

Publication number
JP5372879B2
JP5372879B2 JP2010208723A JP2010208723A JP5372879B2 JP 5372879 B2 JP5372879 B2 JP 5372879B2 JP 2010208723 A JP2010208723 A JP 2010208723A JP 2010208723 A JP2010208723 A JP 2010208723A JP 5372879 B2 JP5372879 B2 JP 5372879B2
Authority
JP
Japan
Prior art keywords
earthquake
long
period
building
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010208723A
Other languages
Japanese (ja)
Other versions
JP2011043511A (en
Inventor
朋之 濱田
弘市 宮田
昭弘 大宮
政之 重田
裕二 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Mito Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2010208723A priority Critical patent/JP5372879B2/en
Publication of JP2011043511A publication Critical patent/JP2011043511A/en
Application granted granted Critical
Publication of JP5372879B2 publication Critical patent/JP5372879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To early and reliably detect earthquake motion really dangerous for a building. <P>SOLUTION: An earthquake disaster prevention system receives emergency earthquake alert information containing at least information of an earthquake location and its scale (magnitude) delivered when an earthquake occurs, and determines a risk of the building. The system includes a reception terminal 4 for receiving the emergency earthquake alert information and a vibration meter 2 disposed in the building for measuring at least one of acceleration, displacement and earthquake intensity generated by the earthquake as vibration, and determines generation of long-period ground motion for the building based on the earthquake location and magnitude included in the emergency earthquake alert information, and whether a long-period component containing a natural vibration period of the building is extracted from the signal measured by the vibration meter 2. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、プレート境界地震である海溝型地震などによる長周期地震動(周期が数秒から十数秒の表面波)による被害を防ぐ地震防災システムに関し、特に長周期地震動が発生した場合にエレベーターを安全に停止させるものに好適である。   The present invention relates to an earthquake disaster prevention system that prevents damage caused by long-period ground motion (surface waves with a period of several seconds to tens of seconds) due to a trench-type earthquake that is a plate boundary earthquake, and in particular, when a long-period ground motion occurs, the elevator can be safely Suitable for stopping.

近年、内陸の活断層に起こる内陸地震に対して震源からかなり離れた地域まで長周期地震動を引き起こす巨大なプレート境界地震により、超高層建築物,長大橋,石油タンクなどへの被害をできるだけ少なくする対策の必要性が要求されている。   In recent years, damage to skyscrapers, long bridges, oil tanks, etc. is minimized by huge plate boundary earthquakes that cause long-period ground motions to areas far away from the epicenter of inland earthquakes that occur in inland active faults. The need for countermeasures is required.

特に、エレベーターにおいて、地震発生時に配信される緊急地震速報に基づいて建物の位置に応じて地震波による最大加速度を予想し、かごの管制運転を行うことが知られ、例えば特許文献1に記載されている。   In particular, in elevators, it is known to predict the maximum acceleration due to seismic waves according to the position of a building based on an emergency earthquake bulletin delivered when an earthquake occurs, and to control a car, for example, described in Patent Document 1 Yes.

また、地震情報に基づいてより一層高い精度で想定位置における地震動強さを評価するため、地震の震源位置およびマグニチュードから距離減衰式によって予測することが知られ、例えば特許文献2に記載されている。   In addition, in order to evaluate the seismic intensity at an assumed position with higher accuracy based on earthquake information, it is known to make a prediction by a distance attenuation formula from the position and magnitude of the earthquake, and is described in Patent Document 2, for example. .

さらに、長周期地震動や強風時による主ロープなどの長尺物に振れを精度よく感知するため、建屋上部に振動感知器を設置し、その信号に基づいて主ロープの振れ応答を予測演算することが知られ、例えば特許文献3に記載されている。   In addition, in order to accurately detect vibrations in long objects such as main ropes caused by long-period ground motion or strong winds, a vibration detector is installed at the top of the building, and the main rope's vibration response is predicted and calculated based on the signals. Is known, and is described, for example, in Patent Document 3.

特開2007−161378号公報JP 2007-161378 A 特開2007−71707号公報JP 2007-71707 A 特開2007−331901号公報JP 2007-331901 A

通常の地震である内陸地震では、主要動の到達後時間の経過と共にほぼ全ての周期成分が減衰するのに対して、海溝型地震では長い周期成分により地盤が共振して、長周期地震動が数分に渡って持続する。また、海溝型の巨大地震による揺れは震源近傍の地域では短周期も長周期をももつ広帯域強震動を引き起こしたり、震源から遥か離れた地域まで殆ど減衰しないで伝わり大都市の堆積盆地地域で大きく増幅されたり、する性質を持っている。   Inland earthquakes, which are normal earthquakes, almost all periodic components attenuate with the passage of time after the arrival of the main motion, whereas in trench-type earthquakes, the ground resonates due to long periodic components, and several long-period earthquake motions occur. Lasts for minutes. Also, tremors caused by trench-type giant earthquakes cause broadband strong ground motions with short and long periods in the vicinity of the epicenter, and are transmitted to areas far away from the epicenter with little attenuation, and are large in sedimentary basin areas of large cities. It has the property of being amplified.

したがって、上記従来技術のように、単に、地震波による最大加速度を予想したり、地震動強さを震源位置およびマグニチュードから距離減衰式によって予測したり、振動感知器により長周期地震動を感知したり、するだけでは通常の一般的な地震(内陸地震)とプレート境界地震とを明確に区別することは困難である。つまり、ビルの所在地の比較的近くで発生した地震では、全ての周期成分が大きくなるので、通常の地震であり、かつ危険性の少ない規模の地震であっても長周期地震動と判定され、遠方で発生した長周期地震動に対しては、初期段階では揺れが小さいので長周期地震動であるとの判定ができず、大きく増幅されて既に危険な状態にならないと判定ができないことになり、危険であるとの判定が遅くなる。   Therefore, just as in the above prior art, the maximum acceleration due to the seismic wave is predicted, the seismic intensity is predicted by the distance attenuation formula from the epicenter position and magnitude, or the long period ground motion is detected by the vibration sensor. It is difficult to clearly distinguish a normal earthquake (inland earthquake) from a plate boundary earthquake by itself. In other words, since all periodic components increase in earthquakes that occur relatively close to the location of the building, even earthquakes that are normal and less dangerous are judged to be long-period ground motions. For long-period ground motion generated in, it is difficult to judge that it is long-period ground motion because it is small at the initial stage, and it cannot be judged unless it is already in a dangerous state after being greatly amplified. Judgment that there is is late.

また、通常、エレベーターは地震時に安全に停止するために地震感知器が備えているが、長周期地震動を検出するために設定値を下げると危険性の少ない小さな地震や人工的な振動により誤作動が多発し、サービス性が低下して実用的ではない。   Normally, an elevator is equipped with an earthquake detector to stop safely in the event of an earthquake, but if the set value is lowered to detect long-period ground motion, it will malfunction due to small earthquakes or artificial vibrations that are less dangerous. Occur frequently and serviceability is lowered, which is not practical.

本発明の目的は、上記従来技術の課題を解決し、建物やエレベーターの運行に対して真に危険となる地震動を早期に、確実に検出し被害を防ぐことにある。また、他の目的は、危険性と地震動の検出との対応関係をより一致するようにし、特に長周期地震動の発生をできるだけ初期の段階で判定し、特にエレベーターの場合、安全性とサービス性の両立を図ることにある。   An object of the present invention is to solve the above-described problems of the prior art, and to detect earthquake motion that is truly dangerous for the operation of buildings and elevators at an early stage and to prevent damage. Another purpose is to make the correspondence between danger and seismic motion detection more consistent, and to determine the occurrence of long-period seismic motion as early as possible, especially in the case of elevators, in terms of safety and serviceability. The goal is to achieve both.

上記の目的を達成するため、本発明は、地震発生時に配信される少なくとも震源位置、規模(マグニチュード)の情報を含む緊急地震速報を受信し、建物の危険性を判定する地震防災システムにおいて、前記緊急地震速報を受信する受信端末と、前記建物に設置され、地震により発生された加速度あるいは変位,震度の少なくともいずれかを振動として計測する振動計と、を備え、前記緊急地震速報の震源位置及びマグニチュードと、前記振動計で計測された信号から前記建物の固有振動周期を含む長周期成分が抽出されたか否かと、により、前記建物に対して長周期地震動の発生を判断して抽出された前記長周期成分の大きさが比較基準値より大きい場合、前記建物に危険な長周期地震動と判定し、前記比較基準値は前記震源位置までの距離が大となるほど小さくするものである。 In order to achieve the above object, the present invention provides an earthquake disaster prevention system that receives an emergency earthquake bulletin including information on at least an epicenter location and a magnitude (magnitude) distributed when an earthquake occurs, and determines the risk of a building. A receiving terminal for receiving the earthquake early warning, and a vibration meter installed in the building and measuring at least one of acceleration, displacement, and seismic intensity generated by the earthquake as vibrations, The magnitude and whether the long-period component including the natural vibration period of the building has been extracted from the signal measured by the vibrometer, and extracted by determining the occurrence of long-period ground motion for the building If the magnitude of the long-period component is larger than the comparison reference value, it is determined that the building is a long-period ground motion that is dangerous to the building, and the comparison reference value is the distance to the source position. But it is intended to decrease with decreasing and large.

本発明によれば、震源位置及びマグニチュードと、建物の固有振動周期を含む長周期成分の大きさが比較基準値より大きい場合、建物に危険な長周期地震動と判定し、比較基準値は震源位置までの距離が大となるほど小さくするので、真に危険性のある長周期地震動を早期に特定してエレベーターを安全に停止することができる。したがって、サービス性を損なうことなく、建屋の共振振動による危険性が増す前の段階でエレベーターの安全を図ることができる。
According to the present invention, when the position and magnitude of the epicenter and the magnitude of the long period component including the natural vibration period of the building are larger than the comparison reference value, it is determined that the building is a dangerous long period ground motion, and the comparison reference value As the distance up to becomes larger, the elevator can be safely stopped by identifying a truly dangerous long-period ground motion at an early stage. Therefore, the safety of the elevator can be improved at a stage before the danger due to the resonance vibration of the building is increased without impairing the serviceability.

本発明の一実施の形態によるエレベーターの地震防災装置の構成を示す図。The figure which shows the structure of the earthquake disaster prevention apparatus of the elevator by one embodiment of this invention. 地震の加速度波形と長周期成分の波形を示す図。The figure which shows the acceleration waveform of an earthquake, and the waveform of a long period component. 一般の地震の震源までの距離と長周期成分の大きさの関係を模式的に示す図。The figure which shows typically the relationship between the distance to the epicenter of a general earthquake, and the magnitude | size of a long period component. 一実施の形態の長周期振動成分抽出手段の詳細構成を示す図。The figure which shows the detailed structure of the long-period vibration component extraction means of one Embodiment. 一実施の形態の比較基準値算出手段の詳細構成を示す図。The figure which shows the detailed structure of the comparison reference value calculation means of one Embodiment. 一実施の形態の比較手段と管制運転制御手段の動作の流れを示す図。The figure which shows the flow of operation | movement of the comparison means and control operation control means of one Embodiment. エレベーターの地震防災装置により管制運転制御が開始されるタイミングを示す図。The figure which shows the timing when control operation control is started by the earthquake disaster prevention apparatus of an elevator. 一実施の形態における振動計測手段の信号をトリガーとする地震防災装置の動きを説明する図。The figure explaining the motion of the earthquake disaster prevention apparatus which uses the signal of the vibration measurement means in one embodiment as a trigger.

図1は、エレベーターの地震防災システムを示し、振動計(振動計測手段)2は、エレベーター1の設置されている建物の最下階などに設置されており、地震の振動を計測する。具体的には、加速度センサや地震計が望ましい。また、長周期振動成分抽出手段3は、振動計測手段2で計測した信号から長周期(数秒から十数秒)の振動成分を抽出する。   FIG. 1 shows an elevator earthquake disaster prevention system. A vibration meter (vibration measuring means) 2 is installed on the lowest floor of a building where the elevator 1 is installed, and measures earthquake vibration. Specifically, an acceleration sensor or a seismometer is desirable. Further, the long-period vibration component extraction unit 3 extracts a long-cycle (several seconds to several tens of seconds) vibration component from the signal measured by the vibration measurement unit 2.

地震情報入手手段4は、発生した地震に関する情報を入手する手段であり、緊急地震速報など地震発生直後に配信される情報を即時に受信する受信端末、例えばインターネット回線や衛星通信,地上波デジタル放送,ケーブルテレビ用ケーブル回線など種々の通信媒体を用いた受信端末である。受信する地震情報は、地震の震源位置を表す緯度,経度,深さ,地震の規模を表すマグニチュード,地震の発生時刻である。   The earthquake information obtaining means 4 is a means for obtaining information about an earthquake that has occurred, and is a receiving terminal that immediately receives information delivered immediately after the occurrence of an earthquake, such as an emergency earthquake warning, such as an Internet line, satellite communication, terrestrial digital broadcasting , A receiving terminal using various communication media such as cable lines for cable television. The received earthquake information includes latitude, longitude, depth representing the location of the earthquake, magnitude representing the magnitude of the earthquake, and time of occurrence of the earthquake.

長周期振動成分の比較基準値算出手段5は、発生した地震が長周期地震動であるか否かを判定するための比較基準値(長周期振動成分)を算出する。   The long-period vibration component comparison reference value calculation means 5 calculates a comparison reference value (long-period vibration component) for determining whether or not the generated earthquake is a long-period ground motion.

比較手段6は、比較基準値と長周期振動成分抽出手段3が抽出した長周期の振動成分の大きさを比較する。管制運転制御手段7は、比較結果に基づいてエレベーター1の管制運転を制御する。長周期振動成分抽出手段3,長周期振動成分の比較基準値算出手段5,比較手段6は、管制運転制御手段7と共にエレベーターの制御盤内に備えられたマイクロプロセッサ上のプログラムとして構成されることが良い。   The comparison means 6 compares the comparison reference value with the magnitude of the long-period vibration component extracted by the long-period vibration component extraction means 3. The control operation control means 7 controls the control operation of the elevator 1 based on the comparison result. The long-period vibration component extraction means 3, the long-period vibration component comparison reference value calculation means 5, and the comparison means 6 are configured as a program on a microprocessor provided in the control panel of the elevator together with the control operation control means 7. Is good.

次に、長周期地震動の判定について、図2および図3を参照して説明する。   Next, determination of long-period ground motion will be described with reference to FIGS.

図2の100と102は、観測地点から同じ程度に離れた場所で発生した地震の加速度波形であり、100は一般的な地震であり、102は長周期地震動を伴う地震である。101と103は、それぞれの地震の加速度波形からフィルタリング処理により長周期成分を抽出した波形である。図に示すように長周期地震動が発生している場合は、地盤の共振現象により時間の経過と共に長周期の振動が増幅されている。この増幅効果は、地震の比較的初期の段階においても認めることができ、図の104と105の部分を比較すると長周期地震動が発生している場合105の方が、長周期成分が大きくなっている。   100 and 102 in FIG. 2 are acceleration waveforms of earthquakes occurring at the same distance from the observation point, 100 is a general earthquake, and 102 is an earthquake with long-period ground motion. Reference numerals 101 and 103 denote waveforms obtained by extracting long-period components from the acceleration waveforms of the respective earthquakes by filtering processing. As shown in the figure, when long-period ground motion is occurring, long-period vibration is amplified over time due to the resonance phenomenon of the ground. This amplification effect can be recognized even in a relatively early stage of the earthquake, and comparing the portions 104 and 105 in the figure, when the long-period ground motion is occurring, the long-period component is larger in 105. Yes.

図3に示すグラフの曲線106は、一般的な地震における観測点から震源までの距離と地震の初期段階における長周期成分の大きさの関係を模式的に示すグラフである。一般の地震における長周期成分は、長周期地震動が発生した場合107に比べて、震源から離れた(遠方の)地点Aにおいて小さな値となるが、震源からの距離が近い地点Bにおいて同程度の大きさとなる。しかし、一般の地震における長周期成分は地盤の共振を伴うものではないので、時間の経過と共に減衰し、長周期地震動のような危険性を伴うものではない。従って、地震の初期段階における長周期成分の大きさだけからは、長周期地震動の危険性を判定することは難しい。   A curve 106 in the graph shown in FIG. 3 is a graph schematically showing the relationship between the distance from the observation point to the epicenter in a general earthquake and the magnitude of the long-period component in the initial stage of the earthquake. The long-period component in a general earthquake is a small value at point A far from (distant from) the epicenter compared to 107 when long-period ground motion occurs, but is the same at point B near the epicenter. It becomes size. However, since long-period components in general earthquakes do not involve ground resonance, they decay with time and do not involve dangers such as long-period ground motion. Therefore, it is difficult to determine the risk of long-period ground motion based only on the magnitude of the long-period component in the initial stage of the earthquake.

一方、震源までの距離が分かっていれば、図3の106に示す曲線のように一般的な地震における初期段階の長周期成分の大きさを概ね予測することができる。   On the other hand, if the distance to the epicenter is known, the magnitude of the long-period component at the initial stage in a general earthquake can be roughly predicted as shown by the curve 106 in FIG.

そして、一般的な地震の場合に予測される長周期成分の大きさよりも大きな長周期成分を観測したら長周期地震動が発生していると判定する。即ち、図3における地点Bの場合でも、観測した長周期成分の大きさが一般的な地震の場合より大きい108の値であったなら長周期地震動と判定し、そうでなければ一般の地震と判定することとした。したがって、震源までの距離に応じた判定基準値、距離大となれば判定基準値を下げることにより、正確に長周期地震動の発生を判定することができる。   And if a long period component larger than the magnitude of the long period component predicted in the case of a general earthquake is observed, it is determined that a long period ground motion is occurring. That is, even in the case of the point B in FIG. 3, if the observed long-period component has a larger value of 108 than the case of a general earthquake, it is determined as a long-period ground motion; I decided to judge. Accordingly, it is possible to accurately determine the occurrence of long-period ground motion by lowering the determination reference value according to the distance to the epicenter, and if the distance becomes large, the determination reference value is lowered.

次に、図4,図5,図6を参照してエレベーターの地震防災装置の詳細と動作について説明する。   Next, details and operations of the earthquake disaster prevention device for an elevator will be described with reference to FIGS. 4, 5, and 6.

図4は長周期振動成分抽出手段3の詳細構成例を示す。10は建物の振動特性に関するパラメータであり、建物の固有振動周期あるいはそれを特定し得る建物高さなどの情報である。11はフィルタ手段であり、振動計測手段2で得られた地震の振動信号(加速度,速度)から建物の固有振動周期を含む周期成分を抽出する。つまり、建物の固有振動周期を中心としたバンドパスフィルタ、あるいは固有振動周期を含む長周期成分を通過させるローパスフィルタなどがよい。   FIG. 4 shows a detailed configuration example of the long-period vibration component extraction means 3. Reference numeral 10 denotes a parameter related to the vibration characteristics of the building, which is information such as the natural vibration period of the building or the height of the building that can be specified. Reference numeral 11 denotes filter means for extracting a periodic component including the natural vibration period of the building from the earthquake vibration signal (acceleration, velocity) obtained by the vibration measuring means 2. That is, a bandpass filter centered on the natural vibration period of the building or a low-pass filter that passes a long-period component including the natural vibration period is preferable.

図5は長周期振動成分の比較基準値算出手段5の詳細構成例を示す。20は震源距離算出手段であり、地震情報入手手段4で得られた震源位置の緯度,経度,深さと建物の所在地の緯度,経度から震源までの距離を算出する。21は長周期成分の大きさを算出する手段であり、20で算出した震源までの距離と地震情報入手手段4で得られた地震のマグニチュードから、一般的な地震における長周期成分の大きさを算出する。具体的には、例えば以下の計算式により算出する。   FIG. 5 shows a detailed configuration example of the comparison reference value calculation means 5 of the long-period vibration component. Reference numeral 20 denotes an epicenter distance calculating means for calculating the latitude, longitude and depth of the epicenter position obtained by the earthquake information obtaining means 4 and the latitude and longitude of the location of the building to the distance from the epicenter. 21 is a means for calculating the magnitude of the long-period component. From the distance to the epicenter calculated in 20 and the magnitude of the earthquake obtained by the earthquake information obtaining means 4, the magnitude of the long-period component in a general earthquake is calculated. calculate. Specifically, for example, it is calculated by the following calculation formula.

Figure 0005372879
Figure 0005372879

ここで、Lは震源までの距離、Mは地震のマグニチュード、aとbは算出する周期成分によって定まるパラメータ、Aは周期成分の大きさである。aとbは建物の固有振動周期に対応したパラメータを選定するものであってもよい。なお、パラメータaとbについては、種々の算定方法が考えられるが、例えば種々の一般的な地震における震源距離と各周期成分の大きさに関するデータから統計的に算出するものであってもよい。   Here, L is the distance to the epicenter, M is the magnitude of the earthquake, a and b are parameters determined by the calculated periodic component, and A is the magnitude of the periodic component. a and b may select parameters corresponding to the natural vibration period of the building. Note that various calculation methods can be considered for the parameters a and b. For example, the parameters a and b may be statistically calculated from data relating to the epicenter distance and the magnitude of each periodic component in various general earthquakes.

比較基準値設定手段22は、21で算出した長周期成分の大きさに対して計算式(数1)による予測誤差を見越したマージンをオフセットとして加えて比較基準値として設定する。なお、震源位置が非常に遠方であり、長周期地震動が発生しているとしてもその振動が非常に小さく、危険性が無いレベルである場合には、長周期地震動と判定する必要が無いので、比較基準値が所定の値以下になる場合は、所定の値に上方補正して設定するものであってもよい。   The comparison reference value setting means 22 adds a margin in anticipation of a prediction error based on the calculation formula (Equation 1) to the magnitude of the long-period component calculated in 21 as an offset and sets it as a comparison reference value. In addition, even if the epicenter is very far away and long-period ground motion is occurring, if the vibration is very small and there is no danger, it is not necessary to determine long-period ground motion. When the comparison reference value is equal to or less than a predetermined value, the reference value may be set by correcting upward to a predetermined value.

図6に比較手段6と管制運転制御手段7の動作の詳細を示す。図6に示す一連の動作は地震情報入手手段4が新たに発生した地震に関する情報を受信した段階で実行されるものである。まず、比較手段6は、長周期振動成分抽出手段3で抽出した振動成分と長周期振動成分の比較基準値算出手段5が算出した比較基準値を比較し、長周期振動成分が比較基準値より大きくなったら管制運転制御手段7に管制制御開始の指令を出す(S1)。   FIG. 6 shows details of the operations of the comparison means 6 and the control operation control means 7. A series of operations shown in FIG. 6 is executed when the earthquake information obtaining unit 4 receives information about a newly generated earthquake. First, the comparison means 6 compares the vibration component extracted by the long-period vibration component extraction means 3 with the comparison reference value calculated by the comparison reference value calculation means 5 of the long-period vibration component, and the long-period vibration component is compared with the comparison reference value. When it becomes larger, a command to start control control is issued to the control operation control means 7 (S1).

管制運転制御手段7は、管制制御開始の指令を受けると地震情報入手手段4で入手した震源位置と地震発生時刻の情報から猶予時間を算出する(S2)。この猶予時間は、長周期地震動による建物の共振現象によりエレベーターのロープ類が危険な振動レベルに達するまでの予想時間であり、以下の手順で算出する。   When the control operation control means 7 receives an instruction to start control control, the control operation control means 7 calculates a grace time from the information on the location of the epicenter and the earthquake occurrence time obtained by the earthquake information obtaining means 4 (S2). This grace time is the expected time until the ropes of the elevator reach a dangerous vibration level due to the resonance phenomenon of the building due to long-period ground motion, and is calculated according to the following procedure.

長周期地震動が発生してからロープ類が危険な振動レベルに達するまでの平均的な時間をシミュレーションなどで予め求めておく。実際に長周期地震動が発生したら、以下の計算式により、地震の主要動が建物に到達してからの経過時間Teを算出する。   The average time from the occurrence of long-period ground motion until the ropes reach a dangerous vibration level is obtained in advance by simulation or the like. When long-period ground motion actually occurs, the elapsed time Te after the main motion of the earthquake reaches the building is calculated by the following formula.

Figure 0005372879
Figure 0005372879

ここで、Toは地震の発生時刻、Tcは現在時刻、Vsは地震の主要動(S波)の伝播速度、Lは震源までの距離である。そして、危険な振動レベルに達するまでの平均的な時間から上記経過時間Teを引くことにより猶予時間を算出する。   Here, To is the earthquake occurrence time, Tc is the current time, Vs is the propagation speed of the main motion (S wave) of the earthquake, and L is the distance to the epicenter. Then, the grace time is calculated by subtracting the elapsed time Te from the average time until the dangerous vibration level is reached.

次に、エレベーターを現在のかご位置において最寄り階に停止させるのに必要な時間T1より猶予時間が短い場合は、エレベーターを直ちに停止させる(S3,S4)。猶予時間がT1より長く、現在のかご位置において安全階に停止させるのに必要な時間T2より短い場合は、最寄り階に停止させる(S5,S6)。猶予時間がT2より長い場合は、安全階に停止させる。   Next, when the grace time is shorter than the time T1 required to stop the elevator at the nearest floor at the current car position, the elevator is immediately stopped (S3, S4). When the grace time is longer than T1 and shorter than the time T2 required to stop at the current floor at the current car position, the vehicle is stopped at the nearest floor (S5, S6). If the grace time is longer than T2, the safety floor is stopped.

安全階とは長周期地震によって建物が大きく揺れる場合にエレベーターの被害を最も小さく抑えられるかごの位置であり、例えば建物の固有振動周期とロープ類の固有振動周期が一致しないようなロープ長さとなるかご位置を選定すればよい。   The safety floor is the position of the car that can minimize the damage to the elevator when the building shakes greatly due to a long-period earthquake. For example, the rope length does not match the natural vibration period of the building and the natural vibration period of the ropes. The car position should be selected.

図7は、エレベーターの地震防災装置により管制運転制御が開始されるタイミングを示す図である。地震動の長周期成分110が震源までの距離に応じて設定された比較基準値112を超えた時点113で管制制御が開始される。これに対して、ロープ類の振動111は、長周期成分との共振により徐々に振幅が増加し、115の時点で危険振幅114を超える。従って、ロープ類の振動を検出あるいは予測してエレベーターを停止させる場合は、115の時点で管制制御が開始されることになる。   FIG. 7 is a diagram illustrating a timing at which control operation control is started by the elevator earthquake disaster prevention apparatus. Control control is started at a point 113 when the long-period component 110 of the ground motion exceeds the comparison reference value 112 set according to the distance to the epicenter. In contrast, the vibration 111 of the ropes gradually increases in amplitude due to resonance with the long-period component, and exceeds the danger amplitude 114 at 115. Therefore, when the elevator is stopped by detecting or predicting the vibration of the ropes, the control control is started at 115.

しかし、図2で説明した例では図7中116で示す時間だけ早い段階で管制制御を開始することができるので、より安全にエレベーターを停止させることができる。   However, in the example described with reference to FIG. 2, since the control control can be started at an earlier stage by the time indicated by 116 in FIG. 7, the elevator can be stopped more safely.

以上の例では、地震情報の受信をトリガーとして長周期地震動の判定処理を行うものであるが、図8に示すように振動計測手段2の計測した振動が所定の値を超えたことをトリガーとして長周期地震動の判定処理を行うものであってもよい。
地震情報入手手段4に地震情報の記憶手段を備えておき、受信した最新の地震情報を常に記憶しておく。振動計測手段2の計測した振動(加速度)が設定値を超えたら、地震情報入手手段に記憶されている地震情報を調べ、記憶されている地震情報が現在時刻から所定の時間内に発生したものである場合は、その地震情報を用いて比較基準値と長周期振動成分の比較による長周期地震動の判定処理を実行する(S10,S11,S12)。そして、比較基準値と長周期振動成分の比較の結果、長周期地震と判定した場合は管制運転制御を開始する(S13,S14)。所定の時間内に発生した地震がない場合、あるいは長周期地震と判定されなかった場合は通常の運転を継続する(S15)。
In the above example, the determination of long-period ground motion is performed using the reception of earthquake information as a trigger. As shown in FIG. 8, the trigger is that the vibration measured by the vibration measuring means 2 exceeds a predetermined value. Long-period ground motion determination processing may be performed.
The earthquake information obtaining means 4 is provided with a means for storing earthquake information, and the latest received earthquake information is always stored. When the vibration (acceleration) measured by the vibration measuring means 2 exceeds the set value, the earthquake information stored in the earthquake information obtaining means is examined, and the stored earthquake information is generated within a predetermined time from the current time. If it is, long-period ground motion determination processing is performed by comparing the comparison reference value and the long-period vibration component using the earthquake information (S10, S11, S12). And as a result of the comparison with a comparison reference value and a long period vibration component, when it determines with a long period earthquake, control operation control is started (S13, S14). If there is no earthquake occurring within the predetermined time, or if it is not determined as a long-period earthquake, normal operation is continued (S15).

S10における設定値としては、例えば遠方で起きた地震でも感知するような非常に低い設定値とする。また、S11における所定の時間としては、遠方で起きた地震が建物に到達するまでの時間を包含するような値とする。   As the set value in S10, for example, a very low set value that can be detected even in an earthquake that occurred in a distant place is used. In addition, the predetermined time in S11 is a value that includes the time until an earthquake that has occurred far away reaches the building.

管制運転制御手段7は比較手段6から管制制御開始の指令が出た段階で猶予時間に関係なく直ちにエレベーターを最寄り階に停止させるものであってもよい。   The control operation control means 7 may immediately stop the elevator at the nearest floor at the stage when the control control start command is issued from the comparison means 6 regardless of the delay time.

また、長周期振動成分抽出手段3は振動計測手段2で計測した加速度信号積分して速度信号を得るものであり、長周期振動成分の比較基準値算出手段5は一般的な地震における振動の速度の比較基準値を算出するものであってもよい。また、これらは更に変位信号を得るものと振動の変位の比較基準値を算出するものであってもよい。これは、長周期の地震の揺れが速度や変位に大きく現れる性質があるので、検出し易いことによる。   Further, the long-period vibration component extraction means 3 obtains a velocity signal by integrating the acceleration signal measured by the vibration measurement means 2, and the long-period vibration component comparison reference value calculation means 5 is a vibration velocity in a general earthquake. The comparison reference value may be calculated. These may further obtain a displacement signal and calculate a comparison reference value for vibration displacement. This is due to the fact that long-period earthquake vibrations appear greatly in speed and displacement and are therefore easy to detect.

比較基準値と長周期振動成分の比較を行っている最中に他の地震が発生し、その地震情報を受信した場合は、その地震情報から算出される比較基準値が現在の比較基準値より小さくなる場合にのみ比較基準値を変更するものとし、そうでない場合は現状の比較基準値を維持するものとする。これにより、近くで一般の地震が発生した場合にも、遠方の地震による長周期地震動を正しく検出できる。   If another earthquake occurs during the comparison of the comparison reference value and the long-period vibration component, and the earthquake information is received, the comparison reference value calculated from the earthquake information is greater than the current comparison reference value. The comparison reference value is changed only when it becomes smaller, otherwise the current comparison reference value is maintained. Thereby, even when a general earthquake occurs nearby, long-period ground motion due to a distant earthquake can be detected correctly.

振動計測手段2は、建物の中間階や最上階に設置するものであってもよい。その場合、比較基準値算出手段5が算出する比較基準値は、建物による振動の増幅効果も加味した値を計算するものとする。   The vibration measuring means 2 may be installed on the middle floor or the top floor of the building. In this case, the comparison reference value calculated by the comparison reference value calculation means 5 is calculated by taking into account the amplification effect of the vibration caused by the building.

1 エレベーター
2 振動計(振動計測手段)
3 長周期振動成分抽出手段
4 受信端末(地震情報入手手段)
5 比較基準値算出手段
6 比較手段
7 管制運転制御手段
1 Elevator 2 Vibrometer (Vibration measurement means)
3 Long-period vibration component extraction means 4 Receiving terminal (earthquake information acquisition means)
5 Comparison reference value calculation means 6 Comparison means 7 Control operation control means

Claims (3)

地震発生時に配信される少なくとも震源位置、規模(マグニチュード)の情報を含む緊急地震速報を受信し、建物の危険性を判定する地震防災システムにおいて、
前記緊急地震速報を受信する受信端末と、
前記建物に設置され、地震により発生された加速度あるいは変位,震度の少なくともいずれかを振動として計測する振動計と、
を備え、前記緊急地震速報の震源位置及びマグニチュードと、前記振動計で計測された信号から前記建物の固有振動周期を含む長周期成分が抽出されたか否かと、により、前記建物に対して長周期地震動の発生を判断して抽出された前記長周期成分の大きさが比較基準値より大きい場合、前記建物に危険な長周期地震動と判定し、前記比較基準値は前記震源位置までの距離が大となるほど小さくすることを特徴とする地震防災システム。
In the earthquake disaster prevention system that receives emergency earthquake bulletin information including at least the epicenter location and magnitude (magnitude) information delivered at the time of the earthquake occurrence, and determines the danger of the building,
A receiving terminal for receiving the earthquake early warning;
A vibration meter installed in the building and measuring at least one of acceleration, displacement, and seismic intensity generated by an earthquake as vibration;
A long period with respect to the building according to whether or not a long period component including a natural vibration period of the building is extracted from a signal measured by the vibrometer, and a location and magnitude of the earthquake early warning If the magnitude of the long-period component extracted by judging the occurrence of seismic motion is larger than the comparison reference value, it is determined that the building is dangerous long-period ground motion, and the comparison reference value has a large distance to the epicenter. An earthquake disaster prevention system characterized by being made small .
請求項1に記載の地震防災システムにおいて、前記比較基準値は一般的な地震における長周期成分の大きさを基準にして定められることを特徴とする地震防災システム。   2. The earthquake disaster prevention system according to claim 1, wherein the comparison reference value is determined on the basis of the magnitude of a long-period component in a general earthquake. 請求項1に記載の地震防災システムにおいて、前記建物にエレベーターが設置され、長周期地震動が発生したと判断された場合、前記エレベーターを停止させることを特徴とする地震防災システム。   The earthquake disaster prevention system according to claim 1, wherein an elevator is installed in the building and the elevator is stopped when it is determined that long-period ground motion has occurred.
JP2010208723A 2010-09-17 2010-09-17 Earthquake disaster prevention system Active JP5372879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010208723A JP5372879B2 (en) 2010-09-17 2010-09-17 Earthquake disaster prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010208723A JP5372879B2 (en) 2010-09-17 2010-09-17 Earthquake disaster prevention system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008114762A Division JP4597211B2 (en) 2008-04-25 2008-04-25 Elevator earthquake disaster prevention system

Publications (2)

Publication Number Publication Date
JP2011043511A JP2011043511A (en) 2011-03-03
JP5372879B2 true JP5372879B2 (en) 2013-12-18

Family

ID=43831018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010208723A Active JP5372879B2 (en) 2010-09-17 2010-09-17 Earthquake disaster prevention system

Country Status (1)

Country Link
JP (1) JP5372879B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794930B2 (en) * 2012-02-27 2015-10-14 大成建設株式会社 Long-period ground motion arrival judgment method and arrival judgment system
KR102003382B1 (en) * 2018-03-23 2019-07-24 동일테크주식회사 seismic motion recording apparatu capable of real time discrimination and early warning and the method for discriminating seismic motion ohereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859587B2 (en) * 2001-12-12 2006-12-20 東京瓦斯株式会社 Piping seismic evaluation method and piping seismic evaluation device
JP4618101B2 (en) * 2005-11-08 2011-01-26 鹿島建設株式会社 Elevator control operation device
JP2007217082A (en) * 2006-02-14 2007-08-30 Mori Bill Kk Long-period earthquake motion sensing system for large-sized building
JP4910578B2 (en) * 2006-09-06 2012-04-04 三菱電機株式会社 Elevator earthquake control operation equipment

Also Published As

Publication number Publication date
JP2011043511A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP4597211B2 (en) Elevator earthquake disaster prevention system
US8640544B2 (en) Method for analyzing structure safety
JP2007153520A (en) Earthquake control operation system of elevator and earthquake control operation method of elevator
US9804053B2 (en) Defect analysis device, defect analysis method, and program
JP5922411B2 (en) Method and device for monitoring the condition of a substructure embedded in the ground
JP5009076B2 (en) Earthquake early warning system
JP5087853B2 (en) Elevator equipment
JP2007131360A (en) Elevator control operation device
EP2960677A1 (en) Earthquake prediction device
US20180239038A1 (en) Seismic sensor and earthquake detection method
JP2007217082A (en) Long-period earthquake motion sensing system for large-sized building
JP4488216B2 (en) Elevator control device
JP5372879B2 (en) Earthquake disaster prevention system
JP5018045B2 (en) Elevator rope roll detection device
JP2009051610A (en) Rope lateral swinging detecting device of elevator
JP5939886B2 (en) Earthquake motion convergence judgment system
JP5615672B2 (en) Elevator earthquake outage prediction system
Valdés‐González et al. Experiments for seismic damage detection of a RC frame using ambient and forced vibration records
JP2008114958A (en) Elevator device
JP2008081290A5 (en)
JP2008081290A (en) Rope rolling detector for elevator
JP5791543B2 (en) Earthquake motion prediction system
JP2013200284A (en) Earthquake detection device
EP2960678A1 (en) Earthquake prediction device
JP4992509B2 (en) Elevator rope roll detection device and elevator control operation device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150