JP5355716B2 - ヨーレートセンサ - Google Patents

ヨーレートセンサ Download PDF

Info

Publication number
JP5355716B2
JP5355716B2 JP2011546644A JP2011546644A JP5355716B2 JP 5355716 B2 JP5355716 B2 JP 5355716B2 JP 2011546644 A JP2011546644 A JP 2011546644A JP 2011546644 A JP2011546644 A JP 2011546644A JP 5355716 B2 JP5355716 B2 JP 5355716B2
Authority
JP
Japan
Prior art keywords
yaw rate
rate sensor
detection mass
substrate surface
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011546644A
Other languages
English (en)
Other versions
JP2012515903A (ja
Inventor
クラッセン ヨハネス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2012515903A publication Critical patent/JP2012515903A/ja
Application granted granted Critical
Publication of JP5355716B2 publication Critical patent/JP5355716B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Description

本発明は、請求項1に記載のヨーレートセンサに関する。
先行技術
マイクロマシニング技術によるヨーレートセンサが先行技術において公知になっている。このようなヨーレートセンサは種々異なる応用分野及び自動車領域において、例えばESPシステム、ロールオーバセンシング又はナビゲーションの目的のために使用される。
上述のヨーレートセンサにおいてセンサ構造体の複数の部分には、例えば基板表面に対して平行に方向付けられた第1の方向に沿った駆動振動が積極的にもたらされる。第1の方向に対して垂直にかつ、例えば基板表面に対して同様に平行に方向付けられている検出軸線を中心とした外部のヨーレートが発生した場合、コリオリ力がセンサ構造体の振動する部分に作用する。駆動振動の周波数と共に周期的に変化する上述のコリオリ力は、駆動方向及び検出軸線に対して垂直に方向付けられている第3の方向に沿った、センサ構造体の複数の部分の周期的な変位をもたらす。第3の方向は、例えば基板表面に対して垂直に方向付けられていてよい。センサ構造体には複数の検出手段が取り付けられており、これらの検出手段により、センサ構造の複数の部分の変位が電極を介して容量式に検出される。
公知のヨーレートセンサは、可動なセンサ構造体ごとに、基板に不動に接合されている単に1つの検出電極しか有していない。このことは、検出電極と可動なセンサ構造体との間の有効容量が少ないという欠点を有している。さらに可動なセンサ素子の変位の差動検出は、可動なセンサ素子ごとの単に1つの固定型の検出電極では可能でない。
米国特許出願公開第20080168838号明細書に、全差動型の電極配置を備えたヨーレートセンサが開示されている。このヨーレートセンサにおいて上側の対応電極として適切に構造化され、電気的に接触接続されている領域がセンサキャップに使用される。いずれにしてもこの構成において、可動のセンサ構造体と上側の固定電極との間の間隔を、あらゆる製造公差にもかかわらず、可動のセンサ構造体及び下側の固定電極との間の間隔と同じ大きさに正確に調節することは極めて困難である。
先行技術から、連結された2つの可動なセンサ構造体を備えたヨーレートセンサが同じく公知になっている。これらのセンサ構造体は可動な部分構造体の逆平行の変位と連結された駆動振動をするように励振可能である。2つの部分構造体の逆平行の駆動振動により、ヨーレートセンサに作用するヨーレートは、2つの部分構造体の逆平行の変位をもたらす。複数の可動な部分構造体と、これらの部分構造体に夫々対応配置されている固定電極との間の容量変化の評価は、作用するヨーレートの差動検出を可能にする。この公知のヨーレートセンサの欠点はヨーレートセンサの振動感度にあり、また容易に抑制することのできない平行モードの励振に対する感度にある。
発明の開示
本発明の目的は、改良されたヨーレートセンサを提供することである。この目的は、請求項1の特徴を備えたヨーレートセンサにより達成される。
本発明の本質は、センサコアにおいてマイクロマシニング技術による付加的な機能平面を使用することにある。この機能平面は、機能平面の下側にある導体路平面、及び機能平面の上側にある他の機能平面から独立してサーフェスマイクロマシニングプロセスによって構造化することができる。三層配置により、ヨーレートセンサの各センサ構造体のための全差動型の電極配置を実現することができる。
本発明に係るヨーレートセンサは基板表面を備えた基板と、基板表面上に配置されている、駆動フレーム及び第1の検出質量体を備えた第1の可動の素子と、第1の検出質量体の下側に離間して配置されていてかつ基板表面に接合されている第1の電極と、第1の検出質量体の上側に離間して配置されていてかつ基板表面に接合されている第2の電極とを有している。本構成において駆動フレームは、少なくとも1つの駆動ばねを介して基板に接合されており、検出質量体は少なくとも1つの検出ばねを介して駆動フレームに接合されており、第1の可動の素子は、基板表面に対して平行な駆動振動するように励振可能であり、かつ、第1の検出質量体は基板表面に対して垂直に変位可能である。
有利には本発明に係るヨーレートセンサにより、基板表面に対して垂直な可動の素子の変位の差動評価が可能になる。両側の電極配置によりヨーレートセンサの全共振型の運転が可能になる。この運転において駆動振動と検出振動との周波数は、静電気的な正帰還電圧を電極に印加することにより互いに適合させられる。このことが可動の素子と電極との間隔に影響を与えることはない。これにより可動の素子と電極との接触(スナップ式接触)は防がれる。本発明に係るヨーレートセンサの別の利点は、ヨーレートセンサの振動しやすさが減じられている点にある。
有利な構成において、導体路平面と第1の機能平面と第2の機能平面とは、積層されて上下に配置されていて、導体路平面は基板表面に接合されている。本構成において駆動フレームは第1の機能平面及び第2の機能平面に配置されており、第1の検出質量体は少なくとも部分的に第1の機能平面に配置されており、第1の電極は導体路平面に配置されており、第2の電極は第2の機能平面に配置されている。これにより有利には両側の電極配置を簡単に達成することができる。
特に有利な構成において、ヨーレートセンサは第2の検出質量体を備えた第2の可動の素子を有している。第1及び第2の検出質量体は連結ばねを介して互いに接合されており、第1及び第2の可動の素子は、基板表面に対して平行な連結された駆動振動するように励振可能である。このことは有利には、ヨーレートセンサの正確性及び雑音に対する鈍感性を高める。
本発明の改良形において、第1及び第2の可動の素子は、第1及び第2の可動の素子の逆平行の変位に連結された駆動振動をするように励振可能である。これにより有利には、ヨーレートによりもたらされる基板平面に対して垂直な検出質量体の逆平行の変位は、直線加速度によりもたらされる基板表面に対して垂直な検出質量体の平行な変位とは異なることになる。
少なくとも部分的に第2の機能平面に配置されている安定化フレームを第1の可動の素子が有していると有利である。有利には、第1の可動の素子は、第1の機能平面に配置されている底部と安定化フレームにより形成されている縁部とを備えた槽形状を、第1の機能平面及び第2の機能平面に有している。これにより第1の可動の素子に十分な安定性が保証される。
有利には、第1の可動の素子は少なくとも1つの貫通部を有している。この構成において、第2の電極は上述の貫通部を通って固定点において基板表面に接続されている。
有利には、駆動振動するように第1の可動の素子を励振するために、少なくとも1つの駆動櫛形構造体が設けられている。さらに有利には、第1の可動の素子は少なくとも1つの外側ばねを介して基板表面に接合されている。
第1の機能平面と第2の機能平面とが伝導性のシリコンから成っていると有利である。
本発明の別の改良形において、少なくとも1つの他の電極は、第1の検出質量体の下側及び/又は上側に配置されている。有利には、駆動振動の周波数と、基板表面に対して垂直な可動の素子の変位の周波数との一致を保証するために、上述の他の電極は第1の検出質量体の静電気的な正帰還を許容する。択一的には、他の電極は直交位相補償のために使用することもできる。他の電極は第1の検出質量体の位置制御のために働くこともできる。
さらに別の改良形において、ヨーレートセンサは評価回路に接続されている。この評価回路は、第1の検出質量体と第1及び第2の電極との間の容量の変化から、基板表面に対して垂直な第1の検出質量体の変位を推定し、第1の検出質量体の変位からヨーレートセンサに作用するヨーレートを推定する。有利にはこのことにより所定のヨーレートの自動的な測定を可能にする。
ヨーレートセンサの第1の実施の形態を示す概略的な平面図である。 ヨーレートセンサの第1の実施の形態を示す第1の断面図である。 ヨーレートセンサの第1の実施の形態を示す第2の断面図である。 ヨーレートセンサの第2の実施の形態を示す図である。 ヨーレートセンサの第2の実施の形態を示す断面図である。 ヨーレートセンサの第3の実施の形態を示す図である。 ヨーレートセンサの第3の実施の形態を示す断面図である。 ヨーレートセンサの第4の実施の形態を示す図である。 ヨーレートセンサの第4の実施の形態を示す断面図である。 ヨーレートセンサの第5の実施の形態を示す図である。 ヨーレートセンサの第5の実施の形態を示す断面図である。 ヨーレートセンサの第6の実施の形態を示す図である。 ヨーレートセンサの第6の実施の形態を示す断面図である。
本発明を添付の図面に基づいて詳細に説明する。同一の部分又は同一の作用を有する部分には統一した符号を用いる。
本発明の実施の形態
図1に、ヨーレートセンサ100の第1の実施の形態の概略的な平面図を示す。ヨーレートセンサ100は基板から製造されており、図1の図平面に位置する基板表面190上のx−y平面に配置されている。基板は、例えばシリコン基板から成っていてよい。ヨーレートセンサ100は第1の可動の素子110と、第2の可動の素子260とを有している。第1の可動の素子110と第2の可動の素子260とは互いに対称的に形成されており、y方向に相並んで配置されている。以下に、第1の可動の素子110について記載する。この記載は第2の可動の素子260に対応する。
第1の可動の素子110は駆動フレーム120を有している。図1の実施の形態において、駆動フレーム120は2つのU字形の部品を有している。これらのU字形の部品の開口は互いに向かい合っているので、x−y平面にある面区分をほぼ取り囲んでいる。駆動フレーム120により取り囲まれている面区分には、第1の検出質量体130が配置されている。
駆動フレーム120は4つの駆動ばね140を介して基板表面190に接合されている。各駆動ばね140は、駆動フレーム120の2つのU字形の部品の各脚部に配置されている。各駆動ばね140はU字形に成形された基板梁(Substratbalken)から成っている。この基板梁の一方の端部は基板表面190に接合されており、他方の端部は駆動フレーム120に接合されている。各駆動ばね140はy方向において弾性的に形成されているが、x方向及びz方向においては実質的に非弾性的に形成されている。さらに駆動フレーム120は4つの駆動櫛形構造体150と接合されている。駆動フレーム120の2つのU字形の部品の各脚部には、駆動櫛形構造体150が夫々配置されている。各駆動櫛形構造体150は、駆動フレーム120を向いた一列の平行な櫛形の歯を有している、基板表面190に接合された区分と、基板表面190に接合されている駆動櫛形構造体150の区分の櫛形の歯に係合している一列の平行な櫛形の歯を有している、駆動フレーム120に接合された区分とから成っている。4つの駆動櫛形構造体150は、適切な電圧の印加による駆動フレーム120のy軸方向への振動を許容する。本実施の形態において、駆動櫛形構造体150を変位させ、駆動ばね140を戻す力がもたらされる。4つより少ない又は4つより多い駆動ばね140及び駆動櫛形構造体150が夫々、可動の素子110,260ごとに設けられていてもよい。
第1の検出質量体130は全部で8個の検出ばね180を介して駆動フレーム120に接合されている。第1の検出質量体130の4つ全ての外側エッジの両端部に検出ばね180が夫々配置されている。各検出ばね180はU字形に構成された基板梁から成っている。この基板梁の一方の端部は駆動フレーム120に接合されており、他方の端部は第1の検出質量体130に接合されている。複数の検出ばね180は一緒になって駆動フレーム120に対するz方向における第1の検出質量体130の変位を許容する一方で、駆動フレーム120に対するx方向及びy方向における第1の検出質量体130の変位を実質的に防ぐ。これによりy方向における駆動フレーム120の駆動運動は、第1の検出質量体130に伝達される。
第2の可動の素子260は第2の検出質量体270を有している。第1の検出質量体130と第2の検出質量体270とは、連結ばね170を介して互いに接合されている。この連結ばね170は方形の、基板梁から成るx方向に延びているリングから成っている。このリングは2つの他の基板梁を介して第1及び第2の検出質量体130,270に接合されている。連結ばね170はy方向及びz方向に規定可能な(wohldefiniert)弾性を有している一方で、x方向に高い剛性を有している。これにより、検出質量体130,270の振動の連結がy方向及びz方向にもたらされる。
さらに第1の検出質量体130は、第2の検出質量体270とは反対の側において、外側ばね160を介して基板表面190に接合されている。外側ばね160は、細長く引き伸ばされた、x方向に方向付けられている方形の外側エッジを有し、ウェブを介して第1の検出質量体130に接合されている基板梁により形成される。外側ばね160はy方向及びz方向において規定可能な弾性を有している一方で、x方向において実質的に高い剛性を有している。第2の検出質量体270は、第1の検出質量体130とは反対の側において、他の外側ばねを介して同様に基板表面190に接合されている。択一的な実施の形態において、外側ばね160を省くことができる。
図2に、図1のヨーレートセンサ100のy−z平面に対して平行な断面を概略的に示す。図3に、図1のヨーレートセンサ100のx−z平面に対して平行な断面を概略的に示す。図2,3から、ヨーレートセンサ100がz方向に重畳している3つの層から製造されていることが看取可能である。最下部又は基板表面190に、例えば隠されたポリシリコンから成っていてよい導体路平面230が設けられている。この導体路平面230の上に、例えば厚さ2μmであり、エピタキシャル成長させられた伝導性のシリコンから成っていてよい第1の機能平面240が配置されている。第1の機能平面240の上に、例えば厚さ10μm又は20μmであり、エピタキシャル成長させられた伝導性のシリコンから成っていてよい第2の機能平面250が配置されている。導体路平面230、第1の機能平面240及び第2の機能平面250は、空間により部分的に互いに分離されている。
図2,3から、第1の検出質量体130は槽形状の横断面を有していることが明らかである。本実施の形態において、第1の機能平面240の一領域により形成された、第1の検出質量体130の底部は、第1の機能平面240及び第2の機能平面250において形成されている安定化フレーム290によって取り囲まれている。この安定化フレーム290は第1の検出質量体130を安定させる。
第1の検出質量体130の下側の導体路平面230には、第1の電極210が設けられている。第2の機能平面250において、第1の検出質量体130の上側において、及び第1の検出質量体130の安定化フレーム290により取り囲まれて、第2の電極220が設けられている。第1の電極210及び第2の電極220は、有利には横方向のx−y方向における類似の寸法を有している。
第1の電極210と、第1の機能平面240にある、第1の検出質量体130の底部領域とは貫通部280を有している。このことは図3から看取可能である。貫通部280の領域には第2の電極220が、柱状の固定点285を介して基板表面190に接合されている。したがって、図3に示すようにx−z平面に対して平行な断面図において、第2の電極220はT字形の横断面を有している。第1の電極210及び第2の電極220は、導体路平面230を介して電気的に制御・評価電子機器(図示せず)に接続されていてよい。
図2に示したように、第1の検出質量体130の下側の導体路平面230に、y方向において第1の電極210の両側に2つの第1の他の電極310が配置されている。さらに第1の検出質量体130の上側の第2の機能平面250に、y方向において第2の電極220の両側に2つの第2の他の電極320が配置されている。第2の他の電極320は同様に貫通部280の領域において基板表面190と接合されている。
駆動ばね140、外側ばね160、連結ばね170及び検出ばね180は、有利には第1の機能平面240及び第2の機能平面250の材料により形成される。
ヨーレートセンサ100の第1の可動の素子110と第2の可動の素子260とを、可動の素子110,260のy軸に沿った逆平行の変位と連結された駆動振動へ駆動櫛形構造体150により励振することができる。x軸を中心としたヨーレートが発生する場合、コリオリ力は第1の検出質量体130及び第2の検出質量体270に作用し、z方向における検出質量体130,270の逆平行の変位をもたらす。z方向における第1の検出質量体130の変位は、第1の電極210及び第2の電極220により検出することができる。このために、例えば第1の電極210は第1の電位(CN電位)にすることができ、かつ第2の電極220は第2の電位(CP電位)にすることができる。固定型の電極210,220に対して検出質量体130のz方向における変位により、第1の検出質量体130と第1の電極210と第2の電極220との間の容量は、逆の符号を持って変化する。これにより、第1の検出質量体130の変位の全差動的な測定が行われる。第2の可動の素子260の第1及び第2の電極は、例えば第1の可動の素子110に対して鏡面逆転して第1及び第2の電位にすることができる。これにより第2の検出質量体270の変位の全差動的な評価も可能である。さらに2つの可動の素子110,260は合わせて、ヨーレートセンサ100に作用するヨーレートの全差動的な規定を可能にする。
第1の他の電極310と第2の他の電極320とは、例えば検出質量体130,270の位置の制御のために働く。また、検出質量体130,270の検出振動及び駆動振動の周波数の全共振的な一致を保証するために、他の電極310,320は静電気的な正帰還のために使用することもできる。検出質量体130,270の両側においてz方向に取り付けられている他の電極310,320により、静電気的な正帰還は検出質量体130,270のz位置の変化なしで行うことができる。これにより、静電引力が機械的な戻し力を超えて、ヨーレートセンサ100の電気機械的な不安定さにつながる臨界電圧の低下は回避される。電極を両側に配置するさらなる利点は、両側に電極を配置することで可能になる差動信号評価により、ヨーレートセンサ100の振動感度が著しく減じられているという点である。
図4に、第2の実施の形態のヨーレートセンサ200の平面図を示す。図5に、ヨーレートセンサ200のy−z平面に対して平行な断面を示す。ヨーレートセンサ200は図1〜3に示したヨーレートセンサ100とは、第1の検出質量体130が安定化フレーム290に加えて、x方向に延在している2つの他の安定化ステー295を第2の機能平面250に有している点において異なる。各安定化ステー295は、安定化フレーム290の互いに相対する2つのエッジの間の槽状の第1の検出質量体130の中間領域に延在している。安定化ステー295は、第1の検出質量体130に付加的な剛性を付与する。
図6に、第3の実施の形態のヨーレートセンサ300の平面図を示す。図7に、ヨーレートセンサ300のy−z平面に対して平行な断面を示す。ヨーレートセンサ300は図1〜3に示したヨーレートセンサ100とは、第1の検出質量体130が安定化フレーム290に加えて、y方向に延在している2つの他の安定化ステー296を第2の機能平面に有している点において異なる。安定化ステー296は、安定化フレーム290の相対する2つのエッジの間の槽状の第1の検出質量体130の中間領域に延在しており、また槽状の第1の検出質量体130に付加的な安定性を付与する。y方向に延在している安定化ステー296により、第1の検出質量体130の上側に配置されている第2の電極220は3つの区分に分割されている。第2の電極220の真ん中の区分は、貫通部280の領域における固定点285において基板表面190と接合されている。第2の電極220の2つの他の領域は、2つの他の貫通部281において、第1の検出質量体130及び第1の電極210により付加的な固定点285を介して基板表面190に接合されている。このことは相応に第2の他の電極320にも当てはまる。
図8に、第4の実施の形態のヨーレートセンサ400の平面図を示す。図9に、ヨーレートセンサ400のy−z平面に対して平行な断面を示す。図1〜3のヨーレートセンサ100とは異なり、ヨーレートセンサ400の第1の可動の素子110の第1の検出質量体130は、x方向に延在している2つのスリット430を有している。各スリット430は、貫通部280の両側でy方向において中央に配置されている。
ヨーレートセンサ100に対するヨーレートセンサ400のさらなる相違点は、第1の可動の素子110の第1の検出質量体130の下側に、第1の電極210及び第1の他の電極310の代わりに、全部で6つの下側の電極411,412,413,414,415,416が設けられている点にある。これに応じて、第2の機能平面250において、第1の可動の素子110の第1の検出質量体130の上側に、第2の電極220及び第2の他の電極320の代わりに、全部で6つの上側の電極421,422,423,424,425,426が設けられている。下側の電極411〜416と上側の電極421〜426とは、x方向に方向付けられている狭幅なストリップの相並ぶ形状を有している。最も外側の2つの上側の電極421,426と、最も外側の2つの下側の電極411,416は、図1〜3の第1及び第2の他の電極310,320のように、第1の検出質量体130の位置制御ために又は静電気的な正帰還のために働くことができる。第2及び第5の上側の電極422,425と第2及び第5の下側の電極412,415とは、図1〜3の第1及び第2の電極210,220のように、第1の検出質量体130のz方向における変位の全差動検出のために働く。内側に位置する2つの上側の電極423,424と、内側に位置する2つの下側の電極413,414とは、第1の検出質量体130のスリット430に部分的に重なる。スリット430の一方の側における上側の電極423とスリット430の他方の側における下側の電極414とは、第1の対を形成する。第1の対に対応して、他の2つの内側の電極413,424は第2の対を形成する。電極の一方の対に直流電圧を印加することにより、第1の検出質量体130の変位に対する比例的な力を、z方向に第1の検出質量体130に加えることができる。上述の比例的な力は直交力の補償のために働くことができる。つまり、検出通路への駆動運動の機械的及び/又は電気的なクロストークが補償されることを意味する。クロストークは同様に、第1の検出質量体130の変位に対して比例的であるので、クロストークは変位比例的な力により補償することができる。電極423,414の第1の対は、例えば正の直交位相の抑制のために働き、第2の対は負の直交位相の抑制のために働く。
図10に、第5の実施の形態のヨーレートセンサ500の概略的な平面図を示す。図11に、ヨーレートセンサ500のy−z平面に対して平行な断面を示す。図1〜3のヨーレートセンサ100とは異なりヨーレートセンサ500、つまり第1の可動の素子110は変更した駆動フレーム520を有している。ヨーレートセンサ500の第1の可動の素子100の駆動櫛形構造体150は、駆動フレーム520のy軸線に対して平行な2つの外側エッジに配置されていて、さらに、x軸に対して平行な変位によって振動するように第1の可動の素子110を励振するように形成されている。第1の可動の素子110の駆動ばね140は、駆動フレーム520によって箱状に取り囲まれている、第1の可動の素子110の領域に配置されていて、かつ第1の可動の素子110のx方向における運動を許容するが、y方向及びz方向には高い剛性を有しているように形成されている。またヨーレートセンサ500の第2の可動の素子260は、第1の可動の素子110に対して対称的に構成されており、y方向において第1の可動の素子110に並んで基板表面190上に配置されている。ヨーレートセンサ500における第1の検出質量体130及び第2の検出質量体270は、図1〜3に示したヨーレートセンサ100における第1の検出質量体130及び第2の検出質量体270とは異なり、外側ばね160を介して基板表面190に接合されていない。第1の検出質量体130と第2の検出質量体270とは、図4,5に示したヨーレートセンサ200の実施の形態のように、x方向に延在する安定化ステー295を有している。択一的な実施の形態においては安定化ステー295を省略することができる。
第1の可動の素子110の第1の検出質量体130と、第2の可動の素子260の第2の検出質量体270とは、連結ばね570を介して互いに接合されている。連結ばね570は図1の連結ばね170とは、3つの全空間方向において規定の弾性を有している点において異なる。連結ばね570は、例えばy軸及びx軸に対して平行な区分を備えたメアンダ形状の領域を有している多重に折り畳まれた基板梁から成っていてよい。
ヨーレートセンサ500の第1の可動の素子110と第2の可動の素子260とは、駆動櫛形構造体150により、x軸に沿った可動の素子110,260の逆平行の変位と連結された駆動振動をするように励振することができる。y軸を中心としたヨーレートの発生時に、コリオリ力が第1の検出質量体130及び第2の検出質量体270に作用し、z方向における検出質量体130,270の逆平行の変位をもたらす。変位の検出は、上記図面に基づいて説明したように行われる。
図12に、第6の実施の形態のヨーレートセンサ600の概略的な平面図を示す。図13に、ヨーレートセンサ600のy−z平面に対して平行な断面を示す。図12のヨーレートセンサ600は図1に示したヨーレートセンサ100とは、第1の検出質量体130が検出ばね180を介してではなく、検出ばね680を介して駆動フレーム120に接合されている点において異なる。図13に示すように、検出ばね680は、単に第1の機能平面240にのみ構成されている。第2の機能平面250に対して第1の機能平面240の厚さが著しく小さいことにより、検出ばね680は、図1〜3に示した検出ばね180よりもz方向において著しく低い剛性を有している。これにより、z方向において同じ剛性を得るために検出ばね680は、検出ばね180よりも短く形成することができる。したがって、x方向及びy方向における検出ばね680の著しく高い剛性がもたらされる。こうして、例えばz軸線を中心とした検出質量体130の回転モードといった、起こる可能性のある外乱モードは効果的に抑制され、先行技術よりも明らかに高い周波数において初めて発生する。
ヨーレートセンサ100,200,300,400,500,600は、制御・評価電子機器(図示せず)に接続されていてよい。これらの電子機器は駆動櫛形構造体に適切な駆動電圧を形成し、ヨーレートセンサに作用するヨーレートを規定するために、電極の容量信号を評価する。電子機器は、検出質量体の上述の位置制御、静電気的な正帰還又は直交位相補償を実施することもできる。
図1〜13の実施の形態は、ほぼ任意の形式において当業者により組み合わすことができる。

Claims (12)

  1. ヨーレートセンサ(100)であって、
    基板表面(190)を有する基板を備えており、
    前記基板表面(190)上に配置されている、駆動フレーム(120,520)と第1の検出質量体(130)とを有する第1の可動の素子(110)を備えており、
    前記第1の検出質量体(130)の下側に離間して配置されていてかつ前記基板表面(190)に接合されている第1の電極(210)と、前記第1の検出質量体(130)の上側に離間して配置されていてかつ前記基板表面(190)に接合されている第2の電極(220)とを備えており、
    前記駆動フレーム(120,520)は少なくとも1つの駆動ばね(140)を介して前記基板に接合されており、
    前記検出質量体(130)は少なくとも1つの検出ばね(180,680)を介して前記駆動フレーム(120,520)に接合されており、
    前記第1の可動の素子(110)は前記基板表面(190)に対して平行な駆動振動をするように励振可能であり、
    前記第1の検出質量体(130)は前記基板表面(190)に対して垂直に変位可能であり、
    導体路平面(230)と、第1の機能平面(240)と、第2の機能平面(250)とが積層されて重畳して配置されており、
    前記導体路平面(230)は前記基板表面(190)に接合されており、
    前記駆動フレーム(120)は前記第1の機能平面(240)及び前記第2の機能平面(250)に配置されており、
    前記第1の検出質量体(130)は少なくとも部分的に前記第1の機能平面(240)に配置されており、
    前記第1の電極(210)は前記導体路平面(230)に配置されており、
    前記第2の電極(220)は前記第2の機能平面(250)に配置されていることを特徴とする、ヨーレートセンサ。
  2. 前記ヨーレートセンサ(100)は第2の検出質量体(270)を備えた第2の可動の素子(260)を有しており、
    前記第1及び第2の検出質量体(130,270)は連結ばね(170,570)を介して互いに接合されており、
    前記第1及び第2の可動の素子(110,260)は、前記基板表面(190)に対して平行な、連結された駆動振動をするように励振可能であることを特徴とする、請求項記載のヨーレートセンサ。
  3. 前記第1及び第2の可動の素子(110,260)は、前記第1及び第2の可動の素子(110,260)の逆平行の変位に伴う連結された駆動振動をするように励振可能であることを特徴とする、請求項記載のヨーレートセンサ。
  4. 前記第1の可動の素子(110)は前記第2の機能平面(250)に少なくとも部分的に配置されている安定化フレーム(290)を有していることを特徴とする、請求項1からまでのいずれか一項記載のヨーレートセンサ。
  5. 前記第1の可動の素子(110)は前記第1の機能平面(240)及び前記第2の機能平面(250)に、第1の機能平面(240)に配置されている底部と前記安定化フレーム(290)により形成されている縁部とを備えた槽形状を有していることを特徴とする、請求項記載のヨーレートセンサ。
  6. 前記第1の可動の素子(110)は少なくとも1つの貫通部(280)を有しており、
    前記第2の電極(220)は前記貫通部(280)を通じて固定点(285)において前記基板表面(190)に接合されていることを特徴とする、請求項1からまでのいずれか一項記載のヨーレートセンサ。
  7. 前記第1の可動の素子(110)を駆動振動するように励振するために、少なくとも1つの駆動櫛形構造体(150)が設けられていることを特徴とする、請求項1からまでのいずれか一項記載のヨーレートセンサ。
  8. 前記第1の可動の素子(110)は少なくとも1つの外側ばね(160)を介して前記基板表面(190)に接合されていることを特徴とする、請求項1からまでのいずれか一項記載のヨーレートセンサ。
  9. 前記第1の機能平面(240)と前記第2の機能平面(250)とは伝導性のシリコンから成っていることを特徴とする、請求項1からまでのいずれか一項記載のヨーレートセンサ。
  10. 少なくとも1つの他の電極(310,320)が前記第1の検出質量体(130)の下側及び/又は上側に配置されていることを特徴とする、請求項1からまでのいずれか一項記載のヨーレートセンサ。
  11. 前記少なくとも1つの他の電極(310,220)は前記第1の検出質量体(130)の静電気的な正帰還、前記第1の検出質量体(130)の位置制御及び/又は直交位相補償のために形成されていることを特徴とする、請求項10記載のヨーレートセンサ。
  12. 前記第1の検出質量体(130)と前記第1及び第2の電極(210,220)との間の容量の変化から、前記基板表面(190)に対して垂直な前記第1の検出質量体(130)の変位を推定し、前記第1の検出質量体(130)の変位から、前記ヨーレートセンサ(100)に作用するヨーレートを推定するために形成されている評価回路に、前記ヨーレートセンサ(100)は接続されていることを特徴とする、請求項1から11までのいずれか一項記載のヨーレートセンサ。
JP2011546644A 2009-01-21 2009-12-03 ヨーレートセンサ Active JP5355716B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009000345A DE102009000345A1 (de) 2009-01-21 2009-01-21 Drehratensensor
DE102009000345.2 2009-01-21
PCT/EP2009/066302 WO2010083918A1 (de) 2009-01-21 2009-12-03 Drehratensensor

Publications (2)

Publication Number Publication Date
JP2012515903A JP2012515903A (ja) 2012-07-12
JP5355716B2 true JP5355716B2 (ja) 2013-11-27

Family

ID=41611061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011546644A Active JP5355716B2 (ja) 2009-01-21 2009-12-03 ヨーレートセンサ

Country Status (6)

Country Link
US (1) US8695425B2 (ja)
EP (1) EP2389561B1 (ja)
JP (1) JP5355716B2 (ja)
CN (1) CN102292614B (ja)
DE (1) DE102009000345A1 (ja)
WO (1) WO2010083918A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2974895B1 (fr) * 2011-05-02 2013-06-28 Commissariat Energie Atomique Gyrometre a capacites parasites reduites
DE102012200929B4 (de) * 2012-01-23 2020-10-01 Robert Bosch Gmbh Mikromechanische Struktur und Verfahren zur Herstellung einer mikromechanischen Struktur
JP6338813B2 (ja) * 2012-04-03 2018-06-06 セイコーエプソン株式会社 ジャイロセンサー及びそれを用いた電子機器
JP6098780B2 (ja) * 2012-04-19 2017-03-22 セイコーエプソン株式会社 ジャイロセンサーおよび電子機器
US9310202B2 (en) * 2012-07-09 2016-04-12 Freescale Semiconductor, Inc. Angular rate sensor with quadrature error compensation
CN104936748B (zh) * 2012-12-14 2017-10-27 Abb技术有限公司 徒手机器人路径教导
DE102013216898B4 (de) * 2013-08-26 2023-02-09 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
JP6398348B2 (ja) * 2014-06-12 2018-10-03 セイコーエプソン株式会社 機能素子、機能素子の製造方法、電子機器、および移動体
DE102014212314A1 (de) 2014-06-26 2015-12-31 Robert Bosch Gmbh Mikromechanische Sensoreinrichtung
DE102015213440A1 (de) 2015-07-17 2017-01-19 Robert Bosch Gmbh Mechanische Brücke zur Störmodenoptimierung bei Drehratensensoren
DE102017213644A1 (de) * 2017-08-07 2019-02-07 Robert Bosch Gmbh Drehratensensor, Verfahren zur Herstellung eines Drehratensensors
DE102018219546B3 (de) 2018-11-15 2019-09-12 Robert Bosch Gmbh Mikromechanisches Bauelement
DE102019200843B4 (de) 2019-01-24 2020-09-24 Robert Bosch Gmbh Mikromechanisches kapazitiv auswertbares Bauelement
DE102019215179A1 (de) * 2019-10-02 2021-04-08 Robert Bosch Gmbh Auswertevorrichtung und Verfahren zum Betreiben eines mit zwei verstellbaren Elektroden-Massen ausgebildeten Sensors
DE102019215184A1 (de) * 2019-10-02 2021-04-08 Robert Bosch Gmbh Vorrichtung und Verfahren zum Charakterisieren einer Vibrationsempfindlichkeit eines mit zwei verstellbaren Elektroden-Massen ausgebildeten Sensors

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2886431B2 (ja) * 1993-10-27 1999-04-26 住友精密工業株式会社 振動ジャイロセンサー
KR0171009B1 (ko) * 1995-12-07 1999-05-01 양승택 원판 진동형 마이크로 자이로스코프 및 그의 제조방법
DE19641284C1 (de) * 1996-10-07 1998-05-20 Inst Mikro Und Informationstec Drehratensensor mit entkoppelten orthogonalen Primär- und Sekundärschwingungen
JP3418904B2 (ja) * 1997-10-29 2003-06-23 株式会社豊田中央研究所 振動式角速度検出器
JP2001021360A (ja) 1999-07-08 2001-01-26 Mitsubishi Electric Corp 角速度センサ
DE10108197A1 (de) * 2001-02-21 2002-09-12 Bosch Gmbh Robert Drehratensensor
US6862934B2 (en) * 2001-10-05 2005-03-08 The Charles Stark Draper Laboratory, Inc. Tuning fork gyroscope
US6860151B2 (en) * 2003-02-07 2005-03-01 Honeywell International Inc. Methods and systems for controlling movement within MEMS structures
JP2005249454A (ja) * 2004-03-02 2005-09-15 Mitsubishi Electric Corp 容量型加速度センサ
US7036373B2 (en) * 2004-06-29 2006-05-02 Honeywell International, Inc. MEMS gyroscope with horizontally oriented drive electrodes
FR2895501B1 (fr) * 2005-12-23 2008-02-29 Commissariat Energie Atomique Microsysteme, plus particulierement microgyrometre, avec au moins deux massesm oscillantes couplees mecaniquement
US7444868B2 (en) * 2006-06-29 2008-11-04 Honeywell International Inc. Force rebalancing for MEMS inertial sensors using time-varying voltages
US8100012B2 (en) 2007-01-11 2012-01-24 Analog Devices, Inc. MEMS sensor with cap electrode
US8187902B2 (en) * 2008-07-09 2012-05-29 The Charles Stark Draper Laboratory, Inc. High performance sensors and methods for forming the same

Also Published As

Publication number Publication date
EP2389561A1 (de) 2011-11-30
DE102009000345A1 (de) 2010-07-22
CN102292614A (zh) 2011-12-21
US20120006115A1 (en) 2012-01-12
JP2012515903A (ja) 2012-07-12
US8695425B2 (en) 2014-04-15
EP2389561B1 (de) 2016-04-06
CN102292614B (zh) 2015-11-25
WO2010083918A1 (de) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5355716B2 (ja) ヨーレートセンサ
US9593949B2 (en) Yaw-rate sensor
US8261614B2 (en) Rotational speed sensor having a coupling bar
US6752017B2 (en) Rotation speed sensor
CN102575934B (zh) 具有嵌套的线性振荡地震元件的双轴抗震旋转速率传感器
US9476897B2 (en) Physical quantity sensor
US6539803B2 (en) External force measuring device
US9964562B2 (en) Capacitance type physical quantity sensor
US9219169B2 (en) Angular velocity sensor
US8794069B2 (en) Angular velocity sensor
US9261363B2 (en) Yaw rate sensor
US8365597B2 (en) Apparatus having a movable body
CN107003333B (zh) Mems传感器和半导体封装
US9910055B2 (en) Vibration angular velocity sensor
US20110232384A1 (en) Laminated structure provided with movable portion
US8342022B2 (en) Micromechanical rotational speed sensor
JP3669713B2 (ja) 角速度センサ
US20120024059A1 (en) Yaw rate sensor and method for manufacturing a mass element
JP2019023613A (ja) 容量性微小電気機械加速度計
WO2018003692A1 (ja) 物理量センサ
US9753057B2 (en) Acceleration sensor
JP2015004546A (ja) 静電容量変化検出モジュール及びmemsセンサ
JP3800238B2 (ja) 角速度センサ及び角速度検出方法
JP3818318B2 (ja) 角速度センサ
JP2015184252A (ja) Memsデバイス

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250