JP5352298B2 - 動脈血管柔軟度測定装置 - Google Patents

動脈血管柔軟度測定装置 Download PDF

Info

Publication number
JP5352298B2
JP5352298B2 JP2009067063A JP2009067063A JP5352298B2 JP 5352298 B2 JP5352298 B2 JP 5352298B2 JP 2009067063 A JP2009067063 A JP 2009067063A JP 2009067063 A JP2009067063 A JP 2009067063A JP 5352298 B2 JP5352298 B2 JP 5352298B2
Authority
JP
Japan
Prior art keywords
pressure
pulse wave
cuff
artery
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009067063A
Other languages
English (en)
Other versions
JP2010214021A (ja
Inventor
繁廣 石塚
伸彦 安居
真衛 柴崎
貴広 藤原
由照 野添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2009067063A priority Critical patent/JP5352298B2/ja
Publication of JP2010214021A publication Critical patent/JP2010214021A/ja
Application granted granted Critical
Publication of JP5352298B2 publication Critical patent/JP5352298B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生体の一部に巻回されたカフを用いて検出される動脈の周期的容積変化を表す容積脈波とその生体の動脈内の周期的圧力変化を表す圧脈波とに基づいて、その生体の動脈の柔軟性を解析する血管柔軟度測定装置に関するものである。
生体の循環器情報としてその生体の血圧値や脈波伝播速度が測定され、その生体の診断等に利用されているが、それらは生体の動脈硬化度以外の因子の影響を受け易く、直接的に表わすものではなかった。このため、生体の動脈硬化を直接的に表わす動脈硬化度或いは動脈柔軟度( コンプライアンス) を直接的に測定することが求められている。
これに対して、特許文献1に示されるように、血圧脈波検出装置が提案されている。この血圧脈波検出装置では、カフの感度を考慮して脈波のピーク時における振幅値とに基づいて容積脈波を算出し、その容積脈波と血管内圧変動分( 圧脈波)とに基づいて血管コンプライアンスが算出されるようになっている。
特開平2007−044363号公報
ところで、上記特許文献1に示される従来の血管コンプライアンス測定装置では、動脈の内側と外側の圧力差が小さくなった時点での、壁動脈の内圧がΔPだけ増加したときのその動脈の単位長さ当たりの容積増加値をΔVとしたとき、ΔV/ΔPと定義される血管コンプライアンスKが算出されるに際して、カフから得られたカフ脈波( 容積脈波) をΔVとして用い、カフでの圧迫に伴うカフ脈波の振幅の変化に基づいて予め血圧測定された最高血圧値SBPと最低血圧値DBPとの差がΔPとして用いられている。
しかしながら、上記従来の血管コンプライアンス測定装置では、動脈の容積変化を反映するものとして圧迫状態のカフから得られるカフ脈波を用いるにも拘わらず、圧迫状態のカフ下の動脈内の血圧値が用いられていないことから、カフ圧迫下の動脈の貫壁圧力が正確に得られず、カフ下の動脈の圧力変化に対する容積変化の関係を必ずしも反映したものとならないので、正確な血管コンプライアンスが得られ難いという不都合があった。また、血管壁の力−歪み特性は解剖学的に、血管の標本を取り出して計測された結果から、非線形となることが知られている。この原因として血管壁の弾性には弾性繊維、膠原繊維の2要素が大きく寄与しており、血管壁にかかる力の小さい範囲では弾性繊維が、力が大きくなると弾性繊維と膠原繊維の両方が寄与して力−歪み特性は非線形となることが知られている。生体においては血管壁の力-歪み特性は動脈の貫壁圧力に対する動脈の血管内腔断面積の特性として得られ、図13の様に、力−歪み特性と同様の非線形性さを示す。弾性繊維は心臓に近い大動脈系の主成分であり、弾性繊維が主体の領域の弾性特性を得ることは重要である。しかしながら生体において、血管の弾性繊維主体の領域の弾性特性は従来簡便に得られることは困難であったため、この領域の弾性特性を表現する適切な指標は考慮されてこなかった。
本発明は以上の事情を背景として為されたものであり、その目的とするところは、生体の一部内の動脈に対してカフを用いて所定の圧迫圧力を加えることで得られるカフ脈波を用いてカフ下の動脈のコンプライアンス( 柔軟度) を測定するに際して、その動脈の柔軟度を正確に得ることができ、また、その動脈の非線形の弾性特性を適切に表現することができる動脈血管柔軟度測定装置を提供することである。
かかる目的を達成するために、請求項1に係る発明は、(a) 生体の一部に巻回されたカフを用いて検出される該生体の一部における動脈の周期的容積変化を表す容積脈波と該生体の動脈内の周期的圧力変化を表す圧脈波とに基づいて、該生体の動脈の柔軟度を算出する動脈血管コンプライアンス解析手段を備えた動脈血管柔軟度測定装置であって、(b) 前記カフを用いて検出された容積脈波からオシロメトリック法を用いて前記生体の基準最高血圧値および基準最低血圧値を測定する血圧測定手段と、(c) 前記容積脈波を、前記基準最高血圧値および基準最低血圧値を用いて校正することにより、血圧値を単位とする前記カフにより圧迫されていない部位の動脈内の非圧迫下圧脈波に変換する非圧迫下圧脈波推定手段と、(d) 前記非圧迫下圧脈波の最低圧と前記カフ内の圧迫圧力とに基づいて前記カフにより圧迫されている部位の動脈の血管壁を境にした貫壁圧力を算出する貫壁圧力算出手段と、(e) 前記非圧迫下圧脈波から前記貫壁圧力を差し引くことにより前記カフにより圧迫されている部位の動脈内の圧迫下圧脈波を推定する圧迫下圧脈波推定手段とを、含み、(f) 前記血管コンプライアンス解析手段は、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管の柔軟性を算出するものであることにある。
また、請求項に係る発明の要旨とするところは、請求項1に係る発明において、前記カフに一定容積変化を与えたときの該カフ内の圧力の変化を示すカフ感度を算出し、前記カフ内の圧力振動であるカフ脈波と前記カフ感度とに基づいて、前記動脈内の圧力が増加したときに該動脈の単位長さ当たりに増加する動脈の容積を表す前記容積脈波を算出する容積脈波算出手段を、含むことにある。
また、請求項に係る発明の要旨とするところは、請求項1または2に係る発明において、前記カフは、前記生体の被圧迫部位の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および下流側膨張袋と、該一対の上流側膨張袋および下流側膨張袋の間に配置され、該一対の上流側膨張袋および下流側膨張袋とは独立した気室を有する検出用膨張袋とを、含み、前記上流側膨張袋、検出用膨張袋、および下流側膨張袋で前記生体の被圧迫部位を同じ圧力で圧迫した状態で、前記検出用膨張袋内の圧力変動を前記カフ脈波として検出するものであることにある。
また、請求項係る発明の要旨とするところは、請求項1乃至のいずれか1に係る発明において、前記血管コンプライアンス解析手段は、前記生体の動脈血管の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管のスティフネスを算出するものであることにある。
また、請求項係る発明の要旨とするところは、請求項1乃至のいずれか1に係わる発明において、前記血管コンプライアンス解析手段は、前記生体の動脈血管の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管の弾性を特徴づける指標として、血管壁にかかる力の小さい範囲で、有限の大きさの圧脈波振幅に対する血管コンプライアンスおよび、スティフネスを算出するものであることにある。
また、請求項係る発明の要旨とするところは、請求項1乃至のいずれか1に係わる発明において、前記血管コンプライアンス解析手段は、前記生体の動脈血管の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管の弾性を特徴づける指標として、血管の圧閉状態から、血管の自然長における血管径を含む範囲を最大血管コンプライアンスとして算出するものであることにある。
請求項1に係る発明の動脈血管柔軟度測定装置によれば、(b) 前記カフを用いて検出された容積脈波からオシロメトリック法を用いて前記生体の基準最高血圧値および基準最低血圧値を測定する血圧測定手段と、(c) 前記容積脈波を、前記基準最高血圧値および基準最低血圧値を用いて校正することにより、血圧値を単位とする前記カフにより圧迫されていない部位の動脈内の非圧迫下圧脈波に変換する非圧迫下圧脈波推定手段と、(d) 前記非圧迫下圧脈波の最低圧と前記カフ内の圧迫圧力とに基づいて前記カフにより圧迫されている部位の動脈の血管壁を境にした貫壁圧力を算出する貫壁圧力算出手段と、(e) 前記非圧迫下圧脈波から前記貫壁圧力を差し引くことにより前記カフにより圧迫されている部位の動脈内の圧迫下圧脈波を推定する圧迫下圧脈波推定手段とを、含み、(f) 前記血管コンプライアンス解析手段は、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管の柔軟性を算出するものであることから、カフによる圧迫状態のカフ下の動脈内の血圧値を示す圧迫下圧脈波が用いられて、カフ圧迫下の動脈の貫壁圧力が正確に得られるので、カフ下の動脈の圧力変化に対する容積変化の関係を反映したものとなり、正確な血管コンプライアンスが得られる。
また、請求項に係る発明の動脈血管柔軟度測定装置によれば、前記カフに一定容積変化を与えたときの該カフ内の圧力の変化を示すカフ感度を算出し、前記カフ内の圧力振動である前記カフ脈波と前記カフ感度とに基づいて、前記動脈内の圧力が増加したときに該動脈の単位長さ当たりに増加する動脈の容積を表す前記容積脈波を算出する容積脈波算出手段を、含むことから、カフ感度を考慮した正確な容積脈波が得られるので、カフ下の動脈の圧力変化に対する容積変化の関係を反映したものとなり、正確な血管コンプライアンスが得られる。
また、請求項に係る発明の動脈血管柔軟度測定装置によれば、前記カフは、前記生体の被圧迫部位の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および下流側膨張袋と、該一対の上流側膨張袋および下流側膨張袋の間に配置され、該一対の上流側膨張袋および下流側膨張袋とは独立した気室を有する検出用膨張袋とを、含む脈波検出用圧迫帯を備え、前記上流側膨張袋、検出用膨張袋、および下流側膨張袋で前記生体の被圧迫部位を同じ圧力で圧迫した状態で、前記検出用膨張袋内の圧力変動を前記カフ脈波として検出するものであることから、被圧迫部位の長手方向において連なる上流側膨張袋、検出用膨張袋、下流側膨張袋から生体の被圧迫部位内の動脈に対して圧迫圧力を均等な圧力分布で加えつつ、正確なカフ脈波が得られる。
また、請求項に係る発明の動脈血管柔軟度測定装置によれば、前記血管コンプライアンス解析手段は、前記生体の動脈血管の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管のスティフネスを算出するものであることから、そのスティフネスは正規化された汎用性にあるパラメータであるので、相対的評価や対比が容易となる。
また、請求項に係る発明の動脈硬化柔軟度測定装置によれば、前記血管コンプライアンス解析手段は、前記生体の動脈血管の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管の弾性を特徴づける指標として、血管壁にかかる力の小さい範囲で、有限の大きさの圧脈波振幅に対する血管コンプライアンスおよびスティフネスを算出するものであることから、血管壁の弾性に寄与する弾性繊維主体の領域の弾性特性を客観的に得られる。
また、請求項に係る発明の動脈硬化柔軟度測定装置によれば、前記血管コンプライアンス解析手段は、前記生体の動脈血管の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管の弾性を特徴づける指標として、血管の圧閉状態から、血管の自然長における血管径を含む範囲を最大血管コンプライアンスとして算出するものであることから、動脈血管の静特性を含んだ生体に固有の柔軟度関連値が得られる。
ここで、好適には、前記オシロメトリック式血圧測定手段は、前記検出用膨張袋と、その検出用膨張袋内の圧力を検出する圧力センサと、前記一対の上流側膨張袋および下流側膨張袋と検出用膨張袋とを相互に連通させた状態で昇圧することにより前記被圧迫部位内の動脈を圧迫し、該圧迫圧を連続的に変化させる圧力制御手段と、前記圧力制御手段により圧迫圧が変化させられる過程で前記圧力センサにより検出される圧迫圧の圧力振動成分である脈波を抽出し、それら脈波の変化に基づいて前記生体の血圧値を決定するものである。このようにすれば、前記検出用膨張袋から得られる正確な脈波に基づいて精度の高い血圧値が得られる。
また、好適には、前記容積脈波算出手段は、前記動脈の脈動に対応する大きさの予め設定された一定容積の気体を定容積脈波発生装置から前記検出用膨張袋内に加えたときの該カフ内の圧力の変化を示すカフ感度を算出し、前記検出用膨張袋内に加えられる一定容積の気体の容積値と、その一定容積の気体が前記検出用膨張袋内に加えられたときに第2圧力センサにより検出された検出用膨張袋内の圧力上昇値との関係を予め求めるものである。このようにすれば、検出用膨張袋のカフコンプライアンスが、たとえば予め設定された一定周期、脈拍、或いは圧迫圧変化値に応答して上記定容積脈波発生装置から一定容積の気体が検出用膨張袋内に加えられる毎に逐次得られる。
また、好適には、前記脈波伝播速度測定手段は、前記上流側膨張袋内の圧力を検出する第1圧力センサと、前記下流側膨張袋内の圧力を検出する第3圧力センサと、前記上流側膨張袋および下流側膨張袋内に前記生体の最低血圧値よりも低い圧力で気体を充満させた状態で前記第1圧力センサにより検出された脈波から前記第3圧力センサにより検出された脈波までの脈波伝播時間と、該上流側膨張袋と下流側膨張袋との間の中心間距離とに基づいて、前記動脈内の脈波伝播速度を算出する脈波伝播速度測定手段とを、含むことから、生体の被圧迫部位における動脈の局部的脈波伝播速度値が容易に得られる。好適には、検出用膨張袋内が排気された状態で上記第1圧力センサにより検出された脈波から前記第3圧力センサにより検出された脈波までの脈波伝播時間が算出される。このようにすれば、上流側膨張袋および下流側膨張袋の間が十分に遮蔽されるので、検出される脈波が正確となり、精度の高い伝播速度が得られる。
本発明が適用された圧迫帯を備える循環器情報測定装置の構成を説明するブロック図である。 図1の循環器情報測定装置に備えられた圧迫帯の外側を一部を切り欠いて示す図である。 図1および図2に示す圧迫帯内に収容された上流側膨張袋、検出用膨張袋、下流側膨張袋を、一部を切り欠いて示す図である。 図3の上流側膨張袋、検出用膨張袋、下流側膨張袋の構成を説明する断面図であって、図3のV−V視図である。 図1の電子制御装置の制御機能の要部を説明する機能ブロック線図である。 図5の血圧測定部P1乃至TP値計算部P5を詳しく説明する図である。 図5の圧脈波計算部で得られる圧脈波、容積脈波計算部で得られる容積脈波をそれぞれ示す図である。 カフ圧が最高血圧値よりも高い値から低い値まで変化したときに得られるカフ脈波と、図5のTP値計算部P5において算出される貫壁圧力TPとを説明する図である。 貫壁圧力TPの変化に対する動脈血管の断面積A(動脈の容積) の変化特性を示す図である。 圧力値pに対する、2点の特徴点P1 およびP2 間の断面積比A( P2)/A( P1)の変化特性を示す図である。 コンプライアンス算出式からの変形式におけるTP−(Pb −a)mmHgに対するK(Ab /b)の関係を示す図である。 貫壁圧力TPをボトム圧力Po ( =DBPi ) と動脈外の圧力Pe ( Pcuff) との差と定義したときの、コンプライアンスの算出内容を説明する図である。 動脈の弾性特性を、その動脈を構成する弾性繊維(1点鎖線) 、弾性繊維+膠原繊維(2点鎖線) と共に実線にて示す図である。 貫壁圧力TPmmHgに対する動脈断面積Acmとの関係を示す図である。 図1の電子制御装置の制御作動の要部を説明するフローチャートである。 図1の電子制御装置の制御作動の要部を説明するタイムチャートである。 生体の脈波伝播速度hbPWVおよび局所脈波伝播速度bbPWVの貫壁圧力TPmmHgに対する変化特性を示す図である。 容積パルス発生器から一定容積のパルスが加えられたときに発生する圧力パルスが重畳した1拍分のカフ脈波を示す図である。
以下、本発明の一実施例について図面を参照しつつ詳細に説明する。
図1は、被圧迫部位である生体の肢体たとえば上腕10に巻き付けられる本発明の脈波検出用圧迫帯の一例である上腕用の圧迫帯( カフ)12を備えた循環器情報測定装置14を示している。この循環器情報測定装置14は、生体の上腕10内の動脈16から発生する圧脈波APW、その上腕10の血圧値BP、動脈柔軟度関連値であるコンプライアンスKおよびスティフネスβ、脈波伝播速度PWVを測定することができるので、圧脈波検出装置、自動血圧測定装置、血管( 動脈) 柔軟度測定装置、および、脈波伝播速度測定装置として機能している。
図2は上記圧迫帯12の外周面を示す一部を切り欠いた図である。図2に示すように、圧迫帯12は、PVC等の合成樹脂により裏面がラミネートされた合成樹脂繊維製の外周側面不織布20aとそれと同様の内周側不織布から成る帯状外袋20と、その帯状外袋20内において幅方向に順次収容され、たとえば軟質ポリ塩化ビニルシートなどの可撓性シートから構成された上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26とを備え、外周側面不織布20aの端部に取り付けられた面ファスナ28に内周側不織布の端部に取り付けられた図示しない起毛パイルが着脱可能に接着されることにより、上腕10に着脱可能に装着されるようになっている。上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26は、それぞれ独立した気室を構成するとともに、管接続用コネクタ32、34、および36を外周面側に備えている。それら管接続用コネクタ32、34、および36は、外周側面不織布20aを通して圧迫帯12の外周面に露出されている。
図3は、上記圧迫帯12内に備えられた上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26を示す平面図であり、図4はそれらを幅方向に切断した断面図である。上流側膨張袋22、中流側膨張袋24、および下流側膨張袋26は、それぞれ長手状を成し、上流側膨張袋22および下流側膨張袋26は検出用膨張袋24の両側に隣接した状態で配置されている。検出用膨張袋24は、動脈16から発生する脈波PWを検出するためのものであり、上記上流側膨張袋22および下流側膨張袋26の間に挟まれた状態で圧迫帯12の幅方向の中央部に配置されている。
検出用膨張袋24は所謂マチ構造の側縁部を両側に備えている。すなわち、検出用膨張袋24の上腕10の長手方向における両端部には、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝24fおよび24fがそれぞれ形成されている。そして、前記上流側膨張袋22および下流側膨張袋26の検出用膨張袋24に隣接する側の隣接側端部22aおよび26aがそれら一対の折込溝24fおよび24f内に差し入れられて配置されるようになっている。これにより、検出用膨張袋24の両端部と上流側膨張袋22および下流側膨張袋26の検出用膨張袋24に隣接する側の隣接側端部22aおよび26aとが相互に重ねられた構造すなわちオーバラップ構造となるので、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26が等圧で上腕10を圧迫したときにそれらの境界付近においても均等な圧力分布が得られる。この場合、上記上流側膨張袋22および下流側膨張袋26は、専ら上腕10を圧迫するための主膨張袋として機能し、検出用膨張袋24は動脈16から発生する脈波を専ら検出する脈波検出用として機能している。
上記上流側膨張袋22および下流側膨張袋26も、所謂マチ構造の側縁部を検出用膨張袋24とは反対側の端部22bおよび26bを備えている。すなわち、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24とは反対側の端部22bおよび26bには、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る折込溝22fおよび26fがそれぞれ形成されている。それら折込溝22fおよび26fを構成するシートは、幅方向に飛び出ないように、上流側膨張袋22および下流側膨張袋26内に配置された貫通穴を備える接続シート38、40を介してその反対側部分すなわち検出用膨張袋24側の部分に接続されている。これにより、上流側膨張袋22および下流側膨張袋26の端部22bおよび26bにおいても上腕10に対する圧迫圧が他の部分と同様に得られるので、圧迫帯12の幅方向の有効圧迫幅がその幅寸法と同等になる。圧迫帯12の幅方向は12cm程度であり、その幅方向に3つの上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26が配置された構造であるから、それぞれが実質的に4cm程度の幅寸法とならざるを得ない。このような狭い幅寸法であっても圧迫機能を十分に発生させるため、検出用膨張袋24の両端部24aおよび24bと上流側膨張袋22および下流側膨張袋26の隣接側端部22aおよび26aとが相互に重ねられたオーバラップ構造とされるとともに、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24とは反対側の端部22bおよび26bは,所謂マチ構造の側縁部とされている。
上記上流側膨張袋22および下流側膨張袋26の検出用膨張袋24側の端部22aおよび26aと、それが差し入れられている一対の折込溝24fおよび24fの内壁面すなわち相対向する溝側面との間には、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有する長手状遮蔽部材42がそれぞれ介在させられている。本実施例では、図3、図4に示すように、上流側膨張袋22の端部22aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間、および、下流側膨張袋26の端部26aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間に、長手状遮蔽部材42がそれぞれ介在させられているが、内周側隙間にも介在させられてもよい。内周側隙間に比較して外周側隙間の方が遮蔽効果が大きいので、少なくとも外周側隙間に設けられればよい。
上記長手状遮蔽部材42は、上腕10の長手方向すなわち圧迫帯12の幅方向に平行な樹脂製の複数本の可撓性中空管44が互いに平行な状態で、上腕10の周方向すなわち圧迫帯12の長手方向に連ねて配列されるとともに、それら可撓性中空管44が型成形或いは接着により直接に或いは粘着テープなどの可撓性シート等の他の部材を介して間接的に相互に連結されることにより構成されている。上記長手状遮蔽部材42は、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24側の端部22aおよび26aの外周側の複数箇所に設けられた複数の掛止シート46に掛け止められている。
図1に戻って、循環器情報測定装置14においては、空気ポンプ50、急速排気弁52、および圧力制御手段に対応する排気制御弁54は主配管56を介して接続されている。その主配管56からは、空気ポンプ50と上流側膨張袋22との間を直接開閉するための第1開閉弁E1を直列に備えて上流側膨張袋22に接続された第1分岐管58、容積パルス発生器( EPG:容積脈波発生装置)60を直列に備えて検出用膨張袋24に接続された第2分岐管62、空気ポンプ50と下流側膨張袋26との間を直接開閉するための第3開閉弁E3を直列に備えて下流側膨張袋26に接続された第3分岐管64が分岐させられている。上記第1分岐管58と第2分岐管62との間には、空気ポンプ50と検出用膨張袋24との間を直接開閉するための第2開閉弁E2が接続されている。そして、主配管56またはそれに接続された膨張袋内の圧力を検出するための主圧力センサT0が主配管56に接続され、上流側膨張袋22の圧力を検出するための第1圧力センサT1が上流側膨張袋22に接続され、検出用膨張袋24の圧力を検出するための第2圧力センサT2が検出用膨張袋24に接続され、下流側膨張袋26の圧力を検出するための第3圧力センサT3が下流側膨張袋26に接続されている。
上記主圧力センサT0、第1圧力センサT1、第2圧力センサT2、第3圧力センサT3の出力信号は電子制御装置70に供給される。電子制御装置70は、CPU72、RAM74、ROM76、および図示しないI/Oポートなどを含む所謂マイクロコンピュータであって、CPU72はRAM74の記憶機能を利用しつつ予めROM76に記憶されたプログラムにしたがって入力信号を処理し、電動式の空気ポンプ50、急速排気弁52、および排気制御弁54、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3、容積パルス発生器60を制御することにより上腕10の動脈16から発生する測定データを採取するとともに、その測定データに基づいてその生体の血圧値BP、動脈柔軟度(動脈コンプライアンス) K、脈波伝播速度PWVを算出し、表示装置72にその演算結果である測定値を表示させる。
図5は、上記電子制御装置70の制御機能の要部を説明する機能ブロック線図を示している。図5において、血圧測定手段すなわち血圧測定部P1は、生体の一部たとえば上腕10に巻回された圧迫帯( カフ)12の圧迫圧を変化させる過程でその圧迫帯12の検出用膨張袋24内の圧力振動成分であるカフ脈波を逐次検出し、その一連のカフ脈波の変化に基づいてたとえばカフ脈波間の最大差分値の発生時のカフ圧を検出するオシロメトリック法を用いて前記生体の基準血圧値である最高血圧値SBPo および最低血圧値DBPo を予め測定する。脈波伝播速度測定手段すなわち脈波伝播速度測定部P2は、上腕10の動脈16における脈波伝播速度、たとえば上腕から足首までの脈波伝播速度hbPWVを、上記上腕に巻回された圧迫帯( カフ)12の検出用膨張袋24により得られたカフ脈波と足首に巻回された図示しない圧迫帯から得られたカフ脈波との時間差( 伝播時間) Tと距離Lとから一拍毎に連続的に算出し、脈波伝播速度hbPWV( =L/T)を逐次測定する。
血圧動揺パラメータ測定手段すなわち血圧動揺パラメータ測定部P3は、図6に詳しく示すように、予め求められた関係から上記実際の脈波伝播速度hbPWVを用いて生体の一拍毎の最高血圧値SBPi および最低血圧値DBPi を逐次推定する。たとえば、基準血圧測定時に心臓と上腕との間の予め求められた基準脈波伝播速度hbPWVref に対する逐次求められた実際の脈波伝播速度hbPWVi の変化分( hbPWVi −hbPWVref ) を一拍毎に算出し、たとえば基準血圧測定時に生体毎に予め求められた血圧/脈波伝播速度係数Shb( =ΔSBP/ΔhbPWV)およびDhb( =ΔDBP/ΔhbPWV)をその変化分( hbPWVi −hbPWVref ) にそれぞれ乗算することにより最高血圧値の血圧変動分ΔSBPi および最低血圧値の血圧変動分ΔDBPi を一拍毎に算出し、それら最高血圧値の血圧変動分ΔSBPi および最低血圧値の血圧変動分ΔDBPi を上記基準血圧値である最高血圧値SBPo および最低血圧値DBPo に加算( 補正) することにより、一拍毎に生体の推定最高血圧値SBPi および推定最低血圧値DBPi を逐次算出するとともに、必要に応じてそれら最高血圧値SBPi および最低血圧値DBPi の一定区間の移動平均値たとえば10秒間或いは10拍程度の間の移動平均値を算出し、逐次出力する。それら最高血圧値SBPi および最低血圧値DBPi は上腕10の動脈16内における一拍毎の圧脈波の最高値および最低値に対応している。
圧脈波計算部P4は、非圧迫下圧脈波推定手段すなわち非圧迫下圧脈波計算部P4−1と、TP値計算部P5と、圧迫下圧脈波計算部P4−2とを含んでいる。非圧迫下圧脈波計算部P4−1は、血圧測定部P1による圧迫帯( カフ)12を用いた血圧測定の際に得られたカフ脈波を、その圧迫帯( カフ)12を用いて測定された基準最高血圧値SBPo および基準最低血圧値DBPo を用いた校正線で校正することにより、図7に示すように、単位が生体の血圧値となる無負荷の推定圧脈波すなわち非圧迫下圧脈波に変換する。次いで、推定された動脈内の推定圧脈波の最低血圧( ボトム圧) 値、平均血圧値、最高血圧( 上ピーク圧)値を、基準推定最低血圧値DBPref 、基準推定平均血圧値MAPref 、基準推定最高血圧値SBPref として記憶する。また、逐次得られるカフ脈波を上記校正線で校正した推定圧脈波の推定最高血圧値SBPi および推定最低血圧値DBPi を逐次出力するとともに、予め記憶された算出式(1) から基準推定最低血圧値DBPref 、基準推定平均血圧値MAPref 、および一拍毎に求められた生体の推定最低血圧値DBPi に基づいて、推定平均血圧値MAPi を一拍毎に算出する。
MAPi =DBPi +( MAPref −DBPref ) ・・・(1)
貫壁圧力算出手段すなわちTP値計算部P5は、動脈16の動脈壁の内外圧力差である貫壁圧力TPi を、次式(2) から動脈16内の圧脈波の最低値であるボトム圧力Po ( =DBPi ) と動脈外の圧力Pe ( =Pcuff: カフ脈波の下ピーク値のカフ圧 )とに基づいて1拍毎に逐次算出する。また、TP値計算部P5は、推定圧脈波の振幅である脈圧ΔPi を、推定圧脈波の値Pi がMAPi を下回る区間では(3) 式に従って、心拍に同期して脈動する推定圧脈波の値Pi がMAPi を上回る区間では(4) 式に従って逐次算出する。
TPi =Po −Pe =DBPi −Pcuff ・・・(2)
ΔPi =SBPi −DBPi (但しPi <MAPi 、TPi =0の場合)
・・・(3)
ΔPi =SBPi −MAPi (但しPi >MAPi の場合) ・・・(4)
圧迫下圧脈波推定手段すなわち圧迫下圧脈波計算部P4−2は、血圧測定部P1による圧迫帯( カフ)12を用いた血圧測定の際に得られたカフ脈波を血圧単位に校正された非圧迫下脈波から、非圧迫下圧脈波計算部P4−1により算出された非圧迫下圧脈波の最低圧であるボトム圧力Po ( =DBPi ) と動脈外の圧力Pe ( =Pcuff: カフ内の圧迫圧力すなわちカフ脈波の下ピーク値のカフ圧 )との差分である、圧迫帯( カフ)12により圧迫されている部位の動脈の血管壁を境にした貫壁圧力TPを差し引くことにより圧迫下圧脈波を算出する。
図5に戻って、容積脈波測定手段すなわち容積脈波測定部P6は、圧迫帯12が最低血圧値よりも低い予め設定された圧力で圧迫する状態で第2圧力センサT2により検出された検出用膨張袋24内の圧力振動であるカフ脈波を測定する。このカフ脈波は図7に示すようにカフ圧Pcuffが心拍に同期して脈動している。圧迫帯12が最低血圧値よりも低い予め設定された圧力で圧迫する状態で第2圧力センサT2から出力される圧力信号を、数Hz乃至数十Hzの波長帯の信号を弁別するバンドパスフィルタ処理を行うことにより、圧迫帯12下の動脈の容積変化を示す容積脈波であるカフ脈波を弁別し、図7に示すように逐次出力する。
容積脈波算出手段すなわち容積脈波計算部P7は、上記圧迫帯12の検出用膨張袋24の容積変化に対する圧力変化の割合を示す感度すなわちカフコンプライアンスSe を算出し、その検出用膨張袋( カフ)24内の圧力振動であるカフ脈波とカフ感度とに基づいて、動脈内の圧が増加したときにその動脈の単位長さ当たりに増加する動脈の容積を表す容積脈波を算出する。すなわち、そのカフコンプライアンスSe を用いて上記カフ脈波(mmHg )を容積脈波 (cm=cc)に変換する。たとえば、検出用膨張袋24による圧迫圧力下すなわち各第1圧力P1 、第2圧力P2 、第3圧力P3 、第4圧力P4 下において容積パルス発生器60から一定容積C (cc)のパルスを加えたときに発生する圧力パルスPp を重畳したカフ脈波信号における圧力上昇値ΔPcuff (mmHg) を検出して、次式(5) に示す式からカフコンプライアンスSe を算出し、そのカフコンプライアンスSe をカフ脈波の縦軸に乗算することにより、単位が容積である容積脈波に変換する。すなわち、図7の縦軸を容積軸に変換することができる。
Se =ΔPcuff/C ・・・(5)
血管モデル設定手段すなわち血管モデル設定部P8は、無負荷時の動脈圧波形すなわち非圧迫下圧脈波を用いて動脈圧−血管断面積の特性を作成すると、無負荷時の血管径を大きく超えるなどの不具合を解消するために、圧負荷時のカフ下の圧脈波すなわち圧迫下圧脈波を用いたチューブモデルを設定している。このため、貫壁圧力( トランスミューラルプレッシャ) TPを、動脈内圧脈波の平均圧力Paav と外部圧力Pe ( =Pcuff) の差( Paav −Pcuff) という定義から、動脈の圧迫下圧脈波の最低圧力( ボトム圧力)Po と外部圧力Pe との差( Po −Pcuff) という定義へ新たに変更し、その定義に従って算出した貫壁圧力TPi を逐次出力させる。すなわち、血管モデル設定部P8は、最低血圧値DBPよりも高いカフ圧力下での圧迫帯12直下の動脈内の圧脈波を入力するモデルを導入する。
ここで、図8に示すように、圧迫帯12の圧迫圧力( カフ圧) Pcuffが生体の最高血圧値SBPよりも大きい止血状態から最低血圧値DBPより低い圧まで低下させられる過程で、圧迫帯12の中央部の検出用膨張袋24の直下では、貫壁圧力( トランスミューラルプレッシャ) TPが零、すなわちカフ圧がMEANであるときの圧脈波の最低圧力( ボトム圧力)Po における貫壁圧力TPが零(mTP=0mmHg) であるときに1拍当たりに増加( 変動)する動脈の容積値Vに対応する断面積A(=V/L、Lは圧迫帯12により圧迫される動脈の有効長さである設定値) は零( A=0) であると考えられる。カフ脈波( 容積脈波) の最大脈波点はカフ圧が平均血圧値MAPであるときであり、カフ圧Pcuffが最大脈波点のカフ圧Pm より高い領域では、m TP=0となり、圧脈波の大きさは(SBP−DBP)mmHgに等しい。最大振幅点近傍で最大振幅点よりも高いカフ圧Pcuffでの圧脈波の大きさはΔP(=(SBP−DBP)−(Pcuff−Pm ))である。上記血管モデル設定部P8におけるモデルでは、最大振幅点よりも高いカフ圧での一拍毎の容積変動値( TPi ,Ai )は( ΔPi ,ΔAi )で与えられる。
血管コンプライアンス解析手段すなわち血管コンプライアンス計算部P9は、予め記憶されたコンプライアンスモデル式(6) から、実際の貫壁圧力TP(mmHg)、貫壁圧力TPが血管壁に対して張力として作用する圧力であるバックリング点Pb(mmHg) 、バックリング点の断面積Ab (mm) 、動脈のエラスタンス定数( スケーリングパラメータ)a、動脈のエラスタンス定数bに基づいて、動脈のコンプライアンスKすなわち貫壁圧力TPの変化に対する断面積変化を示す値( dA/dTP)を算出し、表示装置72に表示させる。また、有限の脈圧ΔPに対する断面積の変化量ΔAを求め、実効コンプライアンスKp(=ΔA/ΔP)を算出し、表示装置72に表示させる。(6) 式において、バックリング点Pb以上のTP(TP≧15mmHg)領域でこのコンプライアンスモデル式が成立する。
K=dA/dTP=Ab [ 1/ (a・b)] ・[ a/ (TP−Pb +a)]
=[ Ab /b (TP−Pb +a)] ・・・(6)
図9は、上腕10の動脈16の貫壁圧力TPに対する血管断面積Aの実験的に求められる対数モデルを示しており、それに基づいて一般式(7) が実験的に得られる。TP≧Pb は解析適である。血管のコンプライアンスKはTPの単位圧力変化当たりの血管の断面積Aを単位長さ当たりの容積変化( dA/dTP) で得られるものであるから、上記コンプライアンスモデル式(6) は、貫壁圧力TPに対する血管断面積Aの特性を示す一般式(7) を圧力微分することにより求められたものである。
A=Ab {( 1/b)・ln[ ((TP−Pb ) /a) +1]+1}
・・・(7)
上記コンプライアンスモデル式(6) は、1/Pの曲線であって分母はx軸の座標変換すなわち平行移動を示しており、TP=Pb 且つa=0で発散するので、その動脈のエラスタンス定数( スケーリングパラメータ)aは正の値であって実験的に予め決定される。バックリング点Pb も明確に決定できないので、( Pb −a) を予め実験的に整合させる。Ab /bは上記1/P曲線すなわちコンプライアンスKの大きさを直接規定するものである。TP>Pb の範囲内の2点P1 、P2 におけるコンプライアンスの比はAb /bによりそれぞれ独立に決定され、それは( Pb −a) の動作点のシフトにより決定される。貫壁圧力TPがP1 であるときの圧脈波振幅( 脈圧) PPに対する動脈の容積変化をΔA(P1)とし、貫壁圧力TPがP2 であるときの圧脈波振幅( 脈圧) PPに対する動脈の容積変化をΔA(P2)とすると、ΔA(P1)およびΔA(P2)は(8) 式および(9) 式により表わされる。そして、2点P1 、P2 間の圧力変化に対する容積変化比ΔA(P2)/ΔA(P1)は(10)式により表わされる。図10は、脈圧PPが40mmHgであるときの圧力pmmHgに対する容積変化比ΔA(P2)/ΔA(P1)を示す特性曲線を、P1 とP2 との差( P2 −P1 ) が5mmHgであるときは白丸印で、10mmHgであるときは菱形印で、20mmHgであるときは黒丸印でそれぞれ示している。また、図10には、実験的にP1 からシフトさせられた( Pb −a) が示されている。図11は、(6) 式から変形された、 (TP−Pb +a)mmHg に対するK (Ab /b )の変化を示す特性曲線を示している。
ΔA(P1)=(Ab /b)・ln[ 1+ (PP/ (P1 −Pb +a))]
・・・(8)
ΔA(P2)=(Ab /b)・ln[ 1+ (PP/ (P2 −Pb +a))]
・・・(9)
ΔA(P1)/ΔA(P2)=ln[ 1+ (PP/ (P2 −Pb +a))]
/ln[ 1+ (PP/ (P1 −Pb +a))]
・・・(10)
これにより、TP>Pb の範囲内の2点の圧力値P1 およびP2 における圧脈波振幅( 脈圧) PPに対する動脈の容積変化をΔA(P1)およびΔA(P2)が(8) 式および(9) 式から測定されると、コンプライアンスK(P1)およびK(P2)がそれぞれ決定される。すなわち、( Pb −a) が求められ、(8) 式または(9) 式に代入されると、(Ab /b)が求められ、それら( Pb −a) および(Ab /b)から(6) 式からコンプライアンスK( =dA/dTP) が算出され、表示装置72に表示される。Kは(7) 式の微分値に相当するが、(7) 式の非線形性の程度を含んだ、より実効的なコンプライアンスとして、(8) 式から有限の脈圧ΔPに対する断面積の変化量ΔAを求め、実効コンプライアンスKp( =ΔA/ΔP) を算出し、同じく表示装置72に表示する。因みに、血管の弾性繊維が主体の領域の弾性特性を示す貫壁圧力の特徴点TP=30mmHgにおけるコンプライアンスK(30)は、(6) 式に基づく(11) 式により表される。TP=30mmHgにおけるΔP=40mmHgに対する実効コンプライアンスKp(30)は(12) 式により表される。
K(30)=Ab /b×[ 30−( Pb −a)] ・・・(11)
Kp(30)=(Ab /b)・ln[1+(40/(30−Pb+a))/40]
・・・(12)
前述のように、血管のコンプライアンスKは管壁圧力TPの単位圧力変化当たりの血管の容積変化に対応する断面積Aを、単位長さ当たりの容積変化量( dA/dTP) で示すものであるから、その単位はcc/mmHgであるが、それを正規化して、管壁圧力TPの単位圧力変化当たりの単位長さ当たりの容積変化率( 1/A)(dA/dTP) で示すことができる。前記コンプライアンスKおよび実効コンプライアンスKpが正規化されたパラメータは、動脈の伸展性( 伸展率) EおよびEpと定義される。血管コンプライアンス計算部P9は、この動脈の伸展性( 伸展率) E(1/mmHg) およびEp(1/mmHg)たとえばE(30)、E(DBP)およびEp(30)を、予め記憶された式(13.A)および(13.B)から上記コンプライアンスK(cc/mmHg)およびKp(cc/mmHg)に基づいてカフ圧の特徴点毎に算出し、表示装置72から出力させる。なお、(13)式において、Aは特徴点毎の1拍当たりの動脈容積変化量(cc)であり、前記容積脈波の1周期の面積により算出されるが、断面積Aであってもよい。
E=( 1/A) K=( 1/A)(dA/dTP) ・・・(13.A)
Ep=( 1/A) Kp=( 1/A)(ΔA/ΔP) ・・・(13.B)
TP=0mmHgにおける血管の圧閉状態を起点として、バックリング点より大きい脈圧(ΔP≧15mmHg)では、無負荷時の血管の自然長における血管径に相当した断面積への変移を含むので、最大の実効コンプライアンス値をとる。この最大の実効コンプライアンスAMを算出し表示装置72に表示させる。実際の血圧における脈圧(SBP−DBP)はこの条件下にあるので、TP=0mmHgにおける圧脈波ΔP(=SBP−DBP)に対応した実効コンプライアンスをAMとしてもよい。
血管コンプライアンス計算部P9が表示装置72に表示させるコンプライアンスKは、上記特徴点毎の値が数字表示されるだけでなく、トランスミューラルプレッシャTP( 横軸) に対するコンプライアンスK( 縦軸) の変化特性を示すKカーブ(K-Curve) 、そのコンプライアンスKの関連値であるKカーブの傾きAb /b( 縦軸) のトランスミューラルプレッシャTP( 横対数軸) に対する変化特性を示すAb /bカーブなどをそれぞれグラフ表示する。
PA曲線解析手段すなわちPA曲線解析部P11は、図14に示す、トランスミューラルプレッシャTP(mmHg)( 横軸) に対する動脈断面積Acm (縦軸) の変化特性を示すPA曲線( PAカーブ) を求めて表示するとともに、圧脈波ΔP(t)の波形、容積脈波ΔV(t)の波形を時間軸上に表示し、求められたスティフネスβおよび血管の弾性繊維が主体の領域の弾性特性を示す貫壁圧力の特徴点TP=30mmHgにおけるスティフネスβ(30)を表示する。このスティフネスβおよびβ(30)は次式(14.A)および(14.B)により定義されるように動脈柔軟度に関連するパラメータであり、たとえば上記PA曲線におけるの傾きに基づいて算出される。なお、式(14)において、Ds は最高血圧時の動脈径(mm)であり、Dd は最低血圧時の動脈径(mm)であって前記容積脈波に基づいて算出されるが、それらは前記容積脈波に基づいて算出される最高血圧時および最低血圧時の動脈内腔の断面積(mm)であってもよい。
β=ln( SBP/DBP)・D/ΔD
=ln[(DBP+PP)/DBP]・Dd /( Ds −Dd) ・・・(14.A)
β(30)=ln[(30+PP)/30]
・D(30)/[D(30+PP)−D(30)] ・・・(14.B)
統計演算手段すなわち統計演算部P12は、上記血管コンプライアンス計算部P9やPA曲線解析部P11において算出されたパラメータの経事的変化、移動平均値などの統計値を生体毎に算出し、診断や薬効の評価等のために表示させる。
図15および図16は、上記電子制御装置70の制御作動の要部を説明するフローチャートおよびタイムチャートをそれぞれ示している。図15において、図示しない電源スイッチが投入されると、図16のt0 に示す初期状態とされる。この状態では、オペレータにより入力された患者データたとえば性別、年齢、姓名、患者ID等が記憶されるとともに、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3、および急速排気弁52は常開弁であるため非作動状態すなわち開( オープン) 状態とされ、排気制御弁54は常閉弁であるため非作動状態すなわち閉状態とされ、容積パルス発生器60および空気ポンプ50は非作動状態とされている。次いで、図示しない起動操作装置が操作されて循環器情報測定装置14の測定動作が開始されると、先ず、図16の時刻t1 乃至t3 に示す図15のステップS1( 以下、ステップを省略する) の第1血圧測定ルーチンが実行される。このS1は前記血圧測定部P1すなわち第1血圧測定手段或いは第1血圧測定工程に対応している。
上記第1血圧測定ルーチンでは、先ず、図16の時刻t1 において、空気ポンプ50が起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサT0により検出される圧力すなわち圧迫帯12による圧迫圧Peが生体の最高血圧値よりも十分に高い値に予め設定された昇圧目標圧力Pmax に到達すると、上記空気ポンプ50の作動が停止され、それに応答して、圧迫帯12による圧迫圧が一定の速度で下降するように排気制御弁54が作動させられ、徐速排気が開始される。図16の時刻t2 はこの状態を示す。この徐速排気過程において第2圧力センサT2から出力される圧力信号から、ローパスフィルタ処理が為されることにより圧迫帯12による圧迫圧( 静圧) を示すカフ圧力信号が弁別されるとともに、数Hz乃至数十Hzの波長帯の信号を弁別するバンドパスフィルタ処理されることにより脈波信号が弁別される。次いで、脈波信号の発生毎に実行されるオシロメトリック式血圧値決定アルゴリズムにしたがって、順次発生する脈波信号の振幅或いはその変化に基づいて最高血圧値SBP(mmHg)、平均血圧値MBPおよび最低血圧値DBP(mmHg)として決定し、その最低血圧値DBPが決定されると同時に急速排気弁52が開放され、それに応答して排気制御弁54がその最大開口となるまで開かれて、図15のS1が終了させられる。図16の時刻t3 はこの状態を示す。
上記オシロメトリック式血圧値決定アルゴリズムは、たとえば脈波信号の振幅値を結ぶ包絡線( エンベロープ) が急激に上昇したときすなわちエンベロープの微分波形の極大ピーク点に対応する圧力信号が示す圧力を最高血圧値SBP値( mmHg)として決定し、その脈波信号の振幅値を結ぶ包絡線( エンベロープ) の最大値に対応する圧力信号が示す圧力を平均血圧値MBPとして決定し、その脈波信号の振幅値を結ぶ包絡線( エンベロープ) が急激に減少したときすなわちエンベロープの微分波形の極小ピーク点に対応する圧力信号が示す圧力を最低血圧値DBPとして決定する。第1圧力センサT1から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号、第2圧力センサT2から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号、第3圧力センサT3から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号、主圧力センサT0から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号の4種の脈波信号間には、振幅の差が存在し、検出用膨張袋24内の圧力を検出する第2圧力センサT2から出力される脈波信号が動脈16の脈動を最も正確に反映している。
次いで、図15のS2の脈波伝播速度測定ルーチンが図16の時刻t4 乃至t6に示す区間において実行される。このS2は前記脈波伝播速度測定部P2或いは脈波伝播速度測定工程に対応している。先ず、急速排気弁52および排気制御弁54が閉じられるとともに空気ポンプ50が起動される。次いで、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が予め最低血圧値DBPよりも低い値たとえば60mmHgに設定された脈波検出圧Ppwv に到達すると、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3が閉じられ、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26は互いに独立して脈波検出圧に維持される。図16のt5 時点はこの状態を示す。この状態において、第1圧力センサT1および第3圧力センサT3から出力される圧力信号がバンドパスフィルタ処理されることにより、上流側膨張袋22および下流側膨張袋26により検出された脈波を示す脈波信号が弁別され、それらの脈波信号の位相差( 脈波伝播時間) Δt1(sec)とたとえば90mm程度の上流側膨張袋22および下流側膨張袋26の中心間距離L1(m)とに基づいて局所脈波伝播速度bbPWV(m/sec)が式(15)から算出される。このような局所脈波伝播速度bbPWVの算出は、脈波の発生毎に時刻t6に到達するまで繰り返し実行され、到達するとそれまでに求めた局所脈波伝播速度bbPWVの平均値が算出される。また、図示しない心音マイクロホンにより検出された心音またはECGのR波の発生時刻と検出用膨張袋24により検出されたカフ脈波の立ち上がり時刻との時間差Δt2(sec)と両者間の距離L2(m)とに基づいて脈波伝播速度hbPWV(m/sec)が式 (16) から算出される。
bbPWV=L1 /Δt1 ・・・ (15)
hbPWV=L2 /Δt2 ・・・ (16)
図17は、動脈16の管壁の圧力差( =脈動する動脈内圧すなわち圧脈波の最低圧力( ボトム圧力)Po −動脈外圧すなわち圧迫帯による圧迫圧Pe)であるトランスミューラルプレッシャTP(mmHg)に対する上記脈波伝播速度bbPWVの変化を、同一生体から同時期に測定した従来の図示しない心音マイクロホンにより検出された心音またはECGのR波から上流側膨張袋22までの脈波伝播速度hbPWVと対比して示している。図17から明らかなように、脈波伝播速度hbPWVはトランスミューラルプレッシャTPに拘わらず略一定値を示している。これに対し上記脈波伝播速度bbPWVは、トランスミューラルプレッシャTPが負の値から10乃至20(mmHg)付近すなわち圧迫帯12による圧迫圧が最低血圧値DBP付近に至るまでは略一定値を示すが、それよりも更に増加するほど比例的に増加する特徴がある。上記局所脈波伝播速度bbPWVは、所定の圧力値たとえばTP=50(mmHg)又はその付近における値或いは増加率を測定することにより、個人毎に比較可能な、動脈16の硬化状態を評価するための循環器パラメータとして求められる。
次に、図15において、S3の第2血圧測定/動脈コンプライアンスデータ検出ルーチンが図16の時刻t7 乃至t9 に示す区間において実行される。このS3は前記血圧測定部P1、第2血圧算出手段、或いは第2血圧算出工程および動脈コンプライアンスデータ検出工程に対応している。このS3では、第1血圧測定ルーチンと同様に、先ず、時刻t7において空気ポンプ50が起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサT0により検出される圧力すなわち圧迫帯12による圧迫圧Peが第1血圧測定ルーチンによる前回の測定値である生体の最高血圧値SBPよりも所定値高い値に予め設定された昇圧目標圧力Pmax に到達すると、上記空気ポンプ50の作動が停止され、それに応答して、圧迫帯12による圧迫圧Peが一定の速度で下降するように排気制御弁54が作動させられ、単位時間当たり或いは単位脈波当たりの一定速度の徐速排気が開始される。図16の時刻t8 はこの状態を示す。この徐速排気過程においては、第2圧力センサT2から出力される圧力信号がバンドパスフィルタ処理されることにより、検出用膨張袋24により検出された脈波を示す脈波信号が繰り返し弁別される。次いで、第1血圧測定ルーチンと同様にして、脈波信号の発生毎に実行されるオシロメトリック式血圧値決定アルゴリズムにしたがって、順次発生する脈波信号の振幅或いはその変化に基づいて最高血圧値SBP(mmHg)、平均血圧値MBPおよび最低血圧値DBP(mmHg)として決定し、その最低血圧値DBPが決定されると同時に急速排気弁52が開放され、それに応答して排気制御弁54がその最大開口となるまで開かれて、図15のS3の第2血圧測定ルーチンが終了させられる。測定された血圧値は基準血圧値SBPo およびDBPo とされる。図16の時刻t9 はこの状態を示す。そして、最高血圧値SBPo と最低血圧値DBPo との圧力差である脈圧PP(=最高血圧値SBPo −最低血圧値DBPo )が算出される。後述の血管コンプライアンスKの演算には、この第2血圧測定ルーチンから得られた最高血圧値SBPo および最低血圧値DBPo に基づく脈圧PP(mmHg)が用いられる。
次に、図15のS4のカフコンプライアンス算出ルーチンが図16の時刻t10乃至t18において実行される。このS4は圧脈波計算部P4に対応している。このS4では、先ず、時刻t10において空気ポンプ50が起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサT0により検出される圧力すなわち圧迫帯12による圧迫圧Peが予め設定された第1圧力P1 に到達すると( 時刻t11)、上記空気ポンプ50の作動が停止され、それに応答して、第1開閉弁E1、第2開閉弁E2および第3開閉弁E3が閉じられて上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が上記第1 圧力P1 に時刻t12まで維持される。この時刻t11乃至t12の間の第1圧力維持区間では、脈波の発生に同期してその脈波の裾に相当するタイミングで容積パルス発生器60からたとえば0.2cc程度の一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることによりたとえば図18に示すような上記容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。この場合、上記圧力維持区間内において10個程度の複数の図7に示す脈波信号が複数採取され、それらの脈波信号が記憶されてもよいし、それらの平均値の脈波信号が記憶されてもよい。そして、時刻t12に到達して上記第1圧力維持区間が終了する。
上記の容積パルス発生器60から検出用膨張袋24内に注入される容積パルスは、そのときの検出用膨張袋24の圧力変化に拘わらず予め設定された一定容積Cの空気であり、動脈16が心拍に同期して膨張して検出用膨張袋24に繰り返し与える容積増加分に対応する値に予め設定されたものである。また、図7に示す脈波信号は圧力値であり、S1で求められた最高血圧値SBP(mmHg)を脈波信号の上ピーク値に対応させ、最低血圧値DBP(mmHg)を脈波信号の下ピーク値に対応させることにより、図7の縦軸は生体の血圧値に変換される。
上記第1圧力維持区間が終了する時刻t12では、第1開閉弁E1、第2開閉弁E2および第3開閉弁E3が再び開かれると同時に、空気ポンプ50が再度起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサT0により検出される圧力すなわち圧迫帯12による圧迫圧Peが予め設定された第2圧力P2に到達すると( 時刻t13)、上記空気ポンプ50の作動が停止され、それに応答して、第1開閉弁E1、第2開閉弁E2および第3開閉弁E3が閉じられて上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が上記第2 圧力P2に時刻t14まで維持される。この第2圧力維持区間でも、上記第1維持区間と同様に、脈波の発生に同期して容積パルス発生器60からの一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることによりたとえば図18に示すような上記容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。
次いで、同様にして、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が、主圧力センサT0により検出される圧力が予め設定された第3圧力P3に昇圧されるとともに、第3圧力維持区間t15乃至t16において第3圧力P3が維持され、その第3圧力維持区間t15乃至t16において、脈波の発生に同期して容積パルス発生器60からの一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることにより得られた図18に示すような容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。また、同様にして、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が、主圧力センサT0により検出される圧力が予め設定された第4圧力P4に昇圧されるとともに、第4圧力維持区間t17乃至t18において第4圧力P4が維持され、その第4圧力維持区間t17乃至t18において、脈波の発生に同期して容積パルス発生器60からの一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることにより得られた図18に示すような容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。
そして、上記第1圧力P1 、第2圧力P2 、第3圧力P3 、第4圧力P4 毎に第2圧力センサT2により検出され且つ記憶された各脈波信号について、動脈16の脈動に由来して発生する検出用膨張袋24内の圧力変化幅すなわち脈波の振幅値ΔP(mmHg)すなわちΔP1 、ΔP2 、ΔP3 、ΔP4 がそれぞれ算出され記憶される。また、上記各脈波信号において容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp すなわちPp1、Pp2、Pp3、Pp4がそれぞれ算出されて、検出用膨張袋24のカフコンプライアンスSe (mmHg/cc)すなわちSe1、Se2、Se3、Se4が式(5) からそれぞれ算出され、記憶される。このカフコンプライアンスSe は、検出用膨張袋24の容積変化に対する圧力変化の割合を示す感度を表している。このようにしてカフコンプライアンスSe が求められると、検出用膨張袋24から第2圧力センサT2により検出された脈波の縦軸すなわち振幅を容積に変換することができる。すなわち、図7の縦軸を容積軸に変換することができる。
上記予め設定された第1圧力P1 は最低血圧値DBPよりも低い圧たとえば40mmHg、第2圧力P2 は第1圧力P1 よりも高い圧たとえば最低血圧値DBP、第3圧力P3 は第2圧力P2よりも高い圧たとえば平均血圧値MBP、第4圧力P4 は第3圧力P3よりも高い圧たとえば平均血圧値MBPよりも15mmHg高い圧に、それぞれ設定されており、各圧力下においての、カフコンプライアンスSe1、Se2、Se3、Se4が求められる。
次いで図15のS5では、動脈コンプライアンス算出ルーチンが実行される。このS5は、S3およびS4と共に、血管コンプライアンス算出部P9、動脈コンプライアンス算出手段或いは動脈コンプライアンス測定工程を構成している。この図15のS5では、たとえば、先ず、S3において記憶された生体の最高血圧値SBPおよび最低血圧値DBPに基づいて生体の脈圧PP( =SBP−DBP)mmHgが算出される。次いで、カフコンプライアンスSe1、Se2、Se3、Se4を用いてカフ脈波の縦軸を補正することにより、単位が容積である容積脈波に変換する。また、基準血圧値SBPo およびDBPo の測定時に心臓と上腕との間の予め求められた基準脈波伝播速度hbPWVref に対する逐次求められた実際の脈波伝播速度hbPWVi の変化分( hbPWVref −hbPWVi ) を一拍毎に算出し、たとえば基準血圧測定時に生体毎に予め求められた血圧/脈波伝播速度係数Shb( =ΔSBP/ΔhbPWV)およびDhb( =ΔDBP/ΔhbPWV)をその変化分( hbPWVref −hbPWVi ) にそれぞれ乗算することにより最高血圧値の血圧変動分ΔSBPi および最低血圧値の血圧変動分ΔDBPi を一拍毎に算出し、それら最高血圧値の血圧変動分ΔSBPi および最低血圧値の血圧変動分ΔDBPi を上記基準血圧値である最高血圧値SBPo および最低血圧値DBPo に加算( 補正) することにより、一拍毎に生体の推定最高血圧値SBPi および推定最低血圧値DBPi を逐次算出する。この推定最高血圧値SBPi および推定最低血圧値DBPi には、基準血圧測定時以後の血圧動揺が反映されている。
このS5では、上記圧力値P1 、P2 、P3 、P4 における圧脈波振幅( 脈圧) PPに対する動脈の容積変化をΔA(P1)、ΔA(P2)、ΔA(P3)、ΔA(P4)が(8) 式および(9) 式から測定されると、コンプライアンスK(P1)、K(P2)、K(P3)、K(P4)がそれぞれ決定される。すなわち、( Pb −a) が求められ、(8) 式または(9) 式に代入されると、(Ab /b)が求められ、それら( Pb −a) および(Ab /b)から(6) 式からコンプライアンスK( =dA/dTP) および実効コンプライアンスKp(=ΔA/ΔP)が算出され、表示装置72に表示される。因みに、貫壁圧力の特徴点TP=30mmHgおよび最低血圧点DBPmmHg毎におけるコンプライアンスK1、K2、K3、K4は、(6)式に基づく(11)式、および圧脈波ΔP=40mmHgに対する実効コンプライアンスKp1、Kp2、Kp3、Kp4は(12)式と同様に以下の式により表わされる。
K1 (P1 )=Ab /b×[ P1 −( Pb −a)]
K2 (P2 )=Ab /b×[ P2 −( Pb −a)]
K3 (P3 )=Ab /b×[ P3 −( Pb −a)]
K4 (P4 )=Ab /b×[ P4 −( Pb −a)]
Kp1 (P1 )=(Ab /b)・ln[1+(40/(P1 −Pb+a))/40]
Kp2 (P2 )=(Ab /b)・ln[1+(40/(P2 −Pb+a))/40]
Kp3 (P3 )=(Ab /b)・ln[1+(40/(P3 −Pb+a))/40]
Kp4 (P4 )=(Ab /b)・ln[1+(40/(P4 −Pb+a))/40]
また、血管のコンプライアンスKおよび実効コンプライアンスKpは貫壁圧力TPの単位圧力変化当たりの血管の容積変化に対応する断面積Aを、単位長さ当たりの容積変化量( dA/dTP) および(1/A)(ΔA/ΔP)で示すことができるものであるから、その単位はcc/mmHgであるが、それを正規化して、貫壁圧力TPの単位圧力変化当たりの単位長さ当たりの容積変化率( 1/A)(dA/dTP) で示すことができるので、コンプライアンスKが正規化されたパラメータである動脈の伸展性( 伸展率) E(1/mmHg) たとえばE(P1 )、E(P2 )、E(P3 )、E(P4 )、Ep(P1 )、Ep(P2 )、Ep(P3 )、Ep(P4 )を、予め記憶された式(13.A)および(13.B)から上記コンプライアンスK(cc/mmHg) および実効コンプライアンスKp(cc/mmHg)に基づいてカフ圧の特徴点毎に算出し、S7において表示装置72から出力させる。
次いで図15のS6では、TP=0mmHgにおける血管の圧閉状態を起点として、バックリング点より大きい脈圧(ΔP≧15mmHg)では、無負荷時の血管の自然長における血管径に相当した断面積への変移を含むので、最大の実効コンプライアンス値をとる。TP=0mmHgにおける圧脈波ΔP(=SBP-DBP)に対応した実効コンプライアンス(ΔA/ΔP)を最大の実効コンプライアンスAMとして算出し表示装置72に表示させる。
また、図15のS6では、図14に示す、トランスミューラルプレッシャTP(mmHg)( 横軸) に対する動脈断面積Acm(縦軸) の変化特性を示すPA曲線( PAカーブ) を求めて表示するとともに、圧脈波ΔP(t)の波形、容積脈波ΔV(t)の波形を時間軸上に表示し、求められたスティフネスβおよびスティフネスβ(30)を表示する。このスティフネスβおよびスティフネスβ(30)は、式(14.A)および式(14.B)により定義されるように動脈柔軟度に関連するパラメータであり、たとえば上記PA曲線におけるの傾きに基づいて算出される。また、上記算出されたパラメータの経事的変化、移動平均値などの統計値を生体毎に算出される。この統計値は、診断や薬効の評価等のために表示させる。上記S6は、血管粘弾性測定部P10、PA曲線解析部P11、統計演算部P12に対応している。
そして、図15のS7では、表示制御ルーチンが実行される。このS7は、S2において測定された上腕の動脈16内の脈波伝播速度bbPWVまたはその変化率、S3において測定された生体の最高血圧値SBPおよび最低血圧値DBP、S4において測定されたカフコンプライアンスSe1、Se2、Se3、Se4、S5において算出された動脈コンプライアンスK1 、K2 、K3 、K4 が、患者の性別、年齢、姓名、患者ID等の患者データと共に表示装置72に表示される。これにより、表示装置72に表示された上記脈波伝播速度bbPWV、最高血圧値SBPおよび最低血圧値DBP、動脈コンプライアンスK1 、K2 、K3 、K4 に基づいて患者の循環器の健康状態が客観的に示される。また、表示装置72に表示させるコンプライアンスKは、上記特徴点毎の値が数字表示されるだけでなく、トランスミューラルプレッシャTP( 横軸) に対するコンプライアンスK( 縦軸) の変化特性を示すKカーブ(K-Curve) 、そのコンプライアンスKの関連値であるKカーブの傾きAb /b( 縦軸) のトランスミューラルプレッシャTP( 横対数軸) に対する変化特性を示すAb /bカーブなどをそれぞれグラフ表示する。
上述のように、本実施例の循環器情報測定装置( 動脈血管柔軟度測定装置) 14によれば、圧迫帯( カフ)12を用いて検出された容積脈波からオシロメトリック法を用いて生体の基準最高血圧値SBPoおよび基準最低血圧値DBPoを測定する血圧測定部(血圧測定手段)P1と、 前記容積脈波を、基準最高血圧値SBPoおよび基準最低血圧値DBPoを用いて校正することにより、血圧値を単位とする、圧迫帯( カフ)12により圧迫されていない部位の動脈内の非圧迫下圧脈波を推定する非圧迫下圧脈波計算部(非圧迫下圧脈波推定手段)P4−1と、前記非圧迫下圧脈波の最低圧(ボトム圧)Poと動脈外の圧力Pe(=圧迫帯12内の圧迫圧力Pcuff:カフ脈波の下ピーク値のカフ圧)とに基づいて圧迫帯12により圧迫されている部位の動脈16の血管壁を境にした貫壁圧力TPiを算出する貫壁圧力算出部(貫壁圧力算出手段)P5と、(e) 前記非圧迫下圧脈波から貫壁圧力TPiを差し引くことにより前記圧迫帯12により圧迫されている部位の動脈内の圧迫下圧脈波を推定する圧迫下圧脈波計算部(圧迫下圧脈波推定手段)P4−2とを、含み、血管コンプライアンス計算部(血管コンプライアンス解析手段)P9は、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管たとえば上腕動脈16の柔軟性( コンプライアンスK) を算出するものであることから、圧迫帯12による圧迫状態のカフ下の動脈内の血圧値を示す圧迫下圧脈波が用いられて、カフ圧迫下の動脈の貫壁圧力が正確に得られるので、カフ下の動脈の圧力変化に対する容積変化の関係を反映したものとなり、正確な血管コンプライアンスKが得られる。
また、本実施例の循環器情報測定装置( 動脈血管柔軟度測定装置) 14によれば、非圧迫下圧脈波の最低圧であるボトム圧力Po ( =DBPi ) と動脈外の圧力Pe ( =Pcuff: カフ内の圧迫圧力すなわちカフ脈波の下ピーク値のカフ圧 )とに基づいて圧迫帯( カフ)12により圧迫されている部位の動脈の血管壁を境にした貫壁圧力TPを算出するTP値計算部( 貫壁圧力算出手段) P5を、含み、前記圧迫下圧脈波計算部P4−2は、前記非圧迫下圧脈波から上記貫壁圧力TPを差し引くことにより圧迫下圧脈波を算出するものである。このため、非圧迫下圧脈波の最低圧と前記カフ内の圧迫圧力Pcuffの最低値とに基づいて算出された貫壁圧力TPを非圧迫下圧脈波から差し引くことにより圧迫下圧脈波が得られるので、圧迫帯( カフ)12による圧迫下の動脈の圧力変化に対する容積変化の関係を反映したものとなり、正確な血管コンプライアンスKが得られる。
また、本実施例の循環器情報測定装置( 動脈血管柔軟度測定装置) 14によれば、圧迫帯( カフ)12の検出用膨張袋24に一定容積変化を与えたときのその検出用膨張袋24にその内側の圧力の変化を示すカフ感度すなわちカフコンプライアンスSe を算出し、その検出用膨張袋24内の圧力振動であるカフ脈波とカフ感度とに基づいて、動脈内の圧が増加したときにその動脈の単位長さ当たりに増加する動脈の容積を表す容積脈波を算出する容積脈波計算部( 容積脈波算出手段) P7を、含むことから、カフ感度を考慮した正確な容積脈波が得られるので、カフ下の動脈の圧力変化に対する容積変化の関係を反映したものとなり、正確な血管コンプライアンスKが得られる。
また、本実施例の循環器情報測定装置( 動脈血管柔軟度測定装置) 14によれば、生体の被圧迫部位すなわち上腕10の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋22および下流側膨張袋26と、それら一対の上流側膨張袋22および下流側膨張袋26の間に配置され、その一対の上流側膨張袋22および下流側膨張袋26とは独立した気室を有する検出用膨張袋24とを、含む脈波検出用圧迫帯12を備え、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26で生体の被圧迫部位たとえば上腕10を同じ圧力で圧迫した状態で、検出用膨張袋24内の圧力変動を前記カフ脈波として検出するものであることから、被圧迫部位の長手方向において連なる上流側膨張袋22、検出用膨張袋24、下流側膨張袋26から生体の被圧迫部位内の動脈16に対して圧迫圧力を均等な圧力分布で加えつつ、正確なカフ脈波が得られる。
また、本実施例の循環器情報測定装置( 動脈血管柔軟度測定装置) 14によれば、血管コンプライアンス計算部( 血管コンプライアンス解析手段) P9は、生体の動脈血管たとえば上腕動脈16の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて、トランスミューラルプレッシャTP(mmHg)( 横軸) に対する動脈断面積Acm (縦軸) の変化特性を示すPA曲線( PAカーブ) を求め、そのPA曲線の傾きから生体の動脈血管のスティフネスβを算出するものであり、そのスティフネスβは正規化された汎用性にあるパラメータであるので、動脈血管柔軟度の相対的評価や対比が容易となる。
以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様においても実施され得る。
たとえば、前述の実施例の圧迫帯12は上腕10に装着されていたが、生体の他の部位、たとえば前腕、足首等に装着されるものであってもよい。
また、前述の実施例において、コンプライアンスKを算出する特徴点の数および値は、適宜変更されることができる。カフコンプライアンスSeを求める圧として4段階の第1圧力P1 、第2圧力P2 、第3圧力P3 、第4圧力P4 が用いられているが、それらの設定圧は、圧迫帯12による圧迫圧Pe毎に異なる検出用膨張袋24のカフコンプライアンスSeを求めるための値であるため、動脈コンプライアンスKを求める前提とする圧迫帯12の圧迫圧Peに任意に設定され得る。たとえば、動脈コンプライアンスKを算出する前提とする圧迫帯12の圧迫圧が所定圧の1段階であれば上記カフコンプライアンスSeを測定する圧力維持区間の圧力は1段階となり、3段階であれば上記カフコンプライアンスSeを測定する圧力維持区間の圧力は3段階となり、5段階であれば上記カフコンプライアンスSeを測定する圧力維持区間の圧力は5段階となる。
前述の実施例において、図15のS1の第1血圧測定ルーチン、S3の第2血圧測定ルーチンでは、脈波の振幅の変化に基づきオシロメトリック法を用いて、最高血圧値SBPおよび最低血圧値DBPを決定していたが、脈波の積分値の変化、すなわち脈波のグラフが時間軸上に形成する面の面積変化に基づきオシロメトリック法を用いて、最低血圧値DBP、最高血圧値SBPを決定してもよいし、マイクロホンにより検知されるコロトコフ音の発生および消滅に基づいて最低血圧値DBP、最高血圧値SBPを決定してもよい。
前述の実施例において、図15のS1の第1血圧測定ルーチンは必ずしも設けられていなくてもよい。
なお、上述したのはあくまでも本発明の一実施例であり、本発明はその趣旨を逸脱しない範囲において種々の変更が加えられ得る。
10:上腕( 生体の被圧迫部位)
12:圧迫帯( カフ)
14:循環器情報測定装置( 動脈血管柔軟度測定装置)
22:上流側膨張袋
24:検出用膨張袋
24:下流側膨張袋
P1:血圧測定部( オシロメトリック式血圧測定手段)
P2:脈波伝播速度測定部( 脈波伝播速度測定手段)
P4−1:非圧迫下圧脈波計算部( 非圧迫下圧脈波推定手段)
P4−2:圧迫下圧脈波計算部( 圧迫下圧脈波推定手段)
P5:TP値計算部( 貫壁圧力算出手段)
P7:容積脈波計算部( 容積脈波算出手段)
P9:血管コンプライアンス計算部( 血管コンプライアンス解析手段)

Claims (6)

  1. 生体の一部に巻回されたカフを用いて検出される該生体の一部における動脈の周期的容積変化を表す容積脈波と該生体の動脈内の周期的圧力変化を表す圧脈波とに基づいて、該生体の動脈の柔軟度を算出する動脈血管コンプライアンス解析手段を備えた動脈血管柔軟度測定装置であって、
    前記カフを用いて検出された容積脈波からオシロメトリック法を用いて前記生体の基準最高血圧値および基準最低血圧値を測定する血圧測定手段と、
    前記容積脈波を、前記基準最高血圧値および基準最低血圧値を用いて校正することにより、血圧値を単位とする前記カフにより圧迫されていない部位の動脈内の非圧迫下圧脈波に変換する非圧迫下圧脈波推定手段と、
    前記非圧迫下圧脈波の最低圧と前記カフ内の圧迫圧力とに基づいて前記カフにより圧迫されている部位の動脈の血管壁を境にした貫壁圧力を算出する貫壁圧力算出手段と、
    前記非圧迫下圧脈波から前記貫壁圧力を差し引くことにより前記カフにより圧迫されている部位の動脈内の圧迫下圧脈波を推定する圧迫下圧脈波推定手段とを、含み、
    前記血管コンプライアンス解析手段は、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管の柔軟度関連値を算出するものであることを特徴とする動脈血管柔軟度測定装置。
  2. 前記カフに一定容積変化を与えたときの該カフ内の圧力の変化を示すカフ感度を算出し、前記カフ内の圧力振動であるカフ脈波と前記カフ感度とに基づいて、前記動脈内の圧力が増加したときに該動脈の単位長さ当たりに増加する動脈の容積を表す前記容積脈波を算出する容積脈波算出手段を、含むことを特徴とする請求項1の動脈血管柔軟度測定装置。
  3. 前記カフは、前記生体の被圧迫部位の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および下流側膨張袋と、該一対の上流側膨張袋および下流側膨張袋の間に配置され、該一対の上流側膨張袋および下流側膨張袋とは独立した気室を有する検出用膨張袋とを、含み、前記上流側膨張袋、検出用膨張袋、および下流側膨張袋で前記生体の被圧迫部位を同じ圧力で圧迫した状態で、前記検出用膨張袋内の圧力変動を前記カフ脈波として検出するものであることを特徴とする請求項1または2の動脈血管柔軟度測定装置。
  4. 前記血管コンプライアンス解析手段は、前記生体の動脈血管の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管のスティフネスを算出するものであることを特徴とする請求項1乃至いずれか1の動脈血管柔軟度測定装置。
  5. 前記血管コンプライアンス解析手段は、前記生体の動脈血管の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管の弾性を特徴づける指標である、血管壁にかかる力の小さい範囲で、有限の大きさの圧脈波振幅に対する血管コンプライアンスおよびスティフネスを算出するものであることを特徴とする請求項1乃至のいずれか1の動脈血管柔軟度測定装置。
  6. 前記血管コンプライアンス解析手段は、前記生体の動脈血管の柔軟度関連値として、前記容積脈波と前記圧迫下圧脈波とに基づいて前記生体の動脈血管の弾性を特徴づける指標である、血管の圧閉状態から血管の自然長における血管径を含む範囲を示す最大血管コンプライアンスを、算出するものであることを特徴とする請求項1乃至のいずれか1の動脈血管柔軟度測定装置。
JP2009067063A 2009-03-18 2009-03-18 動脈血管柔軟度測定装置 Active JP5352298B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067063A JP5352298B2 (ja) 2009-03-18 2009-03-18 動脈血管柔軟度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067063A JP5352298B2 (ja) 2009-03-18 2009-03-18 動脈血管柔軟度測定装置

Publications (2)

Publication Number Publication Date
JP2010214021A JP2010214021A (ja) 2010-09-30
JP5352298B2 true JP5352298B2 (ja) 2013-11-27

Family

ID=42973506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067063A Active JP5352298B2 (ja) 2009-03-18 2009-03-18 動脈血管柔軟度測定装置

Country Status (1)

Country Link
JP (1) JP5352298B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5619593B2 (ja) * 2010-12-17 2014-11-05 株式会社エー・アンド・デイ 動脈血管検査装置
JP5907638B2 (ja) * 2011-12-06 2016-04-26 株式会社エー・アンド・デイ 動脈血管硬化度測定装置
EP2904968B1 (en) * 2012-10-04 2017-05-10 Sapporo Medical University Finger arteriolar dilatability testing method, finger arteriolar dilatability testing device, and finger arteriolar dilatability testing program
JP6440535B2 (ja) * 2015-03-10 2018-12-19 日本光電工業株式会社 測定装置及びプログラム
CN109414199B (zh) * 2016-06-14 2023-08-01 皇家飞利浦有限公司 用于最大动脉顺应性的无创评估的设备和方法
JP7170459B2 (ja) * 2018-08-10 2022-11-14 株式会社東芝 血行検出装置、方法、及びプログラム
CN109464138B (zh) * 2018-11-29 2021-09-14 东莞市康助医疗科技有限公司 一种升压式动脉硬度评价方法、系统及装置
JP7002020B1 (ja) * 2020-09-25 2022-01-20 LaView株式会社 生体情報測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840816B2 (ja) * 1998-10-02 2006-11-01 オムロンヘルスケア株式会社 血圧監視装置
JP4117211B2 (ja) * 2003-04-18 2008-07-16 株式会社エー・アンド・デイ 血管弾性測定装置
JP4764673B2 (ja) * 2005-08-11 2011-09-07 株式会社エー・アンド・デイ 血圧脈波検査用カフ
JP4705821B2 (ja) * 2005-08-11 2011-06-22 株式会社エー・アンド・デイ 血圧脈波検査装置
JP4764674B2 (ja) * 2005-08-11 2011-09-07 株式会社エー・アンド・デイ 血圧脈波検査装置

Also Published As

Publication number Publication date
JP2010214021A (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5352298B2 (ja) 動脈血管柔軟度測定装置
JP5619593B2 (ja) 動脈血管検査装置
US9414755B2 (en) Method for estimating a central pressure waveform obtained with a blood pressure cuff
US6808496B2 (en) Oscillometric automatic blood-pressure measuring apparatus
JP3587837B2 (ja) 動脈硬化度評価装置
US10136823B2 (en) Methods and apparatus for determining cuff blood pressure
RU2502463C2 (ru) Устройство измерения информации о кровяном давлении, способное получать показатель для определения степени артериосклероза
US9591976B2 (en) Method and apparatus for measuring blood volume
JP5644325B2 (ja) 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
US7029449B2 (en) Arteriosclerosis inspecting apparatus
KR100804454B1 (ko) 상지-하지 혈압 지수 측정 장치
CN110840429A (zh) 基于柯氏音的血压测量方法及血压测量和心血管系统评估系统
JP5741087B2 (ja) 血圧情報測定装置
JP4764674B2 (ja) 血圧脈波検査装置
JP2004105550A (ja) 動脈狭窄検査装置
JP2001128946A (ja) 脈波伝播速度情報測定装置
JP4705821B2 (ja) 血圧脈波検査装置
JP2003199720A (ja) 下肢上肢血圧指数測定装置
JP5049097B2 (ja) 脈波検出用圧迫帯、およびそれを備えた自動血圧測定装置、血管柔軟度測定装置、脈波伝播速度測定装置。
US6669646B1 (en) Arteriosclerosis evaluating apparatus
CN113226161A (zh) 用于导出动脉顺应性的量度的控制单元
US7056291B2 (en) Arteriosclerosis evaluating apparatus
JP3496820B2 (ja) 血圧監視装置
JP2009112429A (ja) 脈波検出用圧迫帯
CN211883777U (zh) 基于柯氏音的血压测量和心血管系统评估系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5352298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250