JP2009112429A - 脈波検出用圧迫帯 - Google Patents

脈波検出用圧迫帯 Download PDF

Info

Publication number
JP2009112429A
JP2009112429A JP2007286816A JP2007286816A JP2009112429A JP 2009112429 A JP2009112429 A JP 2009112429A JP 2007286816 A JP2007286816 A JP 2007286816A JP 2007286816 A JP2007286816 A JP 2007286816A JP 2009112429 A JP2009112429 A JP 2009112429A
Authority
JP
Japan
Prior art keywords
bag
detection
pulse wave
pressure
compression band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007286816A
Other languages
English (en)
Inventor
Masae Shibazaki
真衛 柴崎
Shigehiro Ishizuka
繁廣 石塚
Nobuhiko Yasui
伸彦 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2007286816A priority Critical patent/JP2009112429A/ja
Publication of JP2009112429A publication Critical patent/JP2009112429A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】主膨張袋から検出用膨張袋への圧力振動ノイズの伝播は好適に阻止されるが、静圧については好適に圧力伝播を行うことができる脈波検出用圧迫帯を提供する。
【解決手段】主膨張袋( 上流側膨張袋、下流側膨張袋) 22、26と、その内側に重ねられた検出用膨張袋24との間に、圧迫帯12の幅方向の曲げ剛性が長手方向の剛性よりも高い剛性の異方性を有する遮蔽部材42が介在させられているため、主膨張袋22、26から検出用膨張袋24への圧力振動ノイズの遮蔽作用が得られ、圧力振動ノイズの影響を受け難い正確な脈波がその検出用膨張袋24から得られ、同時に、脈波検出用圧迫帯12の長手方向の曲げ剛性がその圧迫帯12の幅方向の曲げ剛性よりも低い剛性の異方性剛性を有する遮蔽部材42の性質により検出用膨張袋24への静圧については好適に圧力伝播を行うことが許容されて直下の動脈16への押圧が均一となる。
【選択図】図5

Description

本発明は、腕、足首のような生体の肢体である被圧迫部位内の動脈から発生する脈波を検出するためにその被圧迫部位に巻回される脈波検出用圧迫帯に関するものである。
生体の血圧値、脈波伝播速度、動脈柔軟度( コンプライアンス) 等の生体の循環器情報は、生体の動脈から発生する脈波を基礎として測定される。この生体の動脈から発生する脈波は、生体の被圧迫部位に巻回された圧迫帯内の圧力から心拍に同期して発生する比較的低周波の振動成分として弁別されて検出される。通常、この圧迫帯( カフ)には、生体の被圧迫部位を圧迫するために可撓性シートから成る主膨張袋と、専ら上記脈波を検出するための検出用膨張袋とが備えられる。たとえば、特許文献1、特許文献2、特許文献3に記載の血圧測定用圧迫帯がそれである。
特開平08−332171号公報 特開2007−044362号公報 特開2007−125247号公報
ところで、一般に、上記圧迫帯の検出用膨張袋は、比較的小さな動脈の容積変化を圧力変化として検出するために比較的小容量の気室を形成するように構成されており、その全部または一部が主膨張袋と重複して構成されている。このため、主膨張袋から検出用膨張袋への圧力振動ノイズが遮断されず、検出用膨張袋から検出される圧力に含まれる心拍に同期した脈波信号に主膨張袋に伝達される圧力振動たとえば体動ノイズや接触ノイズが混入するので、検出用膨張袋から検出される脈波が正確に得られないとともに、その脈波に基づいて測定される循環器パラメータ、たとえが血圧値、動脈コンプライアンスなどを正確に測定できないという問題があった。
これに対し、主膨張袋と検出用膨張袋との間に、それらよりも高剛性の可撓性板材を介在させることが考えられる。しかし、このような場合には、主膨張袋から検出用膨張袋へのノイズの伝播に関してのアイソレーションが高められるが、主膨張袋から検出用膨張袋への静圧について圧力伝播も阻害されることになるので、検出用膨張袋直下の動脈への押圧が不均一となり、これに起因して検出用膨張袋から検出される脈波が正確に得られないという問題が発生する。
本発明は以上の事情を背景として為されたものであり、その目的とするところは、主膨張袋から検出用膨張袋への圧力振動ノイズの伝播は好適に阻止されるが、その主膨張袋から検出用膨張袋への静圧については好適に圧力伝播を行うことができる脈波検出用圧迫帯を提供することである。
本発明者は、以上の事情を背景として種々検討を重ねた結果、上腕等の生体の被圧迫部位に巻回される圧迫帯において、複数本の可撓性線材を用意し、それら複数本の可撓性線材を互いに平行な状態で隣接させつつ圧迫帯の長手方向に連ねて配列して相互に連結し、それを主膨張袋と検出用膨張袋との間に介在させると、主膨張袋から検出用膨張袋への圧力振動ノイズの伝播は好適に阻止されるとともに、その主膨張袋から検出用膨張袋への静圧については好適に圧力伝播を行うことができることを見いだした。すなわち、圧迫帯の長手方向の曲げ剛性よりもその圧迫帯の幅方向の曲げ剛性が高い剛性の異方性を有する遮蔽部材を主膨張袋と検出用膨張袋との間に介在させると、主膨張袋から検出用膨張袋への圧力振動ノイズの伝播は好適に阻止されるとともに、その主膨張袋から検出用膨張袋への静圧については好適に圧力伝播を行うことができることを見いだした。本発明はこのような知見に基づいて為されたものである。
すなわち、前記目的を達成するために、請求項1に係る発明は、(a) 生体の被圧迫部位内の動脈から発生する脈波を検出するために該生体の被圧迫部位に巻き付けられる脈波検出用圧迫帯であって、(b) 前記生体の被圧迫部位を圧迫するために可撓性シートから成る主膨張袋と、(c) 該主膨張袋に少なくとも一部が重ねられ、該主膨張袋とは独立した気室を有する前記動脈から発生する脈波を検出するための検出用膨張袋と、(d) 前記主膨張袋と検出用膨張袋との互いに重ねられた部分において該主膨張袋と検出用膨張袋との間に介在させられ、前記脈波検出用圧迫帯の長手方向の曲げ剛性よりも該脈波検出用圧迫帯の幅方向の曲げ剛性が高い剛性の異方性を有する遮蔽部材とを、含むことにある。
また、請求項2に係る発明の要旨とするところは、請求項1の脈波検出用圧迫帯において、(a) 前記主膨張袋は、前記被圧迫部位の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および下流側膨張袋から成り、(b) 前記検出用膨張袋は、前記被圧迫部位の長手方向において連なるように前記一対の上流側膨張袋および下流側膨張袋の間に配置されたものであることにある。
また、請求項3に係る発明の要旨とするところは、請求項2の脈波検出用圧迫帯において、(a) 前記被圧迫部位の長手方向における前記検出用膨張袋の両端部には互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝が形成され、(b) 前記上流側膨張袋および下流側膨張袋の前記検出用膨張袋に隣接側の隣接側端部は、該一対の折込溝内に差し入れられ、(c) 前記検出用膨張袋の一対の折込溝の相対向する溝側面の少なくとも一方と該折込溝内に挿し入れられた前記上流側膨張袋および下流側膨張袋の隣接側端部との間に、前記遮蔽部材が介在させられていることにある。
また、請求項4に係る発明の要旨とするところは、請求項1の脈波検出用圧迫帯において、(a) 前記主膨張袋は、所定の幅寸法を備え、可撓性シートから成る一個の膨張袋から構成され、(b) 前記検出用膨張袋は、前記主膨張袋よりも小さい幅寸法を備え、該主膨張袋の幅方向の中央部内側において重ねて配設されたものであることにある。
また、請求項5に係る発明の要旨とするところは、請求項1の脈波検出用圧迫帯において、(a) 前記主膨張袋は、所定の幅寸法を備え、可撓性シートから成る一個の膨張袋から構成され、(b) 前記検出用膨張袋は、前記主膨張袋よりも小さい幅寸法を備えて、該主膨張袋の幅方向の両端部の内側において幅方向に所定の間隔を隔ててそれぞれ配設された一対の膨張袋であることにある。
また、請求項6に係る発明の要旨とするところは、請求項1乃至5のいずれか1の脈波検出用圧迫帯において、前記遮蔽部材は、前記脈波検出用圧迫帯の幅方向に平行な複数本の可撓性線材が互いに平行な状態で該脈波検出用圧迫帯の長手方向に連ねて配列されることにより構成されたものであることにある。
また、請求項7に係る発明の要旨とするところは、請求項6の脈波検出用圧迫帯において、前記可撓性線材は、合成樹脂製の可撓性中空管から構成されたものであることにある。
請求項1に係る発明の脈波検出用圧迫帯によれば、前記生体の被圧迫部位を圧迫するために可撓性シートから成る主膨張袋と、(c) 該主膨張袋に少なくとも一部が重ねられ、該主膨張袋とは独立した気室を有する前記動脈から発生する脈波を検出するための検出用膨張袋と、(d) 前記主膨張袋と検出用膨張袋との互いに重ねられた部分において該主膨張袋と検出用膨張袋との間に介在させられ、前記脈波検出用圧迫帯の長手方向の曲げ剛性よりも該脈波検出用圧迫帯の幅方向の曲げ剛性が高い剛性の異方性を有する遮蔽部材とを、含むことから、その遮蔽部材により主膨張袋から検出用膨張袋への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、同時に、脈波検出用圧迫帯の長手方向の曲げ剛性がその脈波検出用圧迫帯の幅方向の曲げ剛性よりも低い剛性の異方性を有する遮蔽部材の性質により主膨張袋から検出用膨張袋への静圧については好適に圧力伝播を行うことが許容されて検出用膨張袋直下の動脈への押圧が均一となるので、その検出用膨張袋から比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られる。
また、請求項2に係る発明の脈波検出用圧迫帯によれば、(a) 前記主膨張袋は、前記被圧迫部位の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および下流側膨張袋から成り、(b) 前記検出用膨張袋は、前記被圧迫部位の長手方向において連なるように前記一対の上流側膨張袋および下流側膨張袋の間に配置されたものである。このように上流側膨張袋、検出用膨張袋、および下流側膨張袋が圧迫帯の幅方向に連ねられた3連構造の圧迫帯において、主膨張袋を成す上流側膨張袋または下流側膨張袋から検出用膨張袋への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、その検出用膨張袋から比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られ、同時に、脈波検出用圧迫帯の長手方向の曲げ剛性がその脈波検出用圧迫帯の幅方向の曲げ剛性よりも低い剛性の異方性を有する遮蔽部材の性質により主膨張袋から検出用膨張袋への静圧については好適に圧力伝播を行うことが許容されて検出用膨張袋直下の動脈への押圧が均一となる。
また、請求項3に係る発明の脈波検出用圧迫帯によれば、(a) 前記被圧迫部位の長手方向における前記検出用膨張袋の両端部には互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝が形成され、(b) 前記上流側膨張袋および下流側膨張袋の前記検出用膨張袋に隣接側の隣接側端部は、該一対の折込溝内に差し入れられ、(c) 前記検出用膨張袋の一対の折込溝の相対向する溝側面の少なくとも一方と該折込溝内に挿し入れられた前記上流側膨張袋および下流側膨張袋の隣接側端部との間に前記遮蔽部材が介在させられていることから、検出用膨張袋の両端部と上流側膨張袋および下流側膨張袋の隣接側端部とは被圧迫部位の径方向に重ねられた状態となるので、それら検出用膨張袋と上流側膨張袋および下流側膨張袋との境界付近においても被圧迫部位に対して均一な圧迫圧力分布が得られる。
また、請求項4に係る発明の脈波検出用圧迫帯によれば、(a) 前記主膨張袋は、所定の幅寸法を備え、可撓性シートから成る一個の膨張袋から構成され、(b) 前記検出用膨張袋は、前記主膨張袋よりも小さい幅寸法を備え、該主膨張袋の幅方向の中央部内側において重ねて配設されたものである。このような2層構造の脈波検出用圧迫帯において、主膨張袋から検出用膨張袋への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、その検出用膨張袋から比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られ、同時に、脈波検出用圧迫帯の長手方向の曲げ剛性がその脈波検出用圧迫帯の幅方向の曲げ剛性よりも低い剛性の異方性を有する遮蔽部材の性質により主膨張袋から検出用膨張袋への静圧については好適に圧力伝播を行うことが許容されて検出用膨張袋直下の動脈への押圧が均一となる。
また、請求項5に係る発明の脈波検出用圧迫帯によれば、(a) 前記主膨張袋は、所定の幅寸法を備え、可撓性シートから成る一個の膨張袋から構成され、(b) 前記検出用膨張袋は、前記主膨張袋よりも小さい幅寸法を備えて、該主膨張袋の幅方向の両端部の内側において幅方向に所定の間隔を隔ててそれぞれ配設された一対の膨張袋である。このような2層構造の脈波検出用圧迫帯において、主膨張袋から検出用膨張袋への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、その検出用膨張袋の一方から比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られ、同時に、脈波検出用圧迫帯の長手方向の曲げ剛性がその脈波検出用圧迫帯の幅方向の曲げ剛性よりも低い剛性の異方性を有する遮蔽部材の性質により主膨張袋から検出用膨張袋への静圧については好適に圧力伝播を行うことが許容されて検出用膨張袋直下の動脈への押圧が均一となる。また、上記一対の検出用膨張袋により、動脈内の脈波伝播速度の測定が可能となる。
また、請求項6に係る発明の脈波検出用圧迫帯によれば、前記遮蔽部材は、その脈波検出用圧迫帯の幅方向に平行な複数本の可撓性線材が互いに平行な状態でその該脈波検出用圧迫帯の長手方向に連ねて配列されることにより構成されたものであることから、脈波検出用圧迫帯の長手方向の曲げ剛性よりも該脈波検出用圧迫帯の幅方向の曲げ剛性が高い剛性の異方性を有する遮蔽部材が簡単且つ容易に構成される。
また、請求項7に係る発明の脈波検出用圧迫帯によれば、前記可撓性線材は、合成樹脂製の可撓性中空管から構成されたものであることから、合成樹脂製の可撓性中空管による振動遮断効果によって、上流側膨張袋および下流側膨張袋から検出用膨張袋への低周波数の圧力振動ノイズの遮蔽作用が一層好適に得られ、その検出用膨張袋から比較的低周波数の圧力振動ノイズの影響を受け難い一層正確な脈波が得られる。
以下、本発明の一実施例について図面を参照しつつ詳細に説明する。
図1は、被圧迫部位である生体の肢体たとえば上腕10に巻き付けられる本発明の脈波検出用圧迫帯の一例である上腕用の圧迫帯12を備えた循環器情報測定装置14を示している。この循環器情報測定装置14は、生体の肢体10内の動脈16から発生する圧脈波APW、その生体の血圧値BP、動脈柔軟度(動脈コンプライアンス) K、脈波伝播速度PWVを測定することができるので、圧脈波検出装置、自動血圧測定装置、血管( 動脈) 柔軟度測定装置、および、脈波伝播速度測定装置として機能している。
図2は上記圧迫帯12の外周面を示す一部を切り欠いた図であり、図3はその圧迫帯12の内周面を示す図である。図2および図3に示すように、圧迫帯12は、PVC等の合成樹脂により裏面がラミネートされた合成樹脂繊維製の外周側面不織布20aおよび内周側不織布20bから成る帯状外袋20と、その帯状外袋20内において幅方向に順次収容され、たとえば軟質ポリ塩化ビニルシートなどの軟質の可撓性シートから構成された上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26とを備え、外周側面不織布20aの端部に取り付けられた面ファスナ28に内周側不織布20の端部に取り付けられた起毛パイル30が着脱可能に接着されることにより、上腕10に着脱可能に装着されるようになっている。上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26は、それぞれ独立した気室を構成するとともに、管接続用コネクタ32、34、および36を外周面側に備えている。それら管接続用コネクタ32、34、および36は、外周側面不織布20aを通して圧迫帯12の外周面に露出されている。
図4は、上記圧迫帯12内に備えられた上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26を示す平面図であり、図5はそれらを幅方向に切断した断面図であり、図6はそれらを分離して示す斜視図である。上流側膨張袋22、中流側膨張袋24、および下流側膨張袋26は、それぞれ長手状を成し、上流側膨張袋22および下流側膨張袋26は検出用膨張袋24の両側に隣接した状態で配置されている。検出用膨張袋24は、動脈16から発生する脈波PWを検出するためのものであり、上記上流側膨張袋22および下流側膨張袋26の間に挟まれた状態で圧迫帯12の幅方向の中央部に配置されている。
検出用膨張袋24は所謂マチ構造の側縁部を両側に備えている。すなわち、検出用膨張袋24の上腕10の長手方向における両端部には、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝24fおよび24fがそれぞれ形成されている。そして、前記上流側膨張袋22および下流側膨張袋26の検出用膨張袋24に隣接する側の隣接側端部22aおよび26aがそれら一対の折込溝24fおよび24f内に差し入れられて配置されるようになっている。これにより、検出用膨張袋24の両端部と上流側膨張袋22および下流側膨張袋26の検出用膨張袋24に隣接する側の隣接側端部22aおよび26aとの一部が相互に重ねられた構造すなわちオーバラップ構造となるので、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26が等圧で上腕10を圧迫したときにそれらの境界付近においても均等な圧力分布が得られる。この場合、上記上流側膨張袋22および下流側膨張袋26は、専ら上腕10を圧迫するための主膨張袋として機能し、検出用膨張袋24は動脈16から発生する脈波を専ら検出する脈波検出用として機能している。
上記上流側膨張袋22および下流側膨張袋26も、所謂マチ構造の側縁部を検出用膨張袋24とは反対側の端部22bおよび26bを備えている。すなわち、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24とは反対側の端部22bおよび26bには、互いに接近するほど深くなるように互いに接近する方向に折れ込まれたシートから成る折込溝22fおよび26fがそれぞれ形成されている。それら折込溝22fおよび26fを構成するシートは、幅方向に飛び出ないように、上流側膨張袋22および下流側膨張袋26内に配置された貫通穴を備える接続シート38、40を介してその反対側部分すなわち検出用膨張袋24側の部分に接続されている。これにより、上流側膨張袋22および下流側膨張袋26の端部22bおよび26bにおいても上腕10に対する圧迫圧が他の部分と同様に得られるので、圧迫帯12の幅方向の有効圧迫幅がその幅寸法と同等になる。圧迫帯12の幅方向は12cm程度であり、その幅方向に3つの上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26が配置された構造であるから、それぞれが実質的に4cm程度の幅寸法とならざるを得ない。このような狭い幅寸法であっても圧迫機能を十分に発生させるため、検出用膨張袋24の両端部24aおよび24bと上流側膨張袋22および下流側膨張袋26の隣接側端部22aおよび26aとが相互に重ねられたオーバラップ構造とされるとともに、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24とは反対側の端部22bおよび26bは,所謂マチ構造の側縁部とされている。
上記上流側膨張袋22および下流側膨張袋26の検出用膨張袋24側の端部22aおよび26aと、それが差し入れられている一対の折込溝24fおよび24fの内壁面すなわち相対向する溝側面との間には、上腕10の周方向の曲げ剛性よりもその上腕10の長手方向の曲げ剛性が高い剛性の異方性を有する長手状の遮蔽部材42がそれぞれ介在させられている。この遮蔽部材42は、上流側膨張袋22および下流側膨張袋26、或いは検出用膨張袋24と同様の長さ寸法を備えている。本実施例では、図4、図5に示すように、上流側膨張袋22の端部22aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間、および、下流側膨張袋26の端部26aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間に、長手状の遮蔽部材42がそれぞれ介在させられているが、内周側隙間にも介在させられてもよい。内周側隙間に比較して外周側隙間の方が遮蔽効果が大きいので、少なくとも外周側隙間に設けられればよい。
上記長手状の遮蔽部材42は、たとえば図19に示すように、上腕10の長手方向すなわち圧迫帯12の幅方向に平行な軟質合成樹脂製の複数本の可撓性中空管44が互いに平行な状態で、上腕10の周方向すなわち圧迫帯12の長手方向に連ねて配列されるとともに、それら可撓性中空管44が型成形或いは接着により直接に或いは粘着テープなどの可撓性シート等の連結部材45を介して間接的に相互に連結されることにより構成されている。上記長手状の遮蔽部材42は、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24側の端部22aおよび26aの外周側の複数箇所に設けられた複数の掛止シート46に掛け止められている。
図7は検出用膨張袋24から上流側膨張袋22および下流側膨張袋26への振動の遮断性能を表す試験結果を示し、図8は、上流側膨張袋22から検出用膨張袋24および下流側膨張袋26への振動の遮断性能を表す試験結果を示している。検出用膨張袋24の検出対象である動脈16から発生する脈波の主周波数成分は6Hz程度であるから、図7および図8の横軸は、0〜25Hz程度のスパンとされている。図7の実験では、円柱状の人工腕に巻回された圧迫帯12において、その上流側膨張袋22および下流側膨張袋26と検出用膨張袋24とにたとえば100mHgの圧力空気をそれぞれ供給した状態で、検出用膨張袋24の内側直下に配置された水バッグに6cc程度の一定容積で2秒程度の幅のパルス入力を行ったときに、それに応答して上流側膨張袋22および下流側膨張袋26に発生する圧力変化の周波数スペクトルを示している。また、図8の実験では、同様の円柱状の人工腕に巻回された圧迫帯12において、その上流側膨張袋22および下流側膨張袋26と検出用膨張袋24とにたとえば100mHgの圧力空気をそれぞれ供給した状態で、上流側膨張袋22の内側直下に配置された水バッグに6cc程度の一定容積で2秒程度の幅のパルス入力を行ったときに、それに応答して検出用膨張袋24および下流側膨張袋26に発生する圧力変化の周波数スペクトルを示している。図7から明らかないように、検出用膨張袋24から上流側膨張袋22および下流側膨張袋26への振動伝達率は−30dB付近以下であり、図8から明らかないように、上流側膨張袋22から検出用膨張袋24および下流側膨張袋26への振動伝達率も−30dB付近以下であるので、それらの間の遮断が好適に成立している。
図1に戻って、循環器情報測定装置14においては、空気ポンプ50、急速排気弁52、および圧力制御手段に対応する排気制御弁54は主配管56を介して接続されている。その主配管56からは、空気ポンプ50と上流側膨張袋22との間を直接開閉するための第1開閉弁E1を直列に備えて上流側膨張袋22に接続された第1分岐管58、容積パルス発生器( EPG)60を直列に備えて検出用膨張袋24に接続された第2分岐管62、空気ポンプ50と下流側膨張袋26との間を直接開閉するための第3開閉弁E3を直列に備えて下流側膨張袋26に接続された第3分岐管64が分岐させられている。上記第1分岐管58と第2分岐管62との間には、空気ポンプ50と検出用膨張袋24との間を直接開閉するための第2開閉弁E2が接続されている。そして、主配管56またはそれに接続された膨張袋内の圧力を検出するための主圧力センサT0が主配管56に接続され、上流側膨張袋22の圧力を検出するための第1圧力センサT1が上流側膨張袋22に接続され、検出用膨張袋24の圧力を検出するための第2圧力センサT2が検出用膨張袋24に接続され、下流側膨張袋26の圧力を検出するための第3圧力センサT3が下流側膨張袋26に接続されている。
上記主圧力センサT0、第1圧力センサT1、第2圧力センサT2、第3圧力センサT3の出力信号は電子制御装置70に供給される。電子制御装置70は、CPU72、RAM74、ROM76、および図示しないI/Oポートなどを含む所謂マイクロコンピュータであって、CPU72はRAM74の記憶機能を利用しつつ予めROM76に記憶されたプログラムにしたがって入力信号を処理し、電動式の空気ポンプ50、急速排気弁52、および排気制御弁54、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3、容積パルス発生器60を制御することにより生体の動脈16から発生する測定データを採取するとともに、その測定データに基づいてその生体の血圧値BP、動脈柔軟度(動脈コンプライアンス) K、脈波伝播速度PWVを算出し、表示装置72にその演算結果である測定値を表示させる。
図9および図10は、上記電子制御装置70の制御作動の要部を説明するフローチャートおよびタイムチャートである。図示しない電源スイッチが投入されると、図10のt0 に示す初期状態とされる。この状態では、オペレータにより入力された患者データたとえば性別、年齢、姓名、患者ID等が記憶されるとともに、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3、および急速排気弁52は常開弁であるため非作動状態すなわち開( オープン) 状態とされ、排気制御弁54は常閉弁であるため非作動状態すなわち閉状態とされ、容積パルス発生器60および空気ポンプ50は非作動状態とされている。次いで、図示しない起動操作装置が操作されて循環器情報測定装置14の測定動作が開始されると、先ず、図10の時刻t1 乃至t3 に示す図9のステップS1( 以下、ステップを省略する) の第1血圧測定ルーチンが実行される。このS1はオシロメトリック式血圧測定手段である第1血圧測定手段或いは第1血圧測定工程に対応している。
すなわち、先ず、図10の時刻t1 において、空気ポンプ50が起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサT0により検出される圧力すなわち圧迫帯12による圧迫圧Peが生体の最高血圧値よりも十分に高い値に予め設定された昇圧目標圧力Pmax に到達すると、上記空気ポンプ50の作動が停止され、それに応答して、圧迫帯12による圧迫圧が一定の速度で下降するように排気制御弁54が作動させられ、徐速排気が開始される。図10の時刻t2 はこの状態を示す。この徐速排気過程において第2圧力センサT2から出力される圧力信号から、ローパスフィルタ処理されることにより圧迫帯12による圧迫圧( 静圧) を示すカフ圧力信号が弁別されるとともに、数Hz乃至数十Hzの波長帯の信号を弁別するバンドパスフィルタ処理が為されることにより脈波信号が弁別される。次いで、脈波信号の発生毎に実行されるオシロメトリック式血圧値決定アルゴリズムにしたがって、順次発生する脈波信号の振幅或いはその変化に基づいて最高血圧値BPSYS ( mmHg)、平均血圧値BPMEANおよび最低血圧値BPDIA ( mmHg)として決定し、その最低血圧値BPDIA が決定されると同時に急速排気弁52が開放され、それに応答して排気制御弁54がその最大開口となるまで開かれて、図9のS1の第1血圧測定ルーチンが終了させられる。図10の時刻t3 はこの状態を示す。
上記オシロメトリック式血圧値決定アルゴリズムは、たとえば脈波信号の振幅値を結ぶ包絡線( エンベロープ) が急激に上昇したときすなわちエンベロープの微分波形の極大ピーク点に対応する圧力信号が示す圧力を最高血圧値BPSYS 値( mmHg)として決定し、その脈波信号の振幅値を結ぶ包絡線( エンベロープ) の最大値に対応する圧力信号が示す圧力を平均血圧値BPMEANとして決定し、その脈波信号の振幅値を結ぶ包絡線( エンベロープ) が急激に減少したときすなわちエンベロープの微分波形の極小ピーク点に対応する圧力信号が示す圧力を最低血圧値BPDIA として決定する。図11、図12、図13は、圧迫帯12による圧迫圧が115mmHg、102mmHg、60mmHgであるときに、第1圧力センサT1から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号( 破線) 、第2圧力センサT2から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号( 1点鎖線) 、第3圧力センサT3から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号( 2点鎖線) 、主圧力センサT0から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号( 実線) を、対比可能に同位相で正規化してそれぞれ示す図である。それら4種の脈波信号間には、振幅の差が存在し、検出用膨張袋24から得られた脈波信号が動脈16の脈動を最も正確に反映していると考えられる。
図14は、上記4種の脈波信号の圧力値毎に振幅値によってそれぞれ形成されるエンベロープを、65mmHgにおいて相対値「1」となるように振幅を正規化して対比可能に示す図である。各エンベロープによれば、最高血圧値BPSYS においてはそれほどばらつきが存在しないが、最低血圧値BPDIA において極めて大きなばらつきが発生している。
次いで、図9のS2の脈波伝播速度測定ルーチンが図10の時刻t4 乃至t6に示す区間において実行される。このS2は脈波伝播速度測定手段或いは脈波伝播速度測定工程に対応している。先ず、急速排気弁52および排気制御弁54が閉じられるとともに空気ポンプ50が起動される。次いで、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が予め最低血圧値BPDIA よりも低い値たとえば60mmHgに設定された脈波検出圧Ppwv に到達すると、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3が閉じられ、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26は互いに独立して脈波検出圧に維持される。図10のt5 時点はこの状態を示す。この状態において、第1圧力センサT1および第3圧力センサT3から出力される圧力信号がバンドパスフィルタ処理されることにより、上流側膨張袋22および下流側膨張袋26により検出された脈波を示す脈波信号が弁別され、脈波伝播時間に相当するそれらの脈波信号の位相差Δt( sec)とたとえば90mm程度の上流側膨張袋22および下流側膨張袋26の中心間距離L( m)とに基づいて脈波伝播速度bbPWV(m/sec)が式( 1)から算出される。このような脈波伝播速度bbPWVの算出は、脈波の発生毎に時刻t6に到達するまで繰り返し実行され、到達するとそれまでに求めた脈波伝播速度bbPWVの平均値が算出される。
bbPWV=L/Δt ・・・( 1)
図15は、動脈16の管壁の圧力差( =動脈内圧すなわち平均血圧値BPMEAN−動脈外圧すなわち圧迫帯12による圧迫圧Pe)であるトランスミューラルプレッシャTP(mmHg)に対する上記脈波伝播速度bbPWVの変化を、同一生体から同時期に測定した従来のECGのR波から上流側膨張袋22までの脈波伝播速度hbPWVと対比して示している。図15から明らかなように、脈波伝播速度hbPWVはトランスミューラルプレッシャTPに拘わらず略一定値を示している。これに対し上記脈波伝播速度bbPWVは、トランスミューラルプレッシャTPが負の値から10乃至20mmHg付近すなわち圧迫帯12による圧迫圧が最低血圧値BPDIA 付近に至るまでは略一定値を示すが、それよりも更に増加するほど比例的に増加する特徴がある。上記脈波伝播速度bbPWVは、所定の圧力値たとえばTP=50mmHg又はその付近における値或いは増加率を測定することにより、個人毎に比較可能な、動脈16の硬化状態を評価する循環器パラメータとして求められる。
次に、図9のS3の第2血圧測定/動脈コンプライアンスデータ検出ルーチンが図10の時刻t7 乃至t9 に示す区間において実行される。このS3は第2血圧測定手段および動脈コンプライアンス算出手段、或いは第2血圧測定工程および動脈コンプライアンスデータ検出工程に対応している。このS3では、第1血圧測定ルーチンと同様に、先ず、時刻t7において空気ポンプ50が起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサP0により検出される圧力すなわち圧迫帯12による圧迫圧Peが第1血圧測定ルーチンによる前回の測定値である生体の最高血圧値BPSYS よりも所定値高い値に予め設定された昇圧目標圧力目標Pmax に到達すると、上記空気ポンプ50の作動が停止され、それに応答して、圧迫帯12による圧迫圧Peが一定の速度で下降するように排気制御弁54が作動させられ、単位時間当たり或いは単位脈波当たりの一定速度の徐速排気が開始される。図10の時刻t8 はこの状態を示す。この徐速排気過程においては、第2圧力センサT2から出力される圧力信号がバンドパスフィルタ処理されることにより、検出用膨張袋24により検出された脈波を示す脈波信号が繰り返し弁別される。次いで、第1血圧測定ルーチンと同様にして、脈波信号の発生毎に実行されるオシロメトリック式血圧値決定アルゴリズムにしたがって、順次発生する脈波信号の振幅或いはその変化に基づいて最高血圧値BPSYS ( mmHg)、平均血圧値BPSYS および最低血圧値BPDIA ( mmHg)として決定し、その最低血圧値BPDIA が決定されると同時に急速排気弁52が開放され、それに応答して排気制御弁54がその最大開口となるまで開かれて、図9のS3の第2血圧測定ルーチンが終了させられる。図10の時刻t9 はこの状態を示す。そして、最高血圧値BPSYS と最低血圧値BPDIA との間の圧力差である脈圧PP(=最高血圧値BPSYS −最低血圧値BPDIA )が算出される。後述の血管コンプライアンスKの演算には、この第2血圧測定ルーチンから得られた最高血圧値BPSYS および最低血圧値BPDIA に基づく脈圧PP( mmHg)が用いられる。
次に、図9のS4のカフコンプライアンス算出ルーチンが図10の時刻t10乃至t18において実行される。このS4はカフコンプライアンス算出手段、或いはカフコンプライアンス算出工程に対応している。このS4では、先ず、時刻t10において空気ポンプ50が起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサP0により検出される圧力すなわち圧迫帯12による圧迫圧Peが予め設定された第1圧力P1 に到達すると( 時刻t11)、上記空気ポンプ50の作動が停止され、それに応答して、第1開閉弁E1、第2開閉弁E2および第3開閉弁E3が閉じられて上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が上記第1 圧力P1 に時刻t12まで維持される。この時刻t11乃至t12の間の第1圧力維持区間では、脈波の発生に同期してその脈波の裾に相当するタイミングで容積パルス発生器60からたとえば0.2cc程度の一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることによりたとえば図16に示すような上記容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。この場合、上記圧力維持区間内において10個程度の複数の図16に示す脈波信号が複数採取され、それらの脈波信号が記憶されてもよいし、それらの平均値の脈波信号が記憶されてもよい。そして、時刻t12に到達して上記第1圧力維持区間が終了する。
上記の容積パルス発生器60から検出用膨張袋24内に注入される容積パルスは、そのときの検出用膨張袋24の圧力変化に拘わらず予め設定された一定容積Cの空気であり、動脈16が心拍に同期して膨張して検出用膨張袋24に繰り返し与える容積増加分に対応する値に予め設定されたものである。また、図16に示す脈波信号は圧力値であり、S1で求められた最高血圧値BPSYS ( mmHg)を脈波信号の上ピーク値に対応させ、最低血圧値BPDIA ( mmHg)を脈波信号の下ピーク値に対応させることにより、図16の縦軸は生体の最高血圧値圧力値に変換されている。
上記第1圧力維持区間が終了する時刻t12では、第1開閉弁E1、第2開閉弁E2および第3開閉弁E3が再び開かれると同時に、空気ポンプ50が再度起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサP0により検出される圧力すなわち圧迫帯12による圧迫圧Peが予め設定された第2圧力P2に到達すると( 時刻t13)、上記空気ポンプ50の作動が停止され、それに応答して、第1開閉弁E1、第2開閉弁E2および第3開閉弁E3が閉じられて上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が上記第2 圧力P2に時刻t14まで維持される。この第2圧力維持区間でも、上記第1維持区間と同様に、脈波の発生に同期して容積パルス発生器60からの一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることによりたとえば図16に示すような上記容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。
次いで、同様にして、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が、主圧力センサT0により検出される圧力が予め設定された第3圧力P3に昇圧されるとともに、第3圧力維持区間t15乃至t16において第3圧力P3が維持され、その第3圧力維持区間t15乃至t16において、脈波の発生に同期して容積パルス発生器60からの一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることにより得られた図16に示すような容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。また、同様にして、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が、主圧力センサP0により検出される圧力が予め設定された第4圧力P4に昇圧されるとともに、第4圧力維持区間t17乃至t18において第4圧力P4が維持され、その第4圧力維持区間t17乃至t18において、脈波の発生に同期して容積パルス発生器60からの一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることにより得られた図16に示すような容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。
そして、上記第1圧力P1、第2圧力P2、第3圧力P3、第4圧力P4毎に第2圧力センサT2により検出され且つ記憶された各脈波信号について、動脈16の脈動に由来して発生する検出用膨張袋24内の圧力変化幅すなわち脈波の振幅( 振幅値)ΔP(mmHg)すなわちΔP1 、ΔP2 、ΔP3 、ΔP4 がそれぞれ算出され記憶される。また、上記各脈波信号において容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp すなわちPp1、Pp2、Pp3、Pp4がそれぞれ算出されて、検出用膨張袋24のカフコンプライアンスSe (mmHg/cc)すなわちSe1、Se2、Se3、Se4が次式( 2) からそれぞれ算出され、記憶される。次式( 2) において、ΔPc は、検出用膨張袋24による圧迫圧力下すなわち各第1圧力P1、第2圧力P2、第3圧力P3、第4圧力P4下において図16に示すような容積パルス発生器60から加えられた容積パルスに応答して発生する圧力パルスPp が重畳した脈波信号において、その圧力パルスPp の圧力上昇値( mmHg) である。また、Cは容積パルス発生器60から加えられた一定容積のパルスの容積値( cc)である。したがって、カフコンプライアンスSe は、検出用膨張袋24の容積変化に対する圧力変化の割合を示す感度を表している。このようにしてカフコンプライアンスSe が求められると、検出用膨張袋24から第2圧力センサT2により検出された脈波の縦軸すなわち振幅を容積に変換することができる。すなわち、図11の縦軸を容積軸に変換することができる。
Se =ΔPc /C ・・・ (2)
上記予め設定された第1圧力P1は最低血圧値BPDIA よりも低い圧たとえば50mmHg、第2圧力P2は第1圧力P1よりも高い圧たとえば最低血圧値BPDIA 、第3圧力P3は第2圧力P2よりも高い圧たとえば平均血圧値BPMEAN、第4圧力P4は第3圧力P3よりも高い圧たとえば平均血圧値BPMEANよりも15mmHg高い圧に、それぞれ設定されており、各圧力下においての、カフコンプライアンスSe1、Se2、Se3、Se4が求められる。これらの設定圧は、圧迫帯12による圧迫圧Pe毎に異なる検出用膨張袋24のカフコンプライアンスSe を求めるために任意に設定された値である。
次いで図9のS5では、動脈コンプライアンス算出ルーチンが実行される。このS5は、S3およびS4と共に、動脈コンプライアンス算出手段或いは動脈コンプライアンス算出工程を構成している。この図9のS5では、先ず、S3において記憶された生体の最高血圧値BPSYS および最低血圧値BPDIA に基づいて次式( 3)からその生体の脈圧PP( mmHg)が算出される。次いで、動脈16の拍動に由来して発生する検出用膨張袋24内の圧力変化幅すなわち脈波の振幅ΔPとカフコンプライアンスSeとに基づいて次式( 4)から動脈16の一拍当たりの血管容積変化(容積単位へ換算された振幅値)ΔV( cc即ちcm3 )が算出され、そして、上記脈圧PPと血管容積変化ΔVとに基づいて( 5)式から血管コンプライアンスKが検出用膨張袋24内の圧迫圧力に応じてそれぞれ算出される。たとえば、第1圧力P1における血管コンプライアンスK1 は、第1圧力P1下で検出用膨張袋24から検出された脈波の振幅ΔP1 とカフコンプライアンスSe とに基づいて次式( 4)から算出された動脈16の一拍当たりの血管容積変化ΔV1 と、脈圧PPとに基づいて( 5)式から求められる。同様にして、第2圧力P2に対応する血管コンプライアンスK2 が算出され、第3圧力P3に対応する血管コンプライアンスK3 が算出され、第4圧力P4第4圧力に対応する血管コンプライアンスK4 が算出される。
PP=BPSYS −BPDIA ・・・ (3)
ΔV=ΔP/Se ・・・ (4)
K=ΔV/PP ・・・ (5)
次いで図9のS6では、表示制御ルーチンが実行される。このS6は、S2において測定された上腕の動脈16内の脈波伝播速度bbPWVまたはその変化率、S3において測定された生体の最高血圧値BPSYS および最低血圧値BPDIA 、S4において測定されたカフコンプライアンスSe1、Se2、Se3、Se4、S5において算出された動脈コンプライアンスK1 、K2 、K3 、K4 が、患者の性別、年齢、姓名、患者ID等の患者データと共に表示装置72に表示される。これにより、表示装置72に表示された上記脈波伝播速度bbPWV、最高血圧値BPSYS および最低血圧値BPDIA 、動脈コンプライアンスK1 、K2 、K3 、K4 に基づいて患者の循環器の健康状態が客観的に示される。
上述のように、本実施例によれば、圧迫帯12は、被圧迫部位である上腕10の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋22および下流側膨張袋( 主膨張袋) 26と、被圧迫部位である上腕10の長手方向において連なるようにそれら一対の上流側膨張袋22および下流側膨張袋26の間に配置され、それら一対の上流側膨張袋22および下流側膨張袋26とは独立した気室を有する検出用膨張袋24とを、含み、互いの一部が重ねられている上流側膨張袋22と検出用膨張袋24との間、および下流側膨張袋26と検出用膨張袋24との間に、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有する長手状の遮蔽部材42が厚み方向において介在させられていることから、その遮蔽部材42により上流側膨張袋22および下流側膨張袋26から検出用膨張袋24への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、同時に、圧迫帯12の長手方向の曲げ剛性がその圧迫帯12の幅方向の曲げ剛性よりも低い剛性の異方性を有する遮蔽部材42の性質により上流側膨張袋22および下流側膨張袋( 主膨張袋) 26から検出用膨張袋24への静圧については好適に圧力伝播を行うことが許容されて検出用膨張袋24直下の動脈16への押圧が均一となる。このため、その検出用膨張袋24から比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られる。同時に、圧迫帯12の長手方向の曲げ剛性がその圧迫帯12の幅方向の曲げ剛性よりも低い剛性の異方性を有する遮蔽部材42の性質により上流側膨張袋22および下流側膨張袋26から検出用膨張袋24への静圧については好適に圧力伝播を行うことが許容されて検出用膨張袋24直下の動脈16への押圧が均一となるので、その検出用膨張袋24から比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られる。
また、本実施例の圧迫帯12によれば、被圧迫部位である上腕10の長手方向における検出用膨張袋24の両端部24a、24bには互いに接近する方向に折れ込まれたシートから成る一対の折込溝24f、24fが形成され、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24に隣接する側の隣接側端部22aおよび26aは、それら一対の折込溝24f、24f内に差し入れられていることから、検出用膨張袋24の両端部24a、24bと上流側膨張袋22および下流側膨張袋26の隣接側端部22aおよび26aとは被圧迫部位である上腕10の径方向に重ねられた状態となるので、それら検出用膨張袋24と上流側膨張袋22および下流側膨張袋26との間の境界付近においても上腕10に対して均一な圧迫圧力分布が得られる。
また、本実施例の圧迫帯12によれば、検出用膨張袋24の一対の折込溝24f、24fの相対向する溝側面の少なくとも一方とその折込溝24f、24f内に挿し入れられた上流側膨張袋22および下流側膨張袋26の隣接側端部22aおよび26aとの間に、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有する長手状の遮蔽部材42が介在させられていることから、特に、上流側膨張袋22および下流側膨張袋26から検出用膨張袋24への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られる。
また、本実施例の圧迫帯12によれば、長手状の遮蔽部材42は、圧迫帯12の幅方向に平行な複数本の軟質合成樹脂製の可撓性中空管44が互いに平行な状態で圧迫帯12の長手方向に連ねて配列されることにより構成されたものであることから、上流側膨張袋22および下流側膨張袋26から検出用膨張袋24への低周波数の圧力振動ノイズの遮蔽作用が一層好適に得られ、比較的低周波数の圧力振動ノイズの影響を受け難い一層正確な脈波が得られる。
また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血圧測定装置によれば、検出用膨張袋24と、その検出用膨張袋24内の圧力を検出する第2圧力センサT2と、一対の上流側膨張袋22および下流側膨張袋26と検出用膨張袋24とを相互に連通させた状態で昇圧することにより被圧迫部位である上腕10内の動脈16を圧迫し、その圧迫圧を連続的に変化させる排気制御弁( 圧力制御手段) 54と、その圧力制御手段54により圧迫圧Peが変化させられる過程で第2圧力センサT2により検出される圧迫圧Peの圧力振動成分である脈波をバンドパスフィルタ処理により抽出し、その脈波の変化に基づいて生体の血圧値を決定するオシロメトリック式の血圧測定手段とを、含むので、前記検出用膨張袋24から得られる正確な脈波に基づいて精度の高い血圧値が得られる。
また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血管柔軟度測定装置によれば、前記脈波検出手段により検出された脈波の振幅値ΔPと前記自動血圧測定装置により測定された最高血圧値BPSYS および最低血圧値BPDIA とに基づいて動脈16の柔軟度を示す動脈コンプライアンスKを算出する動脈コンプライアンス算出手段S3〜S5を含むことから、検出用膨張袋24から得られる正確な脈波とその脈波の変化から算出される精度の高い上記最高血圧値BPSYS および最低血圧値BPDIA とに基づいて、動脈16の柔軟度を示す精度の高い動脈コンプライアンスKが得られる。
また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血管柔軟度測定装置によれば、前記動脈コンプライアンス算出手段は、検出用膨張袋24の容積変化に対する圧力変化の関係から前記脈波の振幅値である血管容積変化ΔVを圧力単位から容積単位へ換算するためのカフコンプライアンスSe を算出するカフコンプライアンス算出手段S4を含み、その容積単位へ換算された脈波の振幅値と前記自動血圧測定装置により検出された最高血圧値BPSYS および最低血圧値BPDIA の圧力差すなわち脈圧PPとに基づいて前記動脈の柔軟度を示す動脈コンプライアンスKを算出するものであることから、一層正確な動脈の柔軟度が得られる。
また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血管柔軟度測定装置によれば、動脈16の脈動に対応する大きさの予め設定された一定容積の気体を前記検出用膨張袋内に加える容積パルス発生器( 定容積脈波発生装置) 60を備え、カフコンプライアンス算出手段S4は、その容積パルス発生器60により検出用膨張袋24内に加えられる一定容積の気体の容積値Cと、その一定容積Cの気体が検出用膨張袋24内に加えられたときに第2圧力センサT2により検出された検出用膨張袋24内の圧力上昇値ΔPc との関係を予め求めるものであることから、その関係により検出用膨張袋24のカフコンプライアンスSe が、たとえば予め設定された一定周期、脈拍、或いは圧迫圧変化値に応答して上記容積パルス発生器60から一定容積の気体が検出用膨張袋24内に加えられる毎に逐次得られ、複数得られた場合にはその平均値が求められる。
また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち脈波伝播速度測定装置によれば、脈波検出用の圧迫帯12と、上流側膨張袋22内の圧力を検出する第1圧力センサT1と、下流側膨張袋26内の圧力を検出する第3圧力センサT3と、上流側膨張袋22および下流側膨張料袋26内に生体の最低血圧値BPDIA よりも低い圧力で気体を充満させた状態で第1圧力センサT1により検出された脈波から第3圧力センサT3により検出された脈波までの脈波伝播時間Δtと、上流側膨張袋22と下流側膨張料袋26との間の中心間距離Lとに基づいて、動脈16内の脈波伝播速度bbPWVを算出する脈波伝播速度測定手段S2とを、含むことから、生体の上腕10における動脈16の局部的な脈波伝播速度値bbPWVが容易に得られる。好適には、検出用膨張袋24内が排気された状態で第1圧力センサT1により検出された脈波から第3圧力センサT3により検出された脈波までの脈波伝播時間Δtが算出される。このようにすれば、上流側膨張袋22および下流側膨張料袋26の間が十分に遮蔽されるので、検出される脈波が正確となり、一層精度の高い脈波伝播速度bbPWVが得られる。
また一般に、生体の血管系のエイジング或いは圧迫帯12のなじみが起因していると考えられる、血圧測定を繰り返すと2回目の血圧測定値が低下してその後に安定する現象がある。本実施例によれば、S1の第1血圧測定ルーチンが実行された後にS3で実行される第2血圧測定ルーチンにより得られた最高血圧値BPSYS ( mmHg)、平均血圧値BPSYS および最低血圧値BPDIA ( mmHg)が血管コンプライアンスKの演算に用いられることから、一旦圧迫帯12による最高血圧値以上への圧迫を行うことによって上記現象による血圧測定値の精度低下を回避した、比較定高精度の最高血圧値BPSYS ( mmHg)、平均血圧値BPMEANおよび最低血圧値BPDIA ( mmHg)を得ることができ、それを血管コンプライアンスKの演算に用いることにより、その血管コンプライアンスKの精度を高めることができる。
また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血管柔軟度測定装置によれば、S4に対応するカフコンプライアンス算出手段において、各第1圧力P1、第2圧力P2、第3圧力P3、第4圧力P4に一定に維持されている期間内において、検出用膨張袋24から脈波が採取されることから、歪みのない脈波が得られるので、一層正確な血管コンプライアンスKが得られる利点がある。
次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。
図17は、本発明の他の実施例の圧迫帯80の構成を説明する断面図である。圧迫帯80は、2層カフ構造であって、図2の圧迫帯12と同様に、PVC等の合成樹脂により裏面がラミネートされた合成樹脂繊維製の外周側面不織布20aおよび内周側不織布20bから成る帯状外袋20と、その帯状外袋20内において収容され、たとえば軟質ポリ塩化ビニルシートなどの可撓性シートから構成された主膨張袋82および検出用膨張袋84と、帯状外袋20内においてその主膨張袋82の外側に配置された可撓性のコア材86を備え、外周側面不織布20aの端部に取り付けられた面ファスナ28に内周側不織布20の端部に取り付けられた起毛パイル30が着脱可能に接着されることにより、上腕10に着脱可能に装着されるようになっている。主膨張袋82および検出用膨張袋84は、それぞれ独立した気室を構成するとともに、図示しない管接続用コネクタを外周面側にそれぞれ備えている。それら管接続用コネクタは、外周側面不織布20aを通して圧迫帯80の外周面に露出されている。このように構成された本実施例の圧迫帯80は、前述の実施例の圧迫帯12と同じ脈波検出用として用いられ、脈波伝播速度bbPWVの測定はできないが、血圧BPの測定、カフコンプライアンスSe の測定、血管コンプアイアンスKの測定は可能である。
主膨張袋82は、帯状外袋20と同等の幅寸法を備えて長手状を成している。検出用膨張袋84は、その主膨張袋82の幅寸法の1/3程度の幅寸法を備えて主膨張袋82と同様の長手寸法を有しており、その主膨張袋82の幅方向の中央部においてその主膨張袋82の内側に接して重ねて配置されている。主膨張袋82は専ら被圧迫部位である上腕10を圧迫するものであり、検出用膨張袋84は、専ら動脈16から発生する脈波PWを検出するためのものであり、上記主膨張袋82により上腕10側へ圧迫されるようになっている。主膨張袋82は所謂マチ構造の側縁部を両側に備えている。すなわち、主膨張袋82の上腕10の長手方向における両端部には、互いに接近するほど深くなるように互いに接近する方向に折れ込まれたシートから成る一対の折込溝82fおよび82fがそれぞれ形成されている。それら一対の折込溝82fおよび82fを構成するシートは、幅方向に飛び出ないように、主膨張袋82内に配置された貫通穴を備える接続シート88を介して主膨張袋82内の幅方向中央部分に接続されている。これにより、主膨張袋82の幅方向両端部においても上腕10に対する圧迫圧が他の部分と同様に得られるので、圧迫帯12の幅方向の有効圧迫幅がその幅寸法と同等になる。
上記主膨張袋82と検出用膨張袋84との間には、圧迫帯80の長手方向すなわち上腕10の周方向の曲げ剛性よりもその圧迫帯80の幅方向すなわち上腕10の長手方向の曲げ剛性が高い剛性の異方性を有する長手状の遮蔽部材42がそれぞれ介在させられている。この長手状の遮蔽部材42は、上腕10の長手方向すなわち圧迫帯80の幅方向に平行な軟質合成樹脂製の複数本の可撓性中空管44が互いに平行な状態で、上腕10の周方向すなわち圧迫帯80の長手方向に連ねて配列されるとともに、それら可撓性中空管44が型成形或いは接着により直接に或いは粘着テープなどの可撓性シート等の他の部材を介して間接的に相互に連結されることにより構成されている。
本実施例の脈波検出用の圧迫帯80によれば、(a) 生体の被圧迫部位である上腕10を圧迫するために、所定の幅寸法を備え、可撓性シートから成る一個の主膨張袋82と、(b) その主膨張袋82よりも小さい幅寸法を備え、その主膨張袋82の幅方向の中央部内側において重ねて配設された検出用膨張袋84とを備えていることから、このような2層構造の脈波検出用圧迫帯80において、主膨張袋82から検出用膨張袋84への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、その検出用膨張袋84から比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られ、同時に、脈波検出用圧迫帯80の長手方向の曲げ剛性がその脈波検出用圧迫帯80の幅方向の曲げ剛性よりも低い剛性の異方性を有する遮蔽部材42の性質により主膨張袋82から検出用膨張袋84への静圧については好適に圧力伝播を行うことが許容されて検出用膨張袋84直下の動脈16への押圧が均一となる。したがって、均一な圧力分布で圧迫された動脈16から、比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られる。
また、本実施例の脈波検出用の圧迫帯80によれば、長手状の遮蔽部材42が、圧迫帯80の幅方向に平行な複数本の可撓性中空管44が互いに平行な状態で圧迫帯80の長手方向に連ねて配列されることにより構成されたものであることから、主膨張袋82から検出用膨張袋84への低周波数の圧力振動ノイズの遮蔽作用が一層好適に得られ、比較的低周波数の圧力振動ノイズの影響を受け難い一層正確な脈波が得られる。
図18は、本発明の他の実施例の圧迫帯90の構成を説明する断面図である。圧迫帯90は、2層カフ構造であって、図2の圧迫帯12と同様に、PVC等の合成樹脂により裏面がラミネートされた合成樹脂繊維製の外周側面不織布20aおよび内周側不織布20bから成る帯状外袋20と、その帯状外袋20内に収容され、たとえば軟質ポリ塩化ビニルシートなどの可撓性シートから構成された主膨張袋92および一対の検出用膨張袋94と、帯状外袋20内においてその主膨張袋92の外側に配置された可撓性のコア材96を備え、外周側面不織布20aの端部に取り付けられた面ファスナ28に内周側不織布20の端部に取り付けられた起毛パイル30が着脱可能に接着されることにより、上腕10に着脱可能に装着されるようになっている。主膨張袋92および検出用膨張袋94は、それぞれ独立した気室を構成するとともに、図示しない管接続用コネクタを外周面側にそれぞれ備えている。それら管接続用コネクタは、外周側面不織布20aを通して圧迫帯80の外周面に露出されている。このように構成された本実施例の圧迫帯90は、前述の実施例の圧迫帯12と同じ脈波検出用として用いられ、脈波伝播速度bbPWVの測定、血圧BPの測定、カフコンプライアンスSe の測定、血管コンプアイアンスKの測定は可能である。
主膨張袋92は、帯状外袋20と同等の幅寸法を備えて長手状を成している。一対の検出用膨張袋94は、その主膨張袋92の幅寸法の1/4乃至1/3程度の幅寸法を備えて主膨張袋92と同様の長手寸法を有しており、その主膨張袋92の幅方向の両端部においてその主膨張袋92の内側に接して且つ幅方向に所定の間隔を隔てて重ねてそれぞれ配置されている。主膨張袋92は専ら被圧迫部位である上腕10を圧迫するものであり、検出用膨張袋94は、専ら動脈16から発生する脈波PWVを検出するためのものであり、上記主膨張袋92により上腕10側へ圧迫されるようになっている。
上記主膨張袋92と一対の検出用膨張袋94との間には、圧迫帯90の長手方向すなわち上腕10の周方向の曲げ剛性よりもその圧迫帯90の幅方向すなわち上腕10の長手方向の曲げ剛性が高い剛性の異方性を有する長手状の遮蔽部材42がそれぞれ介在させられている。この長手状の遮蔽部材42は、上腕10の長手方向すなわち圧迫帯90の幅方向に平行な軟質合成樹脂製の複数本の可撓性中空管44が互いに平行な状態で、上腕10の周方向すなわち圧迫帯90の長手方向に連ねて配列されるとともに、それら可撓性中空管44が型成形或いは接着により直接に或いは粘着テープなどの可撓性シート等の他の部材を介して間接的に相互に連結されることにより構成されている。
本実施例の脈波検出用の圧迫帯90によれば、(a) 生体の被圧迫部位である上腕10を圧迫するために、所定の幅寸法を備え、可撓性シートから成る一個の主膨張袋92と、(b) その主膨張袋92よりも小さい幅寸法を備え、その主膨張袋92の幅方向の両端部内側において重ねられ且つ幅方向に所定の間隔を隔てて配設された一対の検出用膨張袋94とを備えていることから、このような2層構造の脈波検出用圧迫帯90において、主膨張袋92から検出用膨張袋94への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、その検出用膨張袋94から比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られ、同時に、脈波検出用圧迫帯90の長手方向の曲げ剛性がその脈波検出用圧迫帯90の幅方向の剛性よりも低い剛性の異方性剛性を有する遮蔽部材42の性質により主膨張袋92から検出用膨張袋94への静圧については好適に圧力伝播を行うことが許容されて検出用膨張袋94直下の動脈16への押圧が均一となる。したがって、均一な圧力分布で圧迫された動脈16から、比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られる。また、上記一対の検出用膨張袋94により、動脈16内の脈波伝播速度bbPWVの測定が可能となる。
また、本実施例の脈波検出用の圧迫帯90によれば、長手状の遮蔽部材42が、圧迫帯90の幅向に平行な複数本の可撓性中空管44が互いに平行な状態で圧迫帯90の長手方向に連ねて配列されることにより構成されたものであることから、主膨張袋92から検出用膨張袋94への低周波数の圧力振動ノイズの遮蔽作用が一層好適に得られ、比較的低周波数の圧力振動ノイズの影響を受け難い一層正確な脈波が得られる。
図20は、本発明の他の実施例の遮蔽部材102を示している。この遮蔽部材102は、射出成形、スタンピング成形などにより型成形された軟質合成樹脂製の所定厚みの長手状部材である。この遮蔽部材102は、その表面( 外周面) 104および裏面( 内周面) 106に、その所定厚みの半分程度の深さで幅方向に貫通する等間隔で互いに平行な複数本の溝108および110を備えている。それらの溝108および110は遮蔽部材102の長手方向において相互に同位相で形成されているため、圧迫帯12の幅方向に平行な複数本の可撓性線材112が互いに平行な状態でその圧迫帯12の長手方向に直接連結により連ねて配列される構成となる。これにより、本実施例の遮蔽部材102は、前述の遮蔽部材42と同様に、圧迫帯12の長手方向の曲げ剛性が圧迫帯12の幅方向の曲げ剛性よりも低い剛性の異方性を有するものとなる。
図21は、本発明の他の実施例の遮蔽部材120を示している。この遮蔽部材120は、射出成形、スタンピング成形などにより型成形された軟質合成樹脂製の所定厚みの長手状部材である。この遮蔽部材120は、その表面( 外周面) 104および裏面( 内周面) 106に、その所定厚みの半分程度の深さで幅方向に貫通する等間隔で互いに平行な複数本の溝122および124を備えている。それらの溝122および124は遮蔽部材120の長手方向において相互に1/2ピッチずれた位相で形成されているため、圧迫帯12の幅方向に平行な複数本の可撓性板片126が互いに平行な状態でその圧迫帯12の長手方向に所定間隔を隔てて直接連結により連ねて配列される構成となる。これにより、本実施例の遮蔽部材120は、前述の遮蔽部材42と同様に、圧迫帯12の長手方向の曲げ剛性が圧迫帯12の幅方向の曲げ剛性よりも低い剛性の異方性を有するものとなる。
以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様においても実施され得る。
たとえば、前述の実施例の圧迫帯12は上腕用であったが、前腕用、或いは下肢用の圧迫帯であってもよい。
また、前述の図2乃至図6の実施例において、上流側膨張袋22および下流側遮蔽袋26と検出用遮蔽袋24との間に介在させられている長手状の遮蔽部材42は、圧迫帯12の長手方向において幅方向に貫通する多数の凹溝が一定間隔で両面に形成されることにより波板状を成す比較的硬質の長手状樹脂シートから構成されてもよい。要するに、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有するものであればよい。
また、長手状の遮蔽部材42は、上流側膨張袋22および下流側遮蔽袋26或いは検出用遮蔽袋24と同様の長さを有していてもよいが、それよりも短いものであっても一応の効果が得られる。また、上腕10の周方向において一定間隔で複数個たとえば2或いは3個配置されていてもよい。
なお、上述したのはあくまでも本発明の一実施例であり、本発明はその趣旨を逸脱しない範囲において種々の変更が加えられ得る。
本発明が適用された圧迫帯を備える循環器情報測定装置の構成を説明するブロック図である。 図1の循環器情報測定装置に備えられた圧迫帯の外側を一部を切り欠いて示す図である。 図1の循環器情報測定装置に備えられた圧迫帯の内側を示す図である。 図1および図2に示す圧迫帯内に収容された上流側膨張袋、検出用膨張袋、下流側膨張袋を、一部を切り欠いて示す図である。 図4の上流側膨張袋、検出用膨張袋、下流側膨張袋の構成を説明する断面図であって、図4のV−V視図である。 図1および図2に示す圧迫帯内に収容された上流側膨張袋、検出用膨張袋、下流側膨張袋を、それぞれ示す斜視図である。 図1および図2に示す圧迫帯において、検出用膨張袋から上流側膨張袋または下流用膨張袋へのノイズの伝達率を示す図である。 図1および図2に示す圧迫帯において、上流側膨張袋から検出用膨張袋または下流用膨張袋へのノイズの伝達率を示す図である。 図1の電子制御装置の制御作動の要部を説明するフローチャートである。 図1の電子制御装置の制御作動の要部を説明するタイムチャートである。 図1の循環器情報測定装置において、上腕への圧迫圧が115mmHgであるときに各主圧力センサ、第1圧力センサ、第2圧力センサ、第3圧力センサの出力信号から弁別された脈波を共通の時間軸上に示す図である。 図1の循環器情報測定装置において、上腕への圧迫圧が102mmHgであるときに各主圧力センサ、第1圧力センサ、第2圧力センサ、第3圧力センサの出力信号から弁別された脈波を共通の時間軸上に示す図である。 図1の循環器情報測定装置において、上腕への圧迫圧が60mmHgであるときに各主圧力センサ、第1圧力センサ、第2圧力センサ、第3圧力センサの出力信号から弁別された脈波を共通の時間軸上に示す図である。 図9のS1およびS3に対応する血圧測定手段において、徐速降圧流に各主圧力センサ、第1圧力センサ、第2圧力センサ、第3圧力センサの出力信号から弁別された脈波の振幅の包絡線を、共通の圧迫圧力軸上に示す図である。 図9のS2に対応する脈波伝播速度測定手段において得られる脈波伝播速度bbPWVとトランスミューラルプレッシャTPとの関係を、ECGのR波から上流側膨張袋までの脈波伝播速度hbPWVと対比して示す図である。 図9のS4においてカフコンプライアンス測定のために、検出用膨張袋に一定容積のパルスが入力されたときに第2圧力センサによって検出される脈波の波形を例示する図である。 本発明の他の実施例の圧迫帯の構成を説明する断面図である。 本発明の他の実施例の圧迫帯の構成を説明する断面図であって、図17に相当する図である。 図6に示される遮蔽部材の構成の要部を拡大して説明する斜視図である。 本発明の他の実施例の圧迫帯に備えられた遮蔽部材の構成の要部を拡大して説明する斜視図である。 本発明の他の実施例の圧迫帯に備えられた遮蔽部材の構成の要部を拡大して説明する斜視図である。
符号の説明
10:上腕( 生体の被圧迫部位)
12、80、90:圧迫帯( 脈波検出用圧迫帯)
14:循環器情報測定装置
22:上流側膨張袋( 主膨張袋)
22a、26b:隣接側端部
24:検出用膨張袋
24a、24b:両端部
24f:折込溝
26:下流側膨張袋( 主膨張袋)
42:長手状の遮蔽部材
44:可撓性中空管( 可撓性線材)
82、92:主膨張袋
84、94:検出用膨張袋

Claims (7)

  1. 生体の被圧迫部位内の動脈から発生する脈波を検出するために該生体の被圧迫部位に巻き付けられる脈波検出用圧迫帯であって、
    前記生体の被圧迫部位を圧迫するために可撓性シートから成る主膨張袋と、
    該主膨張袋に少なくとも一部が重ねられ、該主膨張袋とは独立した気室を有する前記動脈から発生する脈波を検出するための検出用膨張袋と、
    前記主膨張袋と検出用膨張袋との互いに重ねられた部分において該主膨張袋と検出用膨張袋との間に介在させられ、前記脈波検出用圧迫帯の長手方向の曲げ剛性よりも該脈波検出用圧迫帯の幅方向の曲げ剛性が高い剛性の異方性を有する遮蔽部材と
    を、含むことを特徴とする脈波検出用圧迫帯。
  2. 前記主膨張袋は、前記被圧迫部位の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および下流側膨張袋から成り、
    前記検出用膨張袋は、前記被圧迫部位の長手方向において連なるように前記一対の上流側膨張袋および下流側膨張袋の間に配置されたものであることを特徴とする請求項1の脈波検出用圧迫帯。
  3. 前記被圧迫部位の長手方向における前記検出用膨張袋の両端部には互いに接近する方向に折り込まれて成る可撓性シートから成る一対の折込溝が形成され、
    前記上流側膨張袋および下流側膨張袋の前記検出用膨張袋に隣接側の隣接側端部は、該一対の折込溝内に差し入れられ、
    前記検出用膨張袋の一対の折込溝の相対向する溝側面の少なくとも一方と該折込溝内に挿し入れられた前記上流側膨張袋および下流側膨張袋の隣接側端部との間に、前記遮蔽部材が介在させられ、
    ていることを特徴とする請求項2に記載の脈波検出用圧迫帯。
  4. 前記主膨張袋は、所定の幅寸法を備え、可撓性シートから成る一個の膨張袋から構成され、
    前記検出用膨張袋は、前記主膨張袋よりも小さい幅寸法を備えて、該主膨張袋の幅方向の中央部の内側において重ねて配設されたものであることを特徴とする請求項1の脈波検出用圧迫帯。
  5. 前記主膨張袋は、所定の幅寸法を備え、可撓性シートから成る一個の膨張袋から構成され、
    前記検出用膨張袋は、前記主膨張袋よりも小さい幅寸法を備えて、該主膨張袋の幅方向の両端部の内側において幅方向に所定の間隔を隔ててそれぞれ配設された一対の膨張袋であることを特徴とする請求項1の脈波検出用圧迫帯。
  6. 前記遮蔽部材は、前記脈波検出用圧迫帯の幅方向に平行な複数本の可撓性線材が互いに平行な状態で該脈波検出用圧迫帯の長手方向に連ねて配列されることにより構成されたものであることを特徴とする請求項1乃至5のいずれか1に記載の脈波検出用圧迫帯。
  7. 前記可撓性線材は、合成樹脂製の可撓性中空管から構成されたものであることを特徴とする請求項6に記載の脈波検出用圧迫帯。
JP2007286816A 2007-11-02 2007-11-02 脈波検出用圧迫帯 Pending JP2009112429A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286816A JP2009112429A (ja) 2007-11-02 2007-11-02 脈波検出用圧迫帯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286816A JP2009112429A (ja) 2007-11-02 2007-11-02 脈波検出用圧迫帯

Publications (1)

Publication Number Publication Date
JP2009112429A true JP2009112429A (ja) 2009-05-28

Family

ID=40780265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286816A Pending JP2009112429A (ja) 2007-11-02 2007-11-02 脈波検出用圧迫帯

Country Status (1)

Country Link
JP (1) JP2009112429A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035630A1 (ja) * 2008-09-26 2010-04-01 オムロンヘルスケア株式会社 血圧に関する情報を測定するための装置
WO2018123384A1 (ja) * 2016-12-28 2018-07-05 オムロン株式会社 血圧計および血圧測定方法並びに機器
WO2019003620A1 (ja) * 2017-06-30 2019-01-03 ヤマハ株式会社 生体情報測定装置及び血圧計
WO2022080329A1 (ja) * 2020-10-14 2022-04-21 株式会社エー・アンド・デイ 血圧監視装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269089A (ja) * 1992-03-20 1993-10-19 A & D Co Ltd 血圧計とそのカフ
JP2000079101A (ja) * 1998-09-04 2000-03-21 Osamu Tochikubo 血圧計及びそのカフ帯
JP2005515010A (ja) * 2002-01-23 2005-05-26 バング アンド オルフセン メディコム アーエス 二つの開閉できる凹状外殻のカフを備えた血圧測定装置
JP2006334153A (ja) * 2005-06-02 2006-12-14 Shibuya Kogyo Co Ltd 血圧測定装置
JP2007044362A (ja) * 2005-08-11 2007-02-22 A & D Co Ltd 血圧脈波検査用カフ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269089A (ja) * 1992-03-20 1993-10-19 A & D Co Ltd 血圧計とそのカフ
JP2000079101A (ja) * 1998-09-04 2000-03-21 Osamu Tochikubo 血圧計及びそのカフ帯
JP2005515010A (ja) * 2002-01-23 2005-05-26 バング アンド オルフセン メディコム アーエス 二つの開閉できる凹状外殻のカフを備えた血圧測定装置
JP2006334153A (ja) * 2005-06-02 2006-12-14 Shibuya Kogyo Co Ltd 血圧測定装置
JP2007044362A (ja) * 2005-08-11 2007-02-22 A & D Co Ltd 血圧脈波検査用カフ

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035630A1 (ja) * 2008-09-26 2010-04-01 オムロンヘルスケア株式会社 血圧に関する情報を測定するための装置
JP2010075520A (ja) * 2008-09-26 2010-04-08 Omron Healthcare Co Ltd 血圧情報測定装置
RU2506042C2 (ru) * 2008-09-26 2014-02-10 Омрон Хэлткэа Ко., Лтд. Устройство для сбора информации, имеющей отношение к артериальному давлению
US9072436B2 (en) 2008-09-26 2015-07-07 Omron Healthcare Co., Ltd. Device for measuring information regarding blood pressure
WO2018123384A1 (ja) * 2016-12-28 2018-07-05 オムロン株式会社 血圧計および血圧測定方法並びに機器
JP2018102871A (ja) * 2016-12-28 2018-07-05 オムロン株式会社 血圧計および血圧測定方法並びに機器
CN110049719A (zh) * 2016-12-28 2019-07-23 欧姆龙株式会社 血压计、血压测定方法以及设备
CN110049719B (zh) * 2016-12-28 2022-03-01 欧姆龙株式会社 血压计、血压测定方法以及设备
US11540733B2 (en) 2016-12-28 2023-01-03 Omron Corporation Sphygmomanometer, and method and device for measuring blood pressure
WO2019003620A1 (ja) * 2017-06-30 2019-01-03 ヤマハ株式会社 生体情報測定装置及び血圧計
WO2022080329A1 (ja) * 2020-10-14 2022-04-21 株式会社エー・アンド・デイ 血圧監視装置

Similar Documents

Publication Publication Date Title
JP6086647B2 (ja) 自動血圧測定装置
US8740804B2 (en) Blood pressure measuring cuff, blood pressure measuring apparatus, blood pressure measuring method, cuff, and cuff manufacturing method
JP5352298B2 (ja) 動脈血管柔軟度測定装置
JP5619593B2 (ja) 動脈血管検査装置
JP3213296B2 (ja) 脈波伝播速度情報測定装置
JP5049097B2 (ja) 脈波検出用圧迫帯、およびそれを備えた自動血圧測定装置、血管柔軟度測定装置、脈波伝播速度測定装置。
JP6027767B2 (ja) 自動血圧測定装置。
US20040171940A1 (en) Arteriostenosis diagnosing apparatus
JP6340152B2 (ja) 自動血圧測定装置
JP4764674B2 (ja) 血圧脈波検査装置
JP2009112429A (ja) 脈波検出用圧迫帯
US6669646B1 (en) Arteriosclerosis evaluating apparatus
JP2007044363A (ja) 血圧脈波検査装置
JP5801660B2 (ja) 自動血圧測定装置
JP2011177249A (ja) 血圧情報測定装置および血圧情報測定装置用カフの装着状態判別方法
JP2004283320A (ja) 二重カフ
JP2011200607A (ja) 電子血圧計
JP4943870B2 (ja) 血圧測定装置及びカフ
JP2004223046A (ja) 動脈硬化評価装置
JP2011200610A (ja) 電子血圧計
JP6247735B2 (ja) 自動血圧測定装置
JP2012200410A (ja) 血圧情報測定装置用カフおよびこれを備えた血圧情報測定装置
JP5907638B2 (ja) 動脈血管硬化度測定装置
JP7445518B2 (ja) 自動血圧測定装置
JP2021177834A (ja) 自動血圧測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925