JP5347674B2 - 中継装置,信号処理装置および光通信システム - Google Patents

中継装置,信号処理装置および光通信システム Download PDF

Info

Publication number
JP5347674B2
JP5347674B2 JP2009099197A JP2009099197A JP5347674B2 JP 5347674 B2 JP5347674 B2 JP 5347674B2 JP 2009099197 A JP2009099197 A JP 2009099197A JP 2009099197 A JP2009099197 A JP 2009099197A JP 5347674 B2 JP5347674 B2 JP 5347674B2
Authority
JP
Japan
Prior art keywords
optical signal
optical
processing
transmission
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009099197A
Other languages
English (en)
Other versions
JP2010252044A (ja
Inventor
恭介 曽根
雄高 甲斐
丈二 石川
進 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009099197A priority Critical patent/JP5347674B2/ja
Priority to US12/754,178 priority patent/US8463135B2/en
Priority to EP10159749.0A priority patent/EP2242191A3/en
Publication of JP2010252044A publication Critical patent/JP2010252044A/ja
Application granted granted Critical
Publication of JP5347674B2 publication Critical patent/JP5347674B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/297Bidirectional amplification
    • H04B10/2971A single amplifier for both directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2914Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using lumped semiconductor optical amplifiers [SOA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

本案件は、中継装置,信号処理装置および光伝送システムに関し、例えば、PON(Passive Optical Network)に適用される。
近年、光アクセスシステムは、GE−PON(Gigabit Ethernet-PON)、G−PON(Gigabit capable-PON)など、パッシブダブルスター構成で複数の加入者を収容する、1Gbpsクラス(以下、「Gbps」は単に「G」と記述する場合がある)の伝送容量を有する光通信システムが主流として導入が進められている。
次世代PONシステムとしては、通信速度の高速化のため、10Gの伝送容量を持つ通信システムの適用が検討されている。またサービス範囲の拡大方法として、リピータ(中継装置)を追加することによる、長距離化・分岐数増大も検討されている。
このPONシステムの開発にあたり、経済的かつ効率よく伝送速度が向上されたシステムへ移行するにあたっては、伝送速度の異なるシステムの混在を許容するネットワークシステムが想定される。例えば、1Gのシステムと10Gシステムとを混在させるものが該当する。このようなネットワークシステムにおいても、伝送距離の長距離化のためリピータを組み込むことは想定できる。
特開2008−17264号公報 特開2002−141927号公報
上記の1G/10G混在システム等、伝送速度の異なるシステムの混在に対応したネットワークシステムに対応可能なリピータを開発する場合、以下に示すように、1Gの信号および10Gの信号を共通に処理することが容易でない点が検討項目になる。
たとえば、1Gの信号に対しては、波長帯が広く、光アンプでの増幅が困難である一方、10Gの信号においては、波長帯が狭く、既存の光アンプで増幅可能である。従って、共通の光アンプを用いた光増幅を行なうことは容易ではない。
また、1Gの信号においては、10Gの信号のような光アンプを用いた増幅処理ではなく、従来のO/E変換(Optical/Electrical conversion),E/O変換(Electrical/Optical conversion)を行なうリジェネレータによる処理を行なうことができる。一方、10Gの信号に対してリジェネレータによる処理を行なう場合には、当該処理のためのモジュールを高性能化することが求められ、コストの増大につながる。上述の特許文献1,2に記載された技術は、上述のような検討項目について解決する技術を提供するものではない。
そこで、本案件の目的の一つは、異なる伝送速度を有する光信号が混在するネットワークシステムにおいて、各光信号について適切な中継処理を行なうことにある。
また、双方向に伝送される光信号において、異なる伝送速度を有する光信号が混在している場合に、伝送速度および伝送方向に応じた中継処理を行なうことも、他の目的ととらえることができる。
なお、前記目的に限らず、後述する発明を実施するための最良の形態に示す各構成又は作用により導かれる効果であって、従来の技術によっては得られない効果を奏することも本案件の他の目的として位置づけることができる。
(1)このため、一方向あたりで異なる伝送速度を有する光信号がそれぞれ複数種類混在して互いに反対方向の2方向に伝送される光伝送路に介装される中継装置であって、前記光伝送路の一方側から第1方向で入力される光信号について分岐し、第1伝送速度の光信号の処理方路である第1方路、および、前記第1伝送速度と異なる第2伝送速度の光信号の処理方路である第2方路に導く第1インタフェース部と、前記各方路を伝搬する前記第1方向の光信号について対応する伝送速度に応じた処理を行なう処理部と、前記処理部にて前記処理が行なわれた光信号の伝搬方路である前記第1方路および前記第2方路を波長多重により束ね、前記光伝送路の他方側に導く第2インタフェース部と、をそなえ、前記第1方向の光信号において、前記第2伝送速度の光信号の波長帯は、前記第1伝送速度の光信号の波長帯と一部又は全てが重複し、前記処理部は、前記第1方向を有する前記第1方路の光信号について、前記第1伝送速度の光信号に対応する処理を行なう第1処理部と、前記第1方向を有する前記第2方路の光信号について、前記第2伝送速度の光信号に対応する処理を行なう第2処理部と、をそなえ、前記第2処理部は、前記第1方向の光信号を更に分岐する分岐部と、前記分岐部で分岐された一方の方路上にそなえられ、光入力を検出する検出部と、前記分岐部で分岐された他方の方路の光信号を遅延させる遅延部と、切り替えに応じて、前記遅延部からの光信号についての増幅動作し、又は、前記第2方路についての光導通の遮断動作を行なう光増幅器と、前記光増幅器を前記切り替え制御して、前記検出部にて前記光入力を検出した場合には前記増幅動作を行なわせ、前記光入力を検出しない場合、更に、前記第1処理部で前記第1伝送速度の光信号に対応する処理が行なわれる場合には前記増幅動作にかかわらず遮断動作を行なわせる増幅器制御部と、をそなえた中継装置を用いることができる。
(2)また、第1伝送速度の光信号と第2伝送速度の光信号とが時間軸上で混在した光信号を処理する信号処理装置であって、前記混在した光信号の分岐信号の一方について、前記第1伝送速度の光信号に対応する処理を行なう第1処理部と、前記混在した光信号の分岐信号の他方について、前記第2伝送速度の光信号の入力に応じて、前記第2伝送速度の光信号に対応する処理を行な、前記分岐信号の他方の入力を検出した場合には前記処理結果を出力し、前記入力を検出しない場合には前記処理結果の出力を停止し、更に、前記第1処理部での前記第1伝送速度の光信号に対応する処理が行われる場合には前記処理結果の出力を優先的に停止する第2処理部とをそなえ、前記第2伝送速度の光信号の波長帯は、前記第1伝送速度の光信号の波長帯と一部又は全てが重複し、前記第2処理部は、前記分岐信号の他方の光信号を更に分岐する分岐部と、前記分岐部で分岐された一方の方路上にそなえられ、光入力を検出する検出部と、前記分岐部で分岐された他方の方路の光信号を遅延させる遅延部と、切り替えに応じて、前記遅延部からの光信号についての増幅動作し、又は、前記分岐信号の他方についての光導通の遮断動作を行なう光増幅器と、前記光増幅器を前記切り替え制御して、前記検出部にて前記光入力を検出した場合には前記増幅動作を行なわせ、前記光入力を検出しない場合、更に、前記第1処理部で前記第1伝送速度の光信号に対応する処理が行なわれる場合には前記増幅動作にかかわらず遮断動作を行なわせる増幅器制御部と、をそなえた、信号処理装置を用いることができる。
(3)また、上記(1)の中継装置が光伝送路上に介装された、光通信システムを用いることができる。
開示の技術によれば、1Gと10GのE−PONの光信号が混在するネットワークシステムのように、異なる伝送速度を有する光信号が混在するネットワークシステムにおいて、各光信号について適切な中継処理を行なうことができる。
また、伝送速度の異なる光信号が混在したネットワークシステムに適用可能なリピータを実現することができる。既存のPONのOLT,ONUを適用する場合は、既存のシステムのまま、サービス範囲を拡張することができるため、新たなシステムを構築する必要がなくなり、システムのトータルでのコスト削減が可能となる。
異なる伝送速度での光信号が混在して伝送される光伝送路を有するネットワークシステムの構成を例示する図である。 (a),(b)はE−PONでの使用波長帯を示す図であり、(c),(d)は光増幅器に応じた増幅波長帯を示す図である。 E−PONでのタイムスロット内でのフォーマットを示す図である。 第1実施形態のリピータ(中継装置)を示す図である。 第1,第2透過/反射フィルタの特性を示す図である。 第3透過/反射フィルタの特性を示す図である。 第2実施形態のリピータ(中継装置)を示す図である。 第2実施形態における第2処理部を示す図である。 (a)〜(d)は第2処理部によるALC制御を説明する図である。 第2処理部による導通/遮断の切り替えについて説明する図である。
以下、図面を参照することにより、実施形態を説明する。但し、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図は無い。即ち、本実施形態は、その趣旨に逸脱しない範囲において種々変形して実施することができる。
〔A〕第1実施形態
図1は、異なる伝送速度(例えば、1Gおよび10G)での光信号が混在して伝送される光伝送路2を有するネットワークシステム(光通信システム)1の構成を例示する図である。図1に例示するネットワークシステム1では、OLT(Optical Line Terminal)3と、複数のONU(Optical Network Unit)4,5と、が光信号による通信を行なう。
ここで、OLT3は、伝送速度が1G/10Gで共用に用いられる仕様を有する。又、ONU4は伝送速度が1Gの信号について処理を、ONU5は伝送速度が10Gの信号について処理を、それぞれ行なう仕様を有するものとする。光伝送路2は、星型のネットワークトポロジを有し、光スプリッタ6およびリピータ(中継装置)7を介して、OLT3と各ONU4,5とを接続する。
図1中では、ONU4,5が接続される光スプリッタ6は、リピータ7に対してOLT3とは反対側(即ち下流側)の光伝送路2に接続されているが、リピータ7に対してOLT3側(即ち上流側)の光伝送路2に接続されるものとしてもよい。又、リピータ7の上流および下流の光伝送路2にそれぞれ接続されるものを含んでいてもよい。
ここで、OLT3およびONU4の伝送方式には1GのE−PONを適用できる。この場合には、図2(a)に示すように、1Gの下り信号(DS;Downstream、OLT3からONU4に向けた方向の光信号)の波長は1480〜1500nmである。又、1Gの上り信号(US;Upstream、ONU4からOLT3に向けた方向の光信号)の波長は1260〜1360nmである。
さらに、OLT3およびONU5の伝送方式には10GのE−PONを適用できる。この場合には、図2(b)に示すように、10Gの下り信号の波長は1574〜1580nmであり、上り信号の波長は1260〜1280nmである。従って、10Gの上り信号は、1Gの上り信号と波長帯が重複していることになる。尚、OLT3とONU4,5間の伝送方式としては、例えばG−PON等の他の方式も適用できる。
そして、OLT3においては、各ONU4,5との伝送距離に応じた伝送時間差を把握した上で、上り方向の光信号として送信可能な時間(タイムスロット)をONU4,5ごとに割り当てる。これにより、時分割多重または時分割多元接続による通信を行なう。
換言すれば、OLT3では、伝送速度の異なる1Gおよび10Gの特に上り方向の光信号間では波長帯が重複しているため、1Gおよび10Gの上り光信号については、光波長単位で区別するのではなく、タイムスロットの割り当てにより区別している。
図3は、E−PONを適用する場合において1G用のONU4に割り当てられる一つのタイムスロット内におけるフォーマットを例示する図である。ONU4,5ごとに、この図3に示すような割り当て期間(GT:Grant Time)に相当するタイムスロットがOLT3の制御により時間軸上に配列されるようになる。
ここで、ONU4に対する一つの割り当て期間GTには、図3に示すように、先頭部にPONオーバヘッド部F1が、次にデータ期間F2が、末部に消光期間F3(Toff)が、それぞれ配列される。PONオーバヘッド部F1については、光信号の立ち上がり時間Tonと、同期期間Syncと、が配列される。
そして、同期期間は、入力される信号についてフレーム同期をとるための期間である。例えば、上り信号においてはOLT3又は後述のリピータ7がフレーム同期を取るための期間である。この同期期間は、Treceiver_setting,TcdrおよびTcode_group_alignを有する。
ここで、Treceiver_settingは、受信光波形レベルの調整期間であり、Tcdrは、受信データから受信クロックを抽出するためのビット同期期間であり、Tcode_group_alignは、受信データのバイト同期期間である。なお、上述のTreceiver_setting,Tcdrはそれぞれ400nsよりも短く、Tcode_group_alignは32ns程度とすることができる。
また、データ期間は、IFG(Inter Frame Gap)を挟んでデータフレームが配列される。データフレームは、時間軸上の頭から、PR,DA(Destination Address),SA(Source Address),Type/Length,PeyloadおよびFCS(Frame Check Sequence)が配列される。ここで、PRはプリアンブル期間を示し、DA,SAはそれぞれ宛て先アドレス,送信元アドレスを示すための期間である。更に、Type/Lengthは、データ属性やデータ長を示すための期間であり、Peyloadは、主信号を示すための期間であり、FCSは、誤り訂正のための情報を示す期間である。
なお、PRのフォーマットは、この図3に示すように、5バイトの交番符号と、それに続く2バイトのLLIDおよび8ビットのCRC8(Cyclic Redundancy Check)が配列される。尚、図3中、「0x55」は16進表記による交番符号を示すもので、2進表記では「01010101」である。
ONU4,5では、このようなフレーム構成を有する光信号を、タイムスロットにより割り当てられたタイミングで送信することにより、送信した光信号をOLT3で受信することができる。
このように、OLT3においては、各ONU4,5との間で、個別に割り当てられたタイムスロットを用いた通信により、伝送速度の異なる両者の光信号を区別するとともに、更に、送信元の個々ONU4,5についても区別している。尚、下り信号のように波長帯が互いに重複していない割り当ての場合には、波長帯で両者の信号を区別することもできる。
図1に示すリピータ7は、このようなネットワークシステムにおいて、伝送距離の長距離化等のため適用され、上り方向(第1方向)および下り方向(第2方向)の光信号について、その光信号が有する伝送速度に応じた中継処理を行なう。この中継処理には、光伝送路2を伝搬する光信号を所期のレベルに増幅する処理が含まれる。
このとき、上述したE−PONのごとき仕様をOLT3およびONU4,5で適用する場合には、上り信号の波長帯が1Gと10Gとで重なることになる。この場合には、1G/10Gの混在システムとしては、1Gの信号が通過している期間は10Gの光信号のための光増幅処理をオフにすることが望まれる。又、10Gの光信号に対する適切な中継処理のため、バースト信号に応答して出力レベルを目標値に向けて制御(ALC:Automatic Level Control)することも望まれる。
そこで、第1実施形態においては、図4に示すような構成のリピータ(中継装置)7を導入する。即ち、リピータ7においては、図2(a)に示すように波長帯が比較的広い1Gの上りおよび下りの光信号の処理のため、電気信号段での処理を経由する信号再生処理を行なう。一方、波長帯が他の信号波長帯と重ならない10Gの下りの光信号に対しては、電気段での信号処理を経由せずに直接光信号に対して増幅(光増幅)を行なう。尚、図4中において、伝送速度1Gは「低速」に、伝送速度10Gは「高速」に、それぞれ該当するが、これらの低速および高速の表記は、2つの伝送速度の相対性による区別を意図したものであり、他の伝送速度とすることを排除する趣旨はない。
このため、リピータ7は、図4に例示するように、第1インタフェース部11,処理部12および第2インタフェース部13をそなえる。第1インタフェース部11は、ONU4,5側(即ち下流側)の光伝送路2に接続され、第2インタフェース部13は、OLT3側(即ち上流側)の光伝送路2に接続される。
第1方向である上り方向の光信号に着目すると、第1インタフェース部11においては、光伝送路2の下流側から上り方向(第1方向)で入力される光信号について分岐し、分岐された光信号を第1方路p1および第2方路p2に導く。ここで、第1方路p1は、第1伝送速度(例えば1Gbps)の光信号の処理方路であり、第2方路p2は、第1伝送速度と異なる第2伝送速度(例えば10Gbps)の光信号の処理方路である。
そして、処理部12は、各方路p1,p2を伝搬する上り方向の光信号について対応する伝送速度に応じた処理を行なう。具体的には、処理部12においては、第1インタフェース部11から第1,第2方路p1,p2を通じて入力される上り光信号について、各々のタイムスロットに割り当てられる光信号の伝送速度に応じて中継処理を行なう。
さらに、第2インタフェース部13は、処理部12にて処理が行なわれた光信号の伝搬方路である第1方路p1および第2方路p2を波長多重により束ね、他方側であるOLT3側の光伝送路2に導く。これにより、リピータ7は上り方向の光信号を中継することができる。
また、第2方向である下り方向の光信号に着目すると、第2インタフェース部1において、光伝送路2からの光信号を入力されて、波長帯ごとに、設定される第3方路p3および第4方路p4に導く。例えば、E−PONにおいては、第1伝送速度(1Gbps)の下り光信号と第2伝送速度(10Gbps)の下り光信号とは波長帯が異なるので、入力される光信号を波長毎に出力方路を切り替えることで、伝送速度に応じて光信号方路が分けられることになる。尚、第1実施形態においては、第3方路p3については、前述の上り方向の第1方路と共通の方路p1として用いることができる。
そして、処理部12においては、上述の第3,第4方路p3,p4を伝搬する下り方向の光信号について対応する伝送速度に応じた中継処理を行なう。更に、第1インタフェース部11は、処理部12にて処理が行なわれた下り方向の光信号の方路である第3方路p3および第4方路p4を束ねて、光伝送路2に導く。これにより、リピータ7では下り方向の光信号を中継することができる。
ここで、第1インタフェース部11は、第1透過/反射フィルタ(フィルタ♯1)11aと光カプラ11bとをそなえる。第1透過/反射フィルタ11aは、光伝送路2と第4方路p4とが透過ルートで接続されるとともに、光伝送路2と共用の第1又は第3方路p1(p3)および第2方路p2とが反射ルートで接続されている。又、光カプラ11bは、上述の共用の第1又は第3方路p1,p3および第2方路p2と、透過/反射フィルタ11aの反射ルートと、の間を合流又は分岐接続する。
図5は上述の第1透過/反射フィルタ11aの波長透過/反射特性を示す図である。この図5に示すように、第1透過/反射フィルタ11aは、10G(第2伝送速度)の下り光信号に該当する波長帯の光については透過する特性を有する。一方で、他の波長帯の光、即ち、1Gの上り及び下りの光信号並びに10Gの上り光信号については反射させる特性を有している。
これにより、光伝送路2を通じて入力されるONU4,5からの光信号については、第1透過/反射フィルタ11aで反射されて、光カプラ11bで分岐されるので、それぞれ、第1,第2方路p1,p2に導かれるようになる。
また、第1インタフェース部11には、処理部12を通じた第4方路p4から、10Gの下り光信号が入力されるようになっているが、この下り光信号については第1透過/反射フィルタ11aを透過するので、下流側の光伝送路2に導かれるようになる。更に、処理部12を通じた第3方路p3(p1)から、1Gの下り光信号が入力されるようになっているが、この下り光信号については、光カプラ11bを介して第1透過/反射フィルタ11aで反射されるので、下流側の光伝送路2に導かれるようになる。
また、図4に示すように、第2インタフェース部13は、第2透過/反射フィルタ(フィルタ♯1)13aおよび第3透過/反射フィルタ(フィルタ♯2)13bをそなえる。第2透過/反射フィルタ13aは、光伝送路2と第4方路p4とが透過ルートで接続され、光伝送路2と第3透過/反射フィルタ13bとが反射ルートで接続される。
そして、第3透過/反射フィルタ13bは、第2透過/反射フィルタ13aの光伝送路2の反射ルートに接続される。そして、第3透過/反射フィルタ13bにおいては、この第2透過/反射フィルタ13aと、上り下り共用の第1および第3方路p1,p3とが反射ルートを介して接続される。更には、第2透過/反射フィルタ13aと第2方路p4とが透過ルートを介して接続される。
第2透過/反射フィルタ13aについては、前述の図5の場合と同様の、換言すれば、第1透過/反射フィルタ11aと同等の波長透過特性を持たせることができる。更に、第3透過/反射フィルタ13bは、図6に示すような波長透過特性を有している。
すなわち、第3透過/反射フィルタ13bは、10Gbps(第2伝送速度)の上り光信号に該当する波長帯の光については透過する特性を有する。一方で、他の波長帯の光、即ち、1Gbpsの上りの光信号における一部の波長帯(即ち10Gの上り光信号との重複波長帯)を除く光信号や、1Gbpsの下り光信号の波長帯、および10Gbpsの下り光信号については反射させる特性を有している。
これにより、光伝送路2を通じて入力されるOLT3からの光信号については、第2インタフェース部13の第2透過/反射フィルタ13aで、10Gの光信号は透過されて第4光方路p4に導かれる一方で、1Gの光信号は反射される。そして、第3透過/反射フィルタ13bは、第2透過/反射フィルタ13aで反射された1Gの下り光信号について更に反射させて、第3方路p3(p1)に導く。
また、第2インタフェース部13には、処理部12から第1方路p1を通じて1Gの上り光信号が、処理部12から第2方路p2を通じて10Gの上り信号が入力されるようになっている。
ここで、1Gの上り光信号については、第3透過/反射フィルタ13bおよび第2透過/反射フィルタ13aで反射されて、光伝送路2に送出されるようになる。1Gの上り光信号については、後述の処理部12にて第3透過/反射フィルタ13bで全成分が反射されるように波長変換されているためである。一方、10Gの上り光信号については、第3透過/反射フィルタ13bを透過するとともに、第2透過/反射フィルタ13aで反射されて、光伝送路2に送出される。
また、処理部12においては、第1インタフェース部11から入力される上り光信号について、各々のタイムスロットに割り当てられる光信号の伝送速度に応じて中継処理を行ない、処理結果の光信号を、第2インタフェース部13を通じ光伝送路2に送出する。同様に、第2インタフェース部13から入力される上り光信号について、各々のタイムスロットに割り当てられる光信号の伝送速度に応じて中継処理を行ない、処理結果の光信号を第1インタフェース部11を通じて光伝送路2に送出する。このため、処理部12は、第1〜第3処理部12−1〜12−3を有する。
第1処理部12−1は、第1インタフェース部11からの、上り方向を有する第1方路p1の光信号について、1Gの光信号に対応する中継処理を行なう。即ち、第1処理部12−1には1Gの光信号とともに10Gの光信号が混在した状態で入力されるが、電気段処理を介した1G信号の再生処理を行なうので、この再生処理により10G相当の光信号の出力は遮断され、1G相当の光信号が出力されるようになる。
たとえば、第1処理部12−1としては、1G相当の信号について同期処理を伴う信号再生処理を行なうリジェネレータ(REG)12aと、光遅延線12bと、を含む。このリジェネレータ12aとしての処理においては、1G用のONU4のために割り当てられたタイムスロットにおいて、Sync(図3参照)に基づく1Gのクロック信号の抽出等の同期処理が含まれる。
このとき、10G用のONU5のために割り当てられたタイムスロットにおいては、リジェネレータ12aでは10Gの信号については再生処理が行なわれず、そのクロック信号も抽出しない。即ち、リジェネレータ12aでは、少なくとも、10Gの光信号に割り当てられるタイムスロットにおいては、プリアンブルPRにおけるLLIDを読み出すことができない。このため、当該タイムスロットにおいては、1G信号のタイムスロットとしての処理は行なわれず、信号再生処理が行なわれた光信号も出力されない。
さらに、リジェネレータ12aにおいては、第1方路から入力される1Gの光信号について、電気段処理後のE/O変換処理により、入力される光信号の波長帯を狭める変換を行なう。具体的には、第2インタフェース部13の第3透過/反射フィルタ13bおよび第2透過/反射フィルタ13aにおいて、1Gの上り光信号の全成分が反射して第2透過/反射フィルタ13aに導かれるように波長変換される。
たとえば、第2透過/反射フィルタ13aにおいては、1Gの上り光信号として入力される光の波長帯(例えば1.26〜1.36μm)の全帯域を反射する特性を有する。これに対し、第3透過/反射フィルタ13bにおいては、10Gの上り光信号の波長帯である1.26〜1.28μmの波長帯の光については透過するようになっている。
そこで、リジェネレータ12aでは、1Gの上り光信号として入力される光の波長帯(例えば1.26〜1.36μm)について、第3透過/反射フィルタ13bの反射波長帯に相当する1.29〜1.36μmの波長帯の光信号に変換している。これにより、1Gの上り光信号が、第3,第2透過/反射フィルタ13b,13aを通じてOLT3側の光伝送路2に送出されるようになっている。
すなわち、リジェネレータ12aでの波長変換により、1G上り信号の波長帯を10G上り信号の波長帯との重複が避けられる。これにより、1G/10G上り信号の合流部に光カプラではなく、光フィルタ13bを用いることができ、損失を抑えることができるとともに、第2処理部12−2の要素であるSOA(Semiconductor Optical Amplifier:半導体光増幅器)12gの余分なASE成分のカットフィルタとしても働かせることができる。また、SOA12gは光非入力のときはオフ状態であるため、リピータ7の上流にONUがそなえられる場合の上り信号に当該SOA12gから発生するASEが重なることを回避している。
また、リジェネレータ(再生処理部)12aは、第1方路p1と共用の第3方路p3からの下り方向を有する光信号について信号再生処理を行なう。前述の第2インタフェース部13において、入力される下り光信号において、第3方路p3へは1Gの伝送速度を有する光信号が導かれ、10Gの伝送速度を有する光信号については第4方路p4へ導かれる。従って、第1処理部12aにおいては、下り方向の1Gの光信号について信号再生処理を行なうことができるようになっている。
さらに、第1処理部12−1をなす光遅延線(第1遅延部)12bは、第1方路p1(第3方路p3)を伝搬する光信号に遅延を与える。これにより、第1,第2インタフェース部11,13間の第1方路p1を伝搬する光信号の伝搬時間と、第1,第2インタフェース部11,13間の第2方路p2を伝搬する光信号の伝搬時間と、を整合させることができる。
また、第2処理部12−2は、上り方向(第1方向)を有する第2方路p2の光信号について、第2伝送速度である10Gの光信号に対応する処理を行なう。第1実施形態においては、図6に示すように、光カプラ12d,フォトダイオード12e,光遅延線(第2遅延部,遅延部)12f,SOA12gおよびSOA制御部12hをそなえる。
光カプラ12dは、第1インタフェース部11から第2方路p2を通じて入力される光信号(1G,10Gの光信号の混在信号)の一部をフォトダイオード12eに導くとともに、残りを光遅延線12fに導く。
フォトダイオード(検出)12eは、光カプラ12dからの光入力を検出し、例えば、タイムスロット期間ごとの光信号レベルを検出できるような応答速度を有するものを用いる。ただし、ビット単位の変動までも検出する速度までは必須ではない。
SOA12gは、SOA制御部12hからの制御を受けて、光カプラ12dから光遅延線12fを介して入力される光信号を増幅する。従って、SOA12gは、切り替えに応じて、光遅延線12fからの光信号についての増幅動作し、又は、第2方路p2についての光導通の遮断動作を行なう光増幅器である。
具体的には、SOA制御部12hは、フォトダイオード12eにおいて光入力を検出されない状態においては、SOA12gをオフ制御することにより、第2インタフェース部13側への光信号を遮断させる。一方、フォトダイオード12eにおいて光入力を検出すると、SOA12gをオン制御することにより、光遅延線12fを通じて入力される光信号を第2インタフェース部13側に導通させる。このとき、SOA12gにおいては10Gの光信号としての所期の中継処理(光増幅)を行なう。又、増幅率を光入力レベルに応じて出力レベルが一定となるように制御(ALC制御)するようにしてもよい。
換言すれば、SOA制御部12hは、SOA12gを切り替え制御して、フォトダイオード12eにて光入力を検出した場合には増幅動作を行なわせ、光入力を検出しない場合、更に、前記再生処理部で前記第1伝送速度の光信号についての再生処理が行われる場合には前記増幅の動作にかかわらず遮断動作をそれぞれ行なわせる増幅器制御部である。
なお、SOA制御部12hにおいては、フォトダイオード12eから、入力光強度に応じたレベルの電気信号を取り込むようになっている。そして、この電気信号のレベルについての閾値判断によって、光入力の有無を検出している。この場合において、制御の安定化のため、光入力を有りとする閾値よりも、光入力が有りとする場合から消光状態(光が入力されなくなった状態)に移行したことを判定するための閾値を、小さい値としてもよい。
また、光遅延線12fは、フォトダイオード12eにて光入力が検出される光信号の先頭が入力される前に、SOA12gのオン制御が完了できているような遅延時間を与える。さらに、この遅延時間は、以下に示すように、リジェネレータ12aで1G信号の同期を確立するために十分なタイムスロット先頭からの時間とすることができる。GE−PONでは、1G信号のタイムスロットの同期を確立するには、前述の図3に示すSyncの時間が少なくとも必要である。第1実施形態の光遅延線12fにおいては、少なくともSyncの時間よりも長い1μsの時間を遅延時間として与えるようになっている。
すなわち、前述の第1インタフェース部11においては、第1処理部12−1の要素であるリジェネレータ12aおよび第2処理部12−2の要素であるSOA23aに対して、1Gおよび10Gの光信号の混在信号を出力する。このため、1G用の光信号を処理する第1処理部12−1の出力と、10G用の光信号を処理する第2処理部12−2の出力との衝突を回避させることが必要である。
そこで、SOA制御部12hにおいては、第1処理部12−1のリジェネレータ12aから、リジェネレータ12aにおいて1G信号の同期処理が行なわれているか否かの信号を受け取る。そして、リジェネレータ12aにおいて1G信号の同期処理が行なわれている場合には、当該タイムスロットは10Gではなく1Gの光信号に割り当てられているので、フォトダイオード12eでの光入力の検出にかかわらず、SOA12gを強制的にオフ制御する。これにより、第1処理部12−1および第2処理部12−2からの出力の衝突を回避することができる。
一方、10Gの光信号が割り当てられているタイムスロットにおいては、リジェネレータ12aでは信号の同期を取ることができず、信号として認識されないので、再生処理された光信号についても第2インタフェース13に出力されない。一方、第2処理部12−2においては、光入力の検出に応じてSOA12gをオン制御しているので、第2インタフェース部13に出力される。
なお、1Gのタイムスロットから10Gのタイムスロットに移行する場合において、SOA制御部12hでは、1G信号の同期が外れたことを通知する信号をリジェネレータ12aから受け取る。SOA制御部12hにおいては、この同期外れを通知する信号により、SOA12gの強制的なオフ制御を解除する。これにより、SOA制御部12hにおいては、1Gのタイムスロットに続く10Gのタイムスロットの先頭から、SOA12gのオン制御を行なうことが可能となる。換言すれば、前段タイムスロットでのSOA12gの強制的なオフ制御が、後段の10Gのタイムスロットまで引き継がれることを回避できる。
また、第3処理部12−3は、下り方向(第2方向)を有する第4方路p4の光信号について、第2伝送速度である10Gの光信号に対応する処理を行なう。即ち、第3処理部12−3には、第4方路p4を伝搬する10Gの光信号の波長帯である1574〜1580nm(図2(b)参照)の光が入力される。第3処理部12−3では、例えば上述の第4方路p4を通じで入力される光信号の波長帯を光増幅帯域に含む光増幅器を適用する。例えば、SOAを用いることができる。
図2(c)は、第2処理部12−2のSOA12gでの増幅波長帯(C1)と、第3処理部12−3としてのSOAの増幅波長帯(C2)と、を示す図である。SOA12gは、10Gの上り光信号の波長帯(1260〜1280nm、図2(b)参照)をカバーする増幅波長帯を有する。一方、1Gの上り光信号の波長帯(1260〜1360nm、図2(a)参照)の全帯域についてはカバーしていない。これは、1Gの上り光信号に対して光増幅による中継処理ではなく、リジェネレータ12aでの処理を行なっている理由でもある。
また、第3処理部12−3としてのSOAは、10Gの下り光信号についての波長帯をカバーする帯域C2を有することができる。尚、図2(d)に示すように、第3処理部12−3としてEDFA(Erbium Doped Fiber Amplifier)を用いる場合においても、10Gの下り光信号についての波長帯を増幅波長帯としてカバーすることも可能である。
これにより、上り信号に着目すると、1Gのタイムスロットにおいては第1処理部12−1で中継処理が行なわれた、1Gの光信号が第2インタフェース部13を通じてOLT3側の光伝送路2に出力される。又、10Gのタイムスロットにおいては、第2処理部12−2で中継処理が行なわれた、10Gの光信号が第2インタフェース部13を通じてOLT3側の光伝送路2に出力される。
すなわち、E−PONのように、異なる伝送速度を有する複数の上り信号の波長帯の一部が重複している場合においても、第1,第2処理部12−1,12−2においてそれぞれ伝送速度に応じた中継処理を行なうことができる。
なお、下り信号に着目すると、E−PONでは、1Gの伝送速度を有する下り信号と10Gの伝送速度を有する下り信号は互いに重複のない波長帯が設定されている。従って、第2インタフェース部13のように1Gおよび10Gの光信号を波長帯で分離させて、それぞれ別個の光方路p3,p4に導くことで、異なる伝送速度の光信号を分離させることができる。そして、個別の光方路p3,p4上にそなえられるリジェネレータ12aおよびSOA12−3により、1Gおよび10Gの光信号ごとの中継処理を行なうことができるようになる。
このように、第1実施形態によれば、1Gと10GのE−PONの光信号が混在するネットワークシステムのように、異なる伝送速度を有する光信号が混在するネットワークシステムにおいて、各光信号について適切な中継処理を行なうことができる。
また、第1,第2インタフェース部11,13および処理部12からなる中継装置により、異なる伝送速度を有する光信号が混在している場合に、伝送速度および伝送方向に応じた中継処理を行なうことができる利点もある。
〔b〕第2実施形態
図7は第2実施形態におけるネットワークシステム20を示す図である。図7に示すネットワークシステム20においても、1Gおよび10GのE−PONによる光信号を送受信するOLT3およびONU4,5をそなえているが、そのネットワーク構成が前述の図1に示すものと異なる。
すなわち、ネットワークシステム20においては、光伝送路2上にリピータ7Aが介装されているが、OLT3との間で、このリピータ7Aを経由しない光伝送路2と接続されるONU4,5を含む。
具体的には、スプリッタ6−1は、OLT3との間でリピータ7Aを経由しない光伝送路2を介して接続されて、この光伝送路2について2分岐し、一方はリピータ7Aが介装される光伝送路2側に、他方は、互いに縦続接続されたスプリッタ6−11〜6−13を介してONU41,51に接続されている。
また、スプリッタ6−2は、OLT3との間でリピータ7Aを経由した光伝送路2を介して接続されて、この光伝送路2を分岐して、縦続接続されたスプリッタ6−21〜6−22を介してONU42,52に接続されている。例えば、ONU41,42は、ともに1G用のE−PONの光信号を送受信するが、OLT3との伝送距離や中継するリピータ7Aの有無等が異なっている。又、ONU51,52についても、ともに10G用のE−PONの光信号を送受信するが、OLT3との伝送距離や中継するリピータ7Aの有無等が異なっている。
なお、リピータ7Aについては、図7中では1個を光伝送路2上に介装しているが、OLT3とONU41,42,51,52との間で送受信される光信号の品質を確保すべく、例えば80km以上の伝送区間を有する個所等に適宜リピータ7Aを介装してもよい。
第2実施形態におけるリピータ7Aにおいても、第1実施形態の場合と同様に、E−PONのごとき異なる伝送速度を有する複数の上り信号の波長帯の一部が重複している場合において、それぞれの伝送速度の光信号に応じた中継処理を行なう。
そして、リピータ7Aにおいては、前述の第1実施形態におけるリピータ7と同様の、第1,第2インタフェース部11,13をそなえているが、処理部12Aの構成が異なっている。即ち、処理部12Aは、図4に示すものと同様の第1処理部12−1(12a,12b)および第3処理部12−3をそなえるとともに、図4に示すものと異なる第2処理部12−2Aをそなえる。尚、図7中、図4と同一の符号はほぼ同様の部分を示す。
すなわち、第2処理部12−2Aは、図8に示すように、光カプラ21a〜21d,フォトダイオード22a〜22d,SOA23a,23b,光遅延線24およびSOA制御部25をそなえる。
光カプラ21a〜21dはそれぞれ入力される第2方路p2を伝搬する光信号(1G,10Gの光信号の混在信号)を分岐し、一方を対応するフォトダイオード22a〜22dに、他方を第1方路p1の後段に導く。ここで、光カプラ21aはSOA23aの入力側に、光カプラ21bはSOA23aの出力側にそれぞれそなえられる。同様に、光カプラ21cはSOA23bの入力側に、光カプラ21dはSOA23bの出力側にそれぞれそなえられる。
なお、SOA23aと、その入出力側の光カプラ21a,21bおよびフォトダイオード22a,22bにより、一体化された光増幅モジュールとすることができる。同様に、SOA23bと、その入出力側の光カプラ21c,21dおよびフォトダイオード22c,22dにより、一体化された光増幅モジュールとすることができる。
また、フォトダイオード22a〜22dは、対応する光カプラ21a〜21dからの光信号のレベルについてモニタする。SOA23a,23bは、SOA制御部25からの制御を受けて、それぞれ光カプラ21a,21cから第2方路p2を通じて入力される光信号を増幅する。
具体的には、SOA制御部25では、入力側のSOA23aについては光入力の有無にかかわらず常時オン制御する。これに対し、出力側のSOA23bについては、フォトダイオード(検出部)22a(又は22b)において光入力を検出されない状態においてはオフ制御することにより、第2インタフェース部13側への光信号を遮断させる。そして、フォトダイオード22a(又は22b)において光入力を検出すると、SOA23bをオン制御することにより、光遅延線24,光カプラ21cを通じて入力される光信号を第2インタフェース部13側に導通させる。
このとき、SOA23bにおいては10Gの光信号としての所期の中継処理(光増幅)を行なう。又、SOA制御部25では、図9に例示するように、SOA23bの増幅率について、フォトダイオード22c,22dからのモニタ結果に応じてALC(Automatic Level Control)制御するようにしてもよい。
なお、SOA制御部25においては、フォトダイオード22a(22b)から、入力光強度に応じたレベルの電気信号を取り込むようになっている。そして、この電気信号のレベルについての閾値判断によって、光入力の有無を検出している。この場合において、制御の安定化のため、光入力を有りとする閾値よりも、光入力が有りとする場合から消光状態(光が入力されなくなった状態)に移行したことを判定するための閾値を、小さい値としてもよい。
また、光遅延線(遅延部)24は、フォトダイオード22a(22b)にて光入力が検出される光信号の先頭が入力される際に、SOA制御部25によるSOA23bのオン制御が完了できているような遅延時間を与える。この遅延時間は、フォトダイオード22a(22b),SOA制御部25およびSOA23bの応答時間等をもとに設定される。
図9は上述のSOA制御部25によるSOA23bのALC制御について説明する図である。リピータ7Aには、下流側のONU42,52から、それぞれに割り当てられたタイムスロットにおいて、OLT3宛ての光信号がバースト光信号として入力される。
たとえば、図9の(a)に示すように、ONU42,52からのバースト光信号♯1〜♯3が、第1インタフェース部11を介してSOA23aに入力される。尚、図示のバースト光信号♯1〜♯3は、それぞれ、連続したタイムスロットにおける異なるONU42,52からの光信号とすることができる。
運用中は常時オン制御されているSOA23aは、一定の利得で入力光信号を増幅する。例えば、10Gの光信号のパワーは伝送距離の影響を比較的受けやすいことが想定できるので、送信元のONU52に応じて入力光信号のレベルに、バースト光信号♯1〜♯3のようなバラツキが生じていることがある。SOA23aでは一定の利得で増幅するので、図9(b)に例示するように、バラツキが生じたままのレベルで増幅が行われることになる。
そして、SOA23bには、SOA23aを出力された光信号が光遅延線24において1μsの遅延が与えられたものについて、ALC制御を行なう。PD22a(又は22b)は、バースト信号として入力される光信号レベルを検出できる応答速度を有する。そして、SOA制御部25では、このPD22a(22b)で検出された光信号レベルに応じて、SOA23bの利得を制御する。
SOA制御部25における上述のSOA23bの利得制御は、光遅延線24に入力される前段の光信号のレベルに応じて制御を行なっているので、SOA23bの利得制御の環境が整ったのちに該当の光信号を迎え入れることができる。尚、光遅延線24での遅延時間については、第1実施形態における光遅延線12fと同様に設定することができる。
たとえば、図9(b)に示すように、バースト信号である光信号♯1〜♯3が光遅延線24で遅延されてから、利得制御されているSOA23bに入力されるので(図9(c))、SOA23bでは一定レベルのバースト光信号♯1〜♯3を出力することができる(図9(d))。
また、前述の第1インタフェース部11においては、第1処理部12−1の要素であるリジェネレータ12aおよび第2処理部12−2の要素であるSOA23aに対して、1Gおよび10Gの光信号の混在信号を出力する。このため、1G用の光信号を処理する第1処理部12−1の出力と、10G用の光信号を処理する第2処理部12−2の出力との衝突を回避させることが必要である。
そこで、SOA制御部25においては、第1処理部12−1のリジェネレータ12aから、リジェネレータ12aにおいて1G信号の同期処理が行なわれているか否かの信号を受け取る。そして、リジェネレータ12aにおいて1G信号の同期処理が行なわれている場合には、当該タイムスロットは10Gではなく1Gの光信号に割り当てられているので、SOA23bを強制的にオフ制御(遮断制御)する(図10のt3−t6)。
このとき、リジェネレータ12aにおいては、1G用のタイムスロットの同期確立のためには、少なくとも図3に示すSyncの時間+LLIDの識別時間である850ns程度を要する(図10の時点t1−t2)。光遅延線24では、SOA23aから出力された1G用のタイムスロットの光信号について遅延させる。即ち、対応する1Gの光信号がリジェネレータ12aで同期確立した際の信号を受け取ってSOA23bをオフ制御するのに要する時間が、該当の1G光信号のSOA23bへの入力前となる十分な遅延時間(ここでは1μs)を遅延させている(図10の時点t1−t3,続くタイムスロットについての時点t4−t6)。
また、1Gのタイムスロットから10Gのタイムスロットに移行する場合などのように、リジェネレータ12aによる同期確立が外れる場合は、SOA制御部25では、1G信号の同期が外れたことを通知する信号をリジェネレータ12aから受け取る。SOA制御部25においては、この同期外れを通知する信号により、SOA23bの強制的なオフ制御を解除し、1Gのタイムスロットに続く10Gのタイムスロットの先頭から、SOA12gのオン制御(導通制御)を行なう。換言すれば、前段タイムスロットでのSOA23bの強制的なオフ制御が10Gのタイムスロットまで引き継がれることを回避できる(図10のt6)。
すなわち、10Gの光信号が割り当てられているタイムスロットにおいては、リジェネレータ12aでは信号の同期を取ることができず、信号として認識されないので、再生処理された光信号についても第2インタフェース13に出力されない。一方、第2処理部12−2Aにおいては、SOA制御部25においてリジェネレータ12aからの同期外れを通知する信号により上述の強制オフ制御を解除するので、ALC制御された光信号を第2インタフェース部13に出力できる。
このように、第2実施形態によれば、前述の第1実施形態の場合と同様の利点を得ることができる。
〔c〕その他
上述した実施形態にかかわらず、開示技術の趣旨を逸脱しない範囲において種々変形して実施することができる。
たとえば、伝送速度の異なる光信号として1Gおよび10GのE−PONの光信号を伝搬するネットワークシステムについて説明したが、他の伝送速度の光信号の組み合わせとすることとしてもよいし、又、例えばG−PON等の光信号とすることもできる。
また、上述の第2実施形態において、SOA23aとSOA23bとの間に、前述の第3透過/反射フィルタ13bと同様の特性を有し、10Gの上り光信号の波長帯を透過させるフィルタを介装することとしてもよい。このようにすれば、第2インタフェース部13を通じて出力される10Gの上り光信号に含まれるASE成分をより抑制させることができる。
〔d〕付記
以上の実施形態に関し、更に下記の付記を開示する。
(付記1)
一方向あたりで異なる伝送速度を有する光信号がそれぞれ複数種類混在して互いに反対方向の2方向に伝送される光伝送路に介装される中継装置であって、
前記光伝送路の一方側から第1方向で入力される光信号について分岐し、第1伝送速度の光信号の処理方路である第1方路、および、前記第1伝送速度と異なる第2伝送速度の光信号の処理方路である第2方路に導く第1インタフェース部と、
前記各方路を伝搬する前記第1方向の光信号について対応する伝送速度に応じた処理を行なう処理部と、
前記処理部にて前記処理が行なわれた光信号の伝搬方路である前記第1方路および前記第2方路を波長多重により束ね、前記光伝送路の他方側に導く第2インタフェース部と、
をそなえた中継装置。
(付記2)
前記第1方向の光信号において、前記第2伝送速度の光信号の波長帯は、前記第1伝送速度の光信号の波長帯と一部又は全てが重複する、付記1記載の中継装置。
(付記3)
前記第1インタフェース部は、前記第1方向の光信号について、前記第1および第2方路の光信号に分岐し、
前記処理部は、
前記第1方向を有する前記第1方路の光信号について、前記第1伝送速度の光信号に対応する処理を行なう第1処理部と、
前記第1方向を有する前記第2方路の光信号について、前記第2伝送速度の光信号に対応する処理を行なう第2処理部と、をそなえた、付記2記載の中継装置。
(付記4)
前記第2処理部は、当該第2処理部への光信号の入力/非入力に応じて前記処理結果の出力を導通/遮断し、更に、前記第1処理部での前記第1伝送速度の光信号に対応する処理が行われる場合には、前記光信号の入力/非入力にかかわらず前記処理結果の出力を遮断する、付記3項記載の中継装置。
(付記5)
前記第1処理部は、
前記第1伝送速度の光信号についての電気段処理を経由した再生処理を行なう再生処理部と、
前記第1方路上の光信号を遅延させる第1遅延部と、を含む、付記3記載の中継装置。
(付記6)
前記第2処理部は、
前記第1方向の光信号を更に分岐する分岐部と、
前記分岐部で分岐された一方の方路上にそなえられ、光入力を検出する検出部と、
前記分岐部で分岐された他方の方路の光信号を遅延させる第2遅延部と、
切り替えに応じて、前記第2遅延部からの光信号についての増幅動作し、又は、前記第2方路についての光導通の遮断動作を行なう光増幅器と、
前記光増幅器を前記切り替え制御して、前記検出にて前記光入力を検出した場合には前記増幅動作を行なわせ、前記光入力を検出しない場合、更に、前記再生処理部で前記第1伝送速度の光信号についての再生処理が行われる場合には前記増幅動作にかかわらず遮断動作を行なわせる増幅器制御部と、をそなえた、付記3記載の中継装置。
(付記7)
前記光増幅器は、半導体光増幅器である、付記6記載の中継装置。
(付記8)
前記第2インタフェース部は、前記光伝送路から前記第1方向と逆方向の第2方向を有して入力される光信号について、前記第1伝送速度の光信号の処理方路である第3方路および前記第2伝送速度の光信号の処理方路である第4方路に導くとともに、
前記処理部は、前記各方路を伝搬する前記第2方向の光信号について対応する伝送速度に応じた処理を行ない、
前記第1インタフェース部は、前記処理部にて前記処理が行なわれた前記第2方向の光信号の方路である前記第3方路および前記第4方路を束ねて、前記光伝送路に導き、
前記第1方向と逆方向である第2方向の光信号を中継する、付記2記載の中継装置。
(付記9)
前記第1および第3方路は共用の方路であり、
前記第1処理部は、前記共用の第1および第3方路の光信号について、前記第1伝送速度の光信号に対応する処理を行なう一方、
前記処理部は、
前記第4方路の光信号について、前記第2伝送速度の光信号の入力に応じて、前記第2伝送速度の光信号に対応する処理を行なう第3処理部を更にそなえた、付記8記載の中継装置。
(付記10)
前記第1方向と逆方向の第2方向の光信号において、前記第1伝送速度の光信号の波長帯と前記第2伝送速度の光信号の波長帯とは重複していない、付記1〜9のいずれか1項記載の中継装置。
(付記11)
前記第1インタフェース部は、
前記伝送路と前記第4方路とが透過ルートで接続されるとともに、前記伝送路と前記共用の第1又は第3方路および前記第2方路とが反射ルートで接続された第1透過/反射フィルタと、
前記共用の第1又は第3方路および前記第2方路と、前記透過/反射フィルタの反射ルートと、の間を合流/分岐接続する光カプラと、をそなえ、
前記第2インタフェース部は、
前記伝送路と前記第4方路とが透過ルートで接続された第2透過/反射フィルタと、
前記第2透過/反射フィルタの前記光伝送路に対する反射ルートに接続された第3透過/反射フィルタであって、前記第2透過/反射フィルタと前記共用の第1および第3方路とが反射ルートを介して接続されるとともに、前記第2透過/反射フィルタと前記第2方路とが透過ルートを介して接続される第3透過/反射フィルタと、をそなえた、付記8〜10のいずれか1項記載の中継装置。
(付記12)
前記第1方向の光信号において、前記第2伝送速度の光信号の波長帯は、前記第1伝送速度の光信号の波長帯と一部又は全てが重複しており、
前記第1方向と逆方向の第2方向の光信号において、前記第1伝送速度の光信号の波長帯と前記第2伝送速度の光信号の波長帯とは互いに重複せず、且つ前記第1方向の光信号の波長帯とも互いに重複しない配置であり、
前記第1透過/反射フィルタおよび前記第2透過/反射フィルタは、透過波長帯が前記第2方向の前記第2伝送速度の光信号の波長帯とする一方、それ以外は反射波長帯に設定され、
前記第3透過/反射フィルタは、透過波長帯が前記第1方向の前記第2伝送速度の光信号の波長帯であり、それ以外は反射波長帯に設定された、付記11記載の中継装置。
(付記13)
該第1処理部は、前記第1方向を有する前記第1伝送速度の光信号について、前記第3透過/反射フィルタにて全ての波長帯域成分全てが反射されるように波長変換を行なう、付記12記載の中継装置。
(付記14)
第1伝送速度の光信号と第2伝送速度の光信号とが時間軸上で混在した光信号を処理する信号処理装置であって、
前記混在した光信号の分岐信号の一方について、前記第1伝送速度の光信号に対応する処理を行なう第1処理部と、
前記混在した光信号の分岐信号の他方について、前記第2伝送速度の光信号の入力に応じて、前記第2伝送速度の光信号に対応する処理を行なう第2処理部と、をそなえ、
前記第2処理部は、前記分岐信号の他方の入力を検出した場合には前記処理結果を出力し、前記入力を検出しない場合には前記処理結果の出力を停止し、更に、前記第1処理部での前記第1伝送速度の光信号に対応する処理が行われる場合には前記処理結果の出力を優先的に停止する、信号処理装置。
(付記15)
付記1〜13のいずれか1項記載の中継装置が光伝送路上に介装された、光通信システム。
1,20 光ネットワークシステム
2 光伝送路
3 OLT
4,5,41,42,51,52 ONU
6,6−1,6−11〜6−13,6−2,6−21,6−22 スプリッタ
7,7A リピータ(中継装置)
11 第1インタフェース部
11a 第1透過/反射フィルタ
12,12A 処理部
12−1 第1処理部
12−2,12−2A 第2処理部
12−3 第3処理部
12a リジェネレータ
12b 光遅延線
12d 光カプラ
12e フォトダイオード
12f 光遅延線
12g SOA
12h SOA制御部
13 第2インタフェース部
13a 第2透過/反射フィルタ
13b 第3透過/反射フィルタ
21a〜21d 光カプラ
22a〜22d フォトダイオード
23a,23b SOA
24 光遅延線
25 SOA制御部

Claims (7)

  1. 一方向あたりで異なる伝送速度を有する光信号がそれぞれ複数種類混在して互いに反対方向の2方向に伝送される光伝送路に介装される中継装置であって、
    前記光伝送路の一方側から第1方向で入力される光信号について分岐し、第1伝送速度の光信号の処理方路である第1方路、および、前記第1伝送速度と異なる第2伝送速度の光信号の処理方路である第2方路に導く第1インタフェース部と、
    前記各方路を伝搬する前記第1方向の光信号について対応する伝送速度に応じた処理を行なう処理部と、
    前記処理部にて前記処理が行なわれた光信号の伝搬方路である前記第1方路および前記第2方路を波長多重により束ね、前記光伝送路の他方側に導く第2インタフェース部と、をそなえ
    前記第1方向の光信号において、前記第2伝送速度の光信号の波長帯は、前記第1伝送速度の光信号の波長帯と一部又は全てが重複し、
    前記処理部は、
    前記第1方向を有する前記第1方路の光信号について、前記第1伝送速度の光信号に対応する処理を行なう第1処理部と、
    前記第1方向を有する前記第2方路の光信号について、前記第2伝送速度の光信号に対応する処理を行なう第2処理部と、をそなえ、
    前記第2処理部は、
    前記第1方向の光信号を更に分岐する分岐部と、
    前記分岐部で分岐された一方の方路上にそなえられ、光入力を検出する検出部と、
    前記分岐部で分岐された他方の方路の光信号を遅延させる遅延部と、
    切り替えに応じて、前記遅延部からの光信号についての増幅動作し、又は、前記第2方路についての光導通の遮断動作を行なう光増幅器と、
    前記光増幅器を前記切り替え制御して、前記検出部にて前記光入力を検出した場合には前記増幅動作を行なわせ、前記光入力を検出しない場合、更に、前記第1処理部で前記第1伝送速度の光信号に対応する処理が行なわれる場合には前記増幅動作にかかわらず遮断動作を行なわせる増幅器制御部と、をそなえた中継装置。
  2. 前記第2処理部は、当該第2処理部への光信号の入力/非入力に応じて前記処理結果の出力を導通/遮断し、更に、前記第1処理部での前記第1伝送速度の光信号に対応する処理が行われる場合には、前記光信号の入力/非入力にかかわらず前記処理結果の出力を遮断する、請求項項記載の中継装置。
  3. 前記第1処理部は、
    前記第1伝送速度の光信号についての電気段処理を経由した再生処理を行なう再生処理部と、
    前記第1方路上の光信号を遅延させる第1遅延部と、を含む、請求項1又は請求項2記載の中継装置。
  4. 前記光増幅器は、半導体光増幅器である、請求項1〜3のいずれか1項記載の中継装置。
  5. 前記第2インタフェース部は、前記光伝送路から前記第1方向と逆方向の第2方向を有して入力される光信号について、前記第1伝送速度の光信号の処理方路である第3方路および前記第2伝送速度の光信号の処理方路である第4方路に導くとともに、
    前記処理部は、前記各方路を伝搬する前記第2方向の光信号について対応する伝送速度に応じた処理を行ない、
    前記第1インタフェース部は、前記処理部にて前記処理が行なわれた前記第2方向の光信号の方路である前記第3方路および前記第4方路を束ねて、前記光伝送路に導き、
    前記第1方向と逆方向である第2方向の光信号を中継する、請求項1〜4のいずれか1項記載の中継装置。
  6. 第1伝送速度の光信号と第2伝送速度の光信号とが時間軸上で混在した光信号を処理する信号処理装置であって、
    前記混在した光信号の分岐信号の一方について、前記第1伝送速度の光信号に対応する処理を行なう第1処理部と、
    前記混在した光信号の分岐信号の他方について、前記第2伝送速度の光信号の入力に応じて、前記第2伝送速度の光信号に対応する処理を行な、前記分岐信号の他方の入力を検出した場合には前記処理結果を出力し、前記入力を検出しない場合には前記処理結果の出力を停止し、更に、前記第1処理部での前記第1伝送速度の光信号に対応する処理が行われる場合には前記処理結果の出力を優先的に停止する第2処理部とをそなえ、
    前記第2伝送速度の光信号の波長帯は、前記第1伝送速度の光信号の波長帯と一部又は全てが重複し、
    前記第2処理部は、
    前記分岐信号の他方の光信号を更に分岐する分岐部と、
    前記分岐部で分岐された一方の方路上にそなえられ、光入力を検出する検出部と、
    前記分岐部で分岐された他方の方路の光信号を遅延させる遅延部と、
    切り替えに応じて、前記遅延部からの光信号についての増幅動作し、又は、前記分岐信号の他方についての光導通の遮断動作を行なう光増幅器と、
    前記光増幅器を前記切り替え制御して、前記検出部にて前記光入力を検出した場合には前記増幅動作を行なわせ、前記光入力を検出しない場合、更に、前記第1処理部で前記第1伝送速度の光信号に対応する処理が行なわれる場合には前記増幅動作にかかわらず遮断動作を行なわせる増幅器制御部と、をそなえた、信号処理装置。
  7. 請求項1〜のいずれか1項記載の中継装置が光伝送路上に介装された、光通信システム。
JP2009099197A 2009-04-15 2009-04-15 中継装置,信号処理装置および光通信システム Expired - Fee Related JP5347674B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009099197A JP5347674B2 (ja) 2009-04-15 2009-04-15 中継装置,信号処理装置および光通信システム
US12/754,178 US8463135B2 (en) 2009-04-15 2010-04-05 Relay apparatus, signal processing apparatus and optical communication system
EP10159749.0A EP2242191A3 (en) 2009-04-15 2010-04-13 Relay apparatus, signal processing apparatus and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099197A JP5347674B2 (ja) 2009-04-15 2009-04-15 中継装置,信号処理装置および光通信システム

Publications (2)

Publication Number Publication Date
JP2010252044A JP2010252044A (ja) 2010-11-04
JP5347674B2 true JP5347674B2 (ja) 2013-11-20

Family

ID=42236352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099197A Expired - Fee Related JP5347674B2 (ja) 2009-04-15 2009-04-15 中継装置,信号処理装置および光通信システム

Country Status (3)

Country Link
US (1) US8463135B2 (ja)
EP (1) EP2242191A3 (ja)
JP (1) JP5347674B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295894B2 (ja) * 2009-07-16 2013-09-18 日本電信電話株式会社 光伝送装置、光伝送システム及び光伝送方法
CN102035596A (zh) * 2009-09-25 2011-04-27 中兴通讯股份有限公司 一种光信号的放大和动态调整方法及装置
CN102238438B (zh) 2010-05-01 2016-01-20 中兴通讯股份有限公司 一种长距盒及其对上下行光的处理方法
JP2012015675A (ja) * 2010-06-30 2012-01-19 Nec Corp Wdm信号光の監視装置
JP2012015866A (ja) * 2010-07-01 2012-01-19 Nippon Telegr & Teleph Corp <Ntt> 双方向光増幅器並びにこれを用いたponシステム及び通信方法
KR101850991B1 (ko) * 2010-12-23 2018-05-31 한국전자통신연구원 광 중계기 및 그것의 광신호 증폭 방법
JP5699678B2 (ja) * 2011-02-23 2015-04-15 富士通株式会社 光受信装置および通信システム
JP5408199B2 (ja) * 2011-06-20 2014-02-05 住友電気工業株式会社 中継装置、中継方法及びその中継装置を用いた光通信システム
JP5842438B2 (ja) 2011-07-28 2016-01-13 富士通株式会社 中継装置、中継方法及び光伝送システム
US9699532B2 (en) * 2013-03-15 2017-07-04 Cox Communications, Inc. Systems and methods of hybrid DWDM aggregation and extension for time division multiplexing passive optical networks
JP5961210B2 (ja) * 2014-03-31 2016-08-02 住友電気工業株式会社 光信号中継装置、光通信システムおよび通信制御方法
US9577758B2 (en) * 2014-04-10 2017-02-21 Tibit Communications, Inc. Method and system for scheduling cascaded PON
WO2016140140A1 (ja) * 2015-03-04 2016-09-09 住友電気工業株式会社 光信号中継装置
JP6365349B2 (ja) 2015-03-04 2018-08-01 住友電気工業株式会社 データ受信装置
FR3133505A1 (fr) 2022-03-11 2023-09-15 L’Air Liquide Societe Anonyme Pour L’Etude Et L’Exploitation Des Procedes Georges Claude Systeme d’interruption configure pour controler la transmission d’un signal optique

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818514A (ja) * 1994-06-29 1996-01-19 Fujitsu Ltd 光加入者系同一波長双方向伝送方式
JPH09244972A (ja) * 1996-03-05 1997-09-19 Alps Electric Co Ltd 赤外線信号伝送装置
US6208444B1 (en) * 1996-10-29 2001-03-27 Chorum Technologies Inc. Apparatus for wavelength demultiplexing using a multi-cavity etalon
JP3533370B2 (ja) 2000-11-01 2004-05-31 日本電信電話株式会社 幹線ノード装置、及び光アクセスネットワーク
AU2002334906A1 (en) * 2001-10-09 2003-04-22 Infinera Corporation Transmitter photonic integrated circuits (txpic) and optical transport networks employing txpics
GB0303358D0 (en) * 2003-02-14 2003-03-19 Marconi Comm Ltd Optical transmission system
JP2005065019A (ja) * 2003-08-18 2005-03-10 Fujitsu Ltd 波長分割多重伝送システム
KR100612617B1 (ko) * 2003-09-23 2006-08-17 한국과학기술원 가입자 망 접속 장치
JP4353977B2 (ja) * 2004-03-04 2009-10-28 富士通株式会社 光伝送装置
JP4466589B2 (ja) * 2006-03-06 2010-05-26 住友電気工業株式会社 Ponシステム及び端末装置の登録方法
JP2008017264A (ja) 2006-07-07 2008-01-24 Sumitomo Electric Ind Ltd Pon多重中継システムとこれに用いるpon多重中継装置及びその網同期方法
JP4840027B2 (ja) * 2006-08-28 2011-12-21 日本電気株式会社 局側光網終端装置および光通信システム
JP4882614B2 (ja) * 2006-09-01 2012-02-22 富士通株式会社 ビットレート混在光通信方法並びに光加入者装置及び光局側装置
JP4820880B2 (ja) * 2006-11-30 2011-11-24 富士通株式会社 局側終端装置
WO2008072347A1 (ja) * 2006-12-15 2008-06-19 Mitsubishi Electric Corporation Ponシステムおよびpon接続方法
JP5087977B2 (ja) * 2007-04-12 2012-12-05 富士通株式会社 光伝送装置、スクランブル方法、およびデスクランブル方法
JP2009077323A (ja) * 2007-09-25 2009-04-09 Hitachi Communication Technologies Ltd 局舎側光通信装置および光通信システム
JP4942680B2 (ja) * 2008-02-08 2012-05-30 株式会社日立製作所 受動光網システム、光多重終端装置及び受動光網システムの通信方法
JP5088191B2 (ja) * 2008-03-21 2012-12-05 富士通株式会社 光伝送システム及びその分散補償方法
JP5097655B2 (ja) * 2008-09-16 2012-12-12 株式会社日立製作所 受動光網システム及び光多重終端装置
WO2010092667A1 (ja) * 2009-02-10 2010-08-19 三菱電機株式会社 親局装置およびグラント割り当て方法
JP5402556B2 (ja) * 2009-11-19 2014-01-29 富士通株式会社 データ伝送システム,端局装置およびデータ伝送方法

Also Published As

Publication number Publication date
US20100266293A1 (en) 2010-10-21
EP2242191A2 (en) 2010-10-20
US8463135B2 (en) 2013-06-11
EP2242191A3 (en) 2016-06-15
JP2010252044A (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5347674B2 (ja) 中継装置,信号処理装置および光通信システム
JP5402556B2 (ja) データ伝送システム,端局装置およびデータ伝送方法
US8340521B2 (en) Optical transmission system
JP5941150B2 (ja) 共存するgponおよびxgpon光通信システムを配置するための構成
JP4941349B2 (ja) Ponシステムに用いる光伝送装置
JP5842438B2 (ja) 中継装置、中継方法及び光伝送システム
JP5805126B2 (ja) 両方向光通信ネットワークで分布ラマン増幅および遠隔ポンピングを使用する方法および装置
JP2005073257A (ja) 多波長光送信器及びこれを用いた両方向波長分割多重システム
JP2009077323A (ja) 局舎側光通信装置および光通信システム
JP4072184B2 (ja) 光伝送システム
KR101190861B1 (ko) 버스트 모드 광 중계장치
JP5899866B2 (ja) 光中継増幅装置及び方法
JP4948487B2 (ja) 光中継装置及び光伝送システム
JP2012015866A (ja) 双方向光増幅器並びにこれを用いたponシステム及び通信方法
KR101145500B1 (ko) 광 선로 감시 기능을 구비한 중계 장치 및 이를 포함하는 수동 광 통신망 시스템
US8509615B2 (en) Optical amplifier
JP7343806B2 (ja) 光通信システム及び光通信方法
JP2011502366A (ja) 複数速度複数波長光バースト検出器
JP4676417B2 (ja) 光中継装置及び光伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees