JP5339771B2 - Reinforcement method for columnar structures such as piers - Google Patents

Reinforcement method for columnar structures such as piers Download PDF

Info

Publication number
JP5339771B2
JP5339771B2 JP2008116610A JP2008116610A JP5339771B2 JP 5339771 B2 JP5339771 B2 JP 5339771B2 JP 2008116610 A JP2008116610 A JP 2008116610A JP 2008116610 A JP2008116610 A JP 2008116610A JP 5339771 B2 JP5339771 B2 JP 5339771B2
Authority
JP
Japan
Prior art keywords
reinforcing
columnar structure
reinforcing frame
frame
pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008116610A
Other languages
Japanese (ja)
Other versions
JP2009264036A (en
Inventor
一 藤澤
啓之 鈴木
和彦 花川
真樹 神山
弘喜 安田
弘 荻原
一行 伊藤
公一 下田
栄治 松本
浩樹 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2008116610A priority Critical patent/JP5339771B2/en
Publication of JP2009264036A publication Critical patent/JP2009264036A/en
Application granted granted Critical
Publication of JP5339771B2 publication Critical patent/JP5339771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reinforcing a bridge pier or the like shortening a construction period and reducing a construction cost by securing a work yard around an aseismatic reinforcing bridge pier of a bridge pier in a river narrow in width and comparatively shallow in depth of water, lifting a reinforcing frame of an underground part above the bridge pier while open-cutting a base part of the bridge pier in a constantly stagnant state of water to achieve construction dispensing with spring water countermeasures, and dropping an underground frame into water after open-cutting and filling underwater unseparative mortar between the bridge pier and the underground frame after backfilling an open cut part. <P>SOLUTION: A reinforcing frame 13a made of steel plates are arranged surrounding the peripheral surface of a columnar structure 8 of the bridge pier or the like erected on a foundation 7 installed underground or underwater. A filler is filled between the columnar structure 8 and the reinforcing frame 13a. The work yard 25 is constructed around the base part of the columnar structure 8. Open-cutting is carried out from the periphery of the base part of the columnar structure 8 to the foundation 7 through the work yard 25. Open-cutting is executed with water 33 left stagnant in an excavated hole 32. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、例えば河川幅が狭く水深が比較的浅い河川内橋脚の耐震補強に好適で、河川の流れを変えて橋脚の周辺に作業ヤ−ドを確保し、地中部の補強枠を地上で容易に組み立て、これを橋脚の上方に吊り上げる一方、橋脚の基部を常時滞水状態で開削し、地質条件を問わず、かつ湧水対策を省略した施工を実現するとともに、掘削穴の法面を安定させ、掘削スペ−スと作業スペ−スのコンパクト化を図れ、開削後は地中枠を水中に落とし込み、開削部を埋め戻し後に橋脚と地中枠との間に水中不分離型モルタルを充填して、該モルタルを水中で緻密かつ確実に充填し得るとともに、仮設物の使用を大幅に減らし、工期の短縮と工費を低減を図れる橋脚等の柱状構造物の補強工法に関する。 The present invention is suitable for, for example, seismic reinforcement of a river pier with a narrow river width and a relatively shallow water depth. The work flow is secured around the pier by changing the flow of the river. Easily assembled and lifted above the pier, while the base of the pier is always excavated in a water-saturated state, realizing construction without any measures against springs regardless of geological conditions, and the slope of the excavation hole Stabilize and make the excavation space and work space compact.After excavation, the underground frame is dropped into the water, and after excavation is backfilled, an underwater non-separable mortar is placed between the pier and the underground frame. The present invention relates to a method for reinforcing a columnar structure such as a bridge pier, which can be filled and the mortar can be densely and reliably filled in water, and the use of temporary objects can be greatly reduced, thereby shortening the construction period and reducing the construction cost.

阪神大震災や新潟県中越地震等の被害状況から、橋脚の耐震補強が指摘され、車両の安全や輸送の安全確保に向けて、橋脚の早急な耐震補強が望まれている。
このうち、河川内の橋脚耐震補強については、水中での施工を伴ない、その補強工法として、例えば仮設桟橋を用いた仮土留めによる仮締切工法や、直線形鋼矢板の打設による耐震補強が採用されているが、仮締切工法は工事が大掛かりになり、また鋼矢板の打設工法は多数の鋼矢板を要して、工費が嵩み工期が長期化する問題がある。
The damage situation such as the Great Hanshin Earthquake and the Niigata Chuetsu Earthquake has pointed out seismic reinforcement of piers, and urgent seismic reinforcement of piers is desired for ensuring vehicle safety and transportation safety.
Of these, seismic reinforcement for bridge piers in rivers involves underwater construction. For example, a temporary closing method using temporary earth retaining using a temporary pier or a seismic reinforcement by placing straight steel sheet piles. However, the temporary closing method requires a large amount of work, and the steel sheet pile placing method requires a large number of steel sheet piles, resulting in a problem that the construction cost is increased and the construction period is prolonged.

特に河川源流部での施工は、径の大きな玉石が多く、計画通りに仮土留めや直線形鋼矢板の打設が困難になり、その場合にはオ−ガ−の併用が不可欠になって、費が増大し、しかもこの種の施工は渇水期の制約があるため、前述の工法では対応できない。 In particular, construction at the river head has many cobblestones with large diameters, and it becomes difficult to place temporary earth retaining or straight steel sheet piles as planned. In that case, combined use of agar becomes indispensable. , it increases the engineering costs, and since the construction of this kind is that there is a restriction of the dry season, can not be handled by the above-described method.

ところで、水深の深い河川内の橋脚耐震補強について、種々の補強工法が提案されている。
例えば、橋脚の水上部分にクレ−ンを備えた作業台船を使用して足場を架設し、該足場を利用して複数の鋼板を溶接し橋脚の周面を囲繞する鋼管を形成し、該鋼管の下端部の外周に鉄筋を建て込み、該鉄筋の外周に型枠を設置して、鋼管と型枠との間にコンクリ−トを打設して根巻きコンクリ−トを備えた補強部材を形成し、前記足場を一旦撤去した後、橋脚の上方に設けたチェ−ンブロックを介して、前記補強部材を吊り降ろし、これを水中に沈めて基礎上に設置する。
By the way, various reinforcement methods have been proposed for seismic reinforcement of bridge piers in deep rivers.
For example, a scaffold is constructed using a work table ship equipped with a crane on the water surface of a pier, and a steel pipe is formed by surrounding the circumferential surface of the pier by welding a plurality of steel plates using the scaffold. Reinforcing member provided with a root winding concrete by installing a reinforcing bar on the outer periphery of the lower end of the steel pipe, installing a mold on the outer periphery of the reinforcing bar, and placing a concrete between the steel pipe and the mold After the scaffold is removed once, the reinforcing member is suspended through a chain block provided above the pier, and is submerged in water and installed on the foundation.

その際、鋼板の内側に予めガイドロ−ラを回転自在に取り付け、該ロ−ラを橋脚の周面に接触させて鋼板と橋脚の表面との間隙を確保させ、この後、補強部材上に足場を架設し、該足場を利用して鋼板を溶接し、これを補強部材に接合するとともに、鋼板と橋脚との間に無収縮モルタルを充填する橋脚の補強工法がある(例えば、特許文献1参照)。   At that time, a guide roller is rotatably attached to the inside of the steel plate, and the roller is brought into contact with the peripheral surface of the pier to secure a gap between the steel plate and the surface of the pier, and then the scaffold is placed on the reinforcing member. There is a bridge pier reinforcement method in which a steel plate is welded using the scaffold, this is joined to a reinforcing member, and a non-shrink mortar is filled between the steel plate and the pier (see, for example, Patent Document 1) ).

しかし、この補強工法は、仮設桟橋の代わりに大形の作業台船を要し、該作業台船によって足場の架設や鋼管の製作を行なうため、作業に手間が掛かり工費が増大するとともに、ガイドロ−ラによる間隔調整では、ガイドロ−ラを橋脚の周面に接触させただけのため、打設したコンクリ−トが橋脚の周面とガイドロ−ラとの間に介入する惧れがあり、均一な間隔や一様な調整が得られなくなる、という問題があった。   However, this reinforcement method requires a large work table ship instead of a temporary pier, and the work table ship constructs a scaffold and manufactures a steel pipe. -In the distance adjustment by the roller, the guide roller is only brought into contact with the peripheral surface of the pier, so there is a possibility that the placed concrete may intervene between the peripheral surface of the pier and the guide roller. There is a problem in that it is impossible to obtain a uniform interval and uniform adjustment.

また、他の補強工法として、水面より上方の橋脚周面に継手を介して、複数の鋼板パネルを環状に連結して環状パネル体を組み立て、この環状パネル体を上下に配置して連結し、その下側の環状パネル体の一部を水中に降下させ、上側の環状パネル体の上部に環状パネル体を順次組み立て、下側の環状パネル体を順次水中に降下して、橋脚の周面全域を環状パネル体で被覆した後、橋脚と環状パネル体との間の土砂を排出し、その間に水中コンクリ−トを充填するようにした補強工法がある(例えば、特許文献2参照)。   In addition, as another reinforcement method, via a joint to the pier peripheral surface above the water surface, a plurality of steel plate panels are connected in an annular shape to assemble an annular panel body, and this annular panel body is arranged up and down and connected, A part of the lower annular panel body is lowered into the water, the annular panel body is sequentially assembled on the upper part of the upper annular panel body, and the lower annular panel body is sequentially lowered into the water so that the entire circumference of the pier Is covered with an annular panel body, and then the earth and sand between the pier and the annular panel body are discharged, and underwater concrete is filled between them (for example, see Patent Document 2).

しかし、この補強工法は、橋脚の周辺まで仮設桟橋を架設し、または作業台船を利用して、橋脚の周囲に足場や材料置き場を設ける必要があって、施工が大掛かりになるとともに、橋脚と環状パネル体との狭隘な間隙に水中コンクリ−トを充填するため、骨材がコンクリ−トの流動性を阻害して緻密に充填できないという問題があった。   However, this reinforcement method requires the construction of a temporary pier around the pier or the use of a work platform to provide a scaffold and a material storage area around the pier. Since the underwater concrete is filled in a narrow gap with the annular panel body, there is a problem in that the aggregate cannot inhibit the fluidity of the concrete and cannot be densely filled.

更に、別の補強工法として、橋脚の周面に圧入装置を固定するとともに、橋脚の周囲に締切鋼板を囲繞して配置し、該締切鋼板をボルトで連結し、かつその接合部にゴムパッキンを介挿して水密に組み立て、該締切鋼板を前記圧入装置によって押し下げ、水底地盤に貫入して水密に締切った後、締切鋼板内部を排水して足場を設け、該足場を利用して補強用鋼板ブロックをホイストで吊り下げ、これを橋脚の周面に順次積み重ね、その接合部を溶接して組み立てる工法がある(例えば、特許文献3参照)。   Furthermore, as another reinforcing method, a press-fitting device is fixed to the peripheral surface of the pier, and a steel plate is placed around the pier, and the steel plate is connected with a bolt, and a rubber packing is connected to the joint. Inserted into a watertight assembly, the cut-off steel plate is pushed down by the press-fitting device, penetrated into the water bottom ground and watertightly cut off, and then the inside of the cut-off steel plate is drained to provide a scaffold, and the steel plate for reinforcement using the scaffold There is a construction method in which a block is suspended by a hoist, this is sequentially stacked on a peripheral surface of a bridge pier, and a joint portion is welded to be assembled (see, for example, Patent Document 3).

しかし、前記の補強工法は、大形大重量の締切鋼板を要し、作業が大掛かりになるとともに、その接合部にゴムパッキンを介挿して水密に組み立てているため、部品点数が増加し組み立てに手間が掛かるとともに、水密に締め切り後、補強用鋼板ブロックを組み立てるため、工期が長期化し工費が嵩む等の問題があった。
このように水深の深い河川内の橋脚耐震補強には、前述の問題があり、これを河川幅が狭く水深が比較的浅い河川内橋脚の耐震補強に適用することは難しい。
However, the above-mentioned reinforcing method requires a large and heavy dead steel plate, which requires a large amount of work and is assembled in a watertight manner by inserting a rubber packing at the joint. In addition to the time and effort required to assemble the steel plate for reinforcement after the watertight shut-off, there were problems such as a longer construction period and increased construction costs.
Thus, the pier seismic reinforcement in rivers with deep water has the above-mentioned problems, and it is difficult to apply this to seismic reinforcement of river piers with narrow river width and relatively shallow water depth.

そこで、前述の問題を解決し、河川幅が狭く水深が比較的浅い河川内橋脚の耐震補強を施工する場合は、仮設桟橋の代わりに河川の瀬替えを行なって作業ヤ−ドを確保し、また仮土留めを使用しないバックホウによる開削工の採用が考えられる。
この場合、前者は河川管理者の協議により実現し得るが、後者は地中部掘削時に大量に発生する湧水の処理と、掘削のり面の崩落防止の解決を要する。
このうち、湧水処理は湧水を常時滞水状態で開削し得れば問題を解決し得るが、常時滞水状態での補強には地中部の鋼板枠の組み立てが問題になる。
Therefore, when solving the above-mentioned problem and constructing the earthquake proof reinforcement of the bridge pier in the river where the river width is narrow and the water depth is relatively shallow, the work yard is secured by replacing the river instead of the temporary pier, In addition, it is conceivable to employ an open-cut work with a backhoe that does not use temporary earth retaining.
In this case, the former can be realized by discussions between river managers, while the latter requires treatment of spring water generated in large quantities during underground excavation and prevention of collapse of the excavation slope.
Of these, the spring treatment can solve the problem if the spring can be excavated in a constantly stagnant state, but the reinforcement of the constantly stagnant state requires the assembly of an underground steel plate frame.

そこで、出願人は、仮設桟橋の代わりに河川の流れを変え、橋脚の基部周辺を造成して作業ヤ−ドを確保し、該作業ヤ−ドで地中部の鋼板枠を地上部で組み立て、これを橋脚に仮吊り後、常時滞水状態で橋脚の基部を開削し、掘削終了後、前記鋼板枠を水中に落とし込む方法を考案した。
しかし、前記方法には、水中での掘削と施工の確認と、水中に落とし込んだ鋼板枠と橋脚との間隔調整の課題があり、また水中に落とし込んだ鋼板枠と橋脚との狭隘部におけるモルタルの充填法と、その品質の確保に課題があった。
Therefore, the applicant changed the flow of the river instead of the temporary pier, created the periphery of the base of the pier to secure the work yard, assembled the steel plate frame in the ground with the work yard, After temporarily suspending it on the pier, the base of the pier was excavated in a constantly flooded state, and after excavation, the method of dropping the steel frame into the water was devised.
However, the method has problems of excavation and construction underwater, and adjustment of the distance between the steel plate frame dropped into the water and the pier, and the mortar in the narrow part between the steel plate frame dropped into the water and the pier. There were problems with the filling method and ensuring its quality.

特開平11-71718号公報JP-A-11-71718 特開2001−107319号公報JP 2001-107319 A 特許第3930345号公報Japanese Patent No. 3930345

本発明はこのような問題を解決し、例えば河川幅が狭く水深が比較的浅い河川内橋脚の耐震補強に好適で、河川の流れを変えて橋脚の周辺に作業ヤ−ドを確保し、地中部の補強枠を地上で容易に組み立て、これを橋脚の上方に吊り上げる一方、橋脚の基部を常時滞水状態で開削し、地質条件を問わず、かつ湧水対策を省略した施工を実現するとともに、掘削穴の法面を安定させ、掘削スペ−スと作業スペ−スのコンパクト化を図れ、開削後は地中枠を水中に落とし込み、開削部を埋め戻し後に橋脚と地中枠との間に水中不分離型モルタルを充填して、該モルタルを水中で緻密かつ確実に充填し得るとともに、仮設物の使用を大幅に減らし、工期の短縮と工費を低減を図れる橋脚等の柱状構造物の補強工法を提供することを目的とする。 The present invention solves such a problem, and is suitable for, for example, seismic reinforcement of a river pier with a narrow river width and a relatively shallow water depth, and by changing the flow of the river to secure a work yard around the pier, While the middle reinforcement frame can be easily assembled on the ground and lifted above the pier, the base of the pier is always excavated in a water-saturated state, realizing construction that eliminates spring measures regardless of geological conditions The slope of the excavation hole can be stabilized, the excavation space and the work space can be made compact, and after excavation, the underground frame can be dropped into the water. to be filled with water nondisjunction type mortar, with may dense and reliably fill the mortar in water, significantly reduces the use of temporary product, the columnar structure of the pier such that attained a reduced construction period shortened and construction cost The purpose is to provide a reinforcement method.

請求項1の発明は、地中若しくは水底地盤中の基礎上に立設した橋脚等の柱状構造物の周面に地中部若しくは水中部の補強枠を囲繞して組立て、組立てた補強枠を柱状構造物の上方で吊下げ、前記補強枠を設置する際、前記補強枠を下降して地中若しくは水中に設置し、設置した補強枠と柱状構造物との間に充填剤を充填する橋脚等の柱状構造物の補強工法において、湧水地または水底地盤中の基礎上に立設した柱状構造物の基部周辺を盛土し、該基部周辺を掘削可能な作業ヤ−ドを造成し、該作業ヤ−ド上の柱状構造物を囲繞して地中部の補強枠を地上で組み立て、組立てた補強枠を柱状構造物の上方に移動して吊下げ後、該柱状構造物の基部周辺から前記基礎に亘る地盤を掘削し、該掘削穴に滞留水を滞留させて施工するとともに、掘削後の掘削穴に前記補強枠を下降して水中に設置し、該補強枠の設置後に掘削穴を埋め戻し、補強枠と柱状構造物との間に充填剤を充填し、湧水地または水底地盤中の基礎上に立設した柱状構造物の補強に際し、従来の仮土留め工や直線形鋼矢板の打設を省略し、仮設工の手間とその資材を大幅に低減し工期の短縮化と工費の低減を図るとともに、先ず柱状構造物の基部周辺を盛土して作業ヤ−ドを造成し、この作業ヤ−ド上に地中部の補強枠を地上で容易に組み立て後、地中部の補強枠を上方に移動して吊り下げ、柱状構造物の基部周辺から前記基礎に亘る地盤を掘削し、その際掘削穴に滞留水を滞留させて施工し、滞留水の圧力を利用し掘削穴の法面を安定させて安全な掘削を実現するとともに、掘削穴の水中に前記地中部の補強枠を吊り降ろして設置した後、掘削穴を埋め戻して補強枠の安定化を図り、更に補強枠と柱状構造物との間に充填剤を充填して補強枠の安定性を強化し、一連の施工を安全かつ円滑に行ない河川内橋脚の渇水期での施工の制約に応じられるようにしている。 The invention according to claim 1 assembles the reinforcing frame of the underground part or the underwater part around the peripheral surface of a columnar structure such as a bridge pier standing on the foundation in the ground or the bottom of the ground , and the assembled reinforcing frame is columnar. When installing the reinforcing frame by suspending it above the structure, the pier is lowered and installed in the ground or underwater, and a pier is filled with a filler between the installed reinforcing frame and the columnar structure. In the method of reinforcing the columnar structure of the above, the work is constructed by embedding the periphery of the base of the columnar structure erected on the foundation in the spring ground or underwater ground, and creating a work yard capable of excavating the periphery of the base. Assemble the columnar structure on the yard and assemble the reinforcement frame in the ground part on the ground, move the assembled reinforcement frame above the columnar structure and suspend it, and then the base from the periphery of the base of the columnar structure drilled ground over and construction by retained the accumulated water in the wellbore with the drilling The reinforcement frame is lowered into the excavation hole and installed in the water, and after the installation of the reinforcement frame, the excavation hole is refilled, and a filler is filled between the reinforcement frame and the columnar structure, When reinforcing columnar structures erected on the foundation inside, conventional temporary earth retaining work and straight steel sheet pile placement are omitted, greatly reducing the labor and materials for temporary work and shortening the work period and FIG Rutotomoni reduction of construction costs, first work with fill the base periphery of the columnar structure ya - to construct a de, this task ya - easily after assembly the reinforcing frame of the ground portion on de ground, underground portion The reinforced frame is moved upward and suspended to excavate the ground spanning from the base of the columnar structure to the foundation, while retaining the accumulated water in the excavation hole and excavating using the accumulated water pressure. A stable excavation is realized by stabilizing the slope of the hole, and the underground reinforcement frame is suspended in the water of the excavation hole. After lowering and installing, the excavation hole is backfilled to stabilize the reinforcement frame, and the filler is filled between the reinforcement frame and the columnar structure to enhance the stability of the reinforcement frame. It is done safely and smoothly so that it can respond to the construction restrictions during the drought period of the river pier.

請求項2の発明は、滞留水は、河川若しくは海または湖沼からの湧水で、掘削穴の滞留水を容易かつ安価に得られるようにしている。
請求項3の発明は、掘削穴は逆円錐台形状で、作業ヤ−ドのコンパクト化を図るようにしている。
請求項4の発明は、掘削を、作業ヤ−ド上に設置した重機と、潜水夫とで施工し、掘削を重機と人力に分けて合理的に行なうとともに、重機では破損の惧れがある部位を人力で安全に掘削し、掘削の確実性を図るようにしている。
According to the second aspect of the present invention, the stagnant water is spring water from a river, sea or lake, and the stagnant water in the excavation hole can be obtained easily and inexpensively .
According to a third aspect of the present invention, the excavation hole has an inverted frustoconical shape, so that the working yard is made compact .
According to the invention of claim 4, excavation is carried out by a heavy machine installed on a work yard and a diver, and the excavation is rationally divided into heavy machine and human power, and there is a possibility of damage in the heavy machine. The site is excavated safely by human power to ensure excavation reliability .

請求項5の発明は、掘削穴の法面は、水平距離と垂直距離の比率が1対2乃至1対1の急勾配であり、掘削穴の小形化と掘削土砂の減量化を図り、掘削作業の迅速化と掘削作業スペ−スのコンパクト化を図るとともに、前記作業ヤ−ドの小スペ−ス化を図るようにしている。
請求項6発明は、地中部の各補強枠の上下位置に通孔を形成し、一方の通孔の内側口縁部にナットを固定し、他方の通孔に対向する柱状構造物の対応位置にネジ孔を有するコンクリ−トアンカ−を埋設し、該他方の通孔に第1支持ボルトを挿入し、該ボルトの螺軸をコンクリ−トアンカ−のネジ孔にねじ込み、各補強枠を柱状構造物の周面に離間して固定するとともに、前記一方の通孔に第2支持ボルトを挿入し、その螺軸を前記ナットにねじ込んで柱状構造物の周面に当接し、各補強枠と柱状構造物の間隔を調整し、隣接する補強枠の接合部を溶接して組み立て、充填材の充填スペ−スを均一に形成するとともに、溶接による補強枠の変形を防止し得るようにしている。
請求項7の発明は、溶接後、第1および第2支持ボルトを補強枠から取り外し、該補強枠を柱状構造物の上方に移動して吊りげ、吊りげ時や水中への落とし込み時における柱状構造物との擦過や損傷を未然に防止するとともに、吊り下げ後の掘削穴の掘削作業を容易に施工し得るようにしている。
In the invention of claim 5, the slope of the excavation hole has a steep slope with a ratio of horizontal distance to vertical distance of 1 to 2 to 1: 1, and the excavation hole is reduced in size and excavated sediment is reduced. In addition to speeding up the work and making the excavation work space compact, the work yards are made smaller .
Claim 6 The invention provides a corresponding position of the columnar structure in which through holes are formed at the upper and lower positions of each reinforcing frame in the underground, a nut is fixed to the inner edge of one through hole, and the other through hole is opposed. A concrete anchor having a screw hole is embedded, a first support bolt is inserted into the other through hole, a screw shaft of the bolt is screwed into a screw hole of the concrete anchor, and each reinforcing frame is attached to a columnar structure. The second support bolt is inserted into the one through hole, and the screw shaft is screwed into the nut so as to contact the peripheral surface of the columnar structure. The space between the objects is adjusted, the joint portions of the adjacent reinforcing frames are welded and assembled to form a filling space uniformly, and deformation of the reinforcing frame due to welding can be prevented .
The invention of claim 7, after welding, the first and second support bolt removed from the reinforcing frame, darken of reinforcing frame bottom up hanging moves upward of the columnar structures, the bottom up hanging time and water In addition to preventing scratching and damage to the columnar structure at the time, the excavation work of the excavation hole after hanging can be easily performed .

請求項8の発明は、地中部の補強枠を掘削穴の滞留水に落とし込み後、前記一方の通孔に第2支持ボルトを挿入し、その螺軸を前記ナットにねじ込んで柱状構造物の周面に当接し、各補強枠と柱状構造物の間隔を調整し、水中不分離型モルタルの充填スペ−スを均一に形成するようにしている。
請求項9の発明は、補強枠と柱状構造物の間隔調整を、滞水した掘削穴内で潜水夫が施工し、水中での確実な作業に対応させている。
請求項10の発明は、補強枠と柱状構造物の間隔調整後、前記掘削穴を埋め戻し、該埋め戻し後、前記補強枠と柱状構造物との間に清水を給水して清掃するとともに、その還流水の汚濁状態の確認と、給水管による前記間隔調整を監理し、充填材の充填に備えて補強枠と柱状構造物との間を清掃し、その際還流水の汚濁状態を確認して、掘削土砂の有無と充填の時期を判断し、また給水管の挿入状況によって前記間隔調整を監理し、充填スペ−スの可否をチェックするようにしている。
According to the eighth aspect of the present invention, after dropping the underground reinforcing frame into the accumulated water in the excavation hole, the second support bolt is inserted into the one through hole, and the screw shaft is screwed into the nut to surround the columnar structure. The space between each reinforcing frame and the columnar structure is adjusted so as to be in contact with the surface, so that a filling space of the underwater non-separable mortar is uniformly formed.
According to the ninth aspect of the present invention, the adjustment of the distance between the reinforcing frame and the columnar structure is performed by a diver in a stagnant excavation hole to correspond to reliable work in water.
The invention of claim 10, after adjusting the gap reinforcing frame and the columnar structures, backfill the wellbore, after returning Me該埋, while the water supply to clean fresh water between the reinforcing frame and the columnar structures, Supervising the state of contamination of the reflux water and adjusting the interval with the water supply pipe, cleaning the space between the reinforcement frame and the columnar structure in preparation for filling with the filler, and confirming the state of contamination of the reflux water. Thus, the presence / absence of excavated earth and sand and the timing of filling are judged, and the interval adjustment is supervised according to the insertion state of the water supply pipe to check whether or not the filling space is available.

請求項11の発明は、埋め戻し後、前記補強枠と柱状構造物との間の滞留水中に、充填管を底部直上に位置付けて水中不分離型モルタルを充填し、補強枠の外側に埋め戻した土砂の土圧を作用させて、モルタル充填に伴う補強枠の孕み防止と、モルタル漏れを防止するとともに、水中不分離型モルタルを充填することによって水中でのモルタルの分離を防止し、緻密な充填と均一なモルタル強度を得られ、しかも充填管を底部直上に位置付けることによって、上方からの落下充填に比べて水中不分離性を向上し、圧縮強度のバラツキを小さく抑えられるようにしている。
請求項12の発明は、水中不分離型モルタルは、水中不分離剤を1.0〜2.0kg/m3添加し、良好な水中不分離性と大きな圧縮強度を得られるようにしている。
請求項13の発明は、モルタル充填後、固化したモルタルと埋め戻し部材上において、地上部の補強枠を柱状構造物の周面を囲繞して、地上に突出した地中部の補強枠上に組み立て、地上部の補強枠を容易かつ合理的に組み立てられるようにしている。
The invention of claim 11, after backfill, the retention of water between the reinforcing frame and the columnar structures, filled with water nondisjunction type mortar positioned immediately above the bottom of the fill tube, backfill on the outside of the reinforcing frame The earth pressure of the earth and sand is applied to prevent stagnation of the reinforcing frame due to mortar filling and mortar leakage, and by filling with non-separable mortar, the separation of mortar in water is prevented. Filling and uniform mortar strength can be obtained, and the filling tube is positioned directly above the bottom, thereby improving the inseparability in water and reducing the variation in compressive strength compared to drop filling from above.
In the invention of claim 12, the underwater non-separable mortar is added with 1.0 to 2.0 kg / m 3 of the underwater non-separating agent so as to obtain good underwater non-separability and a large compressive strength.
In the invention of claim 13, after filling the mortar, on the solidified mortar and the backfilling member, the ground frame reinforcement frame is surrounded by the columnar structure and is assembled on the ground reinforcement frame protruding above the ground. The ground frame reinforcement frame can be assembled easily and rationally.

請求項14の発明は、地上部の各補強枠の上下位置に通孔を形成し、一方の通孔の内側口縁部にナットを固定し、他方の通孔に対向する柱状構造物の対応位置にネジ孔を有するコンクリ−トアンカ−を埋設し、該他方の通孔に第1支持ボルトを挿入し、その螺軸をコンクリ−トアンカ−のネジ孔にねじ込んで、各補強枠を柱状構造物の周面に離間して固定するとともに、前記一方の通孔に第2支持ボルトを挿入し、その螺軸を前記ナットにねじ込んで柱状構造物の周面に当接し、各補強枠と柱状構造物の間隔を調整し、隣接する補強枠の接合部と隣接する地上部の補強枠の接合部を溶接して組み立て、充填材の充填スペ−スを均一に形成するとともに、溶接による補強枠の変形を防止し得るようにしている。
請求項15の発明は、地上部の各補強枠の第1および第2支持ボルトの取り付け状態を維持し、前記補強枠と柱状構造物との間に、充填管を底部直上に位置付けて充填材を充填し、第1支持ボルトの緊締力によって、充填材の充填に伴う補強枠の孕み防止と、充填材漏れを防止するようにしている。
In the invention of claim 14 , a through hole is formed at the upper and lower positions of each reinforcing frame in the ground portion, a nut is fixed to the inner edge of one through hole, and the columnar structure facing the other through hole is supported. A concrete anchor having a screw hole at the position is embedded, a first support bolt is inserted into the other through hole, and the screw shaft is screwed into the screw hole of the concrete anchor, so that each reinforcing frame is attached to the columnar structure. The second support bolt is inserted into the one through hole, and the screw shaft is screwed into the nut so as to contact the peripheral surface of the columnar structure. Adjust the space between objects and weld and assemble the joint of the adjacent reinforcement frame and the joint of the adjacent ground frame to form a uniform filling space for the filler. Deformation can be prevented .
According to the fifteenth aspect of the present invention , the first and second support bolts are attached to the reinforcing frames of the ground portion, and the filling pipe is positioned between the reinforcing frame and the columnar structure so as to be directly above the bottom. The tightening force of the first support bolt prevents the squeezing of the reinforcing frame accompanying the filling of the filler and prevents the filler from leaking .

請求項16の発明は、充填材の充填後、前記作業ヤ−ドを撤去し、施工前の状況を復旧し、河川の環境汚染と景観の変化を防止するようにしている。 In the invention of claim 16, after the filling of the filler, the work yard is removed, the state before construction is restored, and environmental pollution of the river and change of the landscape are prevented .

請求項1の発明は、湧水地または水底地盤中の基礎上に立設した柱状構造物の基部周辺を盛土し、該基部周辺を掘削可能な作業ヤ−ドを造成し、該作業ヤ−ド上の柱状構造物を囲繞して地中部の補強枠を地上で組み立て、組立てた補強枠を柱状構造物の上方に移動して吊下げ後、該柱状構造物の基部周辺から前記基礎に亘る地盤を掘削し、該掘削穴に滞留水を滞留させて施工するとともに、掘削後の掘削穴に前記補強枠を下降して水中に設置し、該補強枠の設置後に掘削穴を埋め戻し、補強枠と柱状構造物との間に充填剤を充填するから、湧水地または水底地盤中の基礎上に立設した柱状構造物の補強に際し、従来の仮土留め工や直線形鋼矢板の打設を省略し、仮設工の手間とその資材を大幅に低減し、工期の短縮化と工費の低減を図るとともに、先ず柱状構造物の基部周辺を盛土して前記基部周辺を掘削可能な作業ヤ−ドを造成し、この作業ヤ−ド上で地中部の補強枠を地上で容易に組み立て後、地中部の補強枠を上方に移動して吊り下げ、柱状構造物の基部周辺から前記基礎に亘る地盤を掘削し、その際掘削穴に滞留水を滞留させて施工し、滞留水の圧力を利用し掘削穴の法面を安定させて安全な掘削を実現するとともに、掘削穴の水中に前記地中部の補強枠を吊り降ろして設置した後、掘削穴を埋め戻して補強枠の安定化を図り、更に補強枠と柱状構造物との間に充填剤を充填して補強枠の安定性を強化し、一連の施工を安全かつ円滑に行ない河川内橋脚の渇水期での施工の制約に応じられる効果がある。 The invention according to claim 1 is a method of embedding a periphery of a base of a columnar structure erected on a foundation in a spring ground or a submerged ground, creating a work yard capable of excavating the periphery of the base, Assemble the columnar structure on the door and assemble the reinforcing frame in the ground on the ground, move the assembled reinforcement frame above the columnar structure and hang it, and then extend from the periphery of the base of the columnar structure to the foundation excavating ground, as well as construction and allowed to stay the accumulated water in the wellbore, placed in water lowered the reinforcing frame to the wellbore after drilling, backfill wellbore after installation of the reinforcing frame, the reinforcing Since the filler is filled between the frame and the columnar structure, when reinforcing the columnar structure erected on the foundation in the spring ground or underwater ground, conventional temporary earth retaining works or straight steel sheet piles are hit. skip settings, greatly reduces the materials and labor for temporary Engineering, FIG Rutoto reduction shorten the construction period and construction cost First, a work yard capable of excavating the periphery of the base portion of the columnar structure and excavating the periphery of the base portion is constructed, and the reinforcing frame of the underground portion is easily assembled on the ground, and then the underground portion The reinforced frame is moved upward and suspended to excavate the ground spanning from the base of the columnar structure to the foundation, while retaining the accumulated water in the excavation hole and excavating using the accumulated water pressure. Stabilize the slope of the hole and realize safe excavation, hang the underground reinforcement frame in the water of the drilling hole and install it, then backfill the excavation hole to stabilize the reinforcement frame, Filling the space between the reinforcement frame and the columnar structure enhances the stability of the reinforcement frame, and a series of construction work is performed safely and smoothly. is there.

請求項2の発明は、滞留水は、河川若しくは海または湖沼からの湧水であるから、掘削穴の滞留水を容易かつ安価に得られる効果がある。
請求項3の発明は、掘削穴は逆円錐台形状であるから、作業ヤ−ドのコンパクト化を図ることができる。
請求項4の発明は、掘削を、作業ヤ−ド上に設置した重機と、潜水夫とで施工するから、掘削を重機と人力に分けて合理的に行なえるとともに、重機では破損の惧れがある部位を人力で安全に掘削し、掘削の確実性を図ることができる。
According to the second aspect of the present invention, since the accumulated water is spring water from a river, the sea or a lake, there is an effect that the accumulated water in the excavation hole can be obtained easily and inexpensively.
A third aspect of the present invention, wellbore is because an inverted truncated cone shape, the working Ya - compactness of the de may FIG Rukoto.
According to the invention of claim 4, since excavation is carried out by heavy machinery installed on the work yard and divers, excavation can be performed rationally by dividing it into heavy machinery and human power, and there is a risk of damage in heavy machinery. A certain part can be safely excavated by human power, and the excavation can be ensured .

請求項5の発明は、掘削穴の法面は、水平距離と垂直距離の比率が1対2乃至1対1の急勾配であるから、掘削穴の小形化と掘削土砂の減量化を図り、掘削作業の迅速化と掘削作業スペ−スのコンパクト化を図るとともに、前記作業ヤ−ドの小スペ−ス化を図ることができる。
請求項6発明は、地中部の各補強枠の上下位置に通孔を形成し、一方の通孔の内側口縁部にナットを固定し、他方の通孔に対向する柱状構造物の対応位置にネジ孔を有するコンクリ−トアンカ−を埋設し、該他方の通孔に第1支持ボルトを挿入し、該ボルトの螺軸をコンクリ−トアンカ−のネジ孔にねじ込み、各補強枠を柱状構造物の周面に離間して固定するとともに、前記一方の通孔に第2支持ボルトを挿入し、その螺軸を前記ナットにねじ込んで柱状構造物の周面に当接し、各補強枠と柱状構造物の間隔を調整し、隣接する補強枠の接合部を溶接して組み立てるから、充填材の充填スペ−スを均一に形成するとともに、溶接による補強枠の変形を防止することができる。
請求項7の発明は、溶接後、第1および第2支持ボルトを補強枠から取り外し、該補強枠を柱状構造物の上方に移動して吊りげるから、吊りげ時や水中への落とし込み時における柱状構造物との擦過や損傷を未然に防止するとともに、吊り下げ後の掘削穴の掘削作業を容易に施工することができる。
In the invention of claim 5, since the slope of the excavation hole has a steep slope in which the ratio of the horizontal distance to the vertical distance is 1 to 2 to 1: 1, the downhole of the excavation hole and the reduction of the excavation sediment are reduced. The excavation work can be speeded up and the excavation work space can be made compact, and the work yard can be made smaller .
Claim 6 invention forms a through hole in the vertical position of the reinforcing frame of the earth middle, a nut is fixed to the inner brim of the one through hole, the corresponding positions of the columnar structures that face the other through hole A concrete anchor having a screw hole is embedded, a first support bolt is inserted into the other through hole, a screw shaft of the bolt is screwed into a screw hole of the concrete anchor, and each reinforcing frame is attached to a columnar structure. The second support bolt is inserted into the one through hole, and the screw shaft is screwed into the nut so as to contact the peripheral surface of the columnar structure. Since the interval between the objects is adjusted and the joint portions of the adjacent reinforcing frames are welded and assembled, the filling space of the filler can be formed uniformly and deformation of the reinforcing frame due to welding can be prevented .
The invention of claim 7, after welding, the first and second support bolt removed from the reinforcing frame, the reinforcing frame from above suspension under gel was moved to the columnar structure, the time of hanging down down and water In addition to preventing scratching and damage to the columnar structure when dropping, it is possible to easily perform excavation work of the excavation hole after hanging .

請求項8の発明は、地中部の補強枠を掘削穴の滞留水に落とし込み後、前記一方の通孔に第2支持ボルトを挿入し、その螺軸を前記ナットにねじ込んで柱状構造物の周面に当接し、各補強枠と柱状構造物の間隔を調整するから、水中不分離型モルタルの充填スペ−スを均一に形成することができる。
請求項9の発明は、補強枠と柱状構造物の間隔調整を、滞水した掘削穴内で潜水夫が施工するから、水中での確実な作業に対応させることができる。
請求項10の発明は、補強枠と柱状構造物の間隔調整後、前記掘削穴を埋め戻し、該埋め戻し後、前記補強枠と柱状構造物との間に清水を給水して清掃するとともに、その還流水の汚濁状態の確認と、給水管による前記間隔調整を監理し、充填材の充填に備えて補強枠と柱状構造物との間を清掃し、その際還流水の汚濁状態を確認して、掘削土砂の有無と充填の時期を判断し、また給水管の挿入状況によって前記間隔調整を監理し、充填スペ−スの可否をチェックすることができる。
According to the eighth aspect of the present invention, after dropping the underground reinforcing frame into the accumulated water in the excavation hole, the second support bolt is inserted into the one through hole, and the screw shaft is screwed into the nut to surround the columnar structure. The space between the reinforcing frame and the columnar structure is adjusted in contact with the surface, so that the filling space of the underwater non-separable mortar can be formed uniformly.
According to the ninth aspect of the present invention, since the submarine performs the adjustment of the interval between the reinforcing frame and the columnar structure in the stagnant excavation hole, it can correspond to a reliable work in water.
The invention of claim 10, after adjusting the gap reinforcing frame and the columnar structures, backfill the wellbore, after returning Me該埋, while the water supply to clean fresh water between the reinforcing frame and the columnar structures, Supervising the state of contamination of the reflux water and adjusting the interval with the water supply pipe, cleaning the space between the reinforcement frame and the columnar structure in preparation for filling with the filler, and confirming the state of contamination of the reflux water. Thus, the presence / absence of excavated earth and sand and the timing of filling can be determined, and the interval adjustment can be managed according to the insertion state of the water supply pipe to check whether or not the filling space is available.

請求項11の発明は、埋め戻し後、前記補強枠と柱状構造物との間の滞留水中に、充填管を底部直上に位置付けて水中不分離型モルタルを充填するから、補強枠の外側に埋め戻した土砂の土圧を作用させて、モルタル充填に伴う補強枠の孕み防止と、モルタル漏れを防止するとともに、水中不分離型モルタルを充填することによって水中でのモルタルの分離を防止し、緻密な充填と均一なモルタル強度を得られ、しかも充填管を底部直上に位置付けることによって、上方からの落下充填に比べて水中不分離性を向上し、圧縮強度のバラツキを小さく抑えることができる。
請求項12の発明は、水中不分離型モルタルは、水中不分離剤を1.0〜2.0kg/m3添加するから、良好な水中不分離性と大きな圧縮強度を得ることができる。
請求項13の発明は、モルタル充填後、固化したモルタルと埋め戻し部材上において、地上部の補強枠を柱状構造物の周面を囲繞して、地上に突出した地中部の補強枠上に組み立てるから、地上部の補強枠を容易かつ合理的に組み立てることができる。
The invention of claim 11, after backfill, the retention of water between the reinforcing frame and the columnar structure, since positioned immediately above the bottom of the filling tube for filling the water nondisjunction type mortar fills the outside of the reinforcing frame The earth pressure of the returned earth and sand is applied to prevent stagnation of the reinforcing frame due to mortar filling and mortar leakage, and filling with non-separable mortar prevents the separation of mortar in the water. Can be obtained, and uniform mortar strength can be obtained. Further, by positioning the filling tube directly above the bottom, non-separability in water can be improved and variation in compressive strength can be suppressed small compared to drop filling from above.
According to the twelfth aspect of the present invention, since the underwater non-separable mortar adds 1.0 to 2.0 kg / m 3 of the underwater non-separation agent, it is possible to obtain good underwater non-separability and high compressive strength.
In the invention of claim 13, after filling the mortar, on the solidified mortar and the backfilling member, the reinforcing frame of the ground part is assembled on the reinforcing frame of the underground part projecting to the ground by surrounding the peripheral surface of the columnar structure. Thus, the reinforcing frame of the ground part can be assembled easily and rationally.

請求項14の発明は、地上部の各補強枠の上下位置に通孔を形成し、一方の通孔の内側口縁部にナットを固定し、他方の通孔に対向する柱状構造物の対応位置にネジ孔を有するコンクリ−トアンカ−を埋設し、該他方の通孔に第1支持ボルトを挿入し、その螺軸をコンクリ−トアンカ−のネジ孔にねじ込んで、各補強枠を柱状構造物の周面に離間して固定するとともに、前記一方の通孔に第2支持ボルトを挿入し、その螺軸を前記ナットにねじ込んで柱状構造物の周面に当接するから、各補強枠と柱状構造物の間隔を調整し、隣接する補強枠の接合部と隣接する地上部の補強枠の接合部を溶接して組み立て、充填材の充填スペ−スを均一に形成するとともに、溶接による補強枠の変形を防止することができる。
請求項15の発明は、地上部の各補強枠の第1および第2支持ボルトの取り付け状態を維持し、前記補強枠と柱状構造物との間に、充填管を底部直上に位置付けて充填材を充填するから、第1支持ボルトの緊締力によって、充填材の充填に伴う補強枠の孕み防止と、充填材漏れを防止することができる。
In the invention of claim 14 , a through hole is formed at the upper and lower positions of each reinforcing frame in the ground portion, a nut is fixed to the inner edge of one through hole, and the columnar structure facing the other through hole is supported. A concrete anchor having a screw hole at the position is embedded, a first support bolt is inserted into the other through hole, and the screw shaft is screwed into the screw hole of the concrete anchor, so that each reinforcing frame is attached to the columnar structure. Since the second support bolt is inserted into the one through hole and the screw shaft is screwed into the nut to come into contact with the peripheral surface of the columnar structure, each reinforcing frame and the columnar shape are fixed. Adjust the space between the structures and weld and assemble the joints of the adjacent reinforcement frames and the joints of the adjacent ground frame to form a uniform filling space for the filler, and welded reinforcement frames Can be prevented from being deformed .
According to the fifteenth aspect of the present invention , the first and second support bolts are attached to the reinforcing frames of the ground portion, and the filling pipe is positioned between the reinforcing frame and the columnar structure so as to be directly above the bottom. Therefore , the tightening force of the first support bolt can prevent stagnation of the reinforcing frame accompanying filling of the filler and leakage of the filler .

請求項16の発明は、充填材の充填後、前記作業ヤ−ドを撤去し、施工前の状況を復旧するから、河川の環境汚染と景観の変化を防止することができる。 Since the invention of claim 16 removes the work yard after filling with the filler and restores the condition before construction, it can prevent environmental pollution of the river and changes in the landscape .

以下、本発明を河川幅が比較的狭く水深が比較的浅い河川内の、鉄道用橋脚の耐震補強に適用した図示の実施形態について説明すると、図1乃至図17において1は河川幅が狭く水深が比較的浅い河川で、その左右の両岸に堤防2,3が突設され、その中州4の両側に河川流5,6が分かれて形成されている。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, illustrated embodiments in which the present invention is applied to seismic reinforcement of a railway pier in a river having a relatively narrow river width and a relatively shallow water depth will be described. In FIGS. Is a relatively shallow river with embankments 2 and 3 projecting on both the left and right banks, and river streams 5 and 6 are formed separately on both sides of Nakashu 4.

前記中州4の地中に基礎であるフ−チング7が埋設され、該フ−チング7に鉄筋コンクリ−ト製の柱状構造物である橋脚8が立設され、その上端部に橋桁9を介して軌道10を敷設可能な床版11が架設されている。   A footing 7 as a foundation is buried in the ground of the Nakasu 4, and a bridge pier 8, which is a columnar structure made of reinforced concrete, is erected on the footing 7. A floor slab 11 on which the track 10 can be laid is installed.

前記橋脚8の断面は、実施形態の場合、略小判形に形成され、その周面に充填材である水中不分離型のモルタル層12を介して、縦長矩形の鋼板からなる補強枠13が取り付けられている。
前記補強枠13は、その施工位置に応じて前記鋼板を湾曲成形または非成形の平板状に形成され、それらの周面を隣接の補強枠13に突き合わせ、その接合部の裏面に継手(図示略)を当てがって溶接している。
In the embodiment, the cross section of the pier 8 is formed in a substantially oval shape, and a reinforcing frame 13 made of a vertically long rectangular steel plate is attached to the peripheral surface of the pier 8 via an underwater non-separable mortar layer 12 as a filler. It has been.
The reinforcing frame 13 is formed into a flat or non-formed flat plate shape of the steel plate according to the construction position, the peripheral surface thereof is abutted against the adjacent reinforcing frame 13, and a joint (not shown) is formed on the back surface of the joint portion. ).

前記補強枠13は、その施工位置によって地中枠13aと地上枠13bとに分かれ、このうち地中枠13aは後述する作業ヤ−ド撤去後の地山14の内部に埋設され、その上側の地中枠13aの上端部が地面の上方に突出して配置され、該地中枠13a上に下側の地上枠13bの下端部が重合して配置され、その接合部を溶接している。   The reinforcing frame 13 is divided into an underground frame 13a and a ground frame 13b depending on the construction position. Among these, the underground frame 13a is embedded in the natural ground 14 after the work yard removal described later, An upper end portion of the underground frame 13a is disposed so as to protrude above the ground, and a lower end portion of the lower ground frame 13b is disposed on the underground frame 13a so as to weld the joint portion.

図中、15は橋脚8の地上部周面に所定間隔で複数打ち込んだコンクリ−トアンカ−で、その内部にネジ孔16が形成され、該ネジ孔16に補強枠13a,13bの外側から第1支持ボルト17またはビスがねじ込まれている。   In the figure, reference numeral 15 denotes a concrete anchor which is driven into the peripheral surface of the pier 8 at a predetermined interval. A screw hole 16 is formed in the anchor anchor, and the screw hole 16 is a first from the outside of the reinforcing frames 13a and 13b. Support bolts 17 or screws are screwed.

前記補強枠13a,13bの中央部の上下位置に二つの通孔18,19が形成され、一方の通孔18に前記第1支持ボルト17が挿入可能にされ、その螺軸端部を前記コンクリ−トアンカ−15にねじ込み可能にしていて、補強枠13a,13bの組み立て時における溶接の変形を防止可能にされている。
前記第1支持ボルト17は、溶接後に地中部の補強枠13aから取り外され、その補強枠13a側の通孔18に後述のシ−ル材を充填して閉塞され、また地上部の補強枠13bは螺着状態を維持し、溶接後に橋脚8との間にモルタルを充填した際の変形、いわゆる孕みを防止可能にしている。
Two through-holes 18 and 19 are formed at the upper and lower positions of the central portions of the reinforcing frames 13a and 13b. The first support bolt 17 can be inserted into one through-hole 18, and the screw shaft end portion is connected to the constriction end. -It can be screwed into the torque anchor 15 to prevent welding deformation during assembly of the reinforcing frames 13a, 13b.
The first support bolt 17 is removed from the underground reinforcing frame 13a after welding, and the through hole 18 on the reinforcing frame 13a side is filled with a seal material, which will be described later, and closed, and the ground reinforcing frame 13b. Maintains a screwed state and prevents deformation, that is, stagnation, when mortar is filled between the pier 8 after welding.

また、他方の通孔19の内側開口縁にナット20が溶接され、該ナット20に間隔調整用の第2支持ボルト21,23がねじ込まれている。
このうち、一方の第2支持ボルト21は六角ボルトからなり、補強枠13aの溶接前の組み立て時、螺軸をナット20にねじ込み、溶接時における変形を防止するとともに、ねじ込み後は取り外されて後述のように吊り上げられ、その後に水中に落とし込まれ、この落とし込み後、潜水夫によって水中でナット20にねじ込むようにしている。
A nut 20 is welded to the inner opening edge of the other through hole 19, and second support bolts 21 and 23 for adjusting the distance are screwed into the nut 20.
Among these, one of the second support bolts 21 is a hexagonal bolt, and when the reinforcing frame 13a is assembled before welding, the screw shaft is screwed into the nut 20 to prevent deformation during welding, and after the screwing, the second support bolt 21 is removed and later described. Then, it is dropped into the water, and after dropping, it is screwed into the nut 20 by the diver.

また、他方の第2支持ボルト23は棒状に形成され、その端面に六角レンチ(図示略)を係合可能な凹部23aが形成され、補強枠13bの溶接前の組み立て時にナット20にねじ込まれ、その螺軸端部を橋脚8の表面に当接して、補強枠13bと橋脚8との間隔dを一定に調整可能にし、このねじ込み状態を維持して、補強枠13bと橋脚8との間にモルタル等の充填材を充填するようにしている。
図中、24は補強枠13a,13bの通孔18,19と、第2支持ボルト23の凹部23a、並びに補強枠13b側の第1支持ボルト17の凹部22に充填したシ−ル材である
Further, the other second support bolt 23 is formed in a rod shape, and a recess 23a capable of engaging with a hexagon wrench (not shown) is formed on the end surface thereof, and is screwed into the nut 20 at the time of assembly before welding the reinforcing frame 13b. The end of the screw shaft is brought into contact with the surface of the pier 8 so that the distance d between the reinforcing frame 13b and the pier 8 can be adjusted to be constant, and this screwed state is maintained between the reinforcing frame 13b and the pier 8. Filling material such as mortar is used.
In the figure, 24 is a seal material filled in the through holes 18 and 19 of the reinforcement frames 13a and 13b, the recess 23a of the second support bolt 23, and the recess 22 of the first support bolt 17 on the reinforcement frame 13b side.

前記橋脚8の補強枠13による耐震補強の工事は、図6に示す手順によって行なわれる
すなわち、前記耐震補強の工事は、一方の河川流6の流れを変えて作業ヤ−ド25を造成する瀬替工・作業ヤ−ド工と、地中に配置する補強枠13bを地上で組み立てて橋脚8に吊り下げる地中部補強枠組立工と、この後橋脚8の基部周辺を湧水の滞水中で開削する水中掘削工と、前記補強枠13bを前記掘削した掘削穴に滞留する水中に落とし込む地中部補強枠落とし込み工とを順次行なう。
The seismic reinforcement work by the reinforcing frame 13 of the bridge pier 8 is performed according to the procedure shown in FIG. 6. That is, the seismic reinforcement work is a process for creating the work yard 25 by changing the flow of one river flow 6. Replacement work / work yard work, underground reinforcement frame assembly work for assembling the reinforcement frame 13b to be placed on the ground and hanging on the pier 8, and then the base area of the pier 8 in the spring water An underwater excavator for excavation and an underground reinforcement frame dropping work for dropping the reinforcing frame 13b into the water staying in the excavated excavation hole are sequentially performed.

次に、前記掘削した掘削穴を埋め戻して補強枠13bを埋設する埋め戻し工と、前記橋脚8と補強枠13bとの間にモルタル21を充填する地中部補強枠モルタル充填工と、地上の補強枠13aを組み立てる地上部補強枠組立工と、足場と作業ヤ−ド25を撤去し、河川流5,6の流れを復旧して施工前の河川1を回復する瀬替撤去工とを順次行なう。 Next, a backfilling work for backfilling the excavated excavation hole and embedding the reinforcing frame 13b, a ground reinforcement frame mortar filling work for filling the mortar 21 between the bridge pier 8 and the reinforcing frame 13b, The ground part reinforcement frame assembly work for assembling the reinforcement frame 13a, and the detachment removal work for removing the scaffolding and the work yard 25, restoring the river flow 5, 6 and restoring the river 1 before construction. Do.

前記瀬替工・作業ヤ−ド工は、一方の河川流6の上流側に大形の土嚢(図示略)を設置して堰き止め、また河川流6の上流側から河川流5方向へ大形の土嚢26を設置して河川流6の流れを変え、河川流6を河川流5に合流させて、河川流6を一時的に枯渇させるようにしている。   The sewage work / working yard works by installing a large sandbag (not shown) on the upstream side of one river flow 6 to dam it up, and from the upstream side of the river flow 6 toward the river flow 5 A sandbag 26 having a shape is installed to change the flow of the river flow 6, and the river flow 6 is merged with the river flow 5 so that the river flow 6 is temporarily depleted.

そして、河川流6の下流側の枯渇部と、一方の堤防3の内側に土砂を盛土して坂道状の河川内進入路27を造成し、該河川内進入路27を利用して、土砂搬送用の大形自動車(図示略)を河川1内に進入させ、該自動車に積載した土砂を橋脚8の基部周辺に搬送して盛土し、前記作業ヤ−ド25を造成するようにしている。
その際、河川流5に臨む作業ヤ−ド25の外周部は前記土嚢26で護岸するようにしている。このように前記瀬替えと河川内進入路27によって、仮設桟橋の省略を実現させている。
Then, sediment is deposited on the depletion part on the downstream side of the river flow 6 and the inner side of one embankment 3 to create a slope-like river entrance path 27, and the sediment transport is performed using the river entrance path 27. A large automobile (not shown) is entered into the river 1 and the earth and sand loaded on the automobile are conveyed to the vicinity of the base of the pier 8 and are embanked to form the work yard 25.
At that time, the outer periphery of the work yard 25 facing the river flow 5 is protected by the sandbag 26. In this way, omission of the temporary pier is realized by the above-mentioned segregation and the approach path 27 in the river.

前記作業ヤ−ド25を造成後、橋脚8の周辺に足場28を組み立て、該足場28を利用して橋脚8の上部周面にチェ−ンブロック等の吊り上げ設備29を複数設置し、また橋脚8の地上部周面の所定箇所に、複数のコンクリ−トアンカ−15を取り付けている。
そして、作業ヤ−ド25に地中および地上部の補強枠13a,13bと、クレ−ン等の重機30を搬入し、該重機30によって先ず補強枠13aを吊り上げ、これを橋脚8の外側の所定位置に配置して仮組みし、地中部補強枠組立工を施工し、地中部の補強枠13aを組立てるようにしている。
After the construction of the work yard 25, a scaffold 28 is assembled around the pier 8, and a plurality of lifting equipment 29 such as chain blocks are installed on the upper peripheral surface of the pier 8 using the scaffold 28. A plurality of concrete anchors 15 are attached to predetermined places on the peripheral surface of the ground part 8.
Then, the underground and ground reinforcement frames 13a and 13b and a heavy machine 30 such as a crane are carried into the work yard 25, and the heavy machine 30 first lifts the reinforcement frame 13a. It is arranged at a predetermined position and temporarily assembled, and an underground part reinforcing frame assembling work is performed to assemble the underground part reinforcing frame 13a.

前記地中部の補強枠13aを組立てる場合は、補強枠13aの外側から第1支持ボルト17を通孔18に挿入し、その螺軸をコンクリ−トアンカ−15のネジ孔16にねじ込み、その頭部17aを通孔18の開口縁に係合する。
また、第2支持ボルト21を補強枠13aの外側から通孔19に挿入し、その螺軸をナット20にねじ込み、かつ螺軸端部を橋脚8の周面に当接するまでねじ込んで、橋脚8と補強枠13aの間隔dを一定に調整するようにしている。
こうして、全ての補強枠13aを橋脚8の周面に固定したところで、補強枠13aの接合部を裏面に継手を添えて溶接し、断面略小判形の補強枠管を形成するようにしている。実施形態では前記補強枠13aを上下二段に積み重ねた管体に形成している。
When the underground reinforcing frame 13a is assembled, the first support bolt 17 is inserted into the through hole 18 from the outside of the reinforcing frame 13a, the screw shaft is screwed into the screw hole 16 of the concrete anchor 15, and its head 17a is engaged with the opening edge of the through hole 18.
Further, the second support bolt 21 is inserted into the through-hole 19 from the outside of the reinforcing frame 13 a, the screw shaft is screwed into the nut 20, and the screw shaft end is screwed in until it comes into contact with the peripheral surface of the bridge pier 8. The distance d between the reinforcing frames 13a is adjusted to be constant.
Thus, when all the reinforcing frames 13a are fixed to the peripheral surface of the pier 8, the joint portion of the reinforcing frame 13a is welded with a joint on the back surface to form a reinforcing frame tube having a substantially oval cross section. In the embodiment, the reinforcing frame 13a is formed in a tubular body stacked in two upper and lower stages.

前記補強枠13aの溶接後、第1支持ボルト17,21を取り外し、補強枠13aの外周面に係止金具(図示略)を取り付け、該金具に前記チェ−ンブロックの係止具(図示略)を掛けて吊り上げ、橋脚8の上方に移動して吊り下げて置くようにしている。
この後、前記足場28を一旦撤去し、バックホウ等の掘削機31を作業ヤ−ド25へ移動し、該バックホウ31を駆動して水中掘削工を施工するようにしている。
After the reinforcement frame 13a is welded, the first support bolts 17 and 21 are removed, a locking bracket (not shown) is attached to the outer peripheral surface of the reinforcement frame 13a, and the chain block locking tool (not shown) is attached to the bracket. ), And is lifted and moved above the pier 8 and suspended.
Thereafter, the scaffold 28 is temporarily removed, the excavator 31 such as a backhoe is moved to the work yard 25, and the backhoe 31 is driven to construct an underwater excavator.

前記水中掘削工は、バックホウ31によって橋脚8の基部周辺の作業ヤ−ド25と中州4の一部を掘削し、橋脚8からフ−チング7に亘って略逆円錐台形状の掘削穴32を形成するようにしている。
前記掘削は、掘削穴32の開口径Dの開口縁に沿ってバックホウ31を移動して行なわれ、その開口径Dはフ−チング7の外径よりも若干大径に形成され、掘削穴32の底部径Dはフ−チング7の外径よりも小径(D<D)に形成されている。
The underwater excavator excavates the work yard 25 around the base of the pier 8 and a part of Nakasu 4 by the backhoe 31, and forms a substantially inverted truncated cone-shaped excavation hole 32 from the pier 8 to the footing 7. Try to form.
The drilling is performed by moving the backhoe 31 along the opening edge of the opening diameter D 2 of the wellbore 32, the opening diameter D 2 is off - it is formed slightly larger than the outer diameter of the quenching 7, drilling The bottom diameter D 1 of the hole 32 is smaller than the outer diameter of the footing 7 (D 1 <D 2 ).

前記掘削穴32の法面32aの勾配、つまり掘削穴32の開口縁と底部径Dとの水平距離Hと、掘削穴32の深さhとの比率H/hは、実施形態では略1/2〜1/1に形成され、掘削穴32の開口径Dの小径化と法面32aの急峻化を図り、作業ヤ−ド25の小スペ−ス化を図るようにしている。
このように法面32aを急勾配にしても、法面32aは滞留水33の水圧を受けて安定し、その崩落を防止されるから、安定して掘削することができる。
The gradient of the slope face 32a of the wellbore 32, i.e. the ratio H / h of the horizontal distance H, the depth h of the wellbore 32 between the opening edge and the bottom diameter D 1 of the drill hole 32 is approximately 1 in the embodiment formed in / 2-1 / 1, aims to steep for small diameter and Homen 32a of the opening diameter D 2 of the wellbore 32, the work ya - so that achieving gasification - small space of de 25.
Thus, even if the slope 32a is steep, the slope 32a is stabilized by receiving the water pressure of the accumulated water 33 and is prevented from collapsing, so that it can be excavated stably.

前記底部径Dはフ−チング7の上端面に位置し、該底部径Dは掘削穴32に滞留する湧水等の滞留水33中で、かつ潜水夫34が作業する際の最小スペ−スに相当する直径に設定されている。図中、35は前記法面32aに設置した崩落防止用の大形の土嚢である。
この場合、前述のように法面32aは安定しているから、土嚢35は不可欠ではないが、設置する場合は、掘削穴32の小形化ないし法面32a長さの短小化によって、その数量を減量できることとなる。
Said bottom diameter D 1 is off - located in the upper end surface of the quenching 7, the minimum space when said bottom diameter D 1 is in standing water 33, such as spring water staying in the wellbore 32, and the divers 34 to work -It is set to a diameter corresponding to In the figure, reference numeral 35 denotes a large sandbag for preventing collapse which is installed on the slope 32a.
In this case, since the slope 32a is stable as described above, the sandbag 35 is not indispensable. However, when installing, the quantity is reduced by reducing the size of the digging hole 32 or shortening the length of the slope 32a. You can lose weight.

前記水中掘削工は、前記バックホウ31による掘削と、潜水夫34による掘削とで行なわれ、該潜水夫34による掘削は、バックホウ31では掘削が困難で損傷の惧れがある、橋脚8およびフ−チング7の周辺を人力で掘削し、その微粒土砂をエアリフトで処理するとともに、特にフ−チング7の上面に滞留する土砂を吸引掘削するようにしている。
前記エアリフトないし掘削は、前記滞留水33に排水管(図示略)の一端を没入し、他端を掘削穴32の外部に配管し、前記排水管の途中に圧縮空気を供給し、前記一端を橋脚8等の残留土砂に吹き付けて剥離し、この微粒土砂を滞留水33と一緒に外部へ排出するようにしている。
The underwater excavator is excavated by the backhoe 31 and excavated by the diver 34. The excavation by the diver 34 is difficult to excavate by the backhoe 31 and may be damaged. The periphery of the ching 7 is excavated by human power, and the fine sediment is processed by an air lift, and in particular, the sediment retained on the upper surface of the footing 7 is suction-excavated.
In the air lift or excavation, one end of a drain pipe (not shown) is immersed in the accumulated water 33, the other end is piped outside the excavation hole 32, compressed air is supplied into the drain pipe, and the one end is The residual sediment such as the pier 8 is sprayed and peeled off, and this fine sediment is discharged to the outside together with the staying water 33.

このように前記水中掘削工は、滞留水33を常時滞水させながら掘削するから、従来のような鋼矢板等の仮設材が不要になり、また滞留水33の水圧によって法面32aが安定するから、掘削作業を円滑かつ安定して行なえるとともに、法面32aの急勾配を実現して掘削スペ−スのコンパクト化を図れるから、掘削作業の手間を軽減し、河川幅員が狭い箇所での施工に好適であり、しかも現場の地質条件を問わず施工可能である。   As described above, since the underwater excavator excavates while stagnating the stagnant water 33 at all times, a conventional temporary member such as a steel sheet pile becomes unnecessary, and the slope 32 a is stabilized by the water pressure of the stagnant water 33. Therefore, the excavation work can be performed smoothly and stably, and the steep slope of the slope 32a can be realized to make the excavation space compact, so that the labor of the excavation work is reduced and the river width is narrow. It is suitable for construction and can be constructed regardless of the geological conditions at the site.

こうして水中掘削工が終了し、また潜水夫34によって橋脚8およびフ−チング7の周面をブラシ掛けして清浄した後、前記地中部補強枠落とし込み工を施工するようにしている。
前記地中部補強枠落とし込み工は、前記複数のチェ−ンブロックを段階的に下降操作し、吊り下げ状態の管状の補強枠13aをゆっくり下ろして滞留水33に落とし込み、補強枠13aの下端をフ−チング7の上面に着地し、その上端部を滞留水33の水面から突出するようにしている。
前記作業は、例えば数人の作業者が簡素な作業船に乗船し、前記作業者がチェ−ンブロックを分担して操作することで行なうようにしている。
In this way, the underwater excavation work is completed, and the submerged member 34 brushes and cleans the peripheral surfaces of the pier 8 and the footing 7, and then the underground part reinforcement frame dropping work is performed.
In the underground reinforcement frame dropping work, the plurality of chain blocks are lowered stepwise, the suspended tubular reinforcement frame 13a is slowly lowered into the stagnant water 33, and the lower end of the reinforcement frame 13a is lowered. -It lands on the upper surface of the ching 7 and its upper end protrudes from the water surface of the staying water 33.
The work is performed by, for example, several operators boarding a simple work ship, and the workers sharing and operating the chain block.

前記補強枠13aの落とし込み後、第2支持ボルト21を通孔19に挿入し、その螺軸をナット20にねじ込み、これを例えばエア−インパクトレンチを駆使して螺軸端部を橋脚8の周面に当接し、補強枠13aと橋脚8との間隔dを一定に調整する。
こうして、補強枠13aを橋脚8を囲繞してフ−チング7上に立設後、補強枠13aの下端部の外側にフ−チング7の上面に亘って土木シ−ト(図示略)を配置し、これを土嚢(図示略)で保持して、補強枠13aの下端部とフ−チング7の上面との間隙を閉塞し、次の埋め戻し工に備えるようにしている。
After the reinforcement frame 13a is dropped , the second support bolt 21 is inserted into the through hole 19, the screw shaft is screwed into the nut 20, and this is used, for example, by using an air-impact wrench so that the screw shaft end portion is surrounded by the circumference of the pier 8. Abutting on the surface, the distance d between the reinforcing frame 13a and the pier 8 is adjusted to be constant.
Thus, after the reinforcing frame 13a is set up on the footing 7 so as to surround the bridge pier 8, a civil engineering sheet (not shown) is arranged over the upper surface of the footing 7 outside the lower end of the reinforcing frame 13a. Then, this is held by a sandbag (not shown) to close the gap between the lower end of the reinforcing frame 13a and the upper surface of the footing 7 and prepare for the next backfilling work.

前記埋め戻し工は、前記掘削した土砂36をバックホウ31を使用して掘削穴32に投入し、補強枠13aの外側を土砂36で埋め戻すようにしている。
この場合、埋め戻し後も補強枠13aと橋脚8との間には滞留水33が滞水しており、
仮に前記滞留水33をポンプ(図示略)で汲み出しても、湧水が直ぐに滞水して同様な状況になる。すなわち、補強枠13aと橋脚8との間を乾燥状態にすることは不可能であり、この状況を踏まえて次の地中部補強枠のモルタル充填工を施工するようにしている。
In the backfilling work, the excavated earth and sand 36 is introduced into the excavation hole 32 using the backhoe 31 and the outer side of the reinforcing frame 13a is backfilled with the earth and sand 36.
In this case, stagnant water 33 remains between the reinforcing frame 13a and the pier 8 even after backfilling.
Even if the stagnant water 33 is pumped out by a pump (not shown), the spring water immediately stagnates and the same situation occurs. That is, it is impossible to make the space between the reinforcing frame 13a and the pier 8 dry. Based on this situation, a mortar filling work for the next underground reinforcing frame is performed.

前記埋め戻し後、補強枠13aと橋脚8との間を内部清掃し、該清掃によって前記内部の土砂の堆積の有無と、前記間隔dの可否を確認するようにしている。すなわち、前記土砂の堆積は、この後の充填モルタルの欠損部を形成し、補強枠13aの支持強度に重大な影響を及ぼし、前記間隔の可否は充填モルタルの厚さに関係し、補強枠13aの支持強度に重大な影響を及ぼすことによる。   After the backfilling, the interior of the space between the reinforcing frame 13a and the pier 8 is internally cleaned, and the presence or absence of sediment in the interior and the possibility of the interval d are confirmed by the cleaning. That is, the accumulation of the earth and sand forms a deficient portion of the filled mortar, which has a significant effect on the support strength of the reinforcing frame 13a. The possibility of the interval is related to the thickness of the filled mortar, and the reinforcing frame 13a. By having a significant effect on the strength of support.

前記内部清掃は、補強枠13aと橋脚8との間に残留する滞留水33に、水中ポンプ(図示略)で清水を給水することで行ない、その際の還流水の濁り状態によって、前記土砂の堆積の有無を確認するようにしている。
また、前記水中ポンプで清水を給水する際、該ポンプに接続した長尺の給水管(外径約3cm)を前記補強枠13aと橋脚8との間に挿入し、その挿入状態によって、前記間隔dの可否を確認するようにしている。
The internal cleaning is performed by supplying fresh water to the stagnant water 33 remaining between the reinforcing frame 13a and the pier 8 with an underwater pump (not shown), and depending on the turbid state of the reflux water, The presence or absence of accumulation is checked.
In addition, when supplying fresh water with the submersible pump, a long water supply pipe (outer diameter of about 3 cm) connected to the pump is inserted between the reinforcing frame 13a and the pier 8, and the interval depends on the insertion state. Whether or not d is possible is confirmed.

前記モルタル充填工は、水中不分離型のモルタル12を収容したコンクリ−トミキサー車37を埋め戻し現場に移動し、これを前記補強枠13aと橋脚8との間に吐出して充填するようにしている。
発明者は、前記モルタルの充填に先立ち、モルタルの成分配合と、その施工法を決定した。すなわち、補強枠13aと橋脚8との間の狭隘部の充填材として、大粒の骨材を含むコンクリ−トでは緻密な充填が難しく、均一な強度を得られない。
In the mortar filling work, the concrete mixer wheel 37 containing the underwater non-separable mortar 12 is moved back to the site and discharged between the reinforcing frame 13a and the pier 8 for filling. Yes.
Prior to filling the mortar, the inventor determined the mortar composition and the construction method. That is, as a filler for a narrow portion between the reinforcing frame 13a and the pier 8, a concrete containing a large aggregate is difficult to be densely filled, and a uniform strength cannot be obtained.

このため、充填材としてコンクリ−トは不適であり、モルタルが適当であるが、前記間隙には滞留水33が常時滞水するため、水に分離しない水中不分離型のモルタルが適当であり、その場合の具体的な配合とその当否を確認する必要がある。   For this reason, concrete is unsuitable as a filler, and mortar is suitable. However, since the stagnant water 33 is always stagnant in the gap, a non-separable mortar that does not separate into water is suitable. In that case, it is necessary to confirm the specific blending and its propriety.

そこで、水中不分離型モルタルの配合については、次の要求される品質を満たした5種類のサンプルについて、図7に示す種々の試験を行なって決定した。
前記要求される品質としては、圧縮強度が橋脚8と同程度であること、終局歪が3000μ以上であること、ブリ−ディング(bleeding)はしないこと、水中不分離性は良好であること、水中気中強度比は0.6以上であること、等である。
Therefore, the composition of the underwater non-separable mortar was determined by conducting various tests shown in FIG. 7 for five types of samples that satisfy the following required quality.
As the required quality, the compressive strength is comparable to that of the pier 8, the ultimate strain is 3000 μm or more, the bleeding is not performed, the inseparability in water is good, The air strength ratio is 0.6 or more.

前記5種類のサンプルは、鋼板巻き耐震補強の狭隘部の注入に用いられる高流動用モルタル混和材を用いたモルタルをベ−スに、水中での分離を抑えるため、水中不分離材である増粘剤を添加した。前記増粘剤を増量すれば水中不分離性は改善されるが、狭隘部への流動性が低下および圧縮強度の発現性が不足する惧れがあった。   The above five types of samples are based on mortar using high flow mortar admixture used for injection of narrow part of steel-rolled seismic reinforcement. A sticky agent was added. If the amount of the thickener is increased, the inseparability in water is improved, but there is a concern that the fluidity to the narrow portion is lowered and the expression of the compressive strength is insufficient.

このため、増粘剤の量を5段階に分けた配合で試験を行い、適切な水中不分離性(気中と水中の圧縮強度の低下度合と目視での材料分離で確認)と、流動性(フロ−値で確認)を確保できる配合を選定した。この結果、図7に示す2番目から4番目の配合を当該工法に適用可能であるものと判断した。   For this reason, the amount of thickener was tested in a five-part formulation, with appropriate water inseparability (confirmed by the degree of decrease in compressive strength in the air and water and visual material separation), and fluidity. A formulation that can ensure (confirm by flow value) was selected. As a result, it was determined that the second to fourth formulations shown in FIG. 7 can be applied to the construction method.

次に、水中不分離型モルタルの施工法、つまり充填法については、50mm幅の実寸大モルタルの試験によって、充填方法の試験を行なった。試験は図8に示すように、トレミ−管式と自由落下打設との比較、自由落下打設の直下と水平移動度との強度低下等の確認を行なった。
前記試験の結果、トレミ−管式は、自由落下の充填に比べて水中不分離性が向上し、圧縮強度のバラツキを小さく抑えることができることが確認されたため、充填方法はトレミ−管方式、つまり噴出管の吐出口をモルタル中に没入して充填するによる方法とし、モルタル水平移動距離の強度低減を考慮したトレミ−管の挿入間隔を決定した。
Next, regarding the construction method of the underwater non-separable mortar, that is, the filling method, the filling method was tested by a test of an actual mortar having a width of 50 mm. In the test, as shown in FIG. 8, a comparison between the tremi-tube type and the free drop casting, and confirmation of a decrease in strength between the direct fall casting and the horizontal mobility were performed.
As a result of the above test, it was confirmed that the tremi-tube type has improved water inseparability compared to free-fall filling and can suppress the variation in compressive strength, so the filling method is the tremi-tube type, that is, The method was a method in which the discharge port of the ejection pipe was immersed and filled in the mortar, and the insertion interval of the tremi pipe was determined in consideration of the reduction in the strength of the horizontal movement distance of the mortar.

なお、モルタル充填時の鋼板孕み防止として、地中部埋め戻し後に充填を行い、モルタル漏れを防ぐこととした。トレミ−管式打設は、底部より50mm上方に管を固定して打設し、落下打設は、底部よ400mm上方に管を固定して打設した。
試験の結果、落下打設よりもトレミ−管打設の方が水中不分離性が良く、圧縮強度のバラツキが小さい結果を得たので、本工事の充填方法はトレミ−管式打設とした。
In order to prevent stagnation of the steel sheet during mortar filling, filling was performed after backfilling the underground part to prevent leakage of the mortar. In the tremi-tube type casting, the pipe was fixed 50 mm above the bottom, and in the dropping, the pipe was fixed 400 mm above the bottom.
As a result of the test, it was found that tremi-tube casting was better in water inseparability and smaller compressive strength variation than drop casting, so the filling method of this construction was tremi-tube casting. .

すなわち、前記モルタルの充填は、長尺の打設管を補強枠13aと橋脚8との間に挿入し、その吐出口をフ−チング7の上面から約50mm上方に位置付けて水中不分離性モルタルを打設し、打設中は堆積した前記モルタル中に吐出口を没入させて充填することとした。
実施形態では二本の打設管を使用し、これを橋脚8の前後対称位置に配置してモルタルを充填するようにしている。この場合、補強板13aは土砂36の土圧を受けるから、モルタル12の充填による孕みを防止され、また前記モルタル漏れを防止される。
That is, the filling of the mortar is performed by inserting a long casting pipe between the reinforcing frame 13a and the pier 8 and positioning the discharge port about 50 mm above the upper surface of the footing 7 so as to be inseparable in water. During the placement, the discharge port was immersed in the deposited mortar and filled.
In the embodiment, two placing pipes are used and arranged at symmetrical positions on the pier 8 so as to be filled with mortar. In this case, since the reinforcing plate 13a receives the earth pressure of the earth and sand 36, stagnation due to filling of the mortar 12 is prevented, and leakage of the mortar is prevented.

こうしてモルタルを充填し、該モルタルが硬化した後、地上部補強枠組立工を施工するようにしている。
前記地上部補強枠組立工は、埋め戻した土砂36上に前記足場28を組み立て、前記重機30によって地上部の補強枠13bを吊り上げ、これを橋脚8の所定位置に移動し、かつ補強枠13aの地上の突出端部に載置して仮組みし、地上部補強枠13bを組み立てるようにしている。
In this way, the mortar is filled, and after the mortar is hardened, an above-ground reinforcement frame assembly work is performed.
The ground part reinforcing frame assembling assembles the scaffold 28 on the backfilled earth and sand 36, lifts the ground part reinforcing frame 13b by the heavy machine 30, moves it to a predetermined position of the pier 8, and reinforces the reinforcing frame 13a. It is placed on the projecting end of the ground and temporarily assembled to assemble the ground portion reinforcing frame 13b.

前記補強枠13bの組立てに際しては、補強枠13bの外側から第1支持ボルト17を通孔18に挿入し、その螺軸をコンクリ−トアンカ−15のネジ孔16にねじ込み、その頭部17aを通孔18の開口縁に係合する。
また、第2支持ボルト23を補強枠13aの外側から通孔19に挿入し、その螺軸をナット20にねじ込み、かつ螺軸端部を橋脚8の周面に当接するまでねじ込んで、橋脚8と補強枠13aの間隔dを一定に調整するようにしている。
When the reinforcing frame 13b is assembled, the first support bolt 17 is inserted into the through hole 18 from the outside of the reinforcing frame 13b, the screw shaft is screwed into the screw hole 16 of the concrete anchor 15, and the head portion 17a is passed through. Engage with the opening edge of the hole 18.
Further, the second support bolt 23 is inserted into the through-hole 19 from the outside of the reinforcing frame 13 a, the screw shaft is screwed into the nut 20, and the screw shaft end is screwed in until it comes into contact with the peripheral surface of the bridge pier 8. The distance d between the reinforcing frames 13a is adjusted to be constant.

こうして、全ての補強枠13bを橋脚8の周面に固定したところで、補強枠13bの接合部を裏面に継手を添えて溶接し、断面略小判形の補強枠管を形成するようにしている。実施形態では前記補強枠管を上下3.5段に形成している。   Thus, when all the reinforcing frames 13b are fixed to the peripheral surface of the bridge pier 8, the joint portion of the reinforcing frame 13b is welded with a joint on the back surface to form a reinforcing frame tube having a substantially oval cross section. In the embodiment, the reinforcing frame tube is formed in upper and lower 3.5 steps.

この後、第1および第2支持ボルト17,21を取り付けたまま、補強枠13bと橋脚8の周面との間に通常のモルタルを充填し、モルタル厚の均一化と充填による補強枠13bの孕みを防止可能にしている。   Thereafter, with the first and second support bolts 17 and 21 attached, normal mortar is filled between the reinforcing frame 13b and the peripheral surface of the pier 8, and the reinforcing frame 13b is formed by equalizing and filling the mortar thickness. It is possible to prevent itching.

前記モルタルの充填に際しては、モルタルを収容したコンクリ−トミキサ−車37を移動し、前述のトレミ−管方式で補強枠13bと橋脚8の間にモルタルを充填するようにしている。そして、前記モルタルの硬化後、補強枠13bの表面を塗装し、瀬替え撤去工を施工するようにしている。   In filling the mortar, the concrete mixer wheel 37 containing the mortar is moved, and the mortar is filled between the reinforcing frame 13b and the bridge pier 8 by the above-described tremi-tube method. Then, after the mortar is cured, the surface of the reinforcing frame 13b is painted, and a replacement removal work is performed.

前記瀬替え撤去工では、足場28を解体、撤去し、作業ヤ−ド25を撤去し、河川内進入路27を撤去し、また河川流6を堰き止めていた大形の土嚢26と、その流れの変更を形成していた大形の土嚢26を撤去して、河川流6の元の流れを復旧し、河川1の施工前の状況を復旧するようにしている。   In the segregation removal work, the scaffold 28 is dismantled and removed, the work yard 25 is removed, the river entry path 27 is removed, and the large sandbag 26 damming the river stream 6 is The large sandbag 26 that formed the flow change is removed, the original flow of the river flow 6 is restored, and the situation before the construction of the river 1 is restored.

このように構成した本発明の橋脚等の補強工法は、図9のような河川幅が比較的狭く水深が浅い河川内橋脚の耐震補強に好適であり、その補強工法は、瀬替工・作業ヤ−ド工と、地中部補強枠組立工と、水中掘削工と、地中部補強枠落とし込み工と、埋め戻し工と、地中部補強枠モルタル充填工と、地上部補強枠組立工と、瀬替撤去工とから構成され、その手順は図6に示すようである。   The bridge construction method of the present invention constructed as described above is suitable for seismic reinforcement of a river pier with a relatively narrow river width and a shallow water depth as shown in FIG. Yard work, underground reinforcement frame assembly work, underwater excavation work, underground reinforcement frame dropping work, backfilling work, underground reinforcement frame mortar filling work, ground reinforcement frame assembly work, It consists of spare removal work, and the procedure is as shown in FIG.

前記瀬替工・作業ヤ−ド工は、一方の河川流6の流れを変えて作業ヤ−ド25を造成し、地中部補強枠組立工は地中部の補強枠13aを地上で組み立てて橋脚8に吊り下げ、水中掘削工は橋脚8の基部周辺を湧水の滞水中で開削し、地中部補強枠落とし込み工は、前記補強枠13aを掘削穴32の滞留水33中に落とし込む。   The changer / work yard works change the flow of one of the river streams 6 to create a work yard 25. The underground reinforcement frame assembler assembles the underground reinforcement frame 13a on the ground and piers. The underwater excavator excavates the vicinity of the base of the pier 8 in spring water, and the underground reinforcement frame dropping work drops the reinforcement frame 13a into the accumulated water 33 in the excavation hole 32.

また、埋め戻し工は、掘削穴32を埋め戻して補強枠13aを埋設し、地中部補強枠モルタル充填工は、橋脚8と補強枠13aとの間に水中不分離型のモルタル12を充填し、地上部補強枠組立工は、地上部の補強枠13bを地上に突出した地中部の補強枠13a上に組み立て、橋脚8と補強枠13bとの間に通常のモルタルを充填し、瀬替撤去工は足場28と作業ヤ−ド25を撤去し、河川流5,6を復旧して施工前の河川1を回復させる。   Further, the backfilling work fills the excavation hole 32 and embeds the reinforcing frame 13a, and the underground reinforcing frame mortar filling work fills the underwater non-separable mortar 12 between the pier 8 and the reinforcing frame 13a. The ground part reinforcement frame assembler assembles the ground part reinforcement frame 13b on the ground reinforcement frame 13a protruding above the ground, fills normal mortar between the bridge pier 8 and the reinforcement frame 13b, and removes the replacement. The worker removes the scaffold 28 and the work yard 25, restores the river flows 5 and 6, and restores the river 1 before construction.

このうち、前記瀬替工・作業ヤ−ド工は、一方の河川流6の上流側に大形の土嚢(図示略)を設置して堰き止め、その流れを大形の土嚢26を介して河川流5に合流させて、河川流6を一時的に枯渇させ、その枯渇部の一部と、一方の堤防3の内側に土砂を盛土して坂道状の河川内進入路27を造成する。   Of these, the sewage work / work yard works are installed with a large sandbag (not shown) on the upstream side of one river flow 6 to dam and flow through the large sandbag 26. The river flow 5 is merged to temporarily deplete the river flow 6, and the slope 27 is formed into the river entrance path 27 by embedding earth and sand inside a part of the depleted portion and one embankment 3.

そして、前記河川内進入路27によって、大形自動車(図示略)を河川1内に進入可能にし、該自動車に土砂を積載して橋脚8の基部周辺に搬送し、前記作業ヤ−ド25を造成する。この状況は図10のようである。
このように前記瀬替えと河川内進入路27の造成によって、従来の仮設桟橋を省略し、仮設桟橋の施工に伴う工事の大規模化を回避し、工期の長期化と工費の増大を防止し得る
Then, a large automobile (not shown) can enter the river 1 by the river entrance path 27, and the automobile is loaded with earth and sand and conveyed to the vicinity of the base of the bridge pier 8. Create. This situation is as shown in FIG.
In this way, the above-mentioned segregation and creation of the river access path 27 eliminates the conventional temporary pier, avoids the large-scale construction associated with the construction of the temporary pier, and prevents the construction period from increasing and the construction cost from increasing. obtain

次に、地中部補強枠組立工は、前記作業ヤ−ド25を造成後、橋脚8の周辺に足場28を組み立て、該足場28を利用して橋脚8の上部周面にチェ−ンブロック等の吊り上げ設備29を複数設置し、また橋脚8の地上部周面の所定箇所に、複数のコンクリ−トアンカ−15を取り付ける。
そして、予め成形しナット20を取り付けた地中および地上部の補強枠13a,13bを、クレ−ン等の重機30で作業ヤ−ド25に搬入し、このうち補強枠13aを吊り上げ、これを橋脚8の外側の所定位置に配置して仮組みする。
Next, the underground reinforcement frame assembler assembles the scaffold 28 around the pier 8 after the work yard 25 is formed, and uses the scaffold 28 to form a chain block or the like on the upper peripheral surface of the pier 8. A plurality of lifting anchors 29 are installed, and a plurality of concrete anchors 15 are attached to predetermined locations on the circumferential surface of the pier 8.
Then, the underground and ground reinforcement frames 13a and 13b that are pre-formed and attached with the nut 20 are carried into the work yard 25 by a heavy machine 30 such as a crane, and among these, the reinforcement frame 13a is lifted, It is arranged at a predetermined position outside the pier 8 and temporarily assembled.

前記地中部の補強枠13aの組立ては、補強枠13aの外側から第1支持ボルト17を通孔18に挿入し、その螺軸をコンクリ−トアンカ−15のネジ孔16にねじ込み、その頭部17aを通孔18の開口縁に係合する。
また、第2支持ボルト21を補強枠13aの外側から通孔19に挿入し、その螺軸をナット20にねじ込み、その螺軸端部を橋脚8の周面に当接するまでねじ込んで、橋脚8と補強枠13aとの間隔dを一定に調整する。この状況は図4(a)のようである。
The underground reinforcing frame 13a is assembled by inserting the first support bolts 17 into the through holes 18 from the outside of the reinforcing frame 13a, screwing the screw shafts into the screw holes 16 of the concrete anchor 15, and the head 17a. Engage with the opening edge of the through hole 18.
Further, the second support bolt 21 is inserted into the through hole 19 from the outside of the reinforcing frame 13 a, the screw shaft is screwed into the nut 20, and the screw shaft end is screwed in until it comes into contact with the peripheral surface of the pier 8. The distance d between the reinforcing frame 13a and the reinforcing frame 13a is adjusted to be constant. This situation is as shown in FIG.

こうして、全ての補強枠13aを橋脚8の周面に固定したところで、補強枠13aの接合部を裏面に継手を添えて溶接し、断面略小判形の補強枠管を形成する。実施形態では前記補強枠13aを上下二段に積み重ねた管体に形成している。この状況は図11のようである。
この場合、補強枠13aは前記第1および第2支持ボルト17,21によって橋脚8の外側の一定位置に固定されているから、前記溶接に伴う補強枠13aの変形を阻止する。
In this way, when all the reinforcing frames 13a are fixed to the peripheral surface of the pier 8, the joint portion of the reinforcing frame 13a is welded with a joint on the back surface to form a reinforcing frame tube having a substantially oval cross section. In the embodiment, the reinforcing frame 13a is formed in a tubular body stacked in two upper and lower stages. This situation is as shown in FIG.
In this case, since the reinforcing frame 13a is fixed at a fixed position outside the pier 8 by the first and second support bolts 17 and 21, deformation of the reinforcing frame 13a due to the welding is prevented.

前記補強枠13aの溶接後、第1および第2支持ボルト17,21を取り外し、この一方の通孔18に適時シ−ル材24を充填して閉塞する。
そして、補強枠13aの外周面に係止金具(図示略)を取り付け、該金具に前記チェ−ンブロックの係止具(図示略)を掛けて吊り上げ、これを橋脚8の上方に移動して吊り下げて置く。この状況は図5(a)および図12のようである。
この後、前記足場28を一旦撤去し、バックホウ等の掘削機31を作業ヤ−ド25へ移動し、該バックホウ31を駆動して水中掘削工を施工する。
After the reinforcement frame 13a is welded, the first and second support bolts 17 and 21 are removed, and one of the through holes 18 is filled with a seal material 24 and closed.
Then, a locking bracket (not shown) is attached to the outer peripheral surface of the reinforcing frame 13a, and the chain block locking tool (not shown) is hung on the bracket, lifted, and moved above the bridge pier 8. Hang and put. This situation is as shown in FIGS.
Thereafter, the scaffold 28 is temporarily removed, the excavator 31 such as a backhoe is moved to the work yard 25, and the backhoe 31 is driven to construct an underwater excavator.

前記水中掘削工は、バックホウ31によって橋脚8の基部周辺の作業ヤ−ド25と中州4の一部を掘削し、橋脚8からフ−チング7に亘って略逆円錐台形状の掘削穴32を形成する。
前記掘削は、掘削穴32の開口径Dの開口縁に沿って、バックホウ31を移動して行ない、その開口径Dをフ−チング7の外径よりも若干大径に形成し、掘削穴32の底部径Dをフ−チング7の外径よりも小径(D<D)に形成する。この状況は図12のようである。
The underwater excavator excavates the work yard 25 around the base of the pier 8 and a part of Nakasu 4 by the backhoe 31, and forms a substantially inverted truncated cone-shaped excavation hole 32 from the pier 8 to the footing 7. Form.
The excavation along the open opening edge of the aperture D 2 of the wellbore 32, carried by moving the backhoe 31, the opening diameter D 2 off - formed slightly larger than the outer diameter of the quenching 7, drilling The bottom diameter D 1 of the hole 32 is formed to be smaller than the outer diameter of the footing 7 (D 1 <D 2 ). This situation is as shown in FIG.

前記底部径Dはフ−チング7の上端面に位置し、該底部径Dは掘削穴32に滞留する湧水等の滞留水33中で、かつ潜水夫34の最小作業スペ−スに相当する直径に設定する。換言すれば、前記底部径Dを基に掘削穴32の法面32aの勾配によって、開口径Dが設定されることとなる。 Said bottom diameter D 1 is off - located in the upper end surface of the quenching 7, said bottom diameter D 1 is in standing water 33, such as spring water staying in the wellbore 32, and the minimum working space divers 34 - to scan Set to the corresponding diameter. In other words, the gradient of the slope face 32a of the wellbore 32 on the basis of the bottom diameter D 1, so that the opening diameter D 2 is set.

前記掘削穴32の法面32aの勾配、つまり掘削穴32の開口縁と底部径Dとの水平距離Hと、掘削穴32の深さhとの比率H/hを、実施形態では略1/2〜1/1に形成して、法面32aの急峻化ないし掘削穴32の開口径Dの小径化を図り、作業ヤ−ド25の小スペ−ス化と掘削の容易化を図っている。 Gradient of slope 32a of the wellbore 32, i.e. the horizontal distance H between the opening edge and a bottom diameter D 1 of the wellbore 32, the ratio H / h between the depth h of the wellbore 32, approximately 1 in embodiment / 2-1 / 1 and formed, achieving steep or diameter of the opening diameter D 2 of the wellbore 32 of slope face 32a, the working ya - working to facilitate the gasification and drilling - de 25 a small space ing.

このように法面32aを急勾配にしても、法面32aは滞留水33の水圧を受けて安定し、その崩落を防止されるから、安定して掘削することができ、掘削スペ−スのコンパクト化を図れる。
この場合、実施形態では法面32aに崩落防止用の大形の土嚢35を設置しているが、前述のように法面32aは安定しているから、土嚢35は不可欠なものではなく、仮に土嚢35を設置する場合でも、掘削穴32の小形化ないし法面32a長さの短小化によって、その数量を大幅に減量できる。
Thus, even if the slope 32a is steep, the slope 32a is stabilized by the water pressure of the stagnant water 33 and can be prevented from collapsing. Can be made compact.
In this case, in the embodiment, the large sandbag 35 for preventing the collapse is provided on the slope 32a, but the slope 32a is stable as described above, so the sandbag 35 is not indispensable. Even when the sandbag 35 is installed, the quantity can be significantly reduced by downsizing the excavation hole 32 or shortening the length of the slope 32a.

前記水中掘削工は、前記バックホウ31による掘削と、潜水夫34による人力掘削とで行なわれ、該潜水夫34による掘削は、バックホウ31では掘削が困難で損傷の惧れがある、橋脚8およびフ−チング7周辺を人力で掘削することで行なわれ、その際の微粒土砂をエアリフトで吸引処理する。   The underwater excavator is excavated by the backhoe 31 and manually excavated by the diver 34. The excavation by the diver 34 is difficult to be excavated by the backhoe 31 and may be damaged. -It is carried out by manually excavating around Ching 7, and the fine earth and sand at that time is sucked with an air lift.

前記エアリフトないし掘削は、前記滞留水33に排水管(図示略)の一端を没入し、他端を掘削穴32の外部に配管し、前記排水管の途中に圧縮空気を供給し、前記一端を橋脚8等の残留土砂に吹き付けて剥離し、この微粒土砂を滞留水33と一緒に外部へ排出する   In the air lift or excavation, one end of a drain pipe (not shown) is immersed in the accumulated water 33, the other end is piped outside the excavation hole 32, compressed air is supplied into the drain pipe, and the one end is Blow off and peel off residual sediment such as piers 8 etc., and discharge this fine sediment together with stagnant water 33

このように前記水中掘削工は、バックホウ31によって開削するから、従来のような鋼矢板等による煩雑な仮土留め工や仮設材が不要になり、しかも現場の地質条件を問わず施工可能であるから、施工の容易化と工期の短縮化、並びに工費の低減を図れる。   As described above, since the underwater excavator is excavated by the backhoe 31, a conventional temporary earth retaining work or temporary material using a steel sheet pile or the like is not required, and construction is possible regardless of the on-site geological conditions. Therefore, the construction can be facilitated, the construction period can be shortened, and the construction cost can be reduced.

しかも、バックホウ31による開削は、掘削穴32に湧水による滞留水33を常時滞水させて行なうから、滞留水33の水圧によって法面32aが安定し、法面32aの崩落の惧れがないから、掘削作業を円滑かつ安定して行なえるとともに、法面32aの急勾配を実現し、掘削スペ−スのコンパクト化と掘削作業の短期化を図れ、河川幅員が狭い箇所での施工に好適なものとなる。   Moreover, since the excavation by the backhoe 31 is performed by constantly stagnating the accumulated water 33 by the spring water in the excavation hole 32, the slope 32a is stabilized by the water pressure of the retained water 33, and there is no fear of the slope 32a collapsing. Therefore, excavation work can be carried out smoothly and stably, and the slope of the slope 32a can be realized, the excavation space can be made compact and the excavation work can be shortened, and it is suitable for construction where the river width is narrow. It will be something.

こうして水中掘削工が終了し、また潜水夫34によって橋脚8およびフ−チング7の周面をブラシ掛けして清浄した後、次の地中部補強枠落とし込み工を施工する。
前記地中部補強枠落とし込み工は、前記複数のチェ−ンブロックを段階的に下降操作し、吊り下げ状態の管状の補強枠13aをゆっくり下ろして滞留水33に落とし込み、補強枠13aの下端をフ−チング7の上面に着地するとともに、その上端部を滞留水33の水面から突出させる。この状況は図13のようである。
Thus, the underwater excavation work is completed, and the diver 34 cleans the peripheral surfaces of the pier 8 and the footing 7 by brushing, and then the next underground reinforcement frame dropping work is performed.
In the underground reinforcement frame dropping work, the plurality of chain blocks are lowered stepwise, the suspended tubular reinforcement frame 13a is slowly lowered into the stagnant water 33, and the lower end of the reinforcement frame 13a is lowered. -Land on the upper surface of the ching 7 and project its upper end from the surface of the staying water 33. This situation is as shown in FIG.

前記作業は、例えば数人の作業者が簡素な作業船に乗船し、前記作業者がチェ−ンブロックを分担して操作することで行なう。その際、第1支持ボルト17,21は予め取り外れているから、補強枠13aが円滑かつ安定して下降し、橋脚8の周面を損傷することはない。   The work is performed by, for example, several operators boarding a simple work boat and the operators sharing and operating the chain block. At this time, since the first support bolts 17 and 21 are removed in advance, the reinforcing frame 13a is smoothly and stably lowered, and the peripheral surface of the pier 8 is not damaged.

前記補強枠13aを滞留水33中へ落とし込み後、潜水夫34が潜水して取り外した第2支持ボルト21を通孔18に挿入し、その螺軸をナット20にねじ込み、これを例えばエア−インパクトレンチを駆使して螺軸端部を橋脚8の周面に当接し、補強枠13aと橋脚8との間隔dを一定に調整する。この状況は図5(b),(c)のようである。   After dropping the reinforcing frame 13a into the stagnant water 33, the diver 34 dives and removes the second support bolt 21 that has been removed and inserted into the through hole 18, and the screw shaft is screwed into the nut 20, for example, air-impact. Using a wrench, the end of the screw shaft is brought into contact with the peripheral surface of the pier 8, and the distance d between the reinforcing frame 13a and the pier 8 is adjusted to be constant. This situation is as shown in FIGS.

こうして、補強枠13aを橋脚8を囲繞してフ−チング7上に立設後、補強枠13aの下端部の外側にフ−チング7の上面に亘って土木シ−ト(図示略)を配置し、これを土嚢(図示略)で保持して、補強枠13aの下端部とフ−チング7の上面との間隙を閉塞し、次の埋め戻し工に備える。   Thus, after the reinforcing frame 13a is set up on the footing 7 so as to surround the bridge pier 8, a civil engineering sheet (not shown) is arranged over the upper surface of the footing 7 outside the lower end of the reinforcing frame 13a. Then, this is held by a sandbag (not shown) to close the gap between the lower end of the reinforcing frame 13a and the upper surface of the footing 7 and prepare for the next backfilling work.

前記埋め戻し工は、前記掘削した土砂36をバックホウ31によって掘削穴32に投入し、補強枠13aの外側を土砂36で埋め戻す。この状況は図5(c)および図14のようである。
この場合、前記埋め戻し後も補強枠13aと橋脚8との間に滞留水33が滞水しており、仮に前記滞留水33をポンプ(図示略)で汲み出しても、湧水が直ぐに滞水して同様な状況になる。すなわち、補強枠13aと橋脚8との間を乾燥状態にすることは不可能であり、この状況を踏まえて次のモルタル充填工を施工することとなる。
In the backfilling work, the excavated earth and sand 36 is put into the excavation hole 32 by the backhoe 31, and the outside of the reinforcing frame 13a is backfilled with the earth and sand 36. This situation is as shown in FIG. 5 (c) and FIG.
In this case, even after the backfilling, the stagnant water 33 remains between the reinforcing frame 13a and the pier 8, and even if the stagnant water 33 is pumped out by a pump (not shown), the spring water immediately becomes stagnant. And the same situation. That is, it is impossible to make the space between the reinforcing frame 13a and the pier 8 dry, and the next mortar filling work will be performed based on this situation.

前記埋め戻し後、補強枠13aと橋脚8との間を内部清掃し、該清掃によって前記内部の土砂の堆積の有無を確認し、同時に前記間隔dの可否を確認する。
すなわち、前記土砂の堆積は、この後の充填モルタルの欠損部を形成し、補強枠13aの支持強度に重大な影響を及ぼし、また前記間隔の可否は充填モルタルの厚さに関係し、補強枠13aの支持強度に重大な影響を及ぼすことによる。
After the backfilling, the inside of the space between the reinforcing frame 13a and the pier 8 is internally cleaned, and the presence / absence of sediment in the interior is confirmed by the cleaning, and at the same time, the possibility of the interval d is confirmed.
That is, the sedimentation of the earth and sand forms a deficient portion of the filling mortar, which has a significant effect on the support strength of the reinforcing frame 13a, and the possibility of the interval is related to the thickness of the filling mortar. By having a significant influence on the support strength of 13a.

前記内部清掃は、補強枠13aと橋脚8との間に残留する滞留水33に、水中ポンプ(図示略)で清水を給水することで行ない、その際の還流水の濁り状態によって、前記土砂の堆積の有無を確認する。
また、前記水中ポンプで清水を給水する際、該ポンプに接続した長尺の給水管(外径約3cm)を前記補強枠13aと橋脚8との間に挿入し、その挿入状態によって、前記間隔dの可否を確認する。
The internal cleaning is performed by supplying fresh water to the stagnant water 33 remaining between the reinforcing frame 13a and the pier 8 with an underwater pump (not shown), and depending on the turbid state of the reflux water, Check for accumulation.
In addition, when supplying fresh water with the submersible pump, a long water supply pipe (outer diameter of about 3 cm) connected to the pump is inserted between the reinforcing frame 13a and the pier 8, and the interval depends on the insertion state. Confirm whether or not d is acceptable.

前記モルタル充填工は、水中不分離型のモルタル12を収容したコンクリ−トミキサー車37を埋め戻し現場に移動し、前記モルタル12を前記補強枠13aと橋脚8との間に吐出して充填する。この状況は図15のようである。   In the mortar filling work, the concrete mixer truck 37 containing the underwater non-separable mortar 12 is moved back to the site, and the mortar 12 is discharged and filled between the reinforcing frame 13a and the pier 8. This situation is as shown in FIG.

前記水中不分離型のモルタル12は、圧縮強度が橋脚8と同程度であること、終局歪が3000μ以上であること、ブリ−ディング(bleeding)はしないこと、水中不分離性は良好であること、水中気中強度比は0.6以上であること、等の品質条件を満たした上で、高流動用モルタルをベ−スに水中不分離材である増粘剤の添加量を調整したサンプルから、適切な水中不分離性と流動性とを備えたものを試験的に確認して採用した。   The underwater non-separable mortar 12 has the same compressive strength as that of the pier 8, has an ultimate strain of 3000 μm or more, does not bleed, and has good underwater inseparability. In addition, the sample was prepared by adjusting the addition amount of the thickener as an underwater non-separating material based on high flow mortar after satisfying quality conditions such as underwater strength ratio of 0.6 or more. Therefore, those having appropriate inseparability in water and fluidity were experimentally confirmed and adopted.

すなわち、前記水中不分離型のモルタル12として、鋼板巻き耐震補強の狭隘部の注入に用いられる、高流動用モルタル混和材を用いたモルタルをベ−スに、水中不分離材である増粘剤の添加量を調整したサンプルから、最も水中不分離性と流動性のバランスが良い図7の表中の3の配合のものを使用した。   That is, the thickener which is an underwater non-separating material based on the mortar using the high flow mortar admixture used as the non-separable underwater mortar 12 for the injection of the narrow portion of the steel-rolled seismic reinforcement From the sample in which the amount added was adjusted, the one with the composition of 3 in the table of FIG. 7 having the best balance between water inseparability and fluidity was used.

そして、前記採用した水中不分離型のモルタル12を、コンクリ−トミキサ−車37から長尺の打設管に導き、該打設管を橋脚8の前後対称位置に配置し、このそれぞれを補強枠13aと橋脚8との間に挿入し、その吐出口をフ−チング7の上面から約50mm上方に位置付けて打設し、打設中はその吐出口を堆積した前記モルタル中に没入させて充填する。   The adopted underwater non-separable mortar 12 is guided from the concrete mixer wheel 37 to a long casting pipe, and the casting pipe is disposed at a symmetrical position on the bridge pier 8, and each of them is provided with a reinforcing frame. 13a and the bridge pier 8 are inserted, and the discharge port is placed approximately 50 mm above the upper surface of the footing 7 and is placed, and the discharge port is immersed in the deposited mortar for filling. To do.

このようにすると、二本の打設管から水中不分離型のモルタル12が補強枠13aと橋脚8との間の滞留水33中に打設され、これが滞留水33に分離することなく流動して回り込み、均一な幅で一様に堆積して硬化する。その際、補強枠13aは土砂36の土圧を外側から受けるから、コンクリ−トの充填に比べ前記モルタル12を均一の厚さで緻密に充填でき、また充填に伴う孕みを防止される。この状況は図5(d)のようである。
こうして水中不分離型のモルタル12を充填し、該モルタル12が硬化した後、地上部補強枠組立工を施工する。
In this way, the underwater non-separable mortar 12 is driven into the staying water 33 between the reinforcing frame 13 a and the pier 8 from the two placing pipes, and flows without being separated into the staying water 33. Wrap around and deposit and cure uniformly with a uniform width. At that time, the reinforcing frame 13a receives the earth pressure of the earth and sand 36 from the outside, so that the mortar 12 can be densely filled with a uniform thickness compared with the filling of the concrete, and the stagnation accompanying the filling is prevented. This situation is as shown in FIG.
Thus, the underwater non-separable mortar 12 is filled, and after the mortar 12 is cured, the ground part reinforcing frame assembly work is performed.

前記地上部補強枠組立工は、前記埋め戻した土砂36上に前記足場28を組み立て、前記重機30によって地上部の補強枠13bを吊り上げ、これを橋脚8の所定位置に移動し、かつこれを補強枠13aの突出端部に載置して仮組みする。   The ground part reinforcing frame assembler assembles the scaffold 28 on the backfilled sand and sand 36, lifts the ground part reinforcing frame 13b by the heavy machine 30, moves it to a predetermined position of the pier 8, and It is placed on the protruding end of the reinforcing frame 13a and temporarily assembled.

前記補強枠13bの組立てに際しては、補強枠13bの外側から第1支持ボルト17を通孔18に挿入し、その螺軸をコンクリ−トアンカ−15のネジ孔16にねじ込み、その頭部17aを通孔18の開口縁に係合する。
また、第2支持ボルト23を補強枠13aの外側から通孔19に挿入し、その螺軸をナット20にねじ込み、かつ螺軸端部を橋脚8の周面に当接するまでねじ込んで、橋脚8と補強枠13aの間隔dを一定に調整する。この状況は図4(b)のようである。
When the reinforcing frame 13b is assembled, the first support bolt 17 is inserted into the through hole 18 from the outside of the reinforcing frame 13b, the screw shaft is screwed into the screw hole 16 of the concrete anchor 15, and the head portion 17a is passed through. Engage with the opening edge of the hole 18.
Further, the second support bolt 23 is inserted into the through-hole 19 from the outside of the reinforcing frame 13 a, the screw shaft is screwed into the nut 20, and the screw shaft end is screwed in until it comes into contact with the peripheral surface of the bridge pier 8. And the interval d between the reinforcing frames 13a is adjusted to be constant. This situation is as shown in FIG.

こうして、全ての補強枠13bを橋脚8の周面に固定したところで、補強枠13bの接合部を裏面に継手を添えて溶接し、断面略小判形の補強枠管を形成する。実施形態では前記補強枠管を上下3.5段に形成している。この状況は図16のようである。   In this way, when all the reinforcing frames 13b are fixed to the peripheral surface of the pier 8, the joint portion of the reinforcing frame 13b is welded with a joint on the back surface to form a reinforcing frame tube having a substantially oval cross section. In the embodiment, the reinforcing frame tube is formed in upper and lower 3.5 steps. This situation is as shown in FIG.

この後、前記第1および第2支持ボルト17,23をねじ込んだまま、補強枠13bと橋脚8の周面との間に通常のモルタルを充填する。
その際、前記モルタルの充填は、モルタルを収容したコンクリ−トミキサ−車37を移動し、打設管を補強枠13bと橋脚8の間に挿入し、前述のトレミ−管方式で打設する。
Thereafter, ordinary mortar is filled between the reinforcing frame 13b and the peripheral surface of the pier 8 with the first and second support bolts 17 and 23 screwed in.
At that time, the filling of the mortar is performed by moving the concrete mixer wheel 37 containing the mortar, inserting the placing pipe between the reinforcing frame 13b and the bridge pier 8 and placing it by the above-described tremi-pipe method.

この場合、補強枠13bは第1支持ボルト17によって橋脚8に連結され、その間隔dを第2支持ボルト23によって保持されるから、コンクリ−トの充填に比べ前記モルタルを均一の厚さで緻密に充填でき、また充填に伴う孕みを防止される。
そして、前記モルタルの硬化後、補強枠13bの表面を塗装し、瀬替え撤去工を施工する。
In this case, the reinforcing frame 13b is connected to the pier 8 by the first support bolts 17, and the interval d is held by the second support bolts 23. Therefore, the mortar is more densely packed with a uniform thickness than the concrete filling. In addition, it is possible to prevent stagnation associated with filling.
Then, after the mortar is cured, the surface of the reinforcing frame 13b is painted, and a settling removal work is performed.

前記瀬替え撤去工は、足場28を解体、撤去し、作業ヤ−ド25を撤去し、河川内進入路27を撤去し、また河川流6を堰き止めていた大形の土嚢26と、その流れの変更を形成していた大形の土嚢26を撤去し、河川流6の元の流れを復旧して、河川1の施工前の状況を復旧する。この状況は図17のようである。
こうして耐震補強した橋脚8は図1のようで、その地中部および地上部の周面に補強枠13a,13bが被覆され、橋脚8のせん断破壊に対抗する。
The segregation removal work dismantles and removes the scaffold 28, removes the work yard 25, removes the inflow path 27 in the river, and dams the river flow 6; The large sandbag 26 that formed the flow change is removed, the original flow of the river flow 6 is restored, and the state before construction of the river 1 is restored. This situation is as shown in FIG.
The pier 8 thus seismically reinforced is as shown in FIG. 1, and the reinforcing frames 13 a and 13 b are coated on the peripheral surfaces of the underground portion and the ground portion to counter the shear failure of the pier 8.

このように本発明は、仮桟橋や仮土留め工の代わりに、瀬替えや河川内進入路27を採用し、また常時滞水開削工により仮設物を減らした結果、仮設工の工期は、従来の仮桟橋や仮土留めによる仮設工の工期の略1/2になり、また本発明における撤去工は、足場28や作業ヤ−ド25、土嚢26の撤去からなるが、これらは作業者と重機31によって容易に行なえ、従来のような大掛かりな仮設物や設備の撤去を要しないから、撤去工の工期も従来よりも低減し得る。なお、前記仮設工と撤去工を除く本体工の工期は、従来の耐震補強と余り差異はないと思われる。   As described above, the present invention adopts a settling or river approach path 27 in place of the temporary pier and the temporary earth retaining work, and the temporary construction is reduced by the continuous water cut-off work. The construction period of the temporary construction by the conventional temporary pier or temporary earth retaining is about ½, and the removal work in the present invention consists of the removal of the scaffold 28, the work yard 25, and the sandbag 26. Since it can be easily performed by the heavy machinery 31 and does not require removal of a large temporary object or equipment as in the conventional case, the construction period of the removal work can be reduced as compared with the conventional method. In addition, it seems that the construction period of the main body construction except the temporary construction and the removal construction is not so different from the conventional seismic reinforcement.

そこで、これらの点から1橋脚当りの耐震補強の工期を試算すると、本発明では2ケ月半掛かり、従来の工法では4ケ月掛かると予想され、本発明は従来の工法に比べ約1ケ月半工期が短縮され、その分工費の低減を見込めることが確認された。
したがって、本発明は、川幅が狭く水深の浅い河川内橋脚の耐震補強を、渇水期施工による制約に応じられることが確認された。
Therefore, it is estimated that it takes 2 months and a half for the present invention and 4 months for the conventional method, and the present invention is about a month and a half compared to the conventional method. It has been confirmed that the construction cost can be reduced.
Therefore, it has been confirmed that the present invention can be applied to the seismic reinforcement of the river pier with a narrow river width and a shallow water depth in accordance with the restriction due to the drought period construction.

また、本発明は、従来のような仮土留めや直線形鋼矢板打設時のオ−ガ−併用継ぎ足し施工の代わりに、常時滞水開削工により仮設物を減らした結果、1橋脚当りの耐震補強の工費を試算すると、従来の工費を相当低減し得ることが確認された。   In addition, as a result of reducing the number of temporary structures by continuous water digging instead of the conventional construction of temporary earth retaining and auger combined use at the time of straight steel sheet pile placement, the present invention reduces the number of temporary structures per pier. A trial calculation of the seismic retrofitting cost has confirmed that the conventional cost can be considerably reduced.

なお、前述の実施形態は、中州4に立設した河川内橋脚8の耐震補強に適用しているが、比較的水深の浅い河川に立設した橋脚8にも適用することが可能である。
その場合は、橋脚8周辺を避けて河川の流れを変え、作業ヤ−ド25を確保した後、前述の工法を施工すれば良い。したがって、本発明は河川に限らず、水深の浅い海岸や湖沼に立設した橋脚8や支柱、柱状体の耐震補強に適用することも可能である。
In addition, although the above-mentioned embodiment is applied to the earthquake-proof reinforcement of the river pier 8 standing in the middle state 4, it is applicable also to the pier 8 standing in the river with comparatively shallow water depth.
In that case, after changing the flow of the river around the pier 8 and securing the work yard 25, the above-described construction method may be applied. Therefore, the present invention is not limited to rivers, and can also be applied to seismic reinforcement of bridge piers, columns, and columnar bodies erected on shallow coasts and lakes.

本発明の橋脚等の柱状構造物の補強工法は、河川の流れを変えて橋脚の周辺に作業ヤ−ドを確保し、地中部の補強枠を地上で容易に組み立て、これを橋脚の上方に吊り上げる一方、橋脚の基部を常時滞水状態で開削し、地質条件を問わず、かつ湧水対策を省略した施工を実現するとともに、掘削穴の法面を安定させ、掘削スペ−スと作業スペ−スのコンパクト化を図れ、開削後は地中枠を水中に落とし込み、開削部を埋め戻し後に橋脚と地中枠との間に水中不分離型モルタルを充填して、該モルタルを水中で緻密かつ確実に充填し得るとともに、仮設物の使用を大幅に減らし、工期の短縮と工費を低減を図れるから、例えば河川幅が狭く水深が比較的浅い河川内橋脚の耐震補強に好適である。 The method of reinforcing a columnar structure such as a pier of the present invention is to change the flow of a river to secure a working yard around the pier, and to easily assemble a reinforcement frame in the ground above the pier, While lifting, the base of the pier is always excavated in a water-spilled state to realize construction that eliminates spring water measures regardless of geological conditions, stabilizes the slope of the excavation hole, and excavation space and work space. -The size of the mortar can be reduced, and after excavation, the underground frame is dropped into the water, and after the excavation part is backfilled, an underwater non-separable mortar is filled between the bridge pier and the underground frame, and the mortar is dense in the water In addition to being able to be filled reliably, the use of temporary objects can be greatly reduced, the construction period can be shortened, and the construction cost can be reduced. For example, it is suitable for seismic reinforcement of a river pier with a narrow river width and a relatively shallow water depth.

本発明により耐震補強した橋脚を示す正面図である。It is a front view which shows the bridge pier which carried out earthquake-proof reinforcement by this invention. 図1の側面図である。It is a side view of FIG. 図(a)は図1の横断面図である。図(b)は同図(a)の一部を拡大して示す断面図である。FIG. 1A is a cross-sectional view of FIG. FIG. 2B is an enlarged sectional view showing a part of FIG. 本発明に適用した地中部および地上部補強枠の組み立て状況の要部を拡大して示す断面図で、図(a)は地中部の補強枠の組み立て状況を示し、、図(b)は地上部の補強枠の組み立て状況を示している。Sectional drawing which expands and shows the principal part of the assembly condition of the underground part and ground part reinforcement frame applied to this invention, FIG. (A) shows the assembly condition of the reinforcement frame of an underground part, FIG. The assembly situation of the reinforcement frame of the part is shown.

本発明に適用した地中部補強枠の施工状態を拡大して示す断面図で、図(a)は吊上時、図(b)は水中へ落とし込み直後、図(c)は埋め戻し時、図(d)は水中不分離型モルタル充填時の状況を示している。It is sectional drawing which expands and shows the construction state of the underground part reinforcement frame applied to this invention, a figure (a) at the time of suspension, a figure (b) immediately after dropping in water, a figure (c) at the time of backfilling, a figure (D) has shown the condition at the time of the underwater non-separable mortar filling. 本発明の実施形態を示す施工フロ−である。It is a construction flow showing an embodiment of the present invention. 本発明に適用した水中不分離型モルタルの配合について、5つのサンプルの室内試験結果を示す表である。It is a table | surface which shows the laboratory test result of five samples about the mixing | blending of the underwater non-separation type mortar applied to this invention.

本発明に適用した水中不分離型モルタルの打設方法について、2つのサンプルの試験結果を示す表である。It is a table | surface which shows the test result of two samples about the placement method of the underwater non-separation type mortar applied to this invention. 本発明の施工ステップ(0)の状態を示す正面図で、施工前の河川と橋脚の状況を示している。It is a front view which shows the state of the construction step (0) of this invention, and has shown the condition of the river and pier before construction. 本発明の施工ステップ(1)の状態を示す正面図で、瀬替工と作業ヤ−ド工の状況を示している。It is a front view which shows the state of the construction step (1) of this invention, and has shown the condition of a change work and a work yard work.

本発明の施工ステップ(2)の状態を示す正面図で、地中部補強枠組立工の状況を示している。It is a front view which shows the state of the construction step (2) of this invention, and has shown the condition of the underground part reinforcement frame assembly worker. 本発明の施工ステップ(3)の状態を示す正面図で、水中掘削工の状況を示している。It is the front view which shows the state of the construction step (3) of this invention, and has shown the condition of the underwater excavator. 本発明の施工ステップ(4)の状態を示す正面図で、地中部補強枠落し込み工の状況を示している。It is a front view which shows the state of the construction step (4) of this invention, and has shown the condition of underground part reinforcement frame dropping work.

本発明の施工ステップ(5)の状態を示す正面図で、埋め戻し工の状況を示している。The front view which shows the state of the construction step (5) of this invention has shown the condition of the backfilling. 本発明の施工ステップ(6)の状態を示す正面図で、地中部補強枠モルタル充填工の状況を示している。It is a front view which shows the state of the construction step (6) of this invention, and has shown the condition of the underground part reinforcement frame mortar filling construction. 本発明の施工ステップ(7)の状態を示す正面図で、地上部補強枠組立工の状況を示している。It is a front view which shows the state of the construction step (7) of this invention, and has shown the condition of the ground part reinforcement frame assembly worker. 本発明の施工ステップ(8)の状態を示す正面図で、瀬替え撤去工の状況を示している。It is the front view which shows the state of the construction step (8) of this invention, and has shown the condition of seduction removal construction.

符号の説明Explanation of symbols

1 河川
7 基礎(フ−チング)
8 柱状構造物(橋脚)
12 充填材(水中不分離型モルタル)
13a 地中部補強枠
13b 地上部補強枠
1 River 7 Foundation (Footing)
8 Columnar structures (piers)
12 Filler (Unseparable underwater mortar)
13a Ground reinforcement frame 13b Ground reinforcement frame

17 第1支持ボルト
21 第2支持ボルト
25 作業ヤ−ド
31 重機(バックホウ)
32 掘削穴
32a 法面
17 First Support Bolt 21 Second Support Bolt 25 Work Yard 31 Heavy Equipment (Backhoe)
32 drilling hole 32a slope

33 滞留水
34 潜水夫
33 Stagnant water 34 Diver

Claims (16)

地中若しくは水底地盤中の基礎上に立設した橋脚等の柱状構造物の周面に地中部若しくは水中部の補強枠を囲繞して組立て、組立てた補強枠を柱状構造物の上方で吊下げ、前記補強枠を設置する際、前記補強枠を下降して地中若しくは水中に設置し、設置した補強枠と柱状構造物との間に充填剤を充填する橋脚等の柱状構造物の補強工法において、湧水地または水底地盤中の基礎上に立設した柱状構造物の基部周辺を盛土し、該基部周辺を掘削可能な作業ヤ−ドを造成し、該作業ヤ−ド上の柱状構造物を囲繞して地中部の補強枠を地上で組み立て、組立てた補強枠を柱状構造物の上方に移動して吊下げ後、該柱状構造物の基部周辺から前記基礎に亘る地盤を掘削し、該掘削穴に滞留水を滞留させて施工するとともに、掘削後の掘削穴に前記補強枠を下降して水中に設置し、該補強枠の設置後に掘削穴を埋め戻し、補強枠と柱状構造物との間に充填剤を充填することを特徴とする橋脚等の柱状構造物の補強工法。 Assemble the underground or underwater reinforcement frame around the circumference of the columnar structure such as a pier standing on the foundation in the ground or underwater ground, and suspend the assembled reinforcement frame above the columnar structure , when installing the reinforcing frame, the reinforcing construction method of the reinforcing frame lowered and placed in the ground or water, the columnar structure of pier or the like for filling a filler between the reinforcing frame and the columnar structures installed In this case, the periphery of the base portion of the columnar structure standing on the foundation in the spring ground or underwater ground is embanked, and a work yard capable of excavating the periphery of the base is created, and the columnar structure on the work yard is formed. Enclose the reinforcement frame in the ground by surrounding the object, move the assembled reinforcement frame above the columnar structure and hang it, then excavate the ground from the periphery of the base of the columnar structure to the foundation, while construction by retained the accumulated water in the wellbore, the complement to wellbore after drilling Placed in the water by lowering the frame, backfill wellbore after installation of the reinforcing frame, the reinforcing of the columnar structures pier etc., characterized by filling a filler between the reinforcing frame and the columnar structure Construction method. 前記滞留水は、河川若しくは海または湖沼からの湧水である請求項1記載の橋脚等の柱状構造物の補強工法。 The method for reinforcing a columnar structure such as a bridge pier according to claim 1 , wherein the staying water is spring water from a river or the sea or a lake . 前記掘削穴は逆円錐台形状である請求項1記載の橋脚等の柱状構造物の補強工法。 The method for reinforcing a columnar structure such as a bridge pier according to claim 1 , wherein the excavation hole has an inverted truncated cone shape . 前記掘削を、作業ヤ−ド上に設置した重機と、潜水夫とで施工する請求項1記載の橋脚等の柱状構造物の補強工法。 The method of reinforcing a columnar structure such as a pier according to claim 1 , wherein the excavation is performed by a heavy machine installed on a work yard and a diver . 前記掘削穴の法面は、水平距離と垂直距離の比率が1対2乃至1対1の急勾配である請求項1または請求項3記載の橋脚等の柱状構造物の補強工法。 The method for reinforcing a columnar structure such as a bridge pier according to claim 1 or 3, wherein the slope of the excavation hole has a steep slope with a ratio of a horizontal distance to a vertical distance of 1 to 2 to 1 to 1 . 前記地中部の各補強枠の上下位置に通孔を形成し、一方の通孔の内側口縁部にナットを固定し、他方の通孔に対向する柱状構造物の対応位置にネジ孔を有するコンクリ−トアンカ−を埋設し、該他方の通孔に第1支持ボルトを挿入し、該ボルトの螺軸をコンクリ−トアンカ−のネジ孔にねじ込み、各補強枠を柱状構造物の周面に離間して固定するとともに、前記一方の通孔に第2支持ボルトを挿入し、その螺軸を前記ナットにねじ込んで柱状構造物の周面に当接し、各補強枠と柱状構造物の間隔を調整し、隣接する補強枠の接合部を溶接して組み立てる請求項記載の橋脚等の柱状構造物の補強工法。 A through hole is formed in the vertical position of each reinforcing frame in the underground portion, a nut is fixed to the inner edge of one through hole, and a screw hole is provided at a corresponding position of the columnar structure facing the other through hole. A concrete anchor is embedded, the first support bolt is inserted into the other through hole, the screw shaft of the bolt is screwed into the screw hole of the concrete anchor, and each reinforcing frame is separated from the peripheral surface of the columnar structure. The second support bolt is inserted into the one through hole, and the screw shaft is screwed into the nut so as to come into contact with the peripheral surface of the columnar structure, thereby adjusting the interval between each reinforcing frame and the columnar structure. and, a reinforcing method of a columnar structure of the pier or the like of claim 1, wherein assembling by welding joint portions of the reinforcing frame adjacent. 前記溶接後、第1および第2支持ボルトを補強枠から取り外し、該補強枠を柱状構造物の上方に移動して吊りげる請求項6記載の橋脚等の柱状構造物の補強工法。 After the welding, the first and second support bolt removed from the reinforcing frame, the reinforcing method of the columnar structure such as a pier of the reinforcing frame columnar structure move and suspended under gel according to claim 6 upward. 前記地中部の補強枠を掘削穴の滞留水に落とし込み後、前記一方の通孔に第2支持ボルトを挿入し、その螺軸を前記ナットにねじ込んで柱状構造物の周面に当接し、各補強枠と柱状構造物の間隔を調整する請求項記載の橋脚等の柱状構造物の補強工法。 After dropping the reinforcing frame in the underground portion into the accumulated water in the excavation hole, the second support bolt is inserted into the one through hole, and the screw shaft is screwed into the nut to contact the peripheral surface of the columnar structure. The method for reinforcing a columnar structure such as a bridge pier according to claim 6 , wherein a distance between the reinforcing frame and the columnar structure is adjusted . 前記補強枠と柱状構造物の間隔調整を、滞水した掘削穴内で潜水夫が施工する請求項記載の橋脚等の柱状構造物の補強工法。 The method for reinforcing a columnar structure such as a bridge pier according to claim 8 , wherein a diver adjusts the interval between the reinforcing frame and the columnar structure in a stagnant excavation hole . 記補強枠と柱状構造物の間隔調整後、前記掘削穴を埋め戻し、該埋め戻し後、前記補強枠と柱状構造物との間に清水を給水して清掃するとともに、その還流水の汚濁状態の確認と、給水管による前記間隔調整を監理する請求項記載の橋脚等の柱状構造物の補強工法。 After adjusting the gap before Kiho strong frame and the columnar structures, backfill the wellbore, after returning Me該埋, while the water supply to clean fresh water between the reinforcing frame and the columnar structures of the reflux water The method for reinforcing a columnar structure such as a bridge pier according to claim 8, which supervises the confirmation of the contamination state and the adjustment of the interval by a water supply pipe. 前記埋め戻し後、前記補強枠と柱状構造物との間の滞留水中に、充填管を底部直上に位置付けて水中不分離型モルタルを充填する請求項10記載の橋脚等の柱状構造物の補強工法。 The method for reinforcing a columnar structure such as a bridge pier according to claim 10 , wherein after the backfilling, the submerged water between the reinforcing frame and the columnar structure is filled with an underwater non-separable mortar by positioning a filling pipe immediately above the bottom. . 前記水中不分離型モルタルは、水中不分離剤を1.0〜2.0kg/m 3 添加する請求項11記載の橋脚等の柱状構造物の補強工法。 The method for reinforcing columnar structures such as bridge piers according to claim 11 , wherein 1.0 to 2.0 kg / m 3 of an underwater non-separating agent is added to the underwater non-separable mortar . 前記モルタル充填後、固化したモルタルと埋め戻し部材上において、地上部の補強枠を柱状構造物の周面を囲繞して、地上に突出した地中部の補強枠上に組み立てる請求項11記載の橋脚等の柱状構造物の補強工法。 12. The pier according to claim 11 , wherein after the mortar filling, on the solidified mortar and the backfilling member, the ground frame reinforcing frame surrounds the peripheral surface of the columnar structure and is assembled on the ground reinforcing frame protruding above the ground. Reinforcement method for columnar structures such as 前記地上部の各補強枠の上下位置に通孔を形成し、一方の通孔の内側口縁部にナットを固定し、他方の通孔に対向する柱状構造物の対応位置にネジ孔を有するコンクリ−トアンカ−を埋設し、該他方の通孔に第1支持ボルトを挿入し、その螺軸をコンクリ−トアンカ−のネジ孔にねじ込んで、各補強枠を柱状構造物の周面に離間して固定するとともに、前記一方の通孔に第2支持ボルトを挿入し、その螺軸を前記ナットにねじ込んで柱状構造物の周面に当接し、各補強枠と柱状構造物の間隔を調整し、隣接する補強枠の接合部を溶接して組み立てる請求項1または請求項13記載の橋脚等の柱状構造物の補強工法。 A through hole is formed in the vertical position of each reinforcing frame of the ground portion, a nut is fixed to the inner edge of one through hole, and a screw hole is provided at a corresponding position of the columnar structure facing the other through hole. A concrete anchor is embedded, the first support bolt is inserted into the other through hole, the screw shaft is screwed into the screw hole of the concrete anchor, and each reinforcing frame is separated from the peripheral surface of the columnar structure. The second support bolt is inserted into the one through hole, and the screw shaft is screwed into the nut to come into contact with the peripheral surface of the columnar structure to adjust the interval between each reinforcing frame and the columnar structure. The method for reinforcing columnar structures such as bridge piers according to claim 1 or 13 , wherein the joint portions of adjacent reinforcing frames are assembled by welding . 前記地上部の各補強枠の第1および第2支持ボルトの取り付け状態を維持し、前記補強枠と柱状構造物との間に、充填管を底部直上に位置付けて充填材を充填する請求項1記載の橋脚等の柱状構造物の補強工法。 2. The first and second support bolts are attached to the reinforcing frames of the ground portion, and a filler is filled between the reinforcing frame and the columnar structure with a filling pipe positioned immediately above the bottom. Method for reinforcing columnar structures such as bridge piers according to 4 . 前記充填材の充填後、前記作業ヤ−ドを撤去し、施工前の状況を復旧する請求項15記載の橋脚等の柱状構造物の補強工法。 Retrofit for and removing the de columnar structures pier like according to claim 15 to recover the situation before installation - the rear filling charge Hamazai, the working Ya.
JP2008116610A 2008-04-28 2008-04-28 Reinforcement method for columnar structures such as piers Active JP5339771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116610A JP5339771B2 (en) 2008-04-28 2008-04-28 Reinforcement method for columnar structures such as piers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116610A JP5339771B2 (en) 2008-04-28 2008-04-28 Reinforcement method for columnar structures such as piers

Publications (2)

Publication Number Publication Date
JP2009264036A JP2009264036A (en) 2009-11-12
JP5339771B2 true JP5339771B2 (en) 2013-11-13

Family

ID=41390206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116610A Active JP5339771B2 (en) 2008-04-28 2008-04-28 Reinforcement method for columnar structures such as piers

Country Status (1)

Country Link
JP (1) JP5339771B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018782A (en) * 2017-12-20 2018-05-11 上海市机械施工集团有限公司 The construction method of overhead box beam concrete column
JP6800365B1 (en) * 2020-05-28 2020-12-16 オリエンタル白石株式会社 How to reinforce the existing caisson foundation
CN114855650B (en) * 2022-05-24 2024-02-09 国能朔黄铁路发展有限责任公司 Heavy-load railway line bridge overhauling construction device and process
CN115075236A (en) * 2022-08-05 2022-09-20 四川省交通建设集团股份有限公司 Special-shaped underwater section bridge pile foundation reinforcing structure and measuring construction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054635B2 (en) * 1996-08-26 2000-06-19 株式会社ピー・エス Construction method of attached structure
JPH10159027A (en) * 1996-11-27 1998-06-16 Saeki Kensetsu Kogyo Kk Earthquake-resistant reinforcing method for existing structure and reinforcing construction
JPH11241314A (en) * 1998-02-23 1999-09-07 Ohbayashi Corp Reinforcing construction method of underwater structure

Also Published As

Publication number Publication date
JP2009264036A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
CN102720140B (en) Large-span prestress concrete continuous beam deepwater pier construction process
JP6010070B2 (en) Temporary closing method for existing underwater structures
CN113756314B (en) Construction method suitable for excavation of deep large subway foundation pit of soft soil foundation in long triangular area
KR100714179B1 (en) Concrete Well Construction Method Using Weight Reducing Method and Concrete Well Thereof
CN112160324A (en) Construction method for deep foundation pit support
CN102561371A (en) Steel caisson enclosure structure at island-tunnel combination part
JP5339771B2 (en) Reinforcement method for columnar structures such as piers
EP3683438B1 (en) Pump storage unit in a body of water and method of operation
US7025537B2 (en) Subterranean structures and methods for constructing subterranean structures
KR20110107888A (en) Construction method of the pier without the temporary dam in the sea or the river
CN108118689B (en) Prefabricated underground diaphragm wall capable of being partially recycled, lifting appliance and construction method
JP4262640B2 (en) Construction method of the impervious wall
CN110258600B (en) Vertical cofferdam construction method suitable for deepwater area
CN108221955B (en) Prefabricated underground diaphragm wall capable of being recycled integrally, lifting appliance and construction method
KR20040039271A (en) Shoe coffering method for new construction and repair, reinforcement of bridge open caisson foundation
CN108411934B (en) Floating tubular pile, dam retaining structure and construction method thereof
CN113982033B (en) Method for repairing hydraulic retaining wall with inclination trend by using water in post-construction structure without damage to wall
CN114855822A (en) Construction method for deep foundation pit of rain sewage pipeline on highway
JP2726611B2 (en) How to set up an open caisson
CN114232602A (en) Underground continuous pile construction process
FR2692298A1 (en) Waterproof facing for rolled concrete dams - comprises precast or site poured reinforced concrete arch and buttress units on concrete blocks with grout filled synthetic material joints.
KR200404677Y1 (en) Concrete Well Construction Method Using Weight Reducing Method and Concrete Well Thereof
CN116045077B (en) Large-diameter direct-buried pipeline installation method
CN218148481U (en) Temporary support structure for trestle pile and trestle pile group
Grice et al. Design and construction of the Thames Barrier Cofferdams.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5339771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250