JP5332311B2 - 光伝送装置 - Google Patents

光伝送装置 Download PDF

Info

Publication number
JP5332311B2
JP5332311B2 JP2008137462A JP2008137462A JP5332311B2 JP 5332311 B2 JP5332311 B2 JP 5332311B2 JP 2008137462 A JP2008137462 A JP 2008137462A JP 2008137462 A JP2008137462 A JP 2008137462A JP 5332311 B2 JP5332311 B2 JP 5332311B2
Authority
JP
Japan
Prior art keywords
clock
optical
input
signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008137462A
Other languages
English (en)
Other versions
JP2009290256A (ja
Inventor
久行 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008137462A priority Critical patent/JP5332311B2/ja
Priority to US12/379,116 priority patent/US8139947B2/en
Publication of JP2009290256A publication Critical patent/JP2009290256A/ja
Application granted granted Critical
Publication of JP5332311B2 publication Critical patent/JP5332311B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0688Change of the master or reference, e.g. take-over or failure of the master

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

本発明は、光通信システムの構成要素として用いられるトランスポンダ、リジェネレータ等の光伝送装置に関する。
光通信システムにおいては、大容量化のために光波長多重技術(WDM:Wavelength Division Multiplexing)が用いられている。ルータ等のクライアントノードではワイドバンドの光信号が用いられていることから、クライアントノードからの光信号を光スペクトラムが細い所定の光波長のナローバンドの光信号に変換し、反対に、多重側の所定の光波長のナローバンドの光信号をワイドバンドの光信号に変換するために、トランスポンダと呼ばれる光波長変換盤が用いられる。
図1は光通信システムにおけるトランスポンダの配置例を示す図である。
図1において、左側では、クライアントノードN11、N12、・・がそれぞれトランスポンダT11、T12、・・に接続され、トランスポンダT11、T12、・・は光波長多重/光波長分離部MD1に接続される。同様に、右側では、クライアントノードN21、N22、・・がそれぞれトランスポンダT21、T22、・・に接続され、トランスポンダT21、T22、・・は光波長多重/光波長分離部MD2に接続される。そして、光波長多重/光波長分離部MD1と光波長多重/光波長分離部MD2の間のWDM伝送区間では、往路に光アンプA11、A12を介し、復路に光アンプA21、A22を介して、長距離伝送が行われる。
図2はトランスポンダT(T11、T12、T21、T22、・・)の内部構成を示す図である。なお、クライアント側からネットワーク側(光波長多重/光波長分離部側)へ向かう信号の方向をアップストリーム方向、ネットワーク側からクライアント側へ向かう信号の方向をダウンストリーム方向と記述する。
図2において、トランスポンダTは、クライアント側とワイドバンドの光信号によりやりとりを行い、光信号と電気信号の間の変換を行う光送受信部110と、ネットワーク側とナローバンドの光信号によりやりとりを行い、光信号と電気信号の間の変換を行う光送受信部120と、光送受信部110、120の間にあって、フレーム処理や誤り訂正処理等を行う電気信号処理部130とを備えている。ここで、電気信号処理部130において誤り訂正処理を行うのは、長距離伝送の際の波形劣化や光アンプでのOSNR(Optical Signal Noise Ratio)の劣化によるエラーレート劣化を防ぐためであり、ネットワーク側に送信する信号に誤り訂正符号を付し、ネットワーク側からの受信時にその誤り訂正符号を用いてFEC(Forward Error Correction)を行う。従って、クライアント側の信号のビットレートに対し、誤り訂正符号を付加した分、ネットワーク側の信号のビットレートは若干アップする。
また、トランスポンダTは、クライアント側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期したネットワーク側のクロックを生成するための送信PLL(Phase Locked Loop)部140と、ネットワーク側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期したクライアント側のクロックを生成するための送信PLL部150とを備えている。
光送受信部120は、アップストリーム方向に、通常時はクライアント側からの信号に基づく通常信号を出力する。同様に、光送受信部110は、ダウンストリーム方向に、通常時はネットワーク側からの信号に基づく通常信号を出力する。
ここで、光回線にファイバ断等の異常が発生した場合、北米の顧客等に提供する製品の場合、電気信号処理部130にて、障害が発生した旨を示すAIS(Alarm Indication Signal)信号を所定のフォーマットで送信方向に向けて送信しなければならない。すなわち、クライアント側で光入力断が発生した場合、電気信号処理部130の制御のもと、光送受信部120はAIS信号をアップストリーム方向に送信し、ネットワーク側で光入力断が発生した場合、電気信号処理部130の制御のもと、光送受信部110はAIS信号をダウンストリーム方向に送信しなければならない。
しかし、送信PLL部140はクライアント側から到来した信号のクロックに基づき光送受信部120の使用するネットワーク側のクロックを生成し、送信PLL部150はネットワーク側から到来した信号のクロックに基づき光送受信部110の使用するクライアント側のクロックを生成するものであるため、いずれも光入力断により正常にクロックが生成できなくなる。そのため、光入力断が検出された場合にはクロック源を切り替える必要がある。
図3は光入力断発生時のクロック切替機能を備えたトランスポンダTの内部構成を示す図である。
図3において、トランスポンダTには、アップストリーム側(アップストリーム方向の信号を処理する側)において、切替用クロックを発生する切替用クロック発振部161と、光送受信部110から光入力断検出信号を受け取ってクロック切替制御信号を発生するクロック切替制御部162と、クロック切替制御部162からのクロック切替制御信号に応じ、電気信号処理部130からのクロックと切替用クロック発振部161からのクロックのいずれか一方を選択(通常時は電気信号処理部130側、光入力断時は切替用クロック発振部161側)するセレクタ163と、セレクタ163の出力を分周して送信PLL部140にクロックを与える分周部164とが、図2の構成に対して追加されている。また、ダウンストリーム側(ダウンストリーム方向の信号を処理する側)において、光送受信部120から光入力断検出信号を受け取ってクロック切替制御信号を発生するクロック切替制御部172と、クロック切替制御部172からのクロック切替制御信号に応じ、電気信号処理部130からのクロックと切替用クロック発振部161からのクロックのいずれか一方を選択(通常時は電気信号処理部130側、光入力断時は切替用クロック発振部161側)して送信PLL部150にクロックを与えるセレクタ173とが追加されている。
なお、アップストリーム側において、セレクタ163の後段に分周部164を設けているのは、切替用クロック発振部161がクライアント側のビットレートに対応した周波数となっており、周波数の高い状態でセレクタ163により切替を行い、その後に分周を行うことができるためである。また、切替用クロック発振部161をクライアント側のビットレートに対応した周波数としているのは、クライアント側はSDH(Synchronous Digital Hierarchy)等のフレームであるため、汎用品の発振器を切替用クロック発振部161として用いることができ、コスト的に有利だからである。
図4はトランスポンダTのクロック系統の内部構成を詳細に示す図であり、図3と対応する部分には同符号を付してある。
図4において、アップストリーム側のクロック切替制御部162は光送受信部110の光入力断検出部111から光入力断検出信号を受け取る。同様に、ダウンストリーム側のクロック切替制御部172は光送受信部120の光入力断検出部121から光入力断検出信号を受け取る。
また、アップストリーム側の送信PLL部140(図3)は、分周部141、フリップフロップ142、EX−NORゲート143、ローパスフィルタ144、電圧制御発振部145、ディバイダ146から構成されている。フリップフロップ142とEX−NORゲート143により位相比較器が構成される。同様に、ダウンストリーム側の送信PLL部150(図3)は、分周部151、フリップフロップ152、EX−NORゲート153、ローパスフィルタ154、電圧制御発振部155、ディバイダ156から構成されている。フリップフロップ152とEX−NORゲート153により位相比較器が構成される。
図3および図4において、通常時は、アップストリーム側において、セレクタ163は電気信号処理部130側を選択し、クライアント側から到来するクロックが分周部164を介し送信PLL部140に供給され、このクロックに基づいてネットワーク側のクロックが生成され、光送受信部120から通常の信号をネットワーク側に送信する。同様に、通常時は、ダウンストリーム側において、セレクタ173は電気信号処理部130側を選択し、ネットワーク側から到来するクロックが送信PLL部150に供給され、このクロックに基づいてクライアント側のクロックが生成され、光送受信部110から通常の信号をクライアント側に送信する。
また、クライアント側の光入力断時は、アップストリーム側において、セレクタ163は切替用クロック発振部161側を選択し、そのクロックが分周部164を介し送信PLL部140に供給され、このクロックに基づいてネットワーク側のクロックが生成され、電気信号処理部130で生成されたAIS信号を光送受信部120からネットワーク側に送信する。同様に、ネットワーク側の光入力断時は、ダウンストリーム側において、セレクタ173は切替用クロック発振部161側を選択し、そのクロックが送信PLL部150に供給され、このクロックに基づいてクライアント側のクロックが生成され、電気信号処理部130で生成されたAIS信号を光送受信部110からクライアント側に送信する。
特開2000−278261号公報 特開平8−8888号公報
従来のトランスポンダは上述したように構成され動作するものであったが、特に、ネットワーク側の光入力断時におけるダウンストリーム側の処理において、クロック切替直後にPLLの周波数飛びが起こり、安定したクロックが得られないことから、AIS信号が送信できないという問題があった。
以下、周波数が飛ぶメカニズムについて説明する。
図3および図4において、光送受信部120の光入力断検出部121による光入力断検出によりクロック切替制御部172が光入力断検出信号を受け、セレクタ173にクロック切替制御信号を出力し、セレクタ173は切替用クロック発振部161側を選択し、送信PLL部150に切替用クロック発振部161からのクロック(適宜に分周されたクロック)を与える。
ここで、送信PLL部150において位相比較器を構成するフリップフロップ152およびEX−NORゲート153は、電気信号処理部130を介して与えられる電圧制御発振部155のクロック(電圧制御発振部155の後に適宜に分周されたクロック)とセレクタ173により切り替えられた切替用クロック発振部161のクロック(切替用クロック発振部161の後に適宜に分周されたクロック)とを位相比較することとなるが、両者の周波数は同じであっても、非同期のクロックであるため、最大で180°の位相飛びが発生する。位相比較出力は出力DUTY(矩形波形のHigh側の領域の幅)の変化となって現れ、位相飛びにより出力DUTYの急激な変化が発生する。これをローパスフィルタ154で平滑化して得た直流電圧は、安定状態から大きな差をもった値になり、その電圧値により発信周波数が制御される電圧制御発振部155の周波数が急激に変化し、周波数が飛ぶことになる。
図5はダウンストリーム方向におけるクロック切替時の送信PLL部150の動作例を示す図であり、(a)は安定時の波形を示し、(b)は切替直後の波形を示している。すなわち、(a)においては切替元のクロック(電気信号処理部130から与えられるクロック)がHレベルの期間の中間点で電圧制御発振部155のクロックがHレベルになるため、位相比較結果としては50%の出力DUTYとなり、ローパスフィルタ154で平滑化した直流電圧は電源電圧(3.3V)の中間点付近の値(1.65V)になっている。これに対し、(b)においては、切替相手のクロック(切替用クロック発振部161から与えられるクロック)が180°位相差(最悪の状態)があることにより、位相比較結果としては100%の出力DUTYとなり、ローパスフィルタ154で平滑化した直流電圧は電源電圧(3.3V)と同じ値になっている。
ここで、AIS信号の送信に要求されるクロックの中心周波数の偏差としては、規格により20ppm以内としなければならない。切替用クロック発振部161として精度が20ppm以内の発振器が必要になるのは当然として、これに加え、図5(b)の最悪の状態では、電圧制御発振部155の変調感度を100ppm/Vとした場合、周波数精度は+165ppmとなり、到底規格内に抑えることはできない。時間の経過により周波数飛びもなくなり偏差は安定していき、20ppm以内に落ち着くことになるが、切替直後における使用には耐えないことになる。
また、PLL応答の時定数を遅くすることにより、急激な変化を軽減することも可能であるが、基本的には回避することができない。
なお、上述した信号方向とは逆のアップストリーム側については、前述したように切替用クロック発振部161がクライアント側のビットレートに対応した周波数となっているため、セレクタ163でクロックを切り替えた後に分周部164で分周をすることが可能であり、切替直後に位相差が発生しても、分周比の比率で影響を低減することができる。従って、クロックの切替直後に周波数が飛ぶ現象は見られない。図6はアップストリーム方向におけるクロック切替時の送信PLL部140の動作例を示す図であり、簡略のために分周比を1/10としている。すなわち、分周元のクロック#1(電気信号処理部130側から与えられるクロック)とクロック#2(切替用クロック発振部161から与えられるクロック)の間に図示の位相変動量(最悪の180°を想定)があったとしても、分周した結果、その位相変動量は1周期に対して微々たる値となり、ほとんど影響がないものとなる。
一方、近年の通信機器のトラフィック拡大等で、従来の10Gbps光伝送に対して更なる高速化が要求されており、次世代の通信装置として40Gbpsの伝送速度の装置が規格制定され、開発が進んでいる。FEC処理によるビットレートアップは10Gbpsと40Gbpsによって異なる比率で規格制定(ITU-T G.709)されており、それぞれのクライアント側とネットワーク側のビットレートは次の通りである。
Client側 Network側 Client : Network
10Gbps ヒ゛ットレート 9.953280Gbps 10.709225Gbps 237 : 255
40Gbps ヒ゛ットレート 39.81320Gbps 43.018500Gbps 236 : 255
ここで、10Gbpsの場合はクライアント側とネットワーク側のビットレートの比が237:255であり、最大公約数「3」が存在するため、ダウンストリーム側においてクロックの切替後に3分周することで、上述したアップストリーム側と同様の原理により、位相変動の影響を若干低減することが可能である。しかし、3分周では十分な改善とはならない。
また、今後の普及が期待される40Gbpsの場合は、クライアント側とネットワーク側のビットレートの比が236:255であり、この比率の最大公約数が存在しないため、上述したアップストリーム側と同様の原理を採用することはできない。すなわち、基準発振器の出力を分周し、周波数を合わせてからクロック切替を行わなければならないため、高速クロックの状態で切り替え、その後に分周することで位相変動の影響を低減することはできない。
なお、ネットワーク側の周波数に合わせた基準発振器を新たに搭載すれば、ダウンストリーム側の位相変動の影響はなくすことができる。しかし、前述したように、ネットワーク側の周波数はSDH等の一般レートとは異なる特殊品のビットレートとなり、更に、AIS送信のための周波数安定の規格である20ppm以内の精度としなくてはならず、部品の新規開発が必要となり、高額部品による製品のコストアップをきたし、現実的な選択ではない。
一方、特許文献1には、ISDN接続装置のクロック切替制御回路において、多重クロック生成用のPLLの入力クロック切替時の出力クロックの乱れを防止する技術が開示されている。また、特許文献2には、切替動作時に、出力クロック信号に瞬断が生じることを防止し、かつ位相変動をも低減することを可能とする技術が開示されている。
しかしながら、トランスポンダ等における上述したような特殊な状況を想定したものではなく、上述した問題を解決できるものではない。
上記の従来の問題点に鑑み、光入力断時におけるクロック切替に際し、クロックを安定させることのできる光伝送装置を提供することを目的とする。
この光伝送装置の一実施態様では、第1の入出力端に接続される装置と光信号のやりとりを行い、光信号と電気信号の間の変換を行う第1の光送受信部と、第2の入出力端に接続される装置と光信号のやりとりを行い、光信号と電気信号の間の変換を行う第2の光送受信部と、前記第1および第2の光送受信部の間に接続され、前記電気信号の処理を行う電気信号処理部と、前記第1の入出力端側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期した前記第2の光送受信部の送信用クロックを生成する第1の送信クロック生成部と、前記第2の入出力端側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期した前記第1の光送受信部の送信用クロックを生成する第2の送信クロック生成部と、前記第2の入出力端側からの光入力断時に、前記第1の送信クロック生成部の出力クロックを選択するセレクタ部と、当該セレクタ部の出力クロックを、当該出力クロックの周波数精度が、許容される周波数精度に圧縮される所定の数で分周し、前記第2の送信クロック生成部にクロックを供給する分周部とを備える。
好ましくは、前記光伝送装置は、前記第1の入出力端がクライアントノードに接続され、前記第2の入出力端がネットワーク側に接続される、前記クライアントノードのワイドバンドの光信号とネットワーク側に多重するためのナローバンドの光信号との光波長変換を行うトランスポンダである。
好ましくは、前記光伝送装置は、前記第2の入出力端がクライアントノードに接続され、前記第1の入出力端がネットワーク側に接続される、前記クライアントノードのワイドバンドの光信号とネットワーク側に多重するためのナローバンドの光信号との光波長変換を行うトランスポンダである。
好ましくは、 前記光伝送装置は、前記第1の入出力端が第1のネットワーク側に接続され、前記第2の入出力端が第2のネットワーク側に接続される、伝送信号の再構築を行うリジェネレータである
好ましくは、前記光伝送装置は、前記第2の入出力端が第1のネットワーク側に接続され、前記第1の入出力端が第2のネットワーク側に接続される、伝送信号の再構築を行うリジェネレータである。
開示の光伝送装置にあっては、所定方向の光入力断時の切替用基準クロックを得るにあたり、逆側の方向のクロックを用いることで、高い周波数の状態で切替を行い、その後に分周することが可能となり、クロックを安定させることができる。
以下、本発明の好適な実施形態につき説明する。
<第1の実施形態>
図7は本発明の第1の実施形態にかかるトランスポンダTの内部構成例を示す図である。光通信システムにおけるトランスポンダTの配置は図1に示したものと同様である。
図7において、トランスポンダTは、クライアント側とワイドバンドの光信号によりやりとりを行い、光信号と電気信号の間の変換を行う光送受信部110と、ネットワーク側とナローバンドの光信号によりやりとりを行い、光信号と電気信号の間の変換を行う光送受信部120と、光送受信部110、120の間にあって、フレーム処理や誤り訂正処理等の電気信号の処理を行う電気信号処理部130とを備えている。また、トランスポンダTは、クライアント側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期したネットワーク側のクロックを生成するための送信PLL部(送信クロック生成部)140と、ネットワーク側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期したクライアント側のクロックを生成するための送信PLL部(送信クロック生成部)150とを備えている。
また、トランスポンダTは、アップストリーム側において、切替用クロックを発生する切替用クロック発振部161と、光送受信部110から光入力断検出信号を受け取ってクロック切替制御信号を発生するクロック切替制御部162と、クロック切替制御部162からのクロック切替制御信号に応じ、電気信号処理部130からのクロックと切替用クロック発振部161からのクロックのいずれか一方を選択(通常時は電気信号処理部130側、光入力断時は切替用クロック発振部161側)するセレクタ163と、セレクタ163の出力を分周して送信PLL部140にクロックを与える分周部164とを備えている。
また、ダウンストリーム側において、光送受信部120から光入力断検出信号を受け取ってクロック切替制御信号を発生するクロック切替制御部172と、クロック切替制御部172からのクロック切替制御信号に応じ、電気信号処理部130からのクロックとアップストリーム側の送信PLL部140からのクロックのいずれか一方を選択(通常時は電気信号処理部130側、光入力断時は送信PLL部140側)するセレクタ173と、セレクタ173の出力を分周して送信PLL部150にクロックを与える分周部174とを備えている。すなわち、ダウンストリーム方向の切替時のクロックを安定させるために、アップストリーム側の送信PLL部140のクロックを切替用のクロックとして使用する。このクロックはネットワーク側ベースの周波数であるため、切り替える比率が合っており、高い周波数の状態でセレクタ173により切替を行い、その後に分周部174で分周することが可能となる。また、このクロックは主信号に同期がとれており、偏差が20ppm以内(SDHの主信号は20ppm以内)が保障されているとともに、光主信号が断となった場合でも確実に偏差が20ppm以内であるため、安定な基準発振器として使用可能である。
図8は第1の実施形態にかかるトランスポンダTのクロック系統の内部構成を詳細に示す図であり、図7と対応する部分には同符号を付してある。
図8において、アップストリーム側のクロック切替制御部162は光送受信部110の光入力断検出部111から光入力断検出信号を受け取る。同様に、ダウンストリーム側のクロック切替制御部172は光送受信部120の光入力断検出部121から光入力断検出信号を受け取る。
また、アップストリーム側の送信PLL部140(図7)は、分周部141、フリップフロップ142、EX−NORゲート143、ローパスフィルタ144、電圧制御発振部145、ディバイダ146から構成されている。フリップフロップ142とEX−NORゲート143により位相比較器が構成される。同様に、ダウンストリーム側の送信PLL部150(図7)は、分周部151、フリップフロップ152、EX−NORゲート153、ローパスフィルタ154、電圧制御発振部155、ディバイダ156から構成されている。フリップフロップ152とEX−NORゲート153により位相比較器が構成される。
図7および図8において、ネットワーク側でダウンストリーム方向の光入力断が発生した場合は、光送受信部120の光入力断検出部121にて光入力断を検出し、クロック切替制御部172に光入力断検出信号が与えられ、クロック切替制御部172はセレクタ173をそれまでの電気信号処理部130側から送信PLL部140の出力側(アップストリーム側の電圧制御発振部145の出力を4分周したクロック)に切り替える。それまでの電気信号処理部130側のクロックと送信PLL部140の出力側のクロックの周波数はほぼ同じであるが、位相は異なるクロックであるため、切替直後は位相が急激に変化する。しかし、セレクタ173の後段において、その位相が変化した状態のクロックを分周部174により255分周するために、位相変動量は1/255に圧縮される。従って、フリップフロップ152およびEX−NORゲート153により位相比較出力したパルス出力は、ほとんど位相が変化していない様に見える。位相が変化していないので、ローパスフィルタ154により平滑化された直流電圧は変化せず、電圧制御発振部155の周波数は安定したままである。そのため、このクロックを使用して電気信号処理部130および光送受信部110が動作することで、安定にAIS信号を送信することが可能である。
なお、図5(b)に示した従来技術においては、ローパスフィルタ154の出力電圧が安定状態の1.65Vから切替直後に3.3Vに変化した場合、電圧制御発振部155の変調感度を100ppm/Vとして、周波数精度は+165ppmであった。これに対し、本実施形態では、偏差が1/255に圧縮されるため、PLL時定数が極限まで早いケースでも0.647ppmが最大値となり、SDH規格の20ppm以内という規格に対して影響を与えないものとなる。
このように、本実施形態では、光入力断時のダウンストリーム方向の切替用基準クロックを得るにあたり、逆側のアップストリーム方向のクロックを用いることで、切替時の周波数安定精度を満足することが可能である。また、元々存在しているクロックであるため、新たな周波数の発振器を追加する必要はなく、コストアップすることなく性能向上を図ることができる。
<第2の実施形態>
図9は本発明の第2の実施形態にかかるトランスポンダTの内部構成例を示す図であり、逆方向のクロックを使用するという原理に基づき、アップストリーム側に適用した例である。前述した第1の実施形態では、切替用の基準発振器がクライアント側のビットレートに対応した周波数になっているものとしたが、切替用の基準発振器がネットワーク側のビットレートに対応した周波数となっている場合には、この第2の実施形態が有効となる。
図9においては、トランスポンダTのダウンストリーム側に切替用クロック発振部171が設けられ、アップストリーム側の切替用クロック発振部161(図7)が除去されている。また、ダウンストリーム側のセレクタ173には切替用クロック発振部171から切替用のクロックが与えられ、アップストリーム側のセレクタ163にはダウンストリーム側の送信PLL部150からクロックが与えられる。
図10は第2の実施形態にかかるトランスポンダTのクロック系統の内部構成を詳細に示す図であり、図9と対応する部分には同符号を付してある。
<第3の実施形態>
上述した第1および第2の実施形態では、光伝送装置としてトランスポンダを対象としていたが、第3および第4の実施形態では、光伝送装置として、伝送信号の再構築を行うリジェネレータ(中継タイプのトランスポンダ)を対象としている。リジェネレータはネットワークの途中に配置されるものであるため、トランスポンダの場合のようにクライアント側とネットワーク側とでビットレートが異なるということは原則としてないが、トランスポンダとリジェネレータの基本構成の共通化を図ることにより、設計、製造、メンテナンスの容易化を図ることができる。
図11は光通信システムにおけるリジェネレータの配置例を示す図である。
図11において、左側のクライアントノードN11、N12、・・から光波長多重/光波長分離部MD1まで、および、右側のクライアントノードN21、N22、・・から光波長多重/光波長分離部MD2までは図1に示したものと同様である。そして、光波長多重/光波長分離部MD1と光波長多重/光波長分離部MD2の間のWDM伝送区間の途中に他の光波長多重/光波長分離部MD3、MD4が接続され、その間にリジェネレータRG1、RG2、・・・が接続される。
図12は本発明の第3の実施形態にかかるリジェネレータRGのクロック系統の内部構成を詳細に示す図である。なお、より抽象度の高い機能ブロックとしては、第1の実施形態における図7と同様となる。
図12における構成要素は図8とほぼ同様となるが、リジェネレータRGは左右両側がWDM区間のネットワークとなるため、ビットレートは左右両側で同じとなり、それに応じ、クロックの周波数および分周器の分周数が若干異なっている。なお、リジェネレータRGは左右両側がネットワークであるため、厳密な意味でのアップストリーム/ダウンストリームという概念は存在しないが、前述した実施形態との対応関係をわかりやすくするため、右側に向く信号の流れをアップストリーム、左側に向く信号の流れをダウンストリームと図示している。
本実施形態では、光入力断時のダウンストリーム方向の切替用基準クロックを得るにあたり、逆側のアップストリーム方向のクロックを用いることで、切替時の周波数安定精度を満足することが可能である。
<第4の実施形態>
図13は本発明の第4の実施形態にかかるリジェネレータRGのクロック系統の内部構成を詳細に示す図であり、逆方向のクロックを使用するという原理に基づき、アップストリーム側に適用した例である。なお、より抽象度の高い機能ブロックとしては、第2の実施形態における図9と同様となる。
本実施形態では、光入力断時のアップストリーム方向の切替用基準クロックを得るにあたり、逆側のダウンストリーム方向のクロックを用いることで、切替時の周波数安定精度を満足することが可能である。
<総括>
以上、本発明の好適な実施の形態により本発明を説明した。ここでは特定の具体例を示して本発明を説明したが、特許請求の範囲に定義された本発明の広範な趣旨および範囲から逸脱することなく、これら具体例に様々な修正および変更を加えることができることは明らかである。すなわち、具体例の詳細および添付の図面により本発明が限定されるものと解釈してはならない。
(付記1)
第1の入出力端に接続される装置と光信号のやりとりを行い、光信号と電気信号の間の変換を行う第1の光送受信部と、
第2の入出力端に接続される装置と光信号のやりとりを行い、光信号と電気信号の間の変換を行う第2の光送受信部と、
前記第1および第2の光送受信部の間に接続され、前記電気信号の処理を行う電気信号処理部と、
前記第1の入出力端側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期した前記第2の光送受信部の送信用クロックを生成する第1の送信クロック生成部と、
前記第2の入出力端側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期した前記第1の光送受信部の送信用クロックを生成する第2の送信クロック生成部と、
前記第2の入出力端側からの光入力断時に、前記第1の送信クロック生成部の出力クロックを選択するセレクタ部と、
当該セレクタ部の出力クロックを分周し、前記第2の送信クロック生成部にクロックを供給する分周部と
を備えたことを特徴とする光伝送装置。
(付記2)
前記光伝送装置は、前記第1の入出力端がクライアントノードに接続され、前記第2の入出力端がネットワーク側に接続される、前記クライアントノードのワイドバンドの光信号とネットワーク側に多重するためのナローバンドの光信号との光波長変換を行うトランスポンダである
ことを特徴とする付記1に記載の光伝送装置。
(付記3)
前記光伝送装置は、前記第2の入出力端がクライアントノードに接続され、前記第1の入出力端がネットワーク側に接続される、前記クライアントノードのワイドバンドの光信号とネットワーク側に多重するためのナローバンドの光信号との光波長変換を行うトランスポンダである
ことを特徴とする付記1に記載の光伝送装置。
(付記4)
前記光伝送装置は、前記第1の入出力端が第1のネットワーク側に接続され、前記第2の入出力端が第2のネットワーク側に接続される、伝送信号の再構築を行うリジェネレータである
ことを特徴とする付記1に記載の光伝送装置。
(付記5)
前記光伝送装置は、前記第2の入出力端が第1のネットワーク側に接続され、前記第1の入出力端が第2のネットワーク側に接続される、伝送信号の再構築を行うリジェネレータである
ことを特徴とする付記1に記載の光伝送装置。
光通信システムにおけるトランスポンダの配置例を示す図である。 トランスポンダの内部構成を示す図である。 光入力断発生時のクロック切替機能を備えたトランスポンダの内部構成を示す図である。 トランスポンダのクロック系統の内部構成を詳細に示す図である。 ダウンストリーム方向におけるクロック切替時の送信PLL部の動作例を示す図である。 アップストリーム方向におけるクロック切替時の送信PLL部の動作例を示す図である。 本発明の第1の実施形態にかかるトランスポンダの内部構成例を示す図である。 第1の実施形態にかかるトランスポンダのクロック系統の内部構成を詳細に示す図である。 本発明の第2の実施形態にかかるトランスポンダの内部構成例を示す図である。 第2の実施形態にかかるトランスポンダのクロック系統の内部構成を詳細に示す図である。 光通信システムにおけるリジェネレータの配置例を示す図である。 本発明の第3の実施形態にかかるリジェネレータのクロック系統の内部構成を詳細に示す図である。 本発明の第4の実施形態にかかるリジェネレータのクロック系統の内部構成を詳細に示す図である。
符号の説明
T トランスポンダ
RG リジェネレータ
110 光送受信部
111 光入力断検出部
120 光送受信部
121 光入力断検出部
130 電気信号処理部
140 送信PLL部
141 分周部
142 フリップフロップ
143 EX−NORゲート
144 ローパスフィルタ
145 電圧制御発振部
146 ディバイダ
150 送信PLL部
151 分周部
152 フリップフロップ
153 EX−NORゲート
154 ローパスフィルタ
155 電圧制御発振部
156 ディバイダ
161 切替用クロック発振部
162 クロック切替制御部
163 セレクタ
164 分周部
171 切替用クロック発振部
172 クロック切替制御部
173 セレクタ
174 分周部

Claims (5)

  1. 第1の入出力端に接続される装置と光信号のやりとりを行い、光信号と電気信号の間の変換を行う第1の光送受信部と、
    第2の入出力端に接続される装置と光信号のやりとりを行い、光信号と電気信号の間の変換を行う第2の光送受信部と、
    前記第1および第2の光送受信部の間に接続され、前記電気信号の処理を行う電気信号処理部と、
    前記第1の入出力端側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期した前記第2の光送受信部の送信用クロックを生成する第1の送信クロック生成部と、
    前記第2の入出力端側から到来した信号のクロックに基づき、所定の比率の周波数で、かつ同期した前記第1の光送受信部の送信用クロックを生成する第2の送信クロック生成部と、
    前記第2の入出力端側からの光入力断時に、前記第1の送信クロック生成部の出力クロックを選択するセレクタ部と、
    当該セレクタ部の出力クロックを、当該出力クロックの周波数精度が、許容される周波数精度に圧縮される所定の数で分周し、前記第2の送信クロック生成部にクロックを供給する分周部と
    を備えたことを特徴とする光伝送装置。
  2. 前記光伝送装置は、前記第1の入出力端がクライアントノードに接続され、前記第2の入出力端がネットワーク側に接続される、前記クライアントノードのワイドバンドの光信号とネットワーク側に多重するためのナローバンドの光信号との光波長変換を行うトランスポンダである
    ことを特徴とする請求項1に記載の光伝送装置。
  3. 前記光伝送装置は、前記第2の入出力端がクライアントノードに接続され、前記第1の入出力端がネットワーク側に接続される、前記クライアントノードのワイドバンドの光信号とネットワーク側に多重するためのナローバンドの光信号との光波長変換を行うトランスポンダである
    ことを特徴とする請求項1に記載の光伝送装置。
  4. 前記光伝送装置は、前記第1の入出力端が第1のネットワーク側に接続され、前記第2の入出力端が第2のネットワーク側に接続される、伝送信号の再構築を行うリジェネレータである
    ことを特徴とする請求項1に記載の光伝送装置。
  5. 前記光伝送装置は、前記第2の入出力端が第1のネットワーク側に接続され、前記第1の入出力端が第2のネットワーク側に接続される、伝送信号の再構築を行うリジェネレータである
    ことを特徴とする請求項1に記載の光伝送装置。
JP2008137462A 2008-05-27 2008-05-27 光伝送装置 Expired - Fee Related JP5332311B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008137462A JP5332311B2 (ja) 2008-05-27 2008-05-27 光伝送装置
US12/379,116 US8139947B2 (en) 2008-05-27 2009-02-12 Optical transmission apparatus with clock selector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008137462A JP5332311B2 (ja) 2008-05-27 2008-05-27 光伝送装置

Publications (2)

Publication Number Publication Date
JP2009290256A JP2009290256A (ja) 2009-12-10
JP5332311B2 true JP5332311B2 (ja) 2013-11-06

Family

ID=41379962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137462A Expired - Fee Related JP5332311B2 (ja) 2008-05-27 2008-05-27 光伝送装置

Country Status (2)

Country Link
US (1) US8139947B2 (ja)
JP (1) JP5332311B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187245A (ja) * 2009-02-13 2010-08-26 Hitachi Ltd 光伝送システム、光端局装置、光中継装置
JP5357819B2 (ja) * 2010-04-12 2013-12-04 株式会社日立製作所 データ伝送装置
JP5609463B2 (ja) * 2010-09-14 2014-10-22 富士通株式会社 伝送装置及び制御装置、並びに信号線の誤接続検出方法
JP5620876B2 (ja) * 2011-04-26 2014-11-05 株式会社日立製作所 網同期装置のシェルフ、網同期装置
US9653039B2 (en) * 2012-03-29 2017-05-16 Thinklogical, Llc Method, apparatus and system for changing to which remote device a local device is in communication via a communication medium through use of interruption of the communication medium
WO2015145986A1 (ja) 2014-03-27 2015-10-01 日本電気株式会社 光トランシーバ制御回路、光ネットワークシステムおよび光トランシーバの出力制御方法
WO2019167361A1 (ja) * 2018-02-27 2019-09-06 日本電気株式会社 光信号受信装置、光信号受信方法、及び非一時的なコンピュータ可読媒体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432330A (ja) * 1990-05-29 1992-02-04 Hitachi Ltd システムクロツク保護方式
JPH06104882A (ja) * 1992-09-22 1994-04-15 Matsushita Electric Ind Co Ltd 網同期クロック供給装置
JPH07170584A (ja) * 1993-12-14 1995-07-04 Nec Corp クロック切替回路
JPH088888A (ja) 1994-06-24 1996-01-12 Toshiba Corp クロック選択回路
JP3331451B2 (ja) * 1996-04-19 2002-10-07 日本電気エンジニアリング株式会社 ディジタル信号伝送装置
JP2000068988A (ja) * 1998-08-24 2000-03-03 Nec Eng Ltd 外部クロック制御方式及び多重装置
JP2000278261A (ja) 1999-03-29 2000-10-06 Hitachi Ltd Isdn接続装置
JP2001186018A (ja) * 1999-12-27 2001-07-06 Nec Eng Ltd 入力クロック切替回路
JP2001237815A (ja) * 2000-02-21 2001-08-31 Toshiba Corp 伝送装置
JP4567231B2 (ja) * 2001-04-12 2010-10-20 株式会社日立製作所 波長変換器および波長多重光通信装置
US20040052520A1 (en) * 2002-02-07 2004-03-18 Ross Halgren Path protection in WDM network
US7360954B1 (en) * 2004-03-25 2008-04-22 Cisco Technology, Inc. Low speed data path for SFP-MSA interface
US7684534B2 (en) * 2005-07-11 2010-03-23 International Business Machines Corporation Method and apparatus for handling of clock information in serial link ports
US8161311B2 (en) * 2007-08-23 2012-04-17 Stratus Technologies Bermuda Ltd Apparatus and method for redundant and spread spectrum clocking

Also Published As

Publication number Publication date
US20090297161A1 (en) 2009-12-03
US8139947B2 (en) 2012-03-20
JP2009290256A (ja) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5332311B2 (ja) 光伝送装置
KR101197280B1 (ko) 타임 스탬프를 이용한 타임 동기 방법 및 장치
EP2779484B1 (en) Polybox clustered optical network switching node, optical burst synchronization method and line frame
US6031644A (en) Method, device, and system for controlling wavelength of optical signal
US20040052528A1 (en) Jitter control in optical network
JP5595313B2 (ja) 光ネットワークシステムおよびwdm装置
JP3824539B2 (ja) Wdmネットワークの光クロック信号分配システム
JP6319423B2 (ja) 光トランシーバ制御回路、光ネットワークシステムおよび光トランシーバの出力制御方法
US7783200B2 (en) Method and apparatus for constant bit rate data transmission in an optical burst switching network
US7301896B2 (en) Redundant changeover apparatus
JP4661509B2 (ja) 伝送装置
US7181545B2 (en) Network synchronization architecture for a Broadband Loop Carrier (BLC) system
JP5420435B2 (ja) 局側装置
KR100899815B1 (ko) 멀티 프로토콜 신호를 인터페이스하는 광트랜스폰더 및멀티 프로토콜 신호를 인터페이스하는 방법
JP2008141689A (ja) タイミング差検出装置、タイミング制御装置、送信器、受信器およびタイミング差検出方法
US7215210B2 (en) Clock signal outputting method, clock shaper and electronic equipment using the clock shaper
JP4941547B2 (ja) 光伝送装置及び光伝送方法
JP2005159701A (ja) ディジタル伝送方式
US7580629B2 (en) Los beat detector
JP5482116B2 (ja) 伝送装置及び伝送信号のジッター抑圧方法
JP5684344B2 (ja) 局側装置
RU2199178C1 (ru) Способ тактовой сетевой синхронизации генераторов
KR101103961B1 (ko) 하프 레이트 버스트 모드 클럭 데이터 복원기
WO2019167361A1 (ja) 光信号受信装置、光信号受信方法、及び非一時的なコンピュータ可読媒体
KR970009678B1 (ko) 클럭 및 데이타 복구 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees