JP5331328B2 - 地熱利用システム - Google Patents

地熱利用システム Download PDF

Info

Publication number
JP5331328B2
JP5331328B2 JP2007306010A JP2007306010A JP5331328B2 JP 5331328 B2 JP5331328 B2 JP 5331328B2 JP 2007306010 A JP2007306010 A JP 2007306010A JP 2007306010 A JP2007306010 A JP 2007306010A JP 5331328 B2 JP5331328 B2 JP 5331328B2
Authority
JP
Japan
Prior art keywords
heat exchange
exchange pipe
air
heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007306010A
Other languages
English (en)
Other versions
JP2009127982A (ja
Inventor
秀昭 竹崎
正和 吾孫子
昇平 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2007306010A priority Critical patent/JP5331328B2/ja
Publication of JP2009127982A publication Critical patent/JP2009127982A/ja
Application granted granted Critical
Publication of JP5331328B2 publication Critical patent/JP5331328B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、地熱利用システム、具体的には地中に埋設された熱交換パイプに室外空気または室内空気を送風させ、管内空気と地中熱との間で熱交換を行わせ、加熱または冷却された空気を冷暖房、融雪などに利用する地熱利用システムに関する。
近年、地球温暖化防止技術及び省エネ技術の一つとして、化石燃料によらず地球そのものを冷熱源とする地熱を利用したシステムが注目されている。空気と違って、地中の温度は年間を通して大きな変化がない。そこで、地熱を利用して堆積する雪を溶かすことができる地熱利用システムも提案されている(特許文献1)。また、地下水や地層などを温熱源や冷熱源と考え、夏の冷房では外の空気より低い温度の地中に熱を放出し、冬の暖房では外の空気より暖かい地中から熱を取り出す地熱利用システムが提案されている(特許文献2)。
特開2003−227104 特開2005−283007
これらの地熱利用システムに用いられる熱交換パイプは、地上から地中に空気を送る垂直部分と地中に略水平に埋設された水平部分とを備えており、垂直部分に送風用ファンが設けられている。ここで熱交換パイプの水平部分は内面平滑管であるため、送風された空気と管内面との境界域において空気の流れが層流状態になる場合が多い。層流状態では熱伝導率が小さく、効率の高い熱交換が期待できない。したがって、十分なエネルギー交換を行うためには、熱交換パイプの水平部分を長くする必要があり、敷地の広さや初期導入工事費用、材料コストが高価になる恐れがある。
本発明の目的は、上記背景技術の問題点を克服し、簡単な構造で、地中に埋設されている熱交換パイプと地中熱との熱交換性能の向上を図り、より効果的な地熱利用システムを提供することにある。
第1発明に係る地熱利用システムは、熱交換パイプと、送風装置と、旋回気流発生装置とを備えている。ここで、熱交換パイプは、少なくとも一部が地中に埋設され、管内を流れる空気と地熱との間で熱交換を行うためのものである。送風装置は、室外空気または室内空気を熱交換パイプ内に送風するためのものである。旋回気流発生装置は、熱交換パイプ内に設置され、送風機から送られ熱交換パイプ内を流れる空気に旋回流を発生させるためのものです。また、旋回気流発生装置は、回転軸に固定された複数の羽根部材と、複数の羽根部材の外部に形成されたハウジングと、ハウジングを熱交換パイプ内に固定する固定構造とを備えている。さらに、熱交換パイプは、地中に略水平に埋設された水平部を有し、旋回気流発生装置は、熱交換パイプの水平部に所定の設置間隔で複数設置されており、設置間隔と熱交換パイプ内径との比率は50〜200である。
地熱利用システムは、地中に埋設された熱交換パイプに送風装置により室外空気または室内空気を送風させ、管内空気と地中熱との間に熱交換を行い、加熱または冷却された空気を冷暖房、融雪などに利用するものである。この場合、地中に埋設される熱交換パイプは、送風装置の配設位置から遠いところに位置しているため、パイプ内面の空気流が層流状態になり易い。層流状態では流体の熱伝導率が低いため、熱交換パイプの伝熱性能が低くなる。
ここでは、熱交換パイプ内に旋回気流発生装置を設置し、送風機から送られ熱交換パイプ内を流れる空気に旋回流を発生させている。熱交換パイプ内の空気が螺旋状に流れることにより、空気流と熱交換パイプと接触距離が長くなり、空気流と熱交換パイプとの熱交換量が大きくなる。また、熱交換パイプ内壁に近い部分の空気は乱流状態となり、熱交換パイプの熱伝達率が高くなる。その結果、熱交換パイプの熱交換効率が向上され、熱交換パイプの長さを短縮することができ、地熱利用システム全体のコストを削減することができる。
また、旋回気流発生装置の中心部には、回転軸が熱交換パイプの水平部と平行に配置され、回転方向に湾曲した複数の羽根部材が回転軸と直角に取り付けられており、複数の羽根部材の外周部には管状ハウジングが形成されている。このような構造を採用することで、より効率良く旋回気流を発生させることができると共に、羽根部材の送風による振動を抑えることができる。
また、旋回気流を発生させるため、湾曲した羽根部材の空気流れ方向の投影面積は、管状ハウジングの断面積の45%以上必要であり、好ましくは80%〜100%である。
熱交換パイプ内の結露水排水を妨げないため、管状ハウジングの厚さは強度を妨げない範囲でできるだけ薄いものを採用し、水の自然流下が可能な構造にすることが望ましい。
さらに、旋回気流の継続距離は横引き管口径と風速や内面摩擦抵抗により異なるが、直線配管部分でおおむね管内径(m)の50倍から200倍程度である。そこで、旋回気流発生装置の設置間隔(m)として管内径(m)×50〜200程度、好ましくは、管内径(m)×100〜150を目安とした間隔毎に設置することが好ましい。
発明に係る地熱利用システムは、第1発明に記載のシステムにおいて、熱交換パイプは空気吸込み口と空気吐出口とを有しており、前記空気吸込み口付近にはオゾン発生装置が配設されている。
夏場などの高温多湿の室外空気を熱交換パイプ内部に導入した場合に、熱交換によって室外空気が冷却され内壁に結露が発生じ、熱交換パイプ内にカビなどの雑菌が繁殖し、悪臭が発生する恐れがある。従来、雑菌の発生を抑制する対策として抗菌フィルターや活性炭フィルターを使用するものがある。しかしながら、抗菌フィルターや活性炭フィルターは定期的な交換が必要である。また、フィルターの設置により送風抵抗が増大し、送風機動力を増大させる必要がある。従来技術で使われる雑菌の発生を抑制するもう一つの対策として、平滑な横引き管に洗浄用の立ち上がり分岐口を地上まで設け、定期的な高圧洗浄等を行うものもある。しかし、熱交換効率を向上させるため、旋回気流発生装置を取り付けた場合、管内にホースを引き込むこと等ができず、高圧洗浄等の方法で内部を洗浄できない場合が発生する。
そこで、本発明では、カビ、雑菌の発生及びそれに伴う悪臭発生の対策として、吸い込み側付近にオゾン発生装置を設置した。オゾン発生装置の種類は特に限定していないが、物品のコストや消費電力から鑑みて、石英ガラスを使用した紫外線ランプ方式や沿面放電方式が好ましい。また、オゾン発生装置を設置することで、熱交換パイプ内を定期的に高圧洗浄する必要が無くなり、旋回気流発生装置を設置して熱交換効率を高めると共に、カビ、雑菌の発生及びそれに伴う悪臭を効果的に抑制することができる。
発明に係る地熱利用システムは、第発明に記載のシステムにおいて、 前記空気吸込み口における吸込み風量100m3/hに対し、前記オゾン発生装置のオゾン発生能力は0.5mg/h〜350mg/hである。
オゾン発生装置の発生能力については、オゾンが人体に与える影響とカビ、雑菌の発生及びそれに伴う悪臭抑制効果を鑑みて、吸い込み風量100m3/hに対し0.5mg/h〜350mg/hのオゾン発生能力のオゾン発生器を設置する。好ましくは1mg/h〜50mg/hの発生量が適量である。多すぎると独特のオゾン臭が残存し吹き出し部で臭気を感ずる事があり、少なすぎると湿度が高い状況や気温の高い状況では充分に効力が発揮できない場合などがある。
発明に係る地熱利用システムは、第1から第発明のいずれかに記載のシステムにおいて、熱交換パイプは硬質塩化ビニル樹脂で構成され、熱伝導率は0.5〜3.0w/m・Kであって、熱放射率は0.8以上であり、熱交換パイプ水平部の外周面には所定の間隔を隔てて複数の環状リブが形成されており、内周面は平滑面である。
熱交換パイプは、前記水平部が硬質塩化ビニル樹脂からなり、その外周面には所定間隔を隔てて複数の環状リブが形成されたものであってもよい。
この場合、熱交換パイプは、水平部が硬質塩化ビニル樹脂からなり、その外周面に所定間隔を隔てて複数の環状リブが形成されたものであるから、通常の硬質塩化ビニル製の円筒管よりも扁平強度を著しく高くすることができる。
そのため、本発明の熱交換パイプの水平部は、通常の円筒管よりも高い扁平強度とした状態で、環状リブのない薄肉部分の肉厚を通常の円筒管の1/2から1/4程度まで薄くすることができる。
したがって、熱交換パイプの水平部における薄肉部分を上記の範囲の肉厚とした場合には、通常の円筒管よりも、熱交換パイプの水平部内の空気と地中熱との熱交換率を著しく高くさせることができ、また、熱交換パイプを大幅に軽量化することができるので、運搬および施工現場での取り扱いが容易となり、この空調システムを導入するための初期費用を抑えることができる。
水平部は、熱伝導率が0.5〜3.0W/m・Kであって、且つ、熱放射率が0.8以上であることが好ましい。
この場合、熱交換パイプの水平部の熱伝導率は、通常の硬質塩化ビニル樹脂の熱伝導率0.18W/m・Kと比較して、土の熱伝導率0.7〜1.6W/m・Kに近い値であるから、熱交換パイプの水平部内の空気と地中熱との熱交換が円滑に行われ、熱交換率が向上する。ここで、この熱交換パイプの水平部の熱伝導率の下限値を0.5W/m・Kとしたのは、熱伝導率がこの値未満であると、熱交換パイプの水平部がその内部の空気と地中熱との熱交換を阻害してしまう虞があるからである。また、熱交換パイプの水平部の熱伝導率の上限値を3.0W/m・Kとしたのは、熱伝導率がこの値を超えると、硬質塩化ビニル樹脂の耐食性や成形性などの優れた機能を著しく低下させてしまう虞があるからである。
また、熱交換パイプの水平部は、熱放射率が0.8以上であるため、熱放射率0.8未満である通常の硬質塩化ビニル管とは異なり、熱交換パイプの水平部自体に留まる熱量を減少でき、熱交換パイプの水平部内の空気と地中熱との熱交換率を向上させることができる。
本発明の一実施形態に係る地熱利用システムを、図1に示す。地熱利用システム100は、送風機1と、熱交換パイプ4と、旋回気流発生装置3とを備えている。熱交換パイプ4の一端側には空気吸込み口2、他端側には空気吹き出し口5が設けられており、空気吸込み口2の近くにはオゾン発生装置6が設けられている。熱交換パイプ4の地下埋設部分には排水管7が取り付けられている。図1では、送風機1が空気吸込み口2側に設置され、外部空気を熱交換パイプ4に送風している。このシステムは、例えば気温が30℃の暑い時期、空気吸込み口2側に設置された送風機1により、30℃の外部空気を熱交換パイプ4に送風し、温度が17℃の地中に埋設されている水平部42で熱交換を行い、例えば22℃まで冷却させた後、空気吹き出し口5で室内に供給される空調システムである。
<熱交換パイプの構成>
図1に示すように、熱交換パイプ4は、地上と地中との間で空気を誘導する垂直部41と地中に略水平に配置された水平部42とを備えている。また、本実施形態における地熱利用システム100の熱交換パイプ4は、硬質塩化ビニル樹脂を用いている。硬質塩化ビニル樹脂は酸やアルカリなど様々な環境下において良好な耐食性を有しており、材料コストおよび製造コストが比較的安価であるため、熱交換パイプ4に適しているからである。
また、熱交換パイプ4の形状は、図4に示すように、外周面に所定間隔Pを隔てて複数の環状リブ421が形成されている。これにより、通常の円筒管に比べ扁平強度を飛躍的に向上させることができる。結果として、本実施の形態の熱交換パイプ4は通常の円筒管より高い扁平強度を有しているため、環状リブ421のない薄肉部分の肉厚を通常の円筒管の1/2〜1/4とすることができる。したがって、熱交換パイプ4の薄肉部分を上記の範囲の肉厚とした場合には、通常の円筒管よりも、熱交換パイプ4内の空気と地中熱との熱交換率を著しく高くすることができる。また、熱交換パイプ4を大幅に軽量化(例えば、60%前後くらいに)することができるので、運搬および施工現場での取り扱いを容易に行える。
上記熱交換パイプ4の環状リブ421同士の間隔Pは、表1、表2に示すように、熱交換パイプ4の内径に対して8〜15%の長さとなるように形成するとよく、また、環状リブ421の厚みは、3〜7mm程度とするとよく、さらに、環状リブ421の高さは、熱交換パイプ4の内径に対して2〜10%程度となるように形成するとよい。熱交換パイプ4の環状リブ421をこのような構造とすることにより、熱交換パイプ4は、地中に埋設するには十分な扁平強度が得られ、且つ、熱交換に最も寄与する横引き管20の薄肉部分の領域を十分に確保することができる。
また、熱交換パイプ4は、熱伝導率が0.5〜3.0W/m・Kであって、且つ、熱放射率が0.8以上であることが好ましい。この場合、熱交換パイプ4の熱伝導率は、通常の硬質塩化ビニル樹脂の熱伝導率0.18W/m・Kと比較して、土の熱伝導率0.7〜1.6W/m・Kに近い値であるから、熱交換パイプ4内の空気と地中熱との熱交換が円滑に行われ、熱交換率が向上する。ここで、この熱交換パイプ4の熱伝導率の下限値を0.5W/m・Kとしたのは、熱伝導率がこの値未満であると、熱交換パイプ4がその内部の空気と地中熱との熱交換を阻害してしまう虞があるからである。また、熱交換パイプ4の熱伝導率の上限値を3.0W/m・Kとしたのは、熱伝導率がこの値を超えると、硬質塩化ビニル樹脂の耐食性や成形性などの優れた機能を著しく低下させてしまう虞があるからである。
また、熱交換パイプ4は、熱放射率が0.8以上であるため、熱放射率0.8未満である通常の硬質塩化ビニル管とは異なり、熱交換パイプ4自体に留まる熱量を減少でき、熱交換パイプ4内の空気と地中熱との熱交換率を向上させることができる。
上記したように、熱交換パイプ4の熱伝導率を0.5〜3.0W/m・Kとし、且つ、熱放射率を0.8以上とするためには、硬質塩化ビニル樹脂に熱伝導率の高い材料および熱放射率の高い材料を含有させるとよい。
上記熱交換部22の熱伝導率を向上させるために含有させる材料としては、特に限定するものではなく、例えば、鉄、すず、亜鉛、金、銅、銀、クロム、チタン、マグネシウムなどの金属やそれらの酸化物、アルミナや窒化珪素などの無機材料、および、カーボングラファイトなどをそれぞれ単体でまたは複数を混合したものなどがあげられる。
この熱伝導率を上げる含有物の形状としては、特に限定するものではないが、例えば、粒状のものや針状のものなどがあげられる。
上記粒状の含有物を硬質塩化ビニル樹脂内に含有させた場合、この含有物は硬質塩化ビニル樹脂中で海島構造となってしまい、それぞれの含有物が硬質塩化ビニル樹脂中で分断された状態となることが多い。その場合、含有物を介した熱の伝導が不十分となるため、熱伝導率の高い材料を含有させても熱交換部22の熱伝導率を向上させる効果が少なくなってしまう。
このような場合には、硬質塩化ビニル樹脂内に、粒状の材料と針状の材料とを混在させて含有させるのが好ましい。これにより、粒状の含有物が硬質塩化ビニル樹脂中に海島構造となって含有物同士が互いに分断された状態となっていても、針状の含有物を混在させることで海島構造の粒状の含有物を針状の含有物がそれぞれ繋げることとなり、含有物の含有量をそれほど多くしなくても熱交換部22の熱伝導率を向上させることができる。
また、上記熱交換部22の熱放射率を向上させるために含有させる材料としては、特に限定するものではなく、例えば、酸化ケイ素、酸化チタン、酸化マンガン、珪酸ナトリウム、炭化ケイ素、カーボンブラック、酸化マグネシウム、および、天然の蛇紋石などがあげられる。
ここで、上記した熱放射率を向上させる材料のうち、酸化マグネシウム以外は硬質塩化ビニル樹脂に含有させても上記した熱伝導率を向上させることができず、さらには熱伝導率を低下させてしまうものもあるため、熱放射率を向上させる材料と熱伝導率を向上させる材料との含有量を調整することが重要である。
この放射率を上げる含有物の形状としては、特に限定するものではなく、例えば、粒状のものや針状のものなどがあげられる。
また、硬質塩化ビニル樹脂に各種粘度調整剤や界面活性剤を添加して成形性を向上させてもよい。
さらに、硬質塩化ビニル樹脂に付加的機能を有する材料を添加してもよく、このような材料としては、例えば、紫外線吸収剤、滑剤、帯電防止剤、耐光性改良剤、難燃剤、結露防止剤、充填剤、着色剤、補強剤、および、繊維などがあげられる。
この熱伝導率を上げる含有物の硬質塩化ビニル樹脂への含有量としては、上記熱伝導率を達成するためには1〜50wt%程度必要であるが、熱交換パイプ4の耐食性や扁平強度などの性能および成形性などを考慮すると3〜33wt%とするとよく、さらに3〜20wt%の範囲とするのが好ましい。
この放射率を上げる含有物の硬質塩化ビニル樹脂への含有量は、少なすぎると放射率を上昇させる効果が少なく、多すぎると成形性が悪くなるため、1〜33wt%程度とするのが好ましく、さらには3〜20wt%程度とするのが好ましい。
上記熱交換パイプ4の成形方法としては、特に限定するものではなく、例えば、押出成形によって硬質塩化ビニル樹脂の円筒体を成形した後、この樹脂が凝固する前に円筒体の外周面にコルゲートマシンで環状リブ421を成形する方法や、中空成形、回転成形、射出成形などによって熱交換パイプ4の最終形状を一気に成形する方法などがあげられる。
熱交換パイプ4の内径としては、特に限定するものではなく、例えば、150〜300mmとするのが好ましい。この熱交換パイプ4の内径が150mm以下であった場合、後述する送風機1によって熱交換パイプ4内の風速を制御する場合に、送風機1の送風量を僅かに調節しただけで、熱交換パイプ4内の風速が大きく変化してしまうため、熱交換パイプ4内の風速の制御が難しくなってしまう。また、この熱交換パイプ4の内径が500mm以上であった場合、熱交換パイプ4の重量が重くなってしまうため、運搬および施工現場での取り扱いが容易でなくなってしまい、施工コストが高額になってしまう。
Figure 0005331328
実施寸法例
Figure 0005331328
比較寸法例(硬質塩化ビニル管:VP・VU−JISK6741)
<送風装置の構成>
送風機1は、熱交換パイプ4内に室外空気を導入するためのものである。送風機1としては、特に限定するものではなく、例えば、回転数を制御することができるファンなどを用いるのが好ましい。このようなファンを用いることで、熱交換パイプ4内の風速をファンの回転数を制御することによって行えるため、熱交換パイプ4内で空気の流速が速すぎて空気と地中熱との熱交換が不十分になるといったことがない。また、内径が150〜300mmの範囲の熱交換パイプ4を用いた場合、送風機1によって熱交換パイプ4内の空気の流速を8m/s以下となるように制御すると、熱交換パイプ4内の空気と地中熱との熱交換を良好に行わせることができる。
<旋回気流発生装置の構成>
旋回気流発生装置3は、回転軸31に固定された複数の羽根部材32と、複数の羽根部材32の外部に形成されたハウジング33と、ハウジング33を熱交換パイプに固定する固定構造(図示せず)とを備えている。
旋回気流発生装置3の中心部には、回転軸31が熱交換パイプ4の水平部41と平行に配置されている。回転方向に湾曲した複数の羽根部材32が回転軸31と直角に取り付けられている。より強力な旋回気流を発生させるため、湾曲した羽根部材の空気流れ方向の投影面積は、管状ハウジングの断面積の40%以上必要であり、好ましくは80%〜100%である。
また、複数の羽根部材32の外周部には管状ハウジング33が形成されている。熱交換パイプ4内の結露水排水を妨げないため、管状ハウジング33の厚さは強度を妨げない範囲でできるだけ薄いものを採用し、水の自然流下が可能な構造にすることが望ましい。
このような旋回気流発生装置3の構造を採用することで、より効率良く旋回気流を発生させることができると共に、羽根部材32の送風による振動を抑えることができる。
また、熱交換パイプ水平部42には、所定の設置間隔Pで複数の旋回気流発生装置3が設置されている。一つの旋回気流発生装置3により発生した旋回気流の継続距離は、熱交換パイプの直径及び風速や内面摩擦抵抗によって異なる。ただし、直線配管部分において、旋回気流の継続距離はおおむね管内径d(m)の50倍から200倍程度であるので、設置間隔P(m)として管内径(m)×50〜200程度、好ましくは、管内径(m)×100〜150を目安とした間隔毎に設置することが好ましい。
<オゾン発生装置の構成>
熱交換パイプ4の空気吸込み口2には、石英ガラスを使用した紫外線ランプ式オゾン発生装置6が配設されている。オゾン発生装置6のオゾン発生量については、オゾンが人体に与える影響とカビ、雑菌の発生及びそれに伴う悪臭抑制効果を鑑みて、吸い込み風量100m3/hに対し0.5mg/h〜350mg/hのものを設置した。オゾン発生量は、好ましくは1mg/h〜50mg/hの発生量が適量である。オゾン発生量が多すぎると独特のオゾン臭が残存し吹き出し部で臭気を感ずる事があり、少なすぎると温度や湿度が高い状況や吸い込み空気のカビ・雑菌量変化(都市と山間部等)により、充分に効力が発揮できない場合があるからである。
(1)実験1
図1に示す地熱利用システム1を用いて、温度が高い室外空気を熱交換パイプに送風して冷却させる際、旋回気流発生装置の有無が熱交換効率に与える影響について評価を行った。この実験では、気温30℃の夏期に、表1に示す環状リブを有する内径dが200mmの熱交換パイプ4の水平部42を地下1.8mに埋設し、旋回気流発生装置3の配置間隔は30mに配置した。また、水平部42には1m毎に熱電対を設置し、管内空気温度の計測を行い、30℃の室外空気が地中熱により22℃まで冷却されるまでの距離を計算した。また、旋回気流発生装置3を設置しなかった場合、同様の温度が30℃の室外空気を熱交換パイプ4に送風し、地中熱で22℃まで到達するまでの距離を計算した。
その結果、図2に示す旋回気流発生装置3を配置してなかったケースでは、平均気温が30℃の外部空気を熱交換パイプ4に送風し、水平部42の入口から計測して直線方向に42m下流位置で22℃まで冷却された。しかし、旋回気流発生装置3を設置したケースでは、水平部42の入口から計測して直線方向に29m下流位置で22℃まで冷却された。
(2)実験2
旋回気流発生装置3を設置した場合、熱交換パイプの水平部42における空気の流動状態に関するシミュレーション実験を行った。図3に示すように、水平部42の入口における風の流れは層流状態である。空気が旋回気流発生装置3を経過する際、湾曲された羽根部材32が回転軸31を中心に回転するため、空気に旋回気流が発生し、熱交換パイプ内の空気が螺旋状に流れることになる。また、熱交換パイプ内壁に近い部分の空気は乱流状態となっている。
(3)実験3
実験1と同様の条件で、空気吸込み口2にオゾン発生装置6を取り付けた場合とのオゾン発生装置6を取り付けてない場合との除菌効果について評価を行った。この実験では、送風装置1の吸い込み風量が800m3/h、オゾンランプのオゾン発生能力が10mg/hのものを用い、空気吹き出し口5からの一般細菌を検出する細菌検出器(図示せず)を設置し、検出される細菌数を計測した。
その結果、オゾンランプを設置しなかったケースでは、空気吹き出し口5にて一般落下細菌が190個検出された。しかし、オゾンランプを設置したケースでは、空気吹き出し口5にて一般落下細菌が8個に減少したことが確認された。
(4)実験4
実験1と同様の条件で、熱交換パイプ4の硬質塩化ビニル樹脂中に平均粒径12μmのアルミナを10wt%、長さ300μmのカーボン短繊維を3wt%、および、酸化マグネシウムを5wt%含有させて、熱伝導率0.6W/m・Kおよび熱放射率0.82としたものを用いた。
その結果、図2に示す旋回気流発生装置3を配置してなかったケースでは、平均気温が30℃の外部空気を熱交換パイプ4に送風し、水平部42の入口から計測して直線方向に39m下流位置で22℃まで冷却された。しかし、旋回気流発生装置3を設置したケースでは、水平部42の入口から計測して直線方向に27m下流位置で22℃まで冷却され、熱交換性能が向上したことが確認された。
<発明の効果>
以上の説明で述べたように、本発明によれば、以下の効果が得られる。
本発明では、熱交換パイプ内に旋回気流発生装置を設置し、送風機から送られ熱交換パイプ内を流れる空気に旋回流を発生させている。したがって、熱交換パイプ内の空気が螺旋状に流れることにより、空気流と熱交換パイプと接触距離が長くなり、空気流と熱交換パイプとの熱交換量が大きくなる。また、熱交換パイプ内壁に近い部分の空気は乱流状態となり、熱交換パイプの熱伝達率が高くなる。その結果、熱交換パイプの熱交換効率が向上され、熱交換パイプの長さを短縮することができ、地熱利用システム全体のコストを削減することができる。
また、本発明に係る地熱利用システムは、熱交換パイプの空気吸込み口付近にオゾン発生装置が配設されている。これにより、送風能力を上げる必要が無くなり、熱交換パイプ内を定期的に高圧洗浄する必要も無く、旋回気流発生装置を設置して熱交換効率を高めると共に、カビ、雑菌の発生及びそれに伴う悪臭を効果的に抑制することができる。
<変形例>
(A)
上述した実施例においては、図1に示すように、送風機1が室外に設けられた空気吸込み口2側に設置され、熱交換パイプを介して温度の室外の空気を地熱で冷却させて室内に供給する冷房システムについて説明したが、温度の低い室外空気を地熱で暖めて室内に供給する暖房システムにも採用することができる。
(B)
また、空気吸込み口2も室内に設けられ、送風機1は空気吹き出し口5側または空気吸込み口2のいずれかに設置され、室内空気を熱交換パイプ4に送風し、地中で熱交換した後再度室内に戻すシステムも可能である。
(C)
さらに、室内空気の温度を調整する空調システムのみならず、融雪の際も本願の地熱利用システムを採用することができる。融雪のために本発明を採用する場合、オゾン発生装置を設置しなくても良い。
(D)
上述した実施例においては、図2(a)(b)に示すように、旋回気流発生装置3が熱交換パイプ4に固定されている構造を採用しているが、必ずしも固定していなくても良い。また、旋回気流発生装置3は羽根部材32を有する構造であるが、旋回気流を発生することができる装置であれば、必ずしも羽根状の構造に拘らない。例えば、弊社商品ドロップシャフトやラセンDVLPのようならせん形状の構造でもよい。
本発明における地熱利用システムを示す概略図 (a)旋回気流発生装置の斜視図。(b)旋回気流発生装置の断面図。 旋回気流発生装置による旋回流シミュレーション図。 (a)熱交換パイプの斜視図。(b)熱交換パイプのリブ詳細図。
1 送風機
100 地熱利用システム
2 空気吸込み口
3 旋回気流発生装置
31 回転軸
32 羽根部材
33 ハウジング
4 熱交換パイプ
41 垂直部
42 水平部
5 空気吹き出し口
6 オゾン発生装置
7 排水管

Claims (4)

  1. 少なくとも一部が地中に埋設され、管内を流れる空気と地熱との間で熱交換を行う熱交換パイプと、
    室外空気または室内空気を前記熱交換パイプ内に送風する送風装置と、
    前記熱交換パイプ内に設置され、前記送風機から送られ熱交換パイプ内を流れる空気に旋回流を発生させる旋回気流発生装置と、
    を備え、
    前記旋回気流発生装置は、回転軸に固定された複数の羽根部材と、前記複数の羽根部材の外側に形成されたハウジングと、前記ハウジングを前記熱交換パイプ内に固定する固定構造と、を有し
    前記熱交換パイプは、地中に略水平に埋設された水平部を有し、
    前記旋回気流発生装置は、前記熱交換パイプの水平部内に所定の設置間隔で複数設置されており、前記設置間隔と前記熱交換パイプの内径との比は50〜200:1である、
    地熱利用システム。
  2. 前記熱交換パイプには空気吸込み口と空気吐出口とが形成されており、
    前記空気吸込み口付近に配設されるオゾン発生装置をさらに備えている、
    請求項1に記載の地熱利用システム。
  3. 前記空気吸込み口における吸込み風量100m3/hに対し、前記オゾン発生装置のオゾン発生能力は0.5mg/h〜350mg/hである、
    請求項に記載の地熱利用システム
  4. 前記熱交換パイプは硬質塩化ビニル樹脂で構成され、
    前記熱交換パイプの外周面には所定の間隔を隔てて複数の環状リブが形成されており、 前記熱交換パイプの内周面は平滑面であり、
    前記熱交換パイプの熱伝導率は0.5〜3.0w/m・Kであって、
    前記熱交換パイプの熱放射率は0.8以上である、
    請求項1からのいずれかに記載の地熱利用システム。
JP2007306010A 2007-11-27 2007-11-27 地熱利用システム Active JP5331328B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306010A JP5331328B2 (ja) 2007-11-27 2007-11-27 地熱利用システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306010A JP5331328B2 (ja) 2007-11-27 2007-11-27 地熱利用システム

Publications (2)

Publication Number Publication Date
JP2009127982A JP2009127982A (ja) 2009-06-11
JP5331328B2 true JP5331328B2 (ja) 2013-10-30

Family

ID=40819092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306010A Active JP5331328B2 (ja) 2007-11-27 2007-11-27 地熱利用システム

Country Status (1)

Country Link
JP (1) JP5331328B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018660A1 (ja) * 2011-07-29 2013-02-07 株式会社ジャスト東海 熱交換ユニット及びそれを用いた太陽電池パネル吸放熱システム
JP5926597B2 (ja) * 2012-04-03 2016-05-25 積水化学工業株式会社 融雪システム及び建物
JP6157816B2 (ja) * 2012-08-27 2017-07-05 積水化学北海道株式会社 雪冷熱利用設備
JP5984293B2 (ja) * 2012-08-27 2016-09-06 積水化学北海道株式会社 融雪速度調整システム、および融雪速度調整方法
JP5955823B2 (ja) * 2013-11-11 2016-07-20 エコエネルギーシステムズ株式会社 地中熱交換システム
JP6386325B2 (ja) * 2014-09-30 2018-09-05 積水化学工業株式会社 地中熱交換空調システム
JP6549827B2 (ja) * 2014-09-30 2019-07-24 積水化学工業株式会社 地中埋設管の接続構造
JP6172366B2 (ja) * 2016-08-25 2017-08-02 Jfeスチール株式会社 地中熱交換器
CN112753563A (zh) * 2019-11-04 2021-05-07 杨智杰 辅助授粉系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760149A (en) * 1980-09-30 1982-04-10 Matsushita Electric Works Ltd Cooling device for domestic use
JPS61165531A (ja) * 1985-01-17 1986-07-26 Sapporo Aruna Kk 建物室内への外気導入装置
JPS62255693A (ja) * 1986-04-28 1987-11-07 株式会社明電舎 放熱パイプ
JPS63263331A (ja) * 1987-04-20 1988-10-31 Matsushita Electric Ind Co Ltd 空気調和機
JPS6428726U (ja) * 1987-08-12 1989-02-20
JPH0255129A (ja) * 1988-08-22 1990-02-23 Kawai Musical Instr Mfg Co Ltd 電滋波波長変換フィルム
JPH0351640A (ja) * 1989-07-19 1991-03-06 Hideharu Aizawa 住宅用通気装置
JPH08206480A (ja) * 1995-01-31 1996-08-13 Noritake Co Ltd スタティックミキサ装置
JPH08303987A (ja) * 1995-05-10 1996-11-22 Toyo Gijutsu Kogyo Kk 旋回流体を用いた熱交換器
JPH09201402A (ja) * 1996-01-30 1997-08-05 Matsushita Electric Works Ltd 消臭・除菌装置
JP4507145B2 (ja) * 2000-07-13 2010-07-21 ユーキャン株式会社 超音波加湿器の制御方法
JP3814473B2 (ja) * 2000-08-23 2006-08-30 松下エコシステムズ株式会社 空気供給装置
JP2002361056A (ja) * 2001-06-06 2002-12-17 Mitsubishi Heavy Ind Ltd 流体混合器
JP2004239600A (ja) * 2003-01-17 2004-08-26 Usui Kokusai Sangyo Kaisha Ltd 樹脂材製フィン部材を外装した伝熱管
JP2004340463A (ja) * 2003-05-15 2004-12-02 K & S Japan Kk 地熱を利用した空調装置
JP4417030B2 (ja) * 2003-05-23 2010-02-17 株式会社豊田中央研究所 脱臭装置及び脱臭方法
JP2005326128A (ja) * 2004-05-17 2005-11-24 Kobayashi Shigeru 地熱を利用する熱交換器及び冷暖房装置

Also Published As

Publication number Publication date
JP2009127982A (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5331328B2 (ja) 地熱利用システム
CN107355937B (zh) 热管热回收式净化新风机
JP4791895B2 (ja) 地熱利用空調システム
JP2008116191A (ja) 地中熱利用換気空調システムおよびその浄化熱交換装置
JP2011102676A (ja) 地下水熱を利用した空調システム
CN105910173A (zh) 空调室内机
JP2007127374A (ja) 一体型空気調和機
JP6374748B2 (ja) 地中熱交換空調システム
JP2006153332A (ja) 空気調和機の室外機
CN204693544U (zh) 一种厨房用斜管式预热器
JP2008241060A (ja) 空気調和機の室内機
KR20110135325A (ko) 동력없이 자연 열교환하는 도어손잡이 환기장치
JP6236254B2 (ja) 地中熱交換器及びこれを用いた空調システム
JP2008101378A (ja) 地熱利用融雪システム
CN203421825U (zh) 吸风式暖风机
CN106322469A (zh) 油烟机及其调温送风系统
JP2004270971A (ja) 成層空調の成層高さの制御方法及び成層空調システム
JP2011226776A (ja) 冷暖房装置
CN104833072B (zh) 一种适用于大面积小负荷送风的冬夏两用送风口
CN209541134U (zh) 一种风机盘管用洁净排水装置
CN107687671A (zh) 室内机和空调系统
TWI325486B (ja)
KR100818955B1 (ko) 지열을 이용한 냉난방시스템
JP4197665B2 (ja) 簡易冷房装置
JP6386325B2 (ja) 地中熱交換空調システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150