JP5330366B2 - 導波路とプラズモン発生器を備えた近接場光発生器の製造方法 - Google Patents

導波路とプラズモン発生器を備えた近接場光発生器の製造方法 Download PDF

Info

Publication number
JP5330366B2
JP5330366B2 JP2010283227A JP2010283227A JP5330366B2 JP 5330366 B2 JP5330366 B2 JP 5330366B2 JP 2010283227 A JP2010283227 A JP 2010283227A JP 2010283227 A JP2010283227 A JP 2010283227A JP 5330366 B2 JP5330366 B2 JP 5330366B2
Authority
JP
Japan
Prior art keywords
waveguide
opening
layer
initial
field light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010283227A
Other languages
English (en)
Other versions
JP2012003830A (ja
Inventor
宏典 荒木
芳高 佐々木
浩幸 伊藤
茂樹 種村
和夫 石崎
雄大 堀中
Original Assignee
ヘッドウェイテクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘッドウェイテクノロジーズ インコーポレイテッド filed Critical ヘッドウェイテクノロジーズ インコーポレイテッド
Publication of JP2012003830A publication Critical patent/JP2012003830A/ja
Application granted granted Critical
Publication of JP5330366B2 publication Critical patent/JP5330366B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)

Description

本発明は、記録媒体に近接場光を照射して記録媒体の保磁力を低下させて情報の記録を行う熱アシスト磁気記録に用いられる近接場光発生器の製造方法に関する。
近年、磁気ディスク装置等の磁気記録装置では、高記録密度化に伴い、薄膜磁気ヘッドおよび記録媒体の性能向上が要求されている。薄膜磁気ヘッドとしては、基板に対して、読み出し用の磁気抵抗効果素子(以下、MR(Magnetoresistive)素子とも記す。)を有する再生ヘッドと書き込み用の誘導型電磁変換素子を有する記録ヘッドとを積層した構造の複合型薄膜磁気ヘッドが広く用いられている。磁気ディスク装置において、薄膜磁気ヘッドは、磁気記録媒体の表面からわずかに浮上するスライダに設けられる。
磁気記録装置において、記録密度を高めるためには、記録媒体の磁性微粒子を小さくすることが効果的である。しかし、磁性微粒子を小さくすると、磁性微粒子の磁化の熱安定性が低下するという問題が発生する。この問題を解消するには、磁性微粒子の異方性エネルギーを大きくすることが効果的である。しかし、磁性微粒子の異方性エネルギーを大きくすると、記録媒体の保磁力が大きくなって、既存の磁気ヘッドでは情報の記録が困難になるという問題が発生する。
上述のような問題を解決する方法として、いわゆる熱アシスト磁気記録という方法が提案されている。この方法では、保磁力の大きな記録媒体を使用し、情報の記録時には、記録媒体のうち情報が記録される部分に対して磁界と同時に熱も加えて、その部分の温度を上昇させ保磁力を低下させて情報の記録を行う。情報が記録された部分は、その後、温度が低下して保磁力が大きくなり、磁化の熱安定性が高まる。以下、熱アシスト磁気記録に用いられる磁気ヘッドを、熱アシスト磁気記録ヘッドと呼ぶ。
熱アシスト磁気記録では、記録媒体に対して熱を加える方法としては、近接場光を用いる方法が一般的である。近接場光を発生させる方法としては、例えば特許文献1に記載されているように、微小な金属片であるプラズモン・アンテナにレーザ光を照射する方法が知られている。プラズモン・アンテナでは、照射されたレーザ光によって表面プラズモンが励起され、この表面プラズモンに基づいて近接場光が発生される。プラズモン・アンテナより発生される近接場光は、光の回折限界よりも小さな領域にのみ存在する。この近接場光を記録媒体に照射することにより、記録媒体における微小な領域のみを加熱することができる。
特開2008−59697号公報
ところで、従来の熱アシスト磁気記録ヘッドでは、レーザ光をプラズモン・アンテナに直接照射し、このプラズモン・アンテナによってレーザ光を近接場光に変換していた。この場合、レーザ光がプラズモン・アンテナの表面で反射されたり、熱エネルギーに変換されてプラズモン・アンテナに吸収されたりすることから、レーザ光の利用効率が悪いという問題点があった。
また、従来のプラズモン・アンテナは、光の波長以下のサイズを有することから、その体積は小さい。そのため、従来のプラズモン・アンテナでは、上記の熱エネルギーの吸収に伴う温度上昇が大きく、その結果、プラズモン・アンテナが膨張し、記録媒体に対向する面である媒体対向面から突出して、記録媒体を傷付ける等の問題が発生していた。
そこで、導波路(コア)の外面に対して、所定の間隔を開けて、近接場光を発生する金属片であるプラズモン発生器の外面を対向させて、導波路を伝播する光が導波路の外面で全反射して発生するエバネッセント光を利用して、プラズモン発生器に表面プラズモンを励起させる技術が提案されている。
熱アシスト磁気記録ヘッドの構成としては、プラズモン発生器を、エッジ部を有する形状とし、導波路の外面に対して所定の間隔を開けてプラズモン発生器のエッジ部を対向させた構成が考えられる。この構成において、導波路の外面とプラズモン発生器との間には、導波路の屈折率よりも小さい屈折率を有するクラッドの一部が介在している。上記のプラズモン発生器では、媒体対向面に配置されたエッジ部の端部が近接場光発生部となる。このプラズモン発生器では、導波路の外面で発生するエバネッセント光に基づいてエッジ部に表面プラズモンが励起され、この表面プラズモンは、エッジ部に沿って近接場光発生部まで伝播され、この表面プラズモンに基づいて近接場光発生部より近接場光が発生される。この構成によれば、プラズモン発生器のエッジ部に励起された表面プラズモンを、効率よく、近接場光発生部まで伝播させることができる。
上記の構成では、プラズモン発生器のエッジ部に適切に表面プラズモンを励起させるためには、導波路の外面とプラズモン発生器のエッジ部との間隔を適切に制御することが重要である。また、磁気記録装置における記録密度をより大きくするためには、近接場光のスポット径は、より小さい方が好ましい。上記の構成を採用する場合には、スポット径をより小さくするためには、媒体対向面に配置されたエッジ部の端部の曲率半径をより小さくすることが効果的である。
上記の構成におけるプラズモン発生器の形成方法としては、以下のような方法が考えられる。この方法では、まず、導波路の上に誘電体層を形成する。次に、誘電体層に、媒体対向面に平行な断面における形状がV字形状の溝部を形成する。この溝部は、溝部の底が導波路の外面(上面)に達しないように形成される。次に、溝部の表面に沿って誘電体膜を形成する。次に、誘電体膜の上にプラズモン発生器を形成する。誘電体層および誘電体膜は、クラッドの一部を構成する。
上記のプラズモン発生器の形成方法では、溝部の深さがばらつくことにより、導波路の外面とプラズモン発生器のエッジ部との間隔がばらつくという問題点がある。また、上記のプラズモン発生器の形成方法では、プラズモン発生器のエッジ部が丸みを帯びるため、エッジ部の曲率半径を小さくすることが難しく、その結果、近接場光のスポット径を小さくすることが難しいという問題点がある。
本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、導波路の外面とプラズモン発生器のエッジ部とが対向するように配置された導波路とプラズモン発生器とを備えた近接場光発生器において、導波路の外面とプラズモン発生器のエッジ部との間隔のばらつきを小さくすることができるようにした近接場光発生器の製造方法を提供することにある。
本発明の第2の目的は、上記第1の目的に加え、上記プラズモン発生器のエッジ部の曲率半径を小さくすることができるようにした近接場光発生器の製造方法を提供することにある。
本発明の第1の製造方法によって製造される近接場光発生器は、
上面を有し、光を伝播させる導波路と、
導波路の上面に接する下面と、その反対側の上面と、この上面から下面にかけて貫通する開口部とを有するクラッド層と、
少なくとも一部が開口部内に収容されたプラズモン発生器と、
開口部内において、導波路およびクラッド層とプラズモン発生器との間に介在する誘電体膜とを備えている。
クラッド層と誘電体膜は、いずれも、導波路の屈折率よりも小さい屈折率を有している。開口部は、導波路の上面に近づくに従って互いの距離が小さくなる第1および第2の開口部側壁を有している。プラズモン発生器は、第1の開口部側壁に対向する第1の斜面と、第2の開口部側壁に対向する第2の斜面と、第1および第2の斜面を接続するエッジ部と、エッジ部の一端に位置し、近接場光を発生する近接場光発生部とを有している。エッジ部において、導波路を伝播する光に基づいて導波路の上面において発生するエバネッセント光と結合することによって表面プラズモンが励起され、この表面プラズモンがエッジ部に沿って近接場光発生部に伝播され、この表面プラズモンに基づいて近接場光発生部より近接場光が発生される。
本発明の第1の近接場光発生器の製造方法は、
導波路を形成する工程と、
導波路の上に、後に開口部が形成されることによってクラッド層となる初期クラッド層を形成する工程と、
導波路の上面に達しない凹部が初期クラッド層に形成されるように、反応性イオンエッチングを用いて初期クラッド層をエッチングする工程と、
凹部が開口部となり、初期クラッド層がクラッド層となるように、導波路の上面の一部が露出するまで、ウェットエッチングを用いて凹部をエッチングする工程と、
開口部内に誘電体膜を形成する工程と、
誘電体膜の上にプラズモン発生器を形成する工程とを備えている。
本発明の第1の近接場光発生器の製造方法において、初期クラッド層はアルミナによって形成され、初期クラッド層をエッチングする工程は、ClおよびBClと、NとCFの少なくとも一方とを含むエッチングガスを用いてもよい。
また、本発明の第1の近接場光発生器の製造方法において、凹部をエッチングする工程は、導波路の上面においてエッチングが停止する条件で行われてもよい。この場合、導波路は酸化タンタルによって形成され、初期クラッド層はアルミナによって形成され、凹部をエッチングする工程は、テトラメチルアンモニウムハイドロオキサイドまたはKOHを含むエッチング液を用いてもよい。
また、本発明の第1の近接場光発生器の製造方法において、誘電体膜は、原子層堆積法によって形成されてもよい。
本発明の第2の製造方法によって製造される近接場光発生器は、
上面と、この上面で開口し、この上面に平行な方向に長い溝部とを有し、光を伝播させる導波路と、
導波路の上面に接する下面と、その反対側の上面と、この上面から下面にかけて貫通して溝部に連続する開口部とを有するクラッド層と、
少なくとも一部が開口部部内に収容されたプラズモン発生器と、
溝部および開口部内において、導波路およびクラッド層とプラズモン発生器との間に介在する誘電体膜とを備えている。
クラッド層と誘電体膜は、いずれも、導波路の屈折率よりも小さい屈折率を有している。開口部は、導波路の上面に近づくに従って互いの距離が小さくなる第1および第2の開口部側壁を有している。溝部は、第1の開口部側壁に連続する第1の溝部側壁と、第2の開口部側壁に連続する第2の溝部側壁とを有している。プラズモン発生器は、第1の開口部側壁におよび第1の溝部側壁に対向する第1の斜面と、第2の開口部側壁におよび第2の溝部側壁に対向する第2の斜面と、第1および第2の斜面を接続するエッジ部と、エッジ部の一端に位置し、近接場光を発生する近接場光発生部とを有している。エッジ部において、導波路を伝播する光に基づいて溝部の表面において発生するエバネッセント光と結合することによって表面プラズモンが励起され、この表面プラズモンがエッジ部に沿って近接場光発生部に伝播され、この表面プラズモンに基づいて近接場光発生部より近接場光が発生される。
本発明の第2の近接場光発生器の製造方法は、
後に溝部が形成されることによって導波路となる初期導波路を形成する工程と、
初期導波路の上に、後に開口部が形成されることによってクラッド層となる初期クラッド層を形成する工程と、
開口部および溝部が形成されて、初期導波路が導波路となり、初期クラッド層がクラッド層となるように、反応性イオンエッチングを用いて、初期クラッド層および初期導波路を連続的にエッチングする工程と、
開口部および溝部内に誘電体膜を形成する工程と、
誘電体膜の上にプラズモン発生器を形成する工程とを備えている。
初期クラッド層および初期導波路を連続的にエッチングする工程は、初期導波路のエッチング速度が初期クラッド層のエッチング速度よりも大きい条件で行われる。これにより、第1および第2の溝部側壁が導波路の上面に平行な仮想の平面に対してなす角度は、それぞれ、第1および第2の開口部側壁が上記仮想の平面に対してなす角度よりも大きくなる。開口部および溝部内に誘電体膜が形成され、誘電体膜の上にプラズモン発生器が形成されることにより、第1および第2の斜面は、それぞれ、連続する上部と下部とを含み、第1および第2の斜面の下部が上記仮想の平面に対してなす角度は、それぞれ、第1および第2の斜面の上部が上記仮想の平面に対してなす角度よりも大きくなる。
本発明の第2の近接場光発生器の製造方法において、初期導波路は酸化タンタルによって形成され、初期クラッド層はアルミナによって形成されてもよい。この場合、初期クラッド層および初期導波路を連続的にエッチングする工程は、ClおよびBClと、NとCFの少なくとも一方とを含むエッチングガスを用いてもよい。
また、本発明の第2の近接場光発生器の製造方法において、誘電体膜は、原子層堆積法によって形成されてもよい。
本発明の第1の製造方法によれば、ウェットエッチングを用いて凹部をエッチングする工程によって、導波路の上面の一部が露出するように開口部が形成される。その後、開口部内に誘電体膜が形成され、誘電体膜の上にプラズモン発生器が形成される。従って、導波路の外面(上面)とプラズモン発生器のエッジ部との間隔は、誘電体膜の厚みによって決まる。これにより、本発明によれば、導波路の外面(上面)とプラズモン発生器のエッジ部との間隔のばらつきを小さくすることが可能になるという効果を奏する。
本発明の第2の製造方法によれば、反応性イオンエッチングを用いて初期クラッド層および初期導波路を連続的にエッチングすることにより、クラッド層の開口部および導波路の溝部が形成される。その後、開口部および溝部内に誘電体膜が形成され、誘電体膜の上にプラズモン発生器が形成される。従って、導波路の外面(溝部の表面)とプラズモン発生器のエッジ部との間隔は、誘電体膜の厚みによって決まる。これにより、本発明によれば、導波路の外面(溝部の表面)とプラズモン発生器のエッジ部との間隔のばらつきを小さくすることが可能になるという効果を奏する。また、本発明の第2の製造方法によれば、プラズモン発生器の第1および第2の斜面は、それぞれ、連続する上部と下部とを含み、第1および第2の斜面の下部が導波路の上面に平行な仮想の平面に対してなす角度は、それぞれ、第1および第2の斜面の上部が上記仮想の平面に対してなす角度よりも大きくなる。これにより、本発明によれば、プラズモン発生器のエッジ部の曲率半径を小さくすることが可能になり、その結果、近接場光のスポット径を小さくすることが可能になるという効果を奏する。
本発明の第1の実施の形態に係る熱アシスト磁気記録ヘッドの要部を示す斜視図である。 本発明の第1の実施の形態に係る熱アシスト磁気記録ヘッドにおける媒体対向面の一部を示す正面図である。 本発明の第1の実施の形態に係る熱アシスト磁気記録ヘッドの構成を示す断面図である。 本発明の第1の実施の形態に係る熱アシスト磁気記録ヘッドの媒体対向面を示す正面図である。 本発明の第1の実施の形態に係る熱アシスト磁気記録ヘッドにおけるコイルの第1層を示す平面図である。 本発明の第1の実施の形態に係る熱アシスト磁気記録ヘッドにおけるコイルの第2層を示す平面図である。 本発明の第1の実施の形態に係る近接場光発生器の製造方法における一工程を示す断面図である。 図7に示した工程に続く工程を示す断面図である。 図8に示した工程に続く工程を示す断面図である。 図9に示した工程に続く工程を示す断面図である。 図10に示した工程に続く工程を示す断面図である。 図11に示した工程に続く工程を示す断面図である。 図12に示した工程に続く工程を示す断面図である。 本発明の第2の実施の形態に係る熱アシスト磁気記録ヘッドの要部を示す斜視図である。 本発明の第2の実施の形態に係る熱アシスト磁気記録ヘッドにおける媒体対向面の一部を示す正面図である。 図15に示したプラズモン発生器の一部を拡大して示す正面図である。 本発明の第2の実施の形態に係る近接場光発生器の製造方法における一工程を示す断面図である。 図17に示した工程に続く工程を示す断面図である。 図18に示した工程に続く工程を示す断面図である。 図19に示した工程に続く工程を示す断面図である。 比較例のプラズモン発生器の一部を拡大して示す正面図である。
[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。始めに、図1ないし図6を参照して、本発明の第1の実施の形態に係る熱アシスト磁気記録ヘッドの構成について説明する。図1は、熱アシスト磁気記録ヘッドの要部を示す斜視図である。図2は、熱アシスト磁気記録ヘッドにおける媒体対向面の一部を示す正面図である。図3は、熱アシスト磁気記録ヘッドの構成を示す断面図である。図4は、熱アシスト磁気記録ヘッドの媒体対向面を示す正面図である。図5は、熱アシスト磁気記録ヘッドにおけるコイルの第1層を示す平面図である。図6は、熱アシスト磁気記録ヘッドにおけるコイルの第2層を示す平面図である。
本実施の形態に係る熱アシスト磁気記録ヘッドは、垂直磁気記録用であり、回転する記録媒体の表面から浮上するスライダの形態を有している。記録媒体が回転すると、記録媒体とスライダとの間を通過する空気流によって、スライダに揚力が生じる。スライダは、この揚力によって記録媒体の表面から浮上するようになっている。
図3に示したように、熱アシスト磁気記録ヘッドは、記録媒体に対向する媒体対向面40を備えている。ここで、X方向、Y方向、Z方向を以下のように定義する。X方向は、記録媒体のトラック横断方向すなわちトラック幅方向である。Y方向は、媒体対向面40に垂直な方向である。Z方向は、スライダから見た記録媒体の進行方向である。X方向、Y方向、Z方向は互いに直交している。
図3および図4に示したように、熱アシスト磁気記録ヘッドは、アルミニウムオキサイド・チタニウムカーバイド(Al23・TiC)等のセラミック材料よりなり、上面1aを有する基板1と、この基板1の上面1a上に配置された絶縁材料よりなる絶縁層2と、この絶縁層2の上に配置された磁性材料よりなる下部シールド層3とを備えている。絶縁層2は、例えばアルミナ(Al23)によって形成されている。
熱アシスト磁気記録ヘッドは、更に、下部シールド層3の上面の上に配置された絶縁膜である下部シールドギャップ膜4と、この下部シールドギャップ膜4の上に配置された再生素子としてのMR(磁気抵抗効果)素子5と、このMR素子5に接続された2つのリード(図示せず)と、MR素子5の上に配置された絶縁膜である上部シールドギャップ膜6と、この上部シールドギャップ膜6の上に配置された磁性材料よりなる上部シールド層7とを備えている。
MR素子5の一端部は、記録媒体に対向する媒体対向面40に配置されている。MR素子5には、AMR(異方性磁気抵抗効果)素子、GMR(巨大磁気抵抗効果)素子あるいはTMR(トンネル磁気抵抗効果)素子等の磁気抵抗効果を示す感磁膜を用いた素子を用いることができる。GMR素子としては、磁気的信号検出用の電流を、GMR素子を構成する各層の面に対してほぼ平行な方向に流すCIP(Current In Plane)タイプでもよいし、磁気的信号検出用の電流を、GMR素子を構成する各層の面に対してほぼ垂直な方向に流すCPP(Current Perpendicular to Plane)タイプでもよい。MR素子5が、TMR素子またはCPPタイプのGMR素子の場合には、下部シールド層3の上面がMR素子5の下面に接し、上部シールド層7の下面がMR素子5の上面に接して、下部シールド層3と上部シールド層7が2つのリードを兼ねていてもよい。下部シールド層3から上部シールド層7までの部分は、再生ヘッドを構成する。
熱アシスト磁気記録ヘッドは、更に、非磁性材料よりなり、上部シールド層7の上面の上に配置された非磁性層8と、非磁性層8の上に配置された磁性材料よりなるリターン磁極層10とを備えている。非磁性層8は、例えばアルミナによって形成されている。
熱アシスト磁気記録ヘッドは、更に、リターン磁極層10の上面の上に配置されたクラッド層12と、このクラッド層12の上に配置された導波路(コア)14と、クラッド層12の上において、導波路14の周囲に配置されたクラッド層15とを備えている。図1および図2に示したように、導波路14は、基板1の上面1aからより遠い上面14aを有している。導波路14の上面14aおよびクラッド層15の上面は、平坦化されている。
熱アシスト磁気記録ヘッドは、更に、導波路14およびクラッド層15の上に配置されたクラッド層18と、このクラッド層18の上に配置されたマスク層51とを備えている。なお、図3および図4では、マスク層51の図示を省略している。クラッド層18は、導波路14の上面14aに接する下面18aと、その反対側の上面18bと、上面18bから下面18aにかけて貫通する開口部18cとを有している。開口部18cは、導波路14の上面14aに近づくに従って互いの距離が小さくなる第1の開口部側壁18c1と第2の開口部側壁18c2を有している。
図1および図2に示したように、マスク層51は、貫通する開口部を有している。マスク層51の開口部の縁は、クラッド層18の上面18bにおける開口部18cの縁の真上に配置されている。マスク層51は、フォトレジストまたは金属材料によって形成されている。
導波路14は、近接場光の発生に用いられるレーザ光を通過させる誘電体材料によって形成されている。導波路14には、図示しないレーザダイオードから出射されたレーザ光が入射され、このレーザ光は導波路14内を伝播する。クラッド層12,15,18は、導波路14の屈折率よりも小さい屈折率を有する誘電体材料によって形成されている。導波路14の材料としては、例えば、屈折率が約2.1のTa等の酸化タンタルが用いられ、クラッド層12,15,18の材料としては、例えば、屈折率が約1.8のアルミナが用いられる。
熱アシスト磁気記録ヘッドは、更に、誘電体膜52と、プラズモン発生器16とを備えている。プラズモン発生器16は、少なくとも一部がクラッド層18の開口部18c内に収容されている。本実施の形態では、特に、プラズモン発生器16は、クラッド層18の開口部18c内およびマスク層51の開口部内に収容されている。誘電体膜52は、クラッド層18の開口部18c内およびマスク層51の開口部内において、導波路14、クラッド層18およびマスク層51とプラズモン発生器16との間に介在している。誘電体膜52は、導波路14の屈折率よりも小さい屈折率を有する誘電体材料によって形成されている。誘電体膜52の材料は、クラッド層12,15,18の材料と同じであってもよい。
プラズモン発生器16は、金属によって形成されている。具体的には、プラズモン発生器16は、例えば、Au、Ag、Al、Cu、Pd、Pt、Rh、Irのいずれか、またはこれらのうちの複数の元素よりなる合金によって形成されている。プラズモン発生器16およびマスク層51の上面は平坦化されている。プラズモン発生器16の形状については、後で詳しく説明する。
熱アシスト磁気記録ヘッドは、更に、プラズモン発生器16およびマスク層51の上面の上に配置された絶縁層19と、この絶縁層19の上に配置された磁極22とを備えている。絶縁層19は、例えばアルミナによって形成されている。磁極22は、絶縁層19の上に配置された第1層22Aと、第1層22Aの上に配置された第2層22Bとを有している。
熱アシスト磁気記録ヘッドは、更に、磁極22よりも媒体対向面40から遠い位置において絶縁層19の上に配置された磁性材料よりなる連結層21と、絶縁層19の上において、磁極22の第1層22Aおよび連結層21の周囲に配置された絶縁層23とを備えている。絶縁層23は、例えばアルミナによって形成されている。連結層21は、後述する2つの連結部を介して、リターン磁極層10に対して磁気的に連結されている。
熱アシスト磁気記録ヘッドは、更に、連結層21の上に配置された磁性材料よりなる連結層24と、絶縁層23の上において、磁極22の第2層22Bおよび連結層24の周囲に配置された絶縁層25とを備えている。絶縁層25は、例えばアルミナによって形成されている。
熱アシスト磁気記録ヘッドは、更に、磁極22の第2層22Bの上に配置された磁性材料よりなる連結層26と、連結層24の上に配置された磁性材料よりなる連結層27とを備えている。
熱アシスト磁気記録ヘッドは、更に、絶縁層25の上に配置された絶縁層28と、絶縁層28の上に配置された複数の第1のコイル要素30Aと、連結層26,27および複数の第1のコイル要素30Aの周囲に配置された絶縁層31とを備えている。図5は、複数の第1のコイル要素30Aを示している。複数の第1のコイル要素30Aは、Y方向に並ぶように配置されている。各第1のコイル要素30Aは、トラック幅方向(X方向)に延びる主要部分を有している。各第1のコイル要素30Aは、銅等の導電材料によって形成されている。絶縁層28,31は、例えばアルミナによって形成されている。
熱アシスト磁気記録ヘッドは、更に、複数の第1のコイル要素30Aを覆うように配置された絶縁層32と、連結層26,27および絶縁層32の上に配置された磁性材料よりなるヨーク層33とを備えている。ヨーク層33は、連結層26と連結層27を磁気的に連結している。絶縁層32は、例えばアルミナによって形成されている。
熱アシスト磁気記録ヘッドは、更に、ヨーク層33を覆うように配置された絶縁層34と、絶縁層34の上に配置された複数の第2のコイル要素30Bと、絶縁層34の上に配置されたリード層30Cと、複数の第2のコイル要素30Bおよびリード層30Cを覆うように配置された保護層35とを備えている。絶縁層34と保護層35は、例えばアルミナによって形成されている。
図6は、複数の第2のコイル要素30Bとリード層30Cを示している。複数の第2のコイル要素30Bは、Y方向に並ぶように配置されている。各第2のコイル要素30Bは、トラック幅方向(X方向)に延びる主要部分を有している。各第2のコイル要素30Bとリード層30Cは、銅等の導電材料によって形成されている。
図5および図6に示したように、熱アシスト磁気記録ヘッドは、更に、複数の接続部36と1つの接続部37とを備えている。複数の接続部36は、ヨーク層33の周りにヘリカル状に巻かれたコイル30が形成されるように、複数の第1のコイル要素30Aと複数の第2のコイル要素30Bとを接続している。接続部37は、1つの第1のコイル要素30Aとリード層30Cを接続している。複数の接続部36と接続部37は、絶縁層32,34を貫通するように設けられている。複数の接続部36と接続部37は、銅等の導電材料によって形成されている。
また、図5は、連結層21とリターン磁極層10を連結する2つの連結部29A,29Bを示している。連結部29A,29Bは、クラッド層12,15,18および絶縁層19を貫通するように設けられている。連結部29A,29Bは、導波路14のトラック幅方向(X方向)の両側において、導波路14に対して間隔をあけて配置されている。図示しないが、連結部29A,29Bは、それぞれ、リターン磁極層10の上に配置された第1層と、この第1層の上に順に配置された第2層および第3層とを有している。
リターン磁極層10から複数の第2のコイル要素30Bまでの部分は、記録ヘッドを構成する。複数の第1のコイル要素30Aと複数の第2のコイル要素30Bと複数の接続部36とによって構成されたコイル30は、記録媒体に記録する情報に応じた磁界を発生する。リターン磁極層10、連結部29A,29B、連結層21,24,27、ヨーク層33、連結層26および磁極22は、コイル30が発生する磁界に対応した磁束を通過させる磁路を形成する。磁極22は、コイル30によって発生された磁界に対応する磁束を通過させると共に、垂直磁気記録方式によって情報を記録媒体に記録するための記録磁界を発生する。
以上説明したように、本実施の形態に係る熱アシスト磁気記録ヘッドは、記録媒体に対向する媒体対向面40と再生ヘッドと記録ヘッドとを備えている。再生ヘッドと記録ヘッドは、基板1の上に積層されている。記録ヘッドは、再生ヘッドに対して、記録媒体の進行方向(Z方向)の前側(トレーリング側)に配置されている。
再生ヘッドは、再生素子としてのMR素子5と、媒体対向面40側の一部がMR素子5を挟んで対向するように配置された、MR素子5をシールドするための下部シールド層3および上部シールド層7と、MR素子5と下部シールド層3との間に配置された下部シールドギャップ膜4と、MR素子5と上部シールド層7との間に配置された上部シールドギャップ膜6とを備えている。
記録ヘッドは、コイル30と、磁極22と、導波路14と、クラッド層12,15,18と、プラズモン発生器16と、誘電体膜52とを備えている。コイル30は、記録媒体に記録する情報に応じた磁界を発生する。磁極22は、コイル30によって発生された磁界に対応する磁束を通過させると共に、垂直磁気記録方式によって情報を記録媒体に記録するための記録磁界を発生する。
本実施の形態に係る近接場光発生器は、導波路14と、クラッド層18と、プラズモン発生器16と、誘電体膜52とを備えている。導波路14は、上面14aを有し、図示しないレーザダイオードから出射されたレーザ光を伝播させる。クラッド層18は、導波路14の上面14aに接する下面18aと、その反対側の上面18bと、この上面18bから下面18aにかけて貫通する開口部18cとを有している。開口部18cは、導波路14の上面14aに近づくに従って互いの距離が小さくなる第1の開口部側壁18c1と第2の開口部側壁18c2を有している。プラズモン発生器16の少なくとも一部は開口部18c内に収容されている。誘電体膜52は、開口部18c内において、導波路14およびクラッド層18とプラズモン発生器16との間に介在している。
次に、図1および図2を参照して、プラズモン発生器16の形状について詳しく説明する。図1および図2に示したように、プラズモン発生器16は、ほぼ三角柱形状を有している。具体的には、プラズモン発生器16は、媒体対向面40に配置された前端面16aと、その反対側の後端面16bと、第1および第2の斜面16c1,16c2と、上面16dとを有している。第1の斜面16c1は、誘電体膜52を介して第1の開口部側壁18c1に対向している。第2の斜面16c2は、誘電体膜52を介して第2の開口部側壁18c2に対向している。上面16dは、第1および第2の斜面16c1,16c2を接続している。
プラズモン発生器16は、更に、第1および第2の斜面16c1,16c2を接続するエッジ部16eと、媒体対向面40に配置され、近接場光を発生する近接場光発生部16fとを有している。近接場光発生部16fは、エッジ部16eの一端に位置している。第1および第2の斜面16c1,16c2の互いの距離は、エッジ部16eに近づくに従って小さくなっている。エッジ部16eは、導波路14の上面14aに対して、誘電体膜52の厚みによる所定の間隔をもって対向して、媒体対向面40に垂直な方向(Y方向)に延びている。なお、媒体対向面40に平行な断面におけるエッジ部16eの形状は、完全に尖った角でもよいが、微視的に見たときに円弧形状になっていてもよい。
図2に示したように、第1および第2の斜面16c1,16c2は、それぞれ、導波路14の上面14aに平行な仮想の平面Pに対して傾いている。第1の斜面16c1が上記仮想の平面Pに対してなす角度と、第2の斜面16c2が上記仮想の平面Pに対してなす角度は等しい。以下、この角度を記号θ1で表す。角度θ1は、例えば30度から60度の範囲内である。一例では、角度θ1は45度である。
前端面16aは、第1の斜面16c1の端に位置する第1の辺16a1と、第2の斜面16c2の端に位置する第2の辺16a2と、上面16dの端に位置する第3の辺16a3と、第1の辺16a1と第2の辺16a2が接して形成され、近接場光発生部16fを形成する尖端16a4とを含んでいる。なお、尖端16a4の形状は、完全に尖った角でもよいが、微視的に見たときに円弧形状になっていてもよい。
第1および第2の辺16a1,16a2は、それぞれ、上記仮想の平面Pに対して傾いている。第1の辺16a1が上記仮想の平面Pに対してなす角度は、第1の斜面16c1が上記仮想の平面Pに対してなす角度θ1と等しい。第2の辺16a2が上記仮想の平面Pに対してなす角度は、第2の斜面16c2が上記仮想の平面Pに対してなす角度θ1と等しい。
ここで、媒体対向面40に垂直な方向(Y方向)についてのプラズモン発生器16の長さを記号HPGで表し、辺16a3の長さを記号WPGで表し、上面16dに垂直な方向(Z方向)についての前端面16aの長さを記号TPGで表す。HPGはTPGよりも大きい。WPGとTPGは共に、導波路14を伝播する光の波長以下である。WPGは例えば100〜500nmの範囲内である。TPGは例えば100〜500nmの範囲内である。HPGは例えば0.25〜2.5μmの範囲内である。また、エッジ部16eと導波路14の上面14aとの間の間隔を記号Dで表す。Dは例えば10〜50nmの範囲内である。
次に、本実施の形態における近接場光発生の原理と、近接場光を用いた熱アシスト磁気記録の原理について詳しく説明する。図示しないレーザダイオードから出射されたレーザ光は導波路14に入射される。図3に示したように、レーザ光50は、導波路14内を媒体対向面40に向けて伝播して、プラズモン発生器16の近傍に達する。ここで、導波路14の上面14aにおいて、レーザ光50が全反射することによって、クラッド層18および誘電体膜52内にしみ出すエバネッセント光が発生する。その結果、このエバネッセント光と、プラズモン発生器16におけるエッジ部16eおよびその近傍部分における電荷の集団振動すなわち表面プラズモンとが結合した系である表面プラズモン・ポラリトンが励起される。このようにして、プラズモン発生器16におけるエッジ部16eおよびその近傍部分に表面プラズモンが励起される。
プラズモン発生器16に励起された表面プラズモンは、エッジ部16eに沿って近接場光発生部16fに伝播される。その結果、近接場光発生部16fにおいて表面プラズモンが集中し、この表面プラズモンに基づいて、近接場光発生部16fから近接場光が発生する。この近接場光は、記録媒体に向けて照射され、記録媒体の表面に達し、記録媒体の磁気記録層の一部を加熱する。これにより、その磁気記録層の一部の保磁力が低下する。熱アシスト磁気記録では、このようにして保磁力が低下した磁気記録層の一部に対して、磁極22より発生される記録磁界を印加することによってデータの記録が行われる。
次に、図3および図4を参照して、本実施の形態に係る熱アシスト磁気記録ヘッドの製造方法について説明する。本実施の形態に係る熱アシスト磁気記録ヘッドの製造方法は、複数の熱アシスト磁気記録ヘッドの基板1となる部分を含む基板上に、複数の熱アシスト磁気記録ヘッドの基板1以外の構成要素を形成して、それぞれ後に熱アシスト磁気記録ヘッドとなるヘッド予定部が複数列に配列された基礎構造物を作製する工程と、この基礎構造物を切断することによって複数のヘッド予定部を互いに分離して、複数の熱アシスト磁気記録ヘッドを形成する工程とを備えている。複数の熱アシスト磁気記録ヘッドを形成する工程では、切断によって形成された面を研磨して媒体対向面40を形成する。
以下、1つの熱アシスト磁気記録ヘッドに注目して、本実施の形態に係る熱アシスト磁気記録ヘッドの製造方法を更に詳しく説明する。本実施の形態に係る熱アシスト磁気記録ヘッドの製造方法では、まず、基板1の上に絶縁層2を形成する。次に、絶縁層2の上に下部シールド層3を形成する。次に、下部シールド層3の上に下部シールドギャップ膜4を形成する。次に、下部シールドギャップ膜4の上にMR素子5と、MR素子5に接続される図示しない2つのリードとを形成する。次に、MR素子5およびリードを覆うように上部シールドギャップ膜6を形成する。次に、上部シールドギャップ膜6の上に上部シールド層7を形成する。次に、上部シールド層7の上に非磁性層8を形成する。次に、非磁性層8の上にリターン磁極層10を形成する。
次に、リターン磁極層10の上に、連結部29A,29Bのそれぞれの第1層を形成する。次に、連結部29A,29Bのそれぞれの第1層を覆うようにクラッド層12を形成する。次に、例えば化学機械研磨(以下、CMPと記す。)によって、連結部29A,29Bのそれぞれの第1層が露出するまでクラッド層12を研磨して、連結部29A,29Bのそれぞれの第1層および絶縁層12の上面を平坦化する。
次に、クラッド層12の上に導波路14を形成する。また、連結部29A,29Bのそれぞれの第1層の上に、連結部29A,29Bのそれぞれの第2層を形成する。次に、導波路14および連結部29A,29Bのそれぞれの第2層を覆うようにクラッド層15を形成する。次に、例えばCMPによって、導波路14および連結部29A,29Bのそれぞれの第2層が露出するまでクラッド層15を研磨する。
次に、導波路14およびクラッド層15の上にクラッド層18およびマスク層51を形成する。クラッド層18には、開口部18cと、連結部29A,29Bを通すための2つの開口部が形成されている。マスク層51には、プラズモン発生器16の平面形状に対応した形状の開口部と、連結部29A,29Bのそれぞれの平面形状に対応した形状の2つの開口部が形成されている。次に、クラッド層18の開口部18c内に誘電体膜52およびプラズモン発生器16を形成する。また、連結部29A,29Bのそれぞれの第2層の上に、連結部29A,29Bのそれぞれの第3層を形成する。なお、導波路14、クラッド層18、プラズモン発生器16および誘電体膜52を備えた本実施の形態に係る近接場光発生器の製造方法については、後で詳しく説明する。
次に、プラズモン発生器16およびマスク層51の上に絶縁層19を形成する。この絶縁層19には、連結部29A,29Bのそれぞれの第3層の上面を露出させる2つの開口部が形成されている。次に、絶縁層19の上に磁極22の第1層22Aを形成すると共に、連結部29A,29Bに連結されるように連結層21を形成する。次に、第1層22Aおよび連結層21を覆うように絶縁層23を形成する。次に、例えばCMPによって、第1層22Aおよび連結層21が露出するまで絶縁層23を研磨する。
次に、第1層22Aの上に磁極22の第2層22Bを形成すると共に、連結層21の上に連結層24を形成する。次に、第2層22Bおよび連結層24を覆うように絶縁層25を形成する。次に、例えばCMPによって、第2層22Bおよび連結層24が露出するまで、絶縁層25を研磨する。
次に、絶縁層25の上に絶縁層28を形成する。次に、絶縁層28の上に複数の第1のコイル要素30Aを形成する。また、磁極22の第2層22Bの上に連結層26を形成すると共に、連結層24の上に連結層27を形成する。次に、第1のコイル要素30Aおよび連結層26,27を覆うように絶縁層31を形成する。次に、例えばCMPによって、第1のコイル要素30Aおよび連結層26,27が露出するまで、絶縁層31を研磨する。
次に、複数の第1のコイル要素30Aを覆うように絶縁層32を形成する。この絶縁層32には、接続部36,37を通すための複数の開口部が形成されている。次に、この複数の開口部を通って複数の第1のコイル要素30Aに接続されるように接続部36,37を形成する。次に、連結層26,27および絶縁層32の上にヨーク層33を形成する。次に、ヨーク層33および接続部36,37を覆うように絶縁層34を形成する。次に、例えばCMPによって、接続部36,37が露出するまで絶縁層34を研磨する。
次に、接続部36,37および絶縁層34の上に、複数の第2のコイル要素30Bとリード層30Cを形成する。次に、複数の第2のコイル要素30Bおよびリード層30Cを覆うように保護層35を形成する。次に、保護層35の上面に配線や端子等を形成する。
このようにして、基礎構造物が完成したら、この基礎構造物を切断することによって複数のヘッド予定部を互いに分離し、媒体対向面40の研磨、浮上用レールの作製等を行って、熱アシスト磁気記録ヘッドが完成する。
次に、図7ないし図13を参照して、本実施の形態に係る近接場光発生器の製造方法について詳しく説明する。図7ないし図13は、近接場光発生器の製造過程における積層体の、媒体対向面40が形成される予定の位置における断面を示している。
図7は、クラッド層12を形成した後の工程を示している。この工程では、まず、クラッド層12の上に、後にエッチングされることによって導波路14となる誘電体層を形成する。次に、この誘電体層の上にフォトレジストマスクを形成する。このフォトレジストマスクは、フォトリソグラフィによってフォトレジスト層をパターニングして形成する。次に、フォトレジストマスクをエッチングマスクとして用いて、例えば反応性イオンエッチング(以下、RIEと記す。)によって、誘電体層が導波路14となるように、誘電体層をエッチングする。誘電体層が酸化タンタルによって形成されている場合には、誘電体層をRIEによってエッチングする際のエッチングガスとしては、CFを含むガスまたはClとBClとを含むガスが用いられる。次に、フォトレジストマスクを除去する。
図8は、次の工程を示す。この工程では、まず、導波路14を覆うようにクラッド層15を形成する。次に、例えばCMPによって、導波路14の上面14aが露出するまでクラッド層15を研磨する。
図9は、次の工程を示す。この工程では、まず、導波路14およびクラッド層15の上に、後に開口部18cが形成されることによってクラッド層18となる初期クラッド層18Pを形成する。この初期クラッド層18Pは、後に形成されるプラズモン発生器16の上面16dに垂直な方向(Z方向)についての前端面16aの長さTPG(図1および図2参照)と同じか、それよりもわずかに大きな厚みに形成される。初期クラッド層18Pの厚みと上記の長さTPGとの差は、例えば0〜20nmである。次に、初期クラッド層18Pの上にマスク層51を形成する。マスク層51は、後に形成されるプラズモン発生器16の平面形状に対応した形状の貫通する開口部を有している。マスク層51は、主にフォトレジストまたは金属材料によって形成される。マスク層51は、例えばTa、Tiまたは酸化ケイ素よりなる下地層とその上に形成されたフォトレジスト層とを含んでいてもよい。
図10は、次の工程を示す。この工程では、マスク層51をエッチングマスクとして用いて、例えばRIEによって、初期クラッド層18Pをテーパーエッチングする。これにより、初期クラッド層18Pに、導波路14の上面14aに達しない凹部18Pcが形成される。凹部18Pcは、導波路14の上面14aに近づくに従って互いの距離が小さくなる第1および第2の側壁18Pc1,18Pc2と、側壁18Pc1,18Pc2を接続する下端部18Pc3とを含んでいる。下端部18Pc3は、導波路14の上面14aの上方に位置する。第1および第2の側壁18Pc1,18Pc2は、いずれも、導波路14の上面14aに平行な仮想の平面Pに対して傾いている。初期クラッド層18Pがアルミナによって形成されている場合には、例えば、ClおよびBClと、NとCFの少なくとも一方とを含むエッチングガスを用いたRIEによって、初期クラッド層18Pをテーパーエッチングする。ClとBClは、初期クラッド層18Pのエッチングに寄与する主成分である。NとCFは、初期クラッド層18Pのエッチング中に、エッチングによって形成される溝の側壁に側壁保護膜を形成するためのガスである。エッチングガスがNとCFの少なくとも一方を含むことにより、初期クラッド層18Pのエッチング中に溝の側壁に側壁保護膜が形成され、これにより、第1および第2の側壁18Pc1,18Pc2が、それぞれ上記仮想の平面Pに対して傾いた面となる。
第1の側壁18Pc1が上記仮想の平面Pに対してなす角度と、第2の斜面18Pc2が上記仮想の平面Pに対してなす角度は等しい。以下、この角度を記号θ2で表す。角度θ2は、例えば上記エッチングガスの全流量に対するNとCFの少なくとも一方の流量の割合を変化させることによって、例えば30度から60度の範囲内で制御することができる。一例では、角度θ2は45度である。
ここで、初期クラッド層18Pをテーパーエッチングする際のエッチングガス以外の条件の一例を挙げる。この例では、高周波コイルを用いた電磁誘導によりチャンバ内にプラズマを発生させるRIE装置を用い、高周波コイルに供給するソースパワーを1200Wとし、高周波バイアスパワーを25Wとし、チャンバ内の圧力を0.3Paとする。
図11は、次の工程を示す。この工程では、ウェットエッチングを用いて、凹部18Pcをエッチングする。この工程は、凹部18Pcが深さ方向(Z方向)にエッチングされて、凹部18Pcが導波路14の上面14aに達して、導波路14の上面14aの一部が露出するまで行われる。これにより、凹部18Pcは開口部18cとなり、初期クラッド層18Pはクラッド層18となる。
凹部18Pcをエッチングする工程は、導波路14の上面14aにおいてエッチングが停止する条件で行われる。例えば、導波路14が酸化タンタルによって形成され、初期クラッド層18Pがアルミナによって形成されている場合には、ウェットエッチングのエッチング液として、濃度2.38%のTMAH(テトラメチルアンモニウムハイドロオキサイド)またはKOHを含むエッチング液を用いる。これにより、導波路14がエッチングされることなく、初期クラッド層18Pのみがエッチングされる。
図12は、次の工程を示す。この工程では、例えば原子層堆積法(以下、ALDと記す。)によって、少なくとも、クラッド層18の開口部18c内およびマスク層51の開口部内に、誘電体膜52を形成する。誘電体膜52は、開口部18cの底部において露出している導波路14の上面14aの上にも形成される。誘電体膜52を形成した後の積層体は、後に形成されるプラズモン発生器16を収容するための凹部52aを有している。凹部52aの下端部52a1は、導波路14の上面14aの上方に位置している。
図13は、次の工程を示す。この工程では、まず、例えばスパッタ法によって、誘電体膜52の上に、後にプラズモン発生器16となる金属層を形成する。この金属層は、少なくとも凹部52aを埋める厚みに形成される。次に、例えばCMPによって、マスク層51が露出するまで誘電体膜52および金属層を研磨する。これにより、残った金属層はプラズモン発生器16となる。
以上説明したように、本実施の形態に係る近接場光発生器では、プラズモン発生器16のエッジ部16eが、導波路14の上面14aに対して、誘電体膜52の厚みによる所定の間隔をもって対向している。そして、エッジ部16eにおいて、導波路14を伝播するレーザ光に基づいて導波路14の上面14aにおいて発生するエバネッセント光と結合することによって表面プラズモンが励起され、この表面プラズモンがエッジ部16eに沿って近接場光発生部16fに伝播され、この表面プラズモンに基づいて近接場光発生部16fより近接場光が発生される。本実施の形態によれば、従来のようにレーザ光をプラズモン・アンテナに直接照射して近接場光を発生させる場合に比べて、導波路14を伝播する光の近接場光への変換の効率を高めることができる。
また、本実施の形態では、導波路14を伝播するレーザ光がプラズモン発生器16に直接照射されないため、プラズモン発生器16の温度上昇を抑制することができる。また、本実施の形態では、媒体対向面40に垂直な方向についてのプラズモン発生器16の長さHPGが、プラズモン発生器16の上面16dに垂直な方向についての前端面16aの長さTPGよりも大きい。そのため、本実施の形態におけるプラズモン発生器16の体積は、媒体対向面40に垂直な方向についての長さが、基板1の上面1aに垂直な方向についての長さよりも小さい従来のプラズモン・アンテナに比べて大きい。この点からも、本実施の形態によれば、プラズモン発生器16の温度上昇を抑制することができる。これらのことから、本実施の形態によれば、プラズモン発生器16が媒体対向面40から突出することを抑制することができる。
本実施の形態に係る近接場光発生器の製造方法では、導波路14を形成した後、導波路14の上に、後に開口部18cが形成されることによってクラッド層18となる初期クラッド層18Pを形成する。次に、導波路14の上面14aに達しない凹部18Pcが初期クラッド層18Pに形成されるように、RIEを用いて初期クラッド層18Pをエッチングする。次に、凹部18Pcが開口部18cとなり、初期クラッド層18Pがクラッド層18となるように、導波路14の上面14aの一部が露出するまで、ウェットエッチングを用いて凹部18Pcをエッチングする。次に、開口部18c内に誘電体膜52を形成する。次に、誘電体膜52の上にプラズモン発生器16を形成する。
本実施の形態では、上述のように、ウェットエッチングを用いて初期クラッド層18Pの凹部18Pcをエッチングする工程によって、導波路14の上面14aの一部が露出するように開口部18cが形成される。その後、開口部18c内に誘電体膜52が形成され、誘電体膜52の上にプラズモン発生器16が形成される。従って、導波路14の外面(上面14a)とプラズモン発生器16のエッジ部16eとの間隔Dは、誘電体膜52の厚みによって決まる。これにより、本実施の形態によれば、導波路14の外面(上面14a)とプラズモン発生器16のエッジ部16eとの間隔Dのばらつきを小さくすることが可能になる。間隔Dのばらつきは、プラズモン発生器16に励起される表面プラズモンの強度のばらつきにつながり、結果的にプラズモン発生器16より発生される近接場光の強度のばらつきにつながる。従って、間隔Dのばらつきは、小さくする必要があり、特に10nmより小さいことが好ましい。
ここで、ウェットエッチングを用いて初期クラッド層18Pの凹部18Pcをエッチングせずに、誘電体膜52およびプラズモン発生器16を形成する場合について考える。この場合、凹部18Pcの下端部18Pc3は、導波路14の上面14aの上方に配置され、プラズモン発生器16のエッジ部16eと導波路14の上面14aとの間には、クラッド層18および誘電体膜52が介在する。RIEを用いて凹部18Pcを形成する場合には、凹部18Pcの深さのばらつきが10〜30nm程度になる。そのため、この場合には、導波路14の外面(上面14a)とプラズモン発生器16のエッジ部16eとの間隔のばらつきは、少なくとも10〜30nm程度になり、10nmよりも小さくすることができない。
これに対し、本実施の形態によれば、前述のように、導波路14の外面(上面14a)とプラズモン発生器16のエッジ部16eとの間隔Dは、誘電体膜52の厚みによって決まる。誘電体膜52の厚みのばらつきは、凹部18Pcの深さのばらつきに比べて小さくすることができる。特に、ALDによって誘電体膜52を形成する場合には、誘電体膜52の厚みのばらつきをより小さくすることができる。すなわち、ALDによって誘電体膜52を形成する場合には、誘電体膜52の厚みのばらつきを、誘電体膜52の厚みの5%以下にすることができる。この場合、誘電体膜52の厚みが50nm以下のときには、誘電体膜52の厚みのばらつきは2.5nm以下となり、エッジ部16eと導波路14の上面14aとの間の間隔Dのばらつきを2.5nm以下にすることができる。
また、本実施の形態では、ウェットエッチングを用いて凹部18Pcをエッチングすることにより、導波路14の上面14aにおいてエッチングが停止する条件を容易に選択することが可能になる。
なお、ウェットエッチングではなくドライエッチングを用いて凹部18Pcをエッチングすると、導波路14の上面14aがダメージを受ける。これに対し、本実施の形態によれば、ウェットエッチングを用いて凹部18Pcをエッチングするため、導波路14の上面14aがダメージを受けることを防止することができる。
[第2の実施の形態]
次に、図14ないし図16を参照して、本発明の第2の実施の形態に係る熱アシスト磁気記録ヘッドについて説明する。図14は、本実施の形態に係る熱アシスト磁気記録ヘッドの要部を示す斜視図である。図15は、本実施の形態に係る熱アシスト磁気記録ヘッドにおける媒体対向面の一部を示す正面図である。図16は、図15に示したプラズモン発生器の一部を拡大して示す正面図である。
本実施の形態に係る熱アシスト磁気記録ヘッドは、第1の実施の形態におけるプラズモン発生器16およびクラッド層18の代りに、プラズモン発生器66およびクラッド層68を備えている。本実施の形態に係る近接場光発生器は、導波路14と、クラッド層68と、プラズモン発生器66と、誘電体膜52とを備えている。プラズモン発生器66の材料はプラズモン発生器16と同様であり、クラッド層68の材料はクラッド層18と同様である。本実施の形態における導波路14は、上面14aで開口し、上面14aに平行な方向であって媒体対向面40に垂直な方向(Y方向)に長い溝部14bを有している。
クラッド層68は、導波路14の上面14aに接する下面68aと、その反対側の上面68bと、上面68bから下面68aにかけて貫通して溝部14bに連続する開口部68cとを有している。開口部68cは、導波路14の上面14aに近づくに従って互いの距離が小さくなる第1の開口部側壁68c1と第2の開口部側壁68c2を有している。下面68aにおける開口部68cの縁は、導波路14の上面14aにおける溝部14bの縁の真上に配置されている。本実施の形態におけるマスク層51の開口部の縁は、クラッド層68の上面68bにおける開口部68cの縁の真上に配置されている。
図15に示したように、導波路14の溝部14bは、第1の開口部側壁68c1に連続する第1の溝部側壁14b1と、第2の開口部側壁68c2に連続する第2の溝部側壁14b2とを有している。第1および第2の溝部側壁14b1,14b2の互いの距離は、導波路14の上面14aから離れるに従って小さくなっている。
プラズモン発生器66は、少なくとも一部がクラッド層68の開口部68c内に収容されている。本実施の形態では、特に、プラズモン発生器66は、導波路14の溝部14b内、クラッド層68の開口部68c内およびマスク層51の開口部内に収容されている。誘電体膜52は、導波路14の溝部14b内、クラッド層68の開口部68c内およびマスク層51の開口部内において、導波路14、クラッド層68およびマスク層51とプラズモン発生器66との間に介在している。
プラズモン発生器66は、ほぼ三角柱形状を有している。具体的には、プラズモン発生器66は、媒体対向面40に配置された前端面66aと、その反対側の後端面66bと、第1および第2の斜面66c1,66c2と、上面66dとを有している。第1の斜面66c1は、誘電体膜52を介して第1の開口部側壁68c1および第1の溝部側壁14b1に対向している。第2の斜面66c2は、誘電体膜52を介して第2の開口部側壁68c2および第2の溝部側壁14b2に対向している。上面66dは、第1および第2の斜面66c1,66c2を接続している。
プラズモン発生器66は、更に、第1および第2の斜面66c1,66c2を接続するエッジ部66eと、媒体対向面40に配置され、近接場光を発生する近接場光発生部66fとを有している。近接場光発生部66fは、エッジ部66eの一端に位置している。第1および第2の斜面66c1,66c2の互いの距離は、エッジ部66eに近づくに従って小さくなっている。エッジ部66eは、導波路14の外面の一部である溝部14bの表面に対して、誘電体膜52の厚みによる所定の間隔をもって対向して、媒体対向面40に垂直な方向(Y方向)に延びている。なお、エッジ部66eは、導波路14の上面14aよりも下方に位置してもよいし、上面14aよりも上方に位置してもよいし、上面14aと同じ高さの位置にあってもよい。また、媒体対向面40に平行な断面におけるエッジ部66eの形状は、完全に尖った角でもよいが、微視的に見たときに円弧形状になっていてもよい。
第1の斜面66c1は、連続する上部66c11と下部66c12とを含んでいる。上部66c11は、誘電体膜52を介して第1の開口部側壁68c1に対向している。下部66c12は、誘電体膜52を介して第1の溝部側壁14b1に対向している。
第2の斜面66c2は、連続する上部66c21と下部66c22とを含んでいる。上部66c21は、誘電体膜52を介して第2の開口部側壁68c2に対向している。下部66c22は、誘電体膜52を介して第2の溝部側壁14b2に対向している。
図16に示したように、上部66c11,66c21と下部66c12,66c22は、いずれも、導波路14の上面14aに平行な仮想の平面Pに対して傾いている。上部66c11が上記仮想の平面Pに対してなす角度と、上部66c21が上記仮想の平面Pに対してなす角度は等しい。以下、この角度を記号θ3で表す。また、下部66c12が上記仮想の平面Pに対してなす角度と、下部66c22が上記仮想の平面Pに対してなす角度は等しい。以下、この角度を記号θ4で表す。角度θ3は、例えば30度から60度の範囲内である。角度θ4は角度θ3よりも大きい。一例では、角度θ3が45度、角度θ4が60度である。
前端面66aは、第1の斜面66c1の端に位置する第1の辺66a1と、第2の斜面66c2の端に位置する第2の辺66a2と、上面66dの端に位置する第3の辺66a3と、第1の辺66a1と第2の辺66a2が接して形成され、近接場光発生部66fを形成する尖端66a4とを含んでいる。なお、尖端66a4の形状は、完全に尖った角でもよいが、微視的に見たときに円弧形状になっていてもよい。エッジ部66eの曲率半径と尖端66a4の曲率半径は等しい。なお、媒体対向面40に平行な断面におけるエッジ部66eの形状および尖端66a4の形状が完全に尖った角である場合には、エッジ部66eおよび尖端66a4の曲率半径は0である。以下、エッジ部66eおよび尖端66a4の曲率半径を記号R1で表す。一例では、曲率半径R1は10nmである。曲率半径R1の求め方については、後で詳しく説明する。
第1の辺66a1は、連続する上部66a11と下部66a12とを含んでいる。第2の辺66a2は、連続する上部66a21と下部66a22とを含んでいる。図16に示したように、上部66a11,66a21と下部66a12,66a22は、いずれも、上記仮想の平面Pに対して傾いている。第1の辺66a1の上部66a11が上記仮想の平面Pに対してなす角度は、第1の斜面66c1の上部66c11が上記仮想の平面Pに対してなす角度θ3と等しい。第2の辺66a2の上部66a21が上記仮想の平面Pに対してなす角度は、第2の斜面66c2の上部66c21が上記仮想の平面Pに対してなす角度θ3と等しい。
また、第1の辺66a1の下部66a12が上記仮想の平面Pに対してなす角度は、第1の斜面66c1の下部66c12が上記仮想の平面Pに対してなす角度θ4と等しい。第2の辺66a2の下部66a22が上記仮想の平面Pに対してなす角度は、第2の斜面66c2の下部66c22が上記仮想の平面Pに対してなす角度θ4と等しい。
ここで、曲率半径R1の求め方について説明する。曲率半径R1は、例えば、以下のようにして求めることができる。まず、例えば走査イオン顕微鏡(SIM)を用いて、プラズモン発生器66の前端面66aの画像を得る。次に、この画像上で、図16に示したような、第1の辺66a1の下部66a12、第2の辺66a2の下部66a22および尖端66a4に内接する適当な大きさの円を描く。次に、その円の半径を求め、これを曲率半径R1とする。
図14および図15に示したプラズモン発生器66の寸法WPG,TPG,HPGの定義およびそれらの値の範囲は、第1の実施の形態におけるプラズモン発生器16と同様である。
次に、図17ないし図20を参照して、本実施の形態に係る近接場光発生器の製造方法について説明する。図17ないし図20は、近接場光発生器の製造過程における積層体の、媒体対向面40が形成される予定の位置における断面を示している。
図17は、本実施の形態に係る近接場光発生器の製造方法における一工程を示している。この工程では、クラッド層12の上に、後に溝部14bが形成されることによって導波路14となる初期導波路14Pを形成する。次に、初期導波路14Pを覆うようにクラッド層15を形成する。次に、例えばCMPによって、初期導波路14Pの上面が露出するまでクラッド層15を研磨する。次に、初期導波路14Pおよびクラッド層15の上に、後に開口部68cが形成されることによってクラッド層68となる初期クラッド層68Pを形成する。この初期クラッド層68Pは、後に形成されるプラズモン発生器66の上面66dに垂直な方向(Z方向)についての前端面66aの長さTPG(図14および図15参照)よりもわずかに小さな厚みに形成される。例えば、初期クラッド層68Pは、上記の長さTPGよりも20nmだけ小さな厚みに形成される。次に、初期クラッド層68Pの上に、マスク層51を形成する。
図18は、次の工程を示す。この工程では、マスク層51をエッチングマスクとして用いて、例えばRIEによって、初期クラッド層68Pおよび初期導波路14Pを連続的にエッチングする。この工程は、初期クラッド層68Pおよび初期導波路14Pがテーパーエッチングされ、且つ初期導波路14Pのエッチング速度が初期クラッド層68Pのエッチング速度よりも大きい条件で行われる。これにより、初期クラッド層68Pに開口部68cが形成されて、初期クラッド層68Pはクラッド層68となる。また、初期導波路14Pに溝部14bが形成されて、初期導波路14Pは導波路14になる。
初期クラッド層68Pがアルミナによって形成され、初期導波路14Pが酸化タンタルによって形成されている場合には、例えば、ClおよびBClと、NとCFの少なくとも一方とを含むエッチングガスを用いたRIEによって、初期クラッド層68Pおよび初期導波路14Pを連続的にエッチングする。ClとBClは、初期クラッド層68Pおよび初期導波路14Pのエッチングに寄与する主成分である。NとCFは、初期クラッド層68Pおよび初期導波路14Pのエッチング中に、エッチングによって形成される溝の側壁に側壁保護膜を形成するためのガスである。エッチングガスがNとCFの少なくとも一方を含むことにより、初期クラッド層68Pのエッチング中に溝の側壁に側壁保護膜が形成され、これにより、第1および第2の開口部側壁68c1,68c2が、それぞれ上記の仮想の平面Pに対して傾いた面となる。また、初期導波路14Pのエッチング中に溝の側壁に側壁保護膜が形成され、これにより、第1および第2の溝部側壁14b1,14b2が、それぞれ上記仮想の平面Pに対して傾いた面となる。
第1の開口部側壁68c1が上記仮想の平面Pに対してなす角度と、第2の開口部側壁68c2が上記仮想の平面Pに対してなす角度は等しい。以下、この角度を記号θ5で表す。角度θ5は、例えば上記エッチングガスの全流量に対するNとCFの少なくとも一方の流量の割合を変化させることによって、30度から60度の範囲内で制御することができる。
また、第1の溝部側壁14b1が上記仮想の平面Pに対してなす角度と、第2の溝部側壁14b2が上記仮想の平面Pに対してなす角度は等しい。以下、この角度を記号θ6で表す。前述のように、初期クラッド層68Pおよび初期導波路14Pのエッチングは、初期導波路14Pのエッチング速度が初期クラッド層68Pのエッチング速度よりも大きい条件で行われる。そのため、角度θ6は角度θ5よりも大きくなる。一例では、角度θ5が45度で、角度θ6が60度である。図16に示した角度θ3は、角度θ5と等しくなるか、ほぼ等しくなり、図16に示した角度θ4は、角度θ6と等しくなるか、ほぼ等しくなる。
初期クラッド層68Pおよび初期導波路14Pをエッチングする際のエッチングガス以外の条件の一例としては、第1の実施の形態における初期クラッド層18Pをテーパーエッチングする際の条件と同じものを挙げることができる。
図19は、次の工程を示す。この工程では、例えばALDによって、少なくとも、導波路14の溝部14b内、クラッド層68の開口部68c内およびマスク層51の開口部内に、誘電体膜52を形成する。誘電体膜52を形成した後の積層体は、後に形成されるプラズモン発生器66を収容するための凹部52aを有している。凹部52aの下端部52a1は、導波路14の上面14aよりも下方に位置してもよいし、上面14aよりも上方に位置してもよいし、上面14aと同じ高さの位置にあってもよい。
図20は、次の工程を示す。この工程では、まず、例えばスパッタ法によって、誘電体膜52の上に、後にプラズモン発生器66となる金属層を形成する。この金属層は、少なくとも凹部52aを埋める厚みに形成される。次に、例えばCMPによって、マスク層51が露出するまで誘電体膜52および金属層を研磨する。これにより、残った金属層はプラズモン発生器66となる。
本実施の形態に係る近接場光発生器では、プラズモン発生器66のエッジ部66eが、導波路14の外面の一部である溝部14bの表面に対して、誘電体膜52の厚みによる所定の間隔をもって対向している。そして、エッジ部66eにおいて、導波路14を伝播するレーザ光に基づいて溝部14bの表面において発生するエバネッセント光と結合することによって表面プラズモンが励起され、この表面プラズモンがエッジ部66eに沿って近接場光発生部66fに伝播され、この表面プラズモンに基づいて近接場光発生部66fより近接場光が発生される。
本実施の形態に係る近接場光発生器の製造方法によれば、RIEを用いて初期クラッド層68Pおよび初期導波路14Pを連続的にエッチングすることにより、クラッド層68の開口部68cおよび導波路14の溝部14bが形成される。その後、開口部68cおよび溝部14b内に誘電体膜52が形成され、誘電体膜52の上にプラズモン発生器66が形成される。従って、導波路14の外面(溝部14bの表面)とプラズモン発生器66のエッジ部66eとの間隔は、誘電体膜52の厚みによって決まる。これにより、本実施の形態によれば、導波路14の外面(溝部14bの表面)とプラズモン発生器66のエッジ部66eとの間隔のばらつきを小さくすることが可能になる。
また、本実施の形態に係る近接場光発生器の製造方法によれば、プラズモン発生器66の第1の斜面66c1は連続する上部66c11と下部66c12とを含み、プラズモン発生器66の第2の斜面66c2は連続する上部66c21と下部66c22とを含み、下部66c12,66c22が導波路14の上面14aに平行な仮想の平面Pに対してなす角度θ4は、上部66c11,66c21が上記仮想の平面Pに対してなす角度よりも大きくなる。これにより、プラズモン発生器66の前端面66aにおいて、近接場光発生部66fを形成する尖端66a4の曲率半径R1を小さくすることが可能になる。その結果、本実施の形態によれば、近接場光発生部66fより発生される近接場光のスポット径を小さくすることが可能になる。
次に、図21に示した比較例のプラズモン発生器76と比較して、本実施の形態におけるプラズモン発生器66によれば、近接場光発生部66fを形成する尖端66a4の曲率半径R1を小さくすることができることを説明する。図21は、比較例のプラズモン発生器76の一部を拡大して示す正面図である。
図21に示した比較例のプラズモン発生器76は、以下の方法によって形成されたものである。この方法では、導波路14に溝部14bを形成せずに、初期クラッド層68Pをテーパーエッチングして、クラッド層68にプラズモン発生器76を収容するための凹部を形成した。次に、凹部内に誘電体膜52を形成し、誘電体膜52の上にプラズモン発生器76を形成した。クラッド層68の凹部は、導波路14の上面14aに近づくに従って互いの距離が小さくなる第1および第2の側壁を有している。
プラズモン発生器76は、ほぼ三角柱形状を有している。具体的には、プラズモン発生器76は、媒体対向面40に配置された前端面76aと、その反対側の後端面(図示せず)と、第1および第2の斜面76c1,76c2と、上面(図示せず)とを有している。プラズモン発生器76は、更に、第1および第2の斜面76c1,76c2を接続するエッジ部76eと、媒体対向面40に配置され、近接場光を発生する近接場光発生部76fとを有している。近接場光発生部76fは、エッジ部76eの一端に位置している。第1および第2の斜面76c1,76c2の互いの距離は、エッジ部76eに近づくに従って小さくなっている。
前端面76aは、第1の斜面76c1の端に位置する第1の辺76a1と、第2の斜面76c2の端に位置する第2の辺76a2と、第1の辺76a1と第2の辺76a2が接して形成され、近接場光発生部76fを形成する尖端76a4とを含んでいる。媒体対向面40に平行な断面におけるエッジ部76eの形状および尖端76a4の形状は、円弧形状になっている。以下、エッジ部76eおよび尖端76a4の曲率半径を記号R2で表す。また、第1および第2の斜面76c1,76c2ならびに第1および第2の辺76a1,76a2がそれぞれ、導波路14の上面14aに平行な仮想の平面Pに対してなす角度を、記号θ7で表す。
ここで、比較例における角度θ7と本実施の形態における角度θ3(図16参照)を等しくして、比較例における曲率半径R2と本実施の形態における曲率半径R1とを比較する。この場合、本実施の形態における角度θ4は(図16参照)は、角度θ3,θ7よりも大きくなる。従って、本実施の形態における第1および第2の辺66a1,66a2の下部66a12,66a22がなす角度(第1および第2の斜面66c1,66c2の下部66c12,66c22がなす角度)は、比較例における第1および第2の辺76a1,76a2がなす角度(第1および第2の斜面76c1,76c2がなす角度)よりも小さくなる。これにより、本実施の形態における尖端66a4は、比較例における尖端76a4に比べて、より尖った形状となる。その結果、本実施の形態における曲率半径R1は、比較例における曲率半径R2よりも小さくなる。例えば、角度θ3,θ7が45度で、角度θ4が60度の場合には、比較例における曲率半径R2は例えば20nmとなり、本実施の形態における曲率半径R1は例えば10nmとなる。
以上説明したように、本実施の形態によれば、導波路14の外面(溝部14bの表面)とプラズモン発生器66のエッジ部66eとの間隔のばらつきを小さくすることが可能になると共に、プラズモン発生器66のエッジ部66eおよび尖端66a4の曲率半径R1を小さくして、近接場光のスポット径を小さくすることが可能になる。
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、プラズモン発生器の形状は、図1および図14にそれぞれ示した形状以外の形状であってもよい。
14…導波路、16…プラズモン発生器、18…クラッド層、18c…開口部、52…誘電体膜。

Claims (8)

  1. 上面を有し、光を伝播させる導波路と、
    前記導波路の上面に接する下面と、その反対側の上面と、この上面から前記下面にかけて貫通する開口部とを有するクラッド層と、
    少なくとも一部が前記開口部内に収容されたプラズモン発生器と、
    前記開口部内において、前記導波路およびクラッド層と前記プラズモン発生器との間に介在する誘電体膜とを備え、
    前記クラッド層と誘電体膜は、いずれも、前記導波路の屈折率よりも小さい屈折率を有し、
    前記開口部は、前記導波路の上面に近づくに従って互いの距離が小さくなる第1および第2の開口部側壁を有し、
    前記プラズモン発生器は、前記第1の開口部側壁に対向する第1の斜面と、前記第2の開口部側壁に対向する第2の斜面と、前記第1および第2の斜面を接続するエッジ部と、前記エッジ部の一端に位置し、近接場光を発生する近接場光発生部とを有し、
    前記エッジ部において、前記導波路を伝播する光に基づいて前記導波路の上面において発生するエバネッセント光と結合することによって表面プラズモンが励起され、この表面プラズモンが前記エッジ部に沿って前記近接場光発生部に伝播され、この表面プラズモンに基づいて前記近接場光発生部より前記近接場光が発生される近接場光発生器を製造する方法であって、
    前記導波路を形成する工程と、
    前記導波路の上に、後に前記開口部が形成されることによって前記クラッド層となる初期クラッド層を形成する工程と、
    前記導波路の上面に達しない凹部が前記初期クラッド層に形成されるように、反応性イオンエッチングを用いて前記初期クラッド層をエッチングする工程と、
    前記凹部が前記開口部となり、前記初期クラッド層が前記クラッド層となるように、前記導波路の上面の一部が露出するまで、ウェットエッチングを用いて前記凹部をエッチングする工程と、
    前記開口部内に前記誘電体膜を形成する工程と、
    前記誘電体膜の上に前記プラズモン発生器を形成する工程と
    を備えたことを特徴とする近接場光発生器の製造方法。
  2. 前記初期クラッド層はアルミナによって形成され、前記初期クラッド層をエッチングする工程は、ClおよびBClと、NとCFの少なくとも一方とを含むエッチングガスを用いることを特徴とする請求項1記載の近接場光発生器の製造方法。
  3. 前記凹部をエッチングする工程は、前記導波路の上面においてエッチングが停止する条件で行われることを特徴とする請求項1記載の近接場光発生器の製造方法。
  4. 前記導波路は酸化タンタルによって形成され、前記初期クラッド層はアルミナによって形成され、前記凹部をエッチングする工程は、テトラメチルアンモニウムハイドロオキサイドまたはKOHを含むエッチング液を用いることを特徴とする請求項3記載の近接場光発生器の製造方法。
  5. 前記誘電体膜は、原子層堆積法によって形成されることを特徴とする請求項1記載の近接場光発生器の製造方法。
  6. 上面と、この上面で開口し、この上面に平行な方向に長い溝部とを有し、光を伝播させる導波路と、
    前記導波路の上面に接する下面と、その反対側の上面と、この上面から前記下面にかけて貫通して前記溝部に連続する開口部とを有するクラッド層と、
    少なくとも一部が前記開口部部内に収容されたプラズモン発生器と、
    前記溝部および開口部内において、前記導波路およびクラッド層と前記プラズモン発生器との間に介在する誘電体膜とを備え、
    前記クラッド層と誘電体膜は、いずれも、前記導波路の屈折率よりも小さい屈折率を有し、
    前記開口部は、前記導波路の上面に近づくに従って互いの距離が小さくなる第1および第2の開口部側壁を有し、
    前記溝部は、前記第1の開口部側壁に連続する第1の溝部側壁と、前記第2の開口部側壁に連続する第2の溝部側壁とを有し、
    前記プラズモン発生器は、前記第1の開口部側壁および前記第1の溝部側壁に対向する第1の斜面と、前記第2の開口部側壁および前記第2の溝部側壁に対向する第2の斜面と、前記第1および第2の斜面を接続するエッジ部と、前記エッジ部の一端に位置し、近接場光を発生する近接場光発生部とを有し、
    前記エッジ部において、前記導波路を伝播する光に基づいて前記溝部の表面において発生するエバネッセント光と結合することによって表面プラズモンが励起され、この表面プラズモンが前記エッジ部に沿って前記近接場光発生部に伝播され、この表面プラズモンに基づいて前記近接場光発生部より前記近接場光が発生される近接場光発生器を製造する方法であって、
    後に前記溝部が形成されることによって前記導波路となる初期導波路を形成する工程と、
    前記初期導波路の上に、後に前記開口部が形成されることによって前記クラッド層となる初期クラッド層を形成する工程と、
    前記開口部および溝部が形成されて、前記初期導波路が前記導波路となり、前記初期クラッド層が前記クラッド層となるように、反応性イオンエッチングを用いて、前記初期クラッド層および初期導波路を連続的にエッチングする工程と、
    前記開口部および溝部内に前記誘電体膜を形成する工程と、
    前記誘電体膜の上に前記プラズモン発生器を形成する工程とを備え、
    前記初期クラッド層および初期導波路を連続的にエッチングする工程は、前記初期導波路のエッチング速度が前記初期クラッド層のエッチング速度よりも大きい条件で行われ、これにより、第1および第2の溝部側壁が前記導波路の上面に平行な仮想の平面に対してなす角度は、それぞれ、前記第1および第2の開口部側壁が前記仮想の平面に対してなす角度よりも大きくなり、
    前記開口部および溝部内に前記誘電体膜が形成され、前記誘電体膜の上に前記プラズモン発生器が形成されることにより、前記第1および第2の斜面は、それぞれ、連続する上部と下部とを含み、前記第1および第2の斜面の下部が前記仮想の平面に対してなす角度は、それぞれ、前記第1および第2の斜面の上部が前記仮想の平面に対してなす角度よりも大きくなることを特徴とする近接場光発生器の製造方法。
  7. 前記初期導波路は酸化タンタルによって形成され、前記初期クラッド層はアルミナによって形成され、前記初期クラッド層および初期導波路を連続的にエッチングする工程は、ClおよびBClと、NとCFの少なくとも一方とを含むエッチングガスを用いることを特徴とする請求項6記載の近接場光発生器の製造方法。
  8. 前記誘電体膜は、原子層堆積法によって形成されることを特徴とする請求項6記載の近接場光発生器の製造方法。
JP2010283227A 2010-06-14 2010-12-20 導波路とプラズモン発生器を備えた近接場光発生器の製造方法 Expired - Fee Related JP5330366B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/814,669 US8349198B2 (en) 2010-06-14 2010-06-14 Method of manufacturing near-field light generator including waveguide and plasmon generator
US12/814,669 2010-06-14

Publications (2)

Publication Number Publication Date
JP2012003830A JP2012003830A (ja) 2012-01-05
JP5330366B2 true JP5330366B2 (ja) 2013-10-30

Family

ID=45095386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010283227A Expired - Fee Related JP5330366B2 (ja) 2010-06-14 2010-12-20 導波路とプラズモン発生器を備えた近接場光発生器の製造方法

Country Status (2)

Country Link
US (1) US8349198B2 (ja)
JP (1) JP5330366B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518158B2 (ja) * 2008-02-08 2010-08-04 Tdk株式会社 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ、及びハードディスク装置
US8432773B2 (en) * 2010-12-08 2013-04-30 Tdk Corporation Thermally-assisted magnetic head having bank layer between magnetic pole and plasmon generator
US8491802B1 (en) * 2011-03-08 2013-07-23 Western Digital (Fremont), Llc Method of forming a dielectric slope for EAMR and magnetic writer
US8461050B2 (en) * 2011-06-10 2013-06-11 Headway Technologies, Inc. Taper-etching method and method of manufacturing near-field light generator
US8703619B2 (en) 2012-01-19 2014-04-22 Headway Technologies, Inc. Taper-etching method and method of manufacturing near-field light generator
US8498182B1 (en) 2012-06-06 2013-07-30 HGST Netherlands B.V. Wrap-around antenna design for improved performance in thermally-assisted magnetic recording
US8619517B1 (en) * 2012-08-13 2013-12-31 Headway Technologies, Inc. Thermally-assisted magnetic recording head having a plasmon generator
US8619518B1 (en) 2012-08-15 2013-12-31 Headway Technologies, Inc. Thermally-assisted magnetic recording head having expanded near-field light generating layer and method of manufacture
US8599653B1 (en) 2012-09-11 2013-12-03 Western Digital Technologies, Inc. Systems and methods for reducing condensation along a slider air bearing surface in energy assisted magnetic recording
US8900466B2 (en) * 2013-03-27 2014-12-02 Headway Technologies, Inc. Method of manufacturing a near-field light generator including a waveguide and a plasmon generator
US9494715B2 (en) * 2013-04-04 2016-11-15 California Institute Of Technology Nanoscale plasmonic field-effect modulator
US8760809B1 (en) * 2013-05-13 2014-06-24 Headway Technologies, Inc. Thermally-assisted magnetic recording head having a plasmon generator
US8988830B1 (en) 2013-05-13 2015-03-24 Western Digital (Fremont), Llc Air bearing design to mitigate lube waterfall effect
US9465160B2 (en) * 2013-08-20 2016-10-11 General Electric Company Plasmonic interface and method of manufacturing thereof
US8988975B1 (en) 2013-09-24 2015-03-24 Headyway Technologies, Inc. Thermally assisted magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive
US8848495B1 (en) * 2013-12-02 2014-09-30 Headway Technologies, Inc. Plasmon generator self-annealing with current injection in TAMR
CN111779590B (zh) 2020-07-06 2022-09-02 王利 一种多级斯特林机及其稳态运行参数调控方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820770A (en) * 1992-07-21 1998-10-13 Seagate Technology, Inc. Thin film magnetic head including vias formed in alumina layer and process for making the same
JP2008059697A (ja) 2006-08-31 2008-03-13 Tdk Corp 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7910011B2 (en) 2008-05-28 2011-03-22 Headway Technologies, Inc. Method of manufacturing magnetic head for perpendicular magnetic recording
US8000178B2 (en) 2008-10-29 2011-08-16 Tdk Corporation Near-field light generating element utilizing surface plasmon
US8089830B2 (en) 2009-05-13 2012-01-03 Tdk Corporation Near-field light generating device including near-field light generating element with edge part opposed to waveguide
US7911883B2 (en) * 2009-06-26 2011-03-22 Headway Technologies, Inc. Near-field light generating element having two different angles

Also Published As

Publication number Publication date
US8349198B2 (en) 2013-01-08
US20110303637A1 (en) 2011-12-15
JP2012003830A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5330366B2 (ja) 導波路とプラズモン発生器を備えた近接場光発生器の製造方法
JP5001413B2 (ja) 近接場光発生素子を備えた熱アシスト磁気記録ヘッド
JP5001414B2 (ja) 近接場光発生素子を備えた熱アシスト磁気記録ヘッド
JP5323737B2 (ja) 収容層の溝部内に収容された近接場光発生素子を備えた近接場光発生装置
JP5680295B2 (ja) 近接場光発生素子を備えた熱アシスト磁気記録ヘッド
JP4770980B2 (ja) 近接場光発生装置およびその製造方法
JP5558610B2 (ja) プラズモンジェネレータを有する熱アシスト磁気記録ヘッド
JP5029724B2 (ja) 傾斜した端面を有する導波路を備えた近接場光発生素子
JP4958318B2 (ja) 内部ミラーを備えた熱アシスト磁気記録ヘッド
JP5607766B2 (ja) シールドを含む熱アシスト磁気記録ヘッド
JP5497868B2 (ja) テーパエッチング方法および近接場光発生器の製造方法
JP2011060408A (ja) スライダに固定されたレーザダイオードを備えた熱アシスト磁気記録ヘッド
JP5586762B2 (ja) プラズモンジェネレータの製造方法
JP2014086126A (ja) 近接場光発生器および熱アシスト磁気記録ヘッド
JP5713460B2 (ja) プラズモンジェネレータの製造方法
JP5646683B2 (ja) プラズモンジェネレータを有する熱アシスト磁気記録ヘッド
JP5586642B2 (ja) テーパエッチング方法および近接場光発生器の製造方法
JP5603916B2 (ja) プラズモンジェネレータの製造方法
JP5393812B2 (ja) 熱アシスト磁気記録ヘッドの主磁極の形成方法
JP4996731B2 (ja) 近接場光発生素子の製造方法および熱アシスト磁気記録ヘッドの製造方法
JP5816672B2 (ja) 導波路とプラズモンジェネレータを備えた近接場光発生器の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees