JP5325402B2 - Novel bicarbazole derivative, host material and organic electroluminescence device using the same - Google Patents

Novel bicarbazole derivative, host material and organic electroluminescence device using the same Download PDF

Info

Publication number
JP5325402B2
JP5325402B2 JP2007202970A JP2007202970A JP5325402B2 JP 5325402 B2 JP5325402 B2 JP 5325402B2 JP 2007202970 A JP2007202970 A JP 2007202970A JP 2007202970 A JP2007202970 A JP 2007202970A JP 5325402 B2 JP5325402 B2 JP 5325402B2
Authority
JP
Japan
Prior art keywords
layer
transport layer
light emitting
electron
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007202970A
Other languages
Japanese (ja)
Other versions
JP2009035524A (en
Inventor
淳二 城戸
仕健 蘇
久宏 笹部
孝 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2007202970A priority Critical patent/JP5325402B2/en
Publication of JP2009035524A publication Critical patent/JP2009035524A/en
Application granted granted Critical
Publication of JP5325402B2 publication Critical patent/JP5325402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Description

本発明は、新規なビカルバゾール誘導体、それを用いたホスト材料および有機エレクトロルミネッセンス素子に関する。   The present invention relates to a novel bicarbazole derivative, a host material using the same, and an organic electroluminescence device.

有機EL素子(有機エレクトロルミネッセンス素子)の実用化に向けた研究開発が、国内外の電気メーカーや材料メーカーなどが中心になって進められている。液晶表示素子や発光ダイオードなどの既に世間に知られているディスプレイなどと、互角に渡り歩いていくには消費電力の低減および素子の長寿命化が必須の課題としてあげられている。
そこで、この問題を解決する目的で、近年リン光材料による有機EL素子の検討がなされている(非特許文献1)。
リン光材料は、従来の蛍光材料と異なり、三重項励起状態を使用することができるため量子効率が非常に高く、エネルギー失活がほとんどなく内部発光量子収率でほぼ100%に達する材料である。
しかし、このリン光材料は、濃度消光を起こしやすいため蛍光材料と同様にホスト材料との併用が必要になってくる。
高効率発光を得るためには、輸送材料やホスト材料の最適化を図らないといけないが、リン光材料は蛍光材料と異なり三重項エネルギーを完全に閉じこめないと満足な効果が得られない。特に青色の材料に関してはエネルギーレベルが非常に高い。そのためにこれまで使用していた4,4′−ジ(N−カルバゾリル)−1,1′−ビフェニル(CBP)では十分なエネルギーの閉じこめができない。これまでこの青色リン光エネルギーを満足に閉じこめる事ができるワイドギャップ化されたホスト材料はほとんどなく、青色リン光材料の開発を妨げる一つの要因になっていた。
そこで、本発明者らは、化学構造式上、ねじれ構造をもつ化合物が前記目的にかなう化合物となる可能性を考え、請求項1の化合物を開発したが、この基本的構造またはそれに近い化合物について、ケミカルアブストラクト検索を行なったが、該当化合物に関する文献は発見できなかった。
Research and development for practical application of organic EL elements (organic electroluminescence elements) is being promoted mainly by domestic and foreign electric manufacturers and material manufacturers. Reducing power consumption and prolonging the life of the elements are indispensable issues for walking alongside displays that are already known to the public such as liquid crystal display elements and light emitting diodes.
Thus, in order to solve this problem, an organic EL element using a phosphorescent material has recently been studied (Non-Patent Document 1).
Unlike conventional fluorescent materials, phosphorescent materials have a very high quantum efficiency because they can use triplet excited states, and there is almost no energy deactivation, and the internal emission quantum yield reaches almost 100%. .
However, since this phosphorescent material tends to cause concentration quenching, it is necessary to use it together with a host material in the same manner as a fluorescent material.
In order to obtain high-efficiency light emission, it is necessary to optimize transport materials and host materials. However, unlike phosphor materials, phosphorescent materials cannot obtain satisfactory effects unless triplet energy is completely confined. Especially for blue materials, the energy level is very high. Therefore, 4,4'-di (N-carbazolyl) -1,1'-biphenyl (CBP) that has been used so far cannot confine sufficient energy. Until now, there was almost no wide-gap host material capable of confining the blue phosphorescent energy satisfactorily, which was one factor hindering the development of blue phosphorescent materials.
Therefore, the present inventors have developed the compound of claim 1 in consideration of the possibility that a compound having a twisted structure in the chemical structural formula becomes a compound that meets the above-mentioned purpose. The chemical abstract was searched, but no literature on the compound was found.

Appl.Phys.Lett.,75(1)4(1999)Appl. Phys. Lett. , 75 (1) 4 (1999)

本発明の目的は、素子の低電圧駆動を可能にし、高効率な素子を提供するために必要な新規なビカルバゾール誘導体、それを用いたホスト材料および有機エレクトロルミネッセンス素子を提供する点にある。   An object of the present invention is to provide a novel bicarbazole derivative, a host material using the same, and an organic electroluminescence device, which are necessary for enabling the device to be driven at a low voltage and providing a highly efficient device.

本発明の第1は、下記一般式(1)で示されるビカルバゾール誘導体に関する。

Figure 0005325402
(式中、Qは
Figure 0005325402
あり、R1〜4および 19 は水素および炭素数1〜6の直鎖または分岐のアルキル基よりなる群から選ばれた基であり、R20は炭素数1〜6の直鎖または分岐のアルキル基であり、R5〜12は水素、炭素数1〜6の直鎖または分岐のアルキル基、炭素数1〜6の直鎖または分岐のアルコキシ基および炭素数1〜6の直鎖または分岐のアルキルアミノ基よりなる群からそれぞれ独立して選ばれた基である。)
本発明の第2は、請求項1記載のビカルバゾール誘導体よりなるホスト材料に関する。
本発明の第3は、請求項1記載のビカルバゾール誘導体を用いた有機エレクトロルミネッセンス素子に関する。 The first of the present invention relates to a bicarbazole derivative represented by the following general formula (1).
Figure 0005325402
(Where Q is
Figure 0005325402
In and, R 1 to 4 and R 19 are hydrogen and straight-chain or branched alkyl group selected from the group consisting of groups having 1 to 6 carbon atoms, R 20 is a straight-chain or branched having 1 to 6 carbon atoms R 5-12 is hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, and a linear chain having 1 to 6 carbon atoms or Each group is independently selected from the group consisting of branched alkylamino groups. )
The second of the present invention relates to a host material comprising the bicarbazole derivative according to claim 1.
3rd of this invention is related with the organic electroluminescent element using the bicarbazole derivative of Claim 1.

本発明における炭素数1〜6の直鎖または分岐のアルキル基としては、メチル、エチル、n−プロピル、iso−プロピル、n−ブチル、iso−ブチル、sec−ブチル、tert−ブチル、n−ペンチル、iso−ペンチル、2,2−ジメチルプロピル、n−ヘキシル、2−メチルペンチル、3−メチルペンチル、4−メチルペンチル、2,2−ジメチルブチル、2,3−ジメチルブチル、3,3−ジメチルブチルなどを挙げることができる。
本発明における炭素数1〜6の直鎖または分岐のアルコキシ基としては、メトキシ、エトキシ、n−プロピルオキシ、iso−プロピルオキシ、n−ブチルオキシ、iso−ブチルオキシ、sec−ブチルオキシ、tert−ブチルオキシ、n−ペンチルオキシ、iso−ペンチルオキシ、2,2−ジメチルプロピルオキシ、n−ヘキシルオキシ、2−メチルペンチルオキシ、3−メチルペンチルオキシ、4−メチルペンチルオキシ、2,2−ジメチルブチルオキシ、2,3−ジメチルブチルオキシ、3,3−ジメチルブチルオキシなどを挙げることができる。
本発明における炭素数1〜6の直鎖または分岐のアルキルアミノ基としては、メチルアミノ、エチルアミノ、n−プロピルアミノ、iso−プロピルアミノ、n−ブチルアミノ、iso−ブチルアミノ、sec−ブチルアミノ、tert−ブチルアミノ、n−ペンチルアミノ、iso−ペンチルアミノ、2,2−ジメチルプロピルアミノ、n−ヘキシルアミノ、2−メチルペンチルアミノ、3−メチルペンチルアミノ、4−メチルペンチルアミノ、2,2−ジメチルブチルアミノ、2,3−ジメチルブチルアミノ、3,3−ジメチルブチルアミノなどを挙げることができる。
Examples of the linear or branched alkyl group having 1 to 6 carbon atoms in the present invention include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, and n-pentyl. , Iso-pentyl, 2,2-dimethylpropyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethyl Examples include butyl.
Examples of the linear or branched alkoxy group having 1 to 6 carbon atoms in the present invention include methoxy, ethoxy, n-propyloxy, iso-propyloxy, n-butyloxy, iso-butyloxy, sec-butyloxy, tert-butyloxy, n -Pentyloxy, iso-pentyloxy, 2,2-dimethylpropyloxy, n-hexyloxy, 2-methylpentyloxy, 3-methylpentyloxy, 4-methylpentyloxy, 2,2-dimethylbutyloxy, 2, Examples thereof include 3-dimethylbutyloxy and 3,3-dimethylbutyloxy.
Examples of the linear or branched alkylamino group having 1 to 6 carbon atoms in the present invention include methylamino, ethylamino, n-propylamino, iso-propylamino, n-butylamino, iso-butylamino, sec-butylamino. , Tert-butylamino, n-pentylamino, iso-pentylamino, 2,2-dimethylpropylamino, n-hexylamino, 2-methylpentylamino, 3-methylpentylamino, 4-methylpentylamino, 2,2 -Dimethylbutylamino, 2,3-dimethylbutylamino, 3,3-dimethylbutylamino and the like can be mentioned.

本発明の化合物は、下記の反応により製造する事ができる。

Figure 0005325402
(式中、Qは
Figure 0005325402
あり、R1〜4および 19 は水素および炭素数1〜6の直鎖または分岐のアルキル基よりなる群から選ばれた基であり、 20 は炭素数1〜6の直鎖または分岐のアルキル基であり、5〜12は水素、炭素数1〜6の直鎖または分岐のアルキル基、炭素数1〜6の直鎖または分岐のアルコキシ基および炭素数1〜6の直鎖または分岐のアルキルアミノ基よりなる群からそれぞれ独立して選ばれた基である。) The compound of the present invention can be produced by the following reaction.
Figure 0005325402
(Where Q is
Figure 0005325402
In and, R 1 to 4 and R 19 are hydrogen and straight-chain or branched alkyl group selected from the group consisting of groups having 1 to 6 carbon atoms, R 20 is a straight-chain or branched having 1 to 6 carbon atoms of an alkyl group, R 5 to 12 is hydrogen, straight-chain or branched alkyl group having 1 to 6 carbon atoms, straight-chain C1-6 straight or branched alkoxy group and a carbon 1 to 6 carbon atoms or Each group is independently selected from the group consisting of branched alkylamino groups. )

本発明の化合物の具体例を以下に例示する。なお、下記例示化合物のメチル基は、前記〔0006〕で例示した基と置き換えることができることは勿論である。
また、Qピリミジンの例におけるフェニル基の置換位置は(4,6)である。
更に、カルバゾール基の結合位置は、フェニル基に結合したピリミジン環に対してメタ位である。
Specific examples of the compound of the present invention are illustrated below. In addition, of course, the methyl group of the following exemplary compound can be replaced with the group illustrated in the above [0006].
The substitution position of the phenyl group in the example where Q is pyrimidine is (4, 6).
Furthermore, the bonding position of the carbazole group is the meta position with respect to the pyrimidine ring bonded to the phenyl group.

Figure 0005325402
Figure 0005325402

本発明のビカルバゾール誘導体は、広いバンドギャップを有し併せてエネルギーの閉じこめ効果が大きい。従って、ホスト材料として使用することができる。
本発明のビカルバゾール誘導体を有機エレクトロルミネッセンスに使用する場合、適当な発光材料と組み合わせて使用することができる。
The bicarbazole derivative of the present invention has a wide band gap and a large energy confinement effect. Therefore, it can be used as a host material.
When the bicarbazole derivative of the present invention is used for organic electroluminescence, it can be used in combination with a suitable light emitting material.

次に本発明の有機エレクトロルミネッセンス素子(有機EL素子)について説明する。本発明の有機EL素子は、陽極と陰極間に一層もしくは多層の有機化合物を積層した素子であり、発光層には、発光材料を含有しそれに加えて陽極から注入したホールもしくは陰極から注入した電子を発光材料まで輸送するのが目的で、本発明のビカルバゾール誘導体を含有しているのが好ましい。発光層のホスト材料として、公知のホスト材料とともに本発明の、ビカルバゾール誘導体を含有する。本発明のホスト材料を用いた有機EL素子の構成例としては、例えばITO(陽極)/ホール輸送層/発光層/電子輸送層/陰極、ITO/ホール輸送層/発光層/電子輸送層/電子注入層/陰極、ITO/ホール輸送層/発光層/ホールブロック層/電子輸送層/陰極、ITO/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極、ITO/ホール注入層/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極等の多層構成で積層したものが挙げられる。また、必要に応じて陰極上に封止層を有していても良い。   Next, the organic electroluminescence element (organic EL element) of the present invention will be described. The organic EL device of the present invention is a device in which a single-layer or multi-layer organic compound is laminated between an anode and a cathode. The light-emitting layer contains a light-emitting material, and in addition, holes injected from the anode or electrons injected from the cathode. Is preferably contained in the bicarbazole derivative of the present invention. As a host material of the light emitting layer, the bicarbazole derivative of the present invention is contained together with a known host material. Examples of the constitution of the organic EL device using the host material of the present invention include, for example, ITO (anode) / hole transport layer / light emitting layer / electron transport layer / cathode, ITO / hole transport layer / light emitting layer / electron transport layer / electron. Injection layer / cathode, ITO / hole transport layer / light emitting layer / hole block layer / electron transport layer / cathode, ITO / hole transport layer / light emitting layer / hole block layer / electron transport layer / electron injection layer / cathode, ITO / hole Examples thereof include those laminated in a multilayer structure such as injection layer / hole transport layer / light emitting layer / hole block layer / electron transport layer / electron injection layer / cathode. Moreover, you may have a sealing layer on a cathode as needed.

ホール輸送層、電子輸送層、および発光層のそれぞれの層は、一層構造であっても、多層構造であっても良い。またホール輸送層、電子輸送層はそれぞれの層で注入機能を受け持つ層(ホール注入層および電子注入層)と輸送機能を受け持つ層(ホール輸送層および電子輸送層)を別々に設けることもできる。
本発明の有機EL素子は、上記構成例に限らず、種々の構成とすることができる。
Each of the hole transport layer, the electron transport layer, and the light emitting layer may have a single layer structure or a multilayer structure. In addition, the hole transport layer and the electron transport layer can be provided separately with a layer responsible for the injection function (hole injection layer and electron injection layer) and a layer responsible for the transport function (hole transport layer and electron transport layer).
The organic EL element of the present invention is not limited to the above configuration example, and can have various configurations.

以下本発明の有機EL素子の構成要素に関して、陽極/ホール輸送層/発光層/電子輸送層/陰極からなる素子構成を例として取り上げて説明する。本発明の有機EL素子は、基板に支持されていることが好ましい。
基板の素材については特に制限はなく、従来の有機EL素子に慣用されているものであれば良く、例えば、ガラス、石英ガラス、透明プラスチックなどからなるものを用いることができる。
Hereinafter, the constituent elements of the organic EL element of the present invention will be described by taking as an example an element structure composed of an anode / hole transport layer / light emitting layer / electron transport layer / cathode. The organic EL element of the present invention is preferably supported on a substrate.
There is no restriction | limiting in particular about the raw material of a board | substrate, What is necessary is just what is conventionally used for the conventional organic EL element, For example, what consists of glass, quartz glass, a transparent plastic etc. can be used.

本発明の有機EL素子の陽極としては、ITO(インジウム−スズオキサイド)、酸化スズ(SnO)、酸化亜鉛(ZnO)などの導電性透明材料、ポリピロール、ポリチオフェン等の導電性高分子材料が挙げられる。陽極はこれらの電極材料を、例えば蒸着、スパッタリング、塗布などの方法により形成することができる。陽極のシート電気抵抗は数百Ω/cm以下が好ましい。陽極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。 Examples of the anode of the organic EL device of the present invention include conductive transparent materials such as ITO (indium-tin oxide), tin oxide (SnO 2 ), and zinc oxide (ZnO), and conductive polymer materials such as polypyrrole and polythiophene. It is done. For the anode, these electrode materials can be formed by a method such as vapor deposition, sputtering, or coating. The sheet electrical resistance of the anode is preferably several hundred Ω / cm 2 or less. The thickness of the anode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm.

陰極としては、仕事関数の小さい金属単体、仕事関数の小さい金属同士の合金、または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、リチウム、リチウム−インジウム合金、ナトリウム、ナトリウム−カリウム合金、マグネシウム、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム、アルミニウム−リチウム合金、アルミニウム−マグネシウム合金などが挙げられる。陰極はこれらの電極材料を、例えば蒸着、スパッタリングなどの方法により、薄膜を形成させることにより作成することができる。陰極のシート電気抵抗は数百Ω/cm以下が好ましい。陰極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。
本発明の有機EL素子の発光を効率よく取り出すために、陽極または陰極の少なくとも一方の電極は透明もしくは半透明であることが好ましい。
As the cathode, an electrode material is preferably a simple metal having a low work function, an alloy of metals having a low work function, or a conductive substance and a mixture thereof. Specific examples of such electrode materials include lithium, lithium-indium alloy, sodium, sodium-potassium alloy, magnesium, magnesium-silver alloy, magnesium-indium alloy, aluminum, aluminum-lithium alloy, and aluminum-magnesium alloy. Can be mentioned. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet electrical resistance of the cathode is preferably several hundred Ω / cm 2 or less. The thickness of the cathode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm.
In order to efficiently extract light emitted from the organic EL device of the present invention, at least one of the anode and the cathode is preferably transparent or translucent.

本発明の有機エレクトロルミネッセンス素子のホール輸送層(正孔輸送層)は、正孔伝達化合物からなるもので、陽極より注入された正孔を発光層に伝達する機能を有している。電界が与えた2つの電極の間に正孔伝達化合物が配置されて陽極から正孔が注入された場合、少なくとも10−6cm/V・秒以上の正孔移動度を有する正孔伝達物質が好ましい。本発明の有機エレクトロルミネッセンス素子の正孔輸送層に使用する正孔伝達物質は、前記の好ましい性能を有するものであれば特に制限はない。従来から光導電材料において正孔の電荷注入材料として慣用されているものや有機エレクトロルミネッセンス素子の正孔輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。 The hole transport layer (hole transport layer) of the organic electroluminescence device of the present invention is made of a hole transport compound and has a function of transmitting holes injected from the anode to the light emitting layer. A hole transport material having a hole mobility of at least 10 −6 cm 2 / V · sec when a hole transport compound is disposed between two electrodes to which an electric field is applied and holes are injected from an anode Is preferred. The hole transport material used for the hole transport layer of the organic electroluminescence device of the present invention is not particularly limited as long as it has the above-mentioned preferable performance. Any one of materials conventionally used as a hole charge injection material in a photoconductive material or a known material used for a hole transport layer of an organic electroluminescence element can be selected and used. .

前記の正孔伝達物質としては、たとえば銅フタロシアニンなどのフタロシアニン誘導体、N,N,N′,N′−テトラフェニル−1,4−フェニレンジアミン、N,N′−ジ(m−トリル)−N,N′−ジフェニル−4,4−ジアミノフェニル(TPD)、N,N′−ジ(1−ナフチル)−N,N′−ジフェニル−4,4−ジアミノフェニル(α−NPD)等のトリアリールアミン誘導体、ポリフェニレンジアミン誘導体、ポリチオフェン誘導体、および水溶性の下記式に示すPEDOT−PSS(ポリエチレンジオキサチオフェン−ポリスチレンスルホン酸)よりなるポリマー混合物などが挙げられる。正孔輸送層は、これらの他の正孔伝達化合物一種または二種以上からなる一層で構成されたものでよく、前記の正孔伝達物質とは別の化合物からなる正孔輸送層を積層したものでも良い。   Examples of the hole transport material include phthalocyanine derivatives such as copper phthalocyanine, N, N, N ′, N′-tetraphenyl-1,4-phenylenediamine, and N, N′-di (m-tolyl) -N. , N′-diphenyl-4,4-diaminophenyl (TPD), N, N′-di (1-naphthyl) -N, N′-diphenyl-4,4-diaminophenyl (α-NPD), etc. Examples thereof include an amine derivative, a polyphenylenediamine derivative, a polythiophene derivative, and a polymer mixture composed of PEDOT-PSS (polyethylenedioxathiophene-polystyrenesulfonic acid) represented by the following water-soluble formula. The hole transport layer may be composed of one or more of these other hole transport compounds, and a hole transport layer composed of a compound different from the hole transport material is laminated. Things can be used.

正孔注入材料としては、下記化学式に示されるPEDOT−PSS(ポリマー混合物)やDNTPDを挙げることができる。

Figure 0005325402
正孔輸送材料としては、下記化学式に示すTPD、DTASi、α−NPDなどを挙げることができる。 Examples of the hole injection material include PEDOT-PSS (polymer mixture) and DNTPD represented by the following chemical formula.
Figure 0005325402
Examples of the hole transport material include TPD, DTASi, α-NPD, and the like represented by the following chemical formula.

Figure 0005325402
Figure 0005325402

本発明の有機EL素子の電子輸送層は、電子伝達化合物からなるもので、陰極より注入された電子を発光層に伝達する機能を有している。電界が与えた2つの電極の間に電子伝達化合物が配置されて陰極から電子が注入された場合、少なくとも10−6cm/V・秒以上の電子移動度を有する電子伝達物質が好ましい。本発明の有機EL素子に使用する電子輸送層に使用する電子伝達物質は、前記の好ましい性能を有するものであれば特に制限はない。従来から光導電材料において電子の電荷注入材料として慣用されているものや有機EL素子の電子輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。 The electron transport layer of the organic EL device of the present invention is made of an electron transfer compound and has a function of transmitting electrons injected from the cathode to the light emitting layer. When an electron transfer compound is disposed between two electrodes to which an electric field is applied and electrons are injected from the cathode, an electron transfer material having an electron mobility of at least 10 −6 cm 2 / V · sec or more is preferable. The electron transfer material used for the electron transport layer used in the organic EL device of the present invention is not particularly limited as long as it has the above-mentioned preferable performance. Any one of materials conventionally used as electron charge injection materials in photoconductive materials and known materials used for electron transport layers of organic EL elements can be selected and used.

前記の電子伝達物質としては、たとえばトリス(8−ヒドロキシキノリノラト)アルミニウム錯体(Alq)のようなキノリン錯体、1−N−フェニル−2−(p−ビフェニルイル)−5−(p−tert−ブチルフェニル)−1,3,5−トリアジン(TAZ)のようなトリアジン誘導体、1,4−ジ(1,10−フェナントロリン−2−イル)ベンゼン(DPB)のようなフェナントロリン誘導体、フッ化リチウムのようなハロゲン化アルカリ金属などが挙げられる。電子輸送層は、これらの他の電子伝達化合物一種または二種以上からなる一層で構成されたものでよく、前記の電子伝達物質とは別の化合物からなる電子輸送層を積層したものでも良い。 Examples of the electron transfer material include quinoline complexes such as tris (8-hydroxyquinolinolato) aluminum complex (Alq 3 ), 1-N-phenyl-2- (p-biphenylyl) -5- (p- triazine derivatives such as tert-butylphenyl) -1,3,5-triazine (TAZ), phenanthroline derivatives such as 1,4-di (1,10-phenanthroline-2-yl) benzene (DPB), fluoride Examples include alkali metal halides such as lithium. The electron transport layer may be composed of one or more of these other electron transport compounds, or may be a stack of electron transport layers composed of a compound different from the above electron transport material.

電子輸送材料としては、下記化学式に示すAlq、TAZ、DPBなどを挙げることができる。

Figure 0005325402
Examples of the electron transport material include Alq 3 , TAZ, and DPB represented by the following chemical formula.
Figure 0005325402

電子注入材料としては、下記化学式に示されるフッ化リチウムや8−ヒドロキシキノリノラトリチウム錯体(Liq)などを挙げることができるが、本出願人の特願2006−292032号にかかげるフェナントロリン誘導体のリチウム錯体(LiPB)や特願2007−29695号に掲げるフェノキシピリジンのリチウム錯体(LiPP)を用いることもできる。

Figure 0005325402
Examples of the electron injection material include lithium fluoride and 8-hydroxyquinolinolatolithium complex (Liq) represented by the following chemical formula. It is also possible to use a complex (LiPB) or a phenoxypyridine lithium complex (LiPP) described in Japanese Patent Application No. 2007-29695.
Figure 0005325402

本発明の有機EL素子の発光層については、従来の公知の材料について特に制限はなく、任意のものを選択して用いることができる。
発光材料としては、ペリレン誘導体、ナフタセン誘導体、キナクリドン誘導体、クマリン誘導体(例えばクマリン1、クマリン540、クマリン545など)ピラン誘導体(例えばDCM−1、DCM−2、DCJTBなど)、有機金属錯体、例えばトリス(8−ヒドロキシキノリノラト)アルミニウム錯体(Alq)、トリス(4−メチル−8−ヒドロキシキノリノラト)アルミニウム錯体(Almq)等の蛍光材料や[2−(4,6−ジフルオロフェニル)ピリジル−N,C2′]イリジウム(III)ピコリレート(FIrpic)、トリス{1−[4−(トリフルオロメチル)フェニル]−1H−ピラゾラート−N,C2′}イリジウム(III)(Irtfmppz)、ビス[2−(4′,6′−ジフルオロフェニル)ピリジナト−N,C2′]イリジウム(III)テトラキス(1−ピラゾリル)ボレート(FIr6)、トリス(2−フェニルピリジナト)イリジウム(III)(Irppy)などのリン光材料などを挙げることができる。
About the light emitting layer of the organic EL element of this invention, there is no restriction | limiting in particular about the conventionally well-known material, Arbitrary things can be selected and used.
Examples of the light-emitting material include perylene derivatives, naphthacene derivatives, quinacridone derivatives, coumarin derivatives (eg, coumarin 1, coumarin 540, coumarin 545), pyran derivatives (eg, DCM-1, DCM-2, DCJTB, etc.), organometallic complexes, eg, tris. Fluorescent materials such as (8-hydroxyquinolinolato) aluminum complex (Alq 3 ) and tris (4-methyl-8-hydroxyquinolinolato) aluminum complex (Almq 3 ) and [2- (4,6-difluorophenyl) Pyridyl-N, C2 ′] iridium (III) picolylate (FIrpic), tris {1- [4- (trifluoromethyl) phenyl] -1H-pyrazolate-N, C2 ′} iridium (III) (Irtfmpppz 3 ), bis [2- (4 ′, 6′-difluorophenyl) pyridina -N, C2 '] iridium (III) tetrakis (1-pyrazolyl) borate (FIr6), tris (2-phenylpyridinato) iridium (III) (Irppy 3) and the like phosphorescent material such as.

発光層は、ホスト材料とゲスト材料(ドーパント)から形成することが好ましい。[Appl. Phys. Lett.,65 3610(1989)]。特にリン光材料を発光層に使用する場合、ホスト材料の使用が必要であり、この時使用されるホスト材料としては本発明のビカルバゾール誘導体を用いることが望ましいが、従来のホスト材料4,4′−ジ(N−カルバゾリル)−1,1′−ビフェニル(CBP)、1,4−ジ(N−カルバゾリル)ベンゼン−2,2′−ジ[4″−(N−カルバゾリル)フェニル]−1,1′−ビフェニル(4CzPBP)と併用しても構わない。   The light emitting layer is preferably formed from a host material and a guest material (dopant). [Appl. Phys. Lett. 65 3610 (1989)]. In particular, when a phosphorescent material is used for the light emitting layer, it is necessary to use a host material. As the host material used at this time, it is desirable to use the bicarbazole derivative of the present invention. '-Di (N-carbazolyl) -1,1'-biphenyl (CBP), 1,4-di (N-carbazolyl) benzene-2,2'-di [4 "-(N-carbazolyl) phenyl] -1 , 1'-biphenyl (4CzPBP) may be used in combination.

ゲスト材料は、ホスト材料に対して好ましくは0.01〜40重量%であり、より好ましくは0.1〜20重量%である。ゲスト材料としては、下記に示す従来公知のFirpic、Irppy、Fir6等を挙げることができる。

Figure 0005325402
The guest material is preferably 0.01 to 40% by weight, more preferably 0.1 to 20% by weight with respect to the host material. Examples of the guest material include conventionally known Firpic, Irppy 3 , and Fir 6 shown below.
Figure 0005325402

本発明の有機エレクトロルミネッセンス素子は、電子注入性を一層向上させる目的で陰極と有機層の間に導電体から構成される電子注入層をさらに設けても良い。ここで使用される導電体としては、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属有機錯体から選択される少なくとも一つの金属化合物を使用することが好ましい。アルカリ金属ハロゲン化物としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、塩化リチウムなどが挙げられる。アルカリ土類金属ハロゲン化物としては、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウムなどが挙げられる。アルカリ金属有機錯体としては、8−ヒドロキシキノリノラトリチウム、8−ヒドロキシキノリノラトセシウムなどが挙げられる。
また本発明化合物を電子注入層として使用する場合は、上記の電子注入材料と併用することもできる。
In the organic electroluminescence device of the present invention, an electron injection layer composed of a conductor may be further provided between the cathode and the organic layer for the purpose of further improving the electron injection property. As the conductor used here, it is preferable to use at least one metal compound selected from alkali metal halides, alkaline earth metal halides, and alkali metal organic complexes. Examples of the alkali metal halide include lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, and lithium chloride. Examples of the alkaline earth metal halide include magnesium fluoride, calcium fluoride, barium fluoride, and strontium fluoride. Examples of the alkali metal organic complex include 8-hydroxyquinolinolatolithium and 8-hydroxyquinolinolatocesium.
Moreover, when using this invention compound as an electron injection layer, it can also use together with said electron injection material.

また前記電子注入層に用いる電子注入材料としては、本出願人の特願2006−292032号にかかる化合物、例えば下記化合物群を例示することもできる。

Figure 0005325402
Moreover, as an electron injection material used for the said electron injection layer, the compound concerning Japanese Patent Application No. 2006-292032 of this applicant, for example, the following compound group can also be illustrated.
Figure 0005325402

正孔輸送層、発光層の形成方法については特に限定されるものではない。例えば乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)、湿式製膜法[溶媒塗布法(例えばスピンコート法、キャスト法、インクジェット法など)]を使用することができる。本発明の新規なビカルバゾール誘導体は、乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)が好ましい。電子輸送層の製膜については、湿式製膜法で行うと下層が溶出する恐れがあるため乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)に限定される。素子の作成については上記の製膜法を併用しても構わない。   The method for forming the hole transport layer and the light emitting layer is not particularly limited. For example, a dry film forming method (for example, a vacuum vapor deposition method, an ionization vapor deposition method) or a wet film forming method [a solvent coating method (for example, a spin coating method, a casting method, an ink jet method, etc.)] can be used. The novel bicarbazole derivative of the present invention is preferably a dry film forming method (for example, a vacuum deposition method, an ionization deposition method, etc.). The film formation of the electron transport layer is limited to a dry film formation method (for example, a vacuum vapor deposition method, an ionization vapor deposition method, etc.) because the lower layer may be eluted when the wet film formation method is used. For the production of the element, the above film forming method may be used in combination.

真空蒸着法により正孔輸送層、発光層、電子輸送層などの各層を形成する場合、真空蒸着条件は特に限定されるものではない。通常10−5Torr程度以下の真空下で50〜500℃程度のボート温度(蒸着原温度)、−50〜300℃程度の基板温度で、0.01〜50nm/sec.程度蒸着することが好ましい。正孔輸送層、発光層、電子輸送層の各層を複数の化合物を使用して形成する場合、化合物を入れたボートをそれぞれ温度制御しながら共蒸着することが好ましい。 When forming each layer such as a hole transport layer, a light emitting layer, and an electron transport layer by a vacuum deposition method, the vacuum deposition conditions are not particularly limited. Usually, under a vacuum of about 10 −5 Torr or less, a boat temperature (deposition source temperature) of about 50 to 500 ° C., a substrate temperature of about −50 to 300 ° C., and 0.01 to 50 nm / sec. Vapor deposition is preferred. When forming each layer of a positive hole transport layer, a light emitting layer, and an electron carrying layer using a some compound, it is preferable to co-evaporate the boat which put the compound, respectively controlling temperature.

正孔輸送層、発光層を溶媒塗布法で形成する場合、各層を構成する成分を溶媒に溶解または分散させて塗布液とする。溶媒としては、炭化水素系溶媒(例えばヘプタン、トルエン、キシレン、シクロヘキサン等)、ケトン系溶媒(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)、ハロゲン系溶媒(例えばジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル等)、アルコール系溶媒(例えばメタノール、エタノール、ブタノール、メチルセロソルブ、エチルセロソルブ等)エーテル系溶媒(例えばジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン等)、非プロトン性溶媒(例えばN,N′−ジメチルアセトアミド、ジメチルスルホキシド等)、水等が挙げられる。溶媒は単独で使用しても良く、複数の溶媒を併用しても良い。   When forming the hole transport layer and the light emitting layer by a solvent coating method, the components constituting each layer are dissolved or dispersed in a solvent to obtain a coating solution. Solvents include hydrocarbon solvents (eg, heptane, toluene, xylene, cyclohexane, etc.), ketone solvents (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), halogen solvents (eg, dichloromethane, chloroform, chlorobenzene, dichlorobenzene, etc.) Ester solvents (eg, ethyl acetate, butyl acetate, etc.), alcohol solvents (eg, methanol, ethanol, butanol, methyl cellosolve, ethyl cellosolve, etc.) ether solvents (eg, dibutyl ether, tetrahydrofuran, 1,4-dioxane, 1, 2-dimethoxyethane etc.), aprotic solvents (eg N, N'-dimethylacetamide, dimethyl sulfoxide etc.), water and the like. The solvent may be used alone, or a plurality of solvents may be used in combination.

正孔輸送層、発光層、電子輸送層等の各層の膜厚は、特に限定されるものではないが、通常5〜5,000nmになるようにする。
本発明の有機エレクトロルミネッセンス素子は、酸素や水分等の接触を遮断する目的で保護層(封止層)を設けたり、不活性物質中に素子を封入して保護することができる。不活性物質としては、パラフィン、シリコンオイル、フルオロカーボン等が挙げられる。保護層に使用する材料としては、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、ポリエステル、ポリカーボネート、光硬化性樹脂等がある。
The thickness of each layer such as the hole transport layer, the light emitting layer, and the electron transport layer is not particularly limited, but is usually 5 to 5,000 nm.
The organic electroluminescence device of the present invention can be protected by providing a protective layer (sealing layer) for the purpose of blocking contact with oxygen, moisture, etc., or by enclosing the device in an inert material. Examples of the inert substance include paraffin, silicon oil, and fluorocarbon. Examples of the material used for the protective layer include fluororesin, epoxy resin, silicone resin, polyester, polycarbonate, and photocurable resin.

本発明の有機エレクトロルミネッセンス素子は、通常直流駆動の素子として使用できる。直流電圧を印加する場合、陽極をプラス、陰極をマイナスの極性として通常1.5〜20V程度印加すると発光が観察される。また本発明の有機エレクトロルミネッセンス素子は交流駆動の素子としても使用できる。交流電圧を印加する場合には、陽極がプラス、陰極がマイナスの状態になった時に発光する。本発明の有機エレクトロルミネッセンス素子は、例えば電子写真感光体、フラットパネルディスプレイなどの平面発光体、複写機、プリンター、液晶ディスプレイのバックライト、計器等の光源、各種発光素子、各種表示装置、各種標識、各種センサー、各種アクセサリーなどに使用することができる。   The organic electroluminescence device of the present invention can be used as a normal DC drive device. When a DC voltage is applied, light emission is usually observed when about 1.5 to 20 V is applied with the positive polarity of the anode and the negative polarity of the cathode. The organic electroluminescence device of the present invention can also be used as an AC drive device. When an AC voltage is applied, light is emitted when the anode is in a positive state and the cathode is in a negative state. The organic electroluminescence device of the present invention includes, for example, a flat light emitter such as an electrophotographic photosensitive member and a flat panel display, a copying machine, a printer, a backlight of a liquid crystal display, a light source such as an instrument, various light emitting devices, various display devices, and various signs. It can be used for various sensors and various accessories.

図11〜14に、本発明の有機エレクトロルミネッセンス素子の好ましい例を示す。
図11は、本発明の有機エレクトロルミネッセンス素子における一例を示す断面図である。図11は、基板1上に陽極2、正孔輸送層5、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。これはキャリア輸送と発光の機能を分離したものであり、材料選択の自由度が増すために、発光の高効率化や発光色の自由度が増すことになる。本発明のビカルバゾール誘導体は発光層3に含有される。
In FIGS. 11-14, the preferable example of the organic electroluminescent element of this invention is shown.
FIG. 11 is a cross-sectional view showing an example of the organic electroluminescence element of the present invention. FIG. 11 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This is a separation of the functions of carrier transport and light emission, and the degree of freedom in material selection increases, so that the efficiency of light emission and the degree of freedom in light emission color increase. The bicarbazole derivative of the present invention is contained in the light emitting layer 3.

図12は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図12は、基板1上に陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。この場合、正孔注入層7を設けることにより、陽極2と正孔輸送層5の密着性を高めたり、陽極からの正孔の注入を良くし、発光素子の低電圧化に効果がある。本発明のビカルバゾール誘導体は発光層3に含有される。   FIG. 12 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 12 shows a structure in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the provision of the hole injection layer 7 improves the adhesion between the anode 2 and the hole transport layer 5, improves the injection of holes from the anode, and is effective in lowering the voltage of the light emitting element. The bicarbazole derivative of the present invention is contained in the light emitting layer 3.

図13は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図13は、基板1上に陽極2、正孔輸送層5、発光層3、電子輸送層6、電子注入層8および陰極4を順次設けた構成のものである。この場合、陰極4から電子の注入を良くし、発光素子の低電圧化に効果がある。本発明のビカルバゾール誘導体は発光層3に含有される。   FIG. 13 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 13 shows a configuration in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, injection of electrons from the cathode 4 is improved, which is effective for lowering the voltage of the light emitting element. The bicarbazole derivative of the present invention is contained in the light emitting layer 3.

図14は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図14は、基板1上に陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6、電子注入層8および陰極4を順次設けた構成のものである。この場合、陽極2から正孔の注入を良くし、陰極4から電子注入を良くし、最も低電圧駆動に効果がある構成である。本発明のビカルバゾール誘導体は発光層3に含有される。   FIG. 14 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 14 shows a configuration in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, the injection of holes from the anode 2 is improved and the injection of electrons from the cathode 4 is improved, which is the most effective for driving at a low voltage. The bicarbazole derivative of the present invention is contained in the light emitting layer 3.

図15〜21は素子の中に正孔ブロック層9を挿入したものの断面図である。正孔ブロック層は、陽極から注入された正孔、あるいは発光層3で再結合により生成した励起子が、陰極4に抜けることを防止する効果があり、有機エレクトロルミネッセンス素子の発光効率の向上に効果がある。正孔ブロック層9については、発光層3と陰極4の間もしくは発光層3と電子輸送層6の間あるいは発光層3と電子注入層8の間に挿入することができる。より好ましいものは発光層3と電子輸送層6の間である。本発明のビカルバゾール誘導体は発光層3に含有される。   15 to 21 are sectional views of the device in which the hole blocking layer 9 is inserted. The hole blocking layer has an effect of preventing holes injected from the anode or excitons generated by recombination in the light emitting layer 3 from escaping to the cathode 4, thereby improving the light emission efficiency of the organic electroluminescence device. effective. The hole blocking layer 9 can be inserted between the light emitting layer 3 and the cathode 4, between the light emitting layer 3 and the electron transport layer 6, or between the light emitting layer 3 and the electron injection layer 8. More preferred is between the light emitting layer 3 and the electron transport layer 6. The bicarbazole derivative of the present invention is contained in the light emitting layer 3.

図15〜21で、正孔輸送層5、正孔注入層7、電子輸送層6、電子注入層8、発光層3、正孔ブロック層9のそれぞれの層は、一層構造であっても多層構造であっても良い。
図11〜21は、あくまでも基本的な素子構成であり、本発明の化合物を用いた有機エレクトロルミネッセンス素子の構成はこれに限定されるものではない。
15 to 21, each of the hole transport layer 5, the hole injection layer 7, the electron transport layer 6, the electron injection layer 8, the light emitting layer 3, and the hole blocking layer 9 may have a single layer structure or a multilayer structure. It may be a structure.
FIGS. 11-21 are the fundamental element structure to the last, and the structure of the organic electroluminescent element using the compound of this invention is not limited to this.

本発明のビカルバゾール誘導体は、CBP等の従来のホスト材料に比べ広いバンドギャップを有し併せてエネルギーの閉じこめ効果が大きい。また移動度も大きく素子中でのホールや電子とのキャリアーバランスにも優れている。また大きなバンドギャップを有することから大きなエネルギーを必要とする青色発光材料、特に青色リン光材料のホスト材料として適している。よって本発明の新規なビカルバゾール誘導体は工業的に極めて重要なものである。   The bicarbazole derivative of the present invention has a wide band gap and a large energy confinement effect compared to conventional host materials such as CBP. In addition, the mobility is large and the carrier balance with holes and electrons in the device is excellent. Further, since it has a large band gap, it is suitable as a host material for blue light-emitting materials that require large energy, particularly blue phosphorescent materials. Therefore, the novel bicarbazole derivative of the present invention is extremely important industrially.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

参考例1
3,5−ビス(3−9H−カルバゾール−9−イル−フェニル)ピリジン(35DCzPPy)の合成
(1)9−(3−ブロモフェニル)−9H−カルバゾール(mCzPBr)の合成

Figure 0005325402
四つ口フラスコに1−ブロモ−3−ヨードベンゼン(15.0g,53.0mmol)、カルバゾール(8.70g,52.0mmol)、銅粉(10.1g,159.0mmol)、炭酸カリウム(22.0g,159.0mmol)とジメチルホルムアミド(DMF)(120mL)を入れて、窒素気流下激しく撹拌しながら130℃まで加熱し、24時間反応させた。反応終了後、反応溶液を酢酸エチルで希釈し、セライトでろ過した。濾過液を水に注ぎ、酢酸エチルで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法で行い(展開溶媒比:n−ヘキサン/トルエン=6/1)、無色の粘体の目的生成物を得た。収率:13.7g,81.8%。 Reference example 1
Synthesis of 3,5-bis (3-9H-carbazol-9-yl-phenyl) pyridine (35DCzPPy) (1) Synthesis of 9- (3-bromophenyl) -9H-carbazole (mCzPBr)
Figure 0005325402
In a four-necked flask, 1-bromo-3-iodobenzene (15.0 g, 53.0 mmol), carbazole (8.70 g, 52.0 mmol), copper powder (10.1 g, 159.0 mmol), potassium carbonate (22 0.0 g, 159.0 mmol) and dimethylformamide (DMF) (120 mL) were added, heated to 130 ° C. with vigorous stirring under a nitrogen stream, and allowed to react for 24 hours. After completion of the reaction, the reaction solution was diluted with ethyl acetate and filtered through celite. The filtrate was poured into water, extracted with ethyl acetate, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by a column chromatography method (developing solvent ratio: n-hexane / toluene = 6/1) to obtain a colorless viscous target product. Yield: 13.7 g, 81.8%.

(2)9−{3−〔4,4,5,5−テトラメチル−(1,3,2)ジオキサボロラン−2−イル〕−フェニル}−9H−カルバゾール(mCzPDOB)の合成

Figure 0005325402
四つ口フラスコに9−(3−ブロモフェニル)−9H−カルバゾール(9.86g,30.6mmol)、ビス(ピナコラート)ジボラン(8.55g,33.7mmol)、酢酸カリウム(9.01g,91.8mmol)、トリス(ジベンジリデンアセトン)
ジパラジウム(0)〔Pd(dba)〕(0.841g,0.918mmol)、トリシクロヘキシルホスフィン(1.03g,3.67mmol)と無水1,4−ジオキサン(200mL)を入れて、窒素気流下80℃で24時間反応させた。その後、反応溶液に水を注ぎ,酢酸エチルで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法〔展開溶媒:トルエン/n−ヘキサン=2/1(2回)〕を行い、白色固体の目的生成物を得た。収率:9.29g,82.2% (2) Synthesis of 9- {3- [4,4,5,5-tetramethyl- (1,3,2) dioxaborolan-2-yl] -phenyl} -9H-carbazole (mCzPDOB)
Figure 0005325402
In a four-necked flask, 9- (3-bromophenyl) -9H-carbazole (9.86 g, 30.6 mmol), bis (pinacolato) diborane (8.55 g, 33.7 mmol), potassium acetate (9.01 g, 91 .8 mmol), Tris (dibenzylideneacetone)
Add dipalladium (0) [Pd 2 (dba) 3 ] (0.841 g, 0.918 mmol), tricyclohexylphosphine (1.03 g, 3.67 mmol) and anhydrous 1,4-dioxane (200 mL), and add nitrogen. The reaction was performed at 80 ° C. for 24 hours under an air stream. Thereafter, water was poured into the reaction solution, extracted with ethyl acetate, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was carried out by a column chromatography method [developing solvent: toluene / n-hexane = 2/1 (twice)] to obtain the desired product as a white solid. Yield: 9.29 g, 82.2%

(3)3,5−ビス(3−9H−カルバゾール−9−イル−フェニル)ピリジン(35DCzPPy)の合成

Figure 0005325402
四つ口フラスコに3,5−ジブロモピリジン(0.711g,3.0mmol)、mCzPDOB(2.66g,7.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム〔Pd(PPh〕(139mg,0.12mmol)、トルエン/エタノール(2/1,150mL)と2M KCO(50mL)を入れて、窒素気流下90℃で24時間反応させた。反応終了後、反応溶液を水に注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム)を行い、白色粉末の目的生成物を得た。収率:1.69g,98.8%。
図1に35DCzPPyの吸収曲線を、図2に35DCzPPyのフォトルミネッセンス(PL)曲線を示す。表1に35DCzPPyの電気化学特性を、表2に35DCzPPyの熱特性を示す。(表1および表2は実施例にまとめて掲げる。) (3) Synthesis of 3,5-bis (3-9H-carbazol-9-yl-phenyl) pyridine (35DCzPPy)
Figure 0005325402
In a four-necked flask, 3,5-dibromopyridine (0.711 g, 3.0 mmol), mCzPDOB (2.66 g, 7.2 mmol), tetrakis (triphenylphosphine) palladium [Pd (PPh 3 ) 4 ] (139 mg, 0.12 mmol), toluene / ethanol (2/1, 150 mL) and 2M K 2 CO 3 (50 mL) were added and reacted at 90 ° C. for 24 hours under a nitrogen stream. After completion of the reaction, the reaction solution was poured into water, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by column chromatography (developing solvent: chloroform) to obtain the desired product as a white powder. Yield: 1.69 g, 98.8%.
FIG. 1 shows an absorption curve of 35DCzPPy, and FIG. 2 shows a photoluminescence (PL) curve of 35DCzPPy. Table 1 shows the electrochemical characteristics of 35DCzPPy, and Table 2 shows the thermal characteristics of 35DCzPPy. (Tables 1 and 2 are listed together in Example 1. )

参考例2
2,6−ビス(3−9H−カルバゾール−9−イル−フェニル)ピリジン(26DCzPPy)の合成

Figure 0005325402
四つ口フラスコに2,6−ジブロモピリジン(0.711g,3.0mmol)、mCzPDOB(2.66g,7.2mmol)、Pd(PPh(139mg,0.12mmol)、トルエン/エタノ−ル(2/1,150mL)と2M KCO(50mL)を入れて、窒素気流下90℃で24時間反応させた。反応終了後、反応溶液を水に注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(以下の混合割合の混合溶媒を用いて、1回目〜4回目までの展開を行った。展開溶媒比:クロロホルム/n−ヘキサン=1/2;2/3;1/1;2/1)を行い、白色粉末の目的生成物を得た。収率:1.71g,99.9mol%
図1に26DCzPPyの吸収曲線を、図2に26DCzPPPyのフォトルミネッセンス(PL)曲線を示す。表1に26DCzPPyの電気化学特性を、表2に26DCzPPyの熱特性を示す(表1および表2は実施例にまとめて掲げる。)。 Reference example 2
Synthesis of 2,6-bis (3-9H-carbazol-9-yl-phenyl) pyridine (26DCzPPy)
Figure 0005325402
In a four-necked flask, 2,6-dibromopyridine (0.711 g, 3.0 mmol), mCzPDOB (2.66 g, 7.2 mmol), Pd (PPh 3 ) 4 (139 mg, 0.12 mmol), toluene / ethanol- (2 / 1,150 mL) and 2M K 2 CO 3 (50 mL) were added and reacted at 90 ° C. for 24 hours under a nitrogen stream. After completion of the reaction, the reaction solution was poured into water, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by column chromatography (mixed solvents having the following mixing ratios were used for the first to fourth development. Developing solvent ratio: chloroform / n-hexane = 1/2; 2/3; 1 / 1; 2/1) to obtain the desired product as a white powder. Yield: 1.71 g, 99.9 mol%
FIG. 1 shows an absorption curve of 26DCzPPy, and FIG. 2 shows a photoluminescence (PL) curve of 26DCzPPy. Table 1 shows the electrochemical characteristics of 26DCzPPy, and Table 2 shows the thermal characteristics of 26DCzPPy (Tables 1 and 2 are listed together in Example 1 ).

実施例
2−メチル−4,6−ビス(3−9H−カルバゾール−9−イル−フェニル)ピリミジン(DCzPMPm)の合成

Figure 0005325402
四つ口フラスコに2−メチル−4,6−ジクロロピリミジン(0.360g, 2.21mmol)、mCzPDOB(1.96g,5.31mmol)、ビス(トリフェニルホスフィン)パラジウムジクロライド{PdCl(PPh}(70mg,0.10mmol)、1,4−ジオキサン(120mL)と2M KCO(30mL)を入れて、窒素気流下90℃で24時間反応させた。反応終了後、反応溶液を水に注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(以下の混合割合の混合溶媒を用いて、1回目と2回目の展開溶媒を行った。展開溶媒比:クロロホルム/n−ヘキサン=2/1;4/1)を行い、白色粉末の目的生成物を得た。収率:1.21g,94.9% Example 1
Synthesis of 2-methyl-4,6-bis (3-9H-carbazol-9-yl-phenyl) pyrimidine (DCzPMPm)
Figure 0005325402
In a four-necked flask, 2-methyl-4,6-dichloropyrimidine (0.360 g, 2.21 mmol), mCzPDOB (1.96 g, 5.31 mmol), bis (triphenylphosphine) palladium dichloride {PdCl 2 (PPh 3 2 } (70 mg, 0.10 mmol), 1,4-dioxane (120 mL) and 2M K 2 CO 3 (30 mL) were added and reacted at 90 ° C. for 24 hours under a nitrogen stream. After completion of the reaction, the reaction solution was poured into water, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
The purification was carried out by column chromatography (first and second developing solvents using a mixed solvent having the following mixing ratio. Developing solvent ratio: chloroform / n-hexane = 2/1; 4/1). The desired product was obtained as a white powder. Yield: 1.21 g, 94.9%

図1にDCzPMPmのUV吸収曲線を、図2にDCzPMPmのフォトルミネッセンス(PL)曲線を示す。表1にDCzPMPmの電気化学特性を、表2にDCzPMPmの熱特性を示す。

Figure 0005325402
Ip:イオン化ポテンシャル
Eg:エネルギーギャップ
Ea:エレクトロンアフィニティ(電子親和力)
エネルギーギャップ(Eg)については、蒸着機で作成した薄膜を紫外−可視吸光度計で薄膜の吸収曲線を測定する。その薄膜の短波長側の立ち上がりのところに接線を引き、求まった交点の波長W(nm)を次の式に代入し目的の値を求める。それによって得た値がEgになる。
Eg=1240÷W
例えば接線を引いて求めた値W(nm)が470nmだったとしたらこの時のEgの値は
Eg=1240÷470=2.63(eV)
と言うことになる。
IP(イオン化ポテンシャル)はイオン化ポテンシャル測定装置(例えば理研計器AC−3)を使用して測定し、測定するサンプルがイオン化を開始したところの電圧(eV)の値を読む。
Ea(電子親和力)は、IpからEgを引いた値である。
Figure 0005325402
FIG. 1 shows a UV absorption curve of DCzPMPm, and FIG. 2 shows a photoluminescence (PL) curve of DCzPMPm. Table 1 shows the electrochemical properties of DCzPMPm, and Table 2 shows the thermal properties of DCzPMPm.
Figure 0005325402
Ip: Ionization potential
Eg: Energy gap
Ea: Electron affinity (electron affinity)
Regarding the energy gap (Eg), an absorption curve of the thin film prepared with a vapor deposition machine is measured with an ultraviolet-visible absorptiometer. A tangent line is drawn at the short-wavelength rising edge of the thin film, and the target wavelength is obtained by substituting the obtained wavelength W (nm) of the intersection into the following equation. The value obtained thereby becomes Eg.
Eg = 1240 ÷ W
For example, if the value W (nm) obtained by drawing the tangent is 470 nm, the value of Eg at this time is
Eg = 1240 ÷ 470 = 2.63 (eV)
It will be said.
IP (ionization potential) is measured using an ionization potential measuring device (for example, Riken Keiki AC-3), and the value of the voltage (eV) at which the sample to be measured starts ionization is read.
Ea (electron affinity) is a value obtained by subtracting Eg from Ip.
Figure 0005325402

実施例2、参考例3〜4および比較例1
ホスト材料に参考例1の3,5−ビス(3−9H−カルバゾール−9−イル−フェニル)ピリジン(35DCzPPy)、参考例2の2,6−ビス(3−9H−カルバゾール−9−イル−フェニル)ピリジン(26DCzPPy)、実施例の2−メチル−4,6−ビス(3−9H−カルバゾール−9−イル−フェニル)ピリミジン(DCzPMPm)をそれぞれ用いた下記の実施例2および参考例3〜4の青色リン光素子を作成した。また比較のためホスト層に4,4′′′−ビス(9H−カルバゾール−9−イル)−1,1′:2′,1″:2″,1′′′−クォーターフェニル(4CzPBP)を用いた下記比較例1の青色リン光素子を作りそれぞれの性能を評価した。4CzPBPの構造式を以下に示す。

Figure 0005325402
またそれぞれのホール輸送層に用いた3,3′′′−ビス(N,N−ジ−p−トリル)−1,1′:2′,1′′:2′′,1′′′−クォーターフェニル(3DTAPBP)の構造式を以下に示す。
Figure 0005325402
それぞれの電子輸送層に用いた3,3′,5,5′−テトラ〔3−(ピリジン−3−イル)フェニル〕−1,1′−ビフェニル(tetra−mPyPhBP)の構造式を以下に示す。
Figure 0005325402
Example 2, Reference Examples 3 to 4 and Comparative Example 1
Host material of Reference Example 1 3,5-bis (3-9H- carbazol-9-yl-phenyl) - pyridine (35DCzPPy), of Reference Example 2 2,6-bis (3-9H- carbazol-9-yl - Example 2 and Reference Example 3 below using phenyl) pyridine (26DCzPPy) and 2-methyl-4,6-bis (3-9H-carbazol-9-yl-phenyl) pyrimidine (DCzPMPm) of Example 1 respectively. ˜4 blue phosphorescent devices were prepared. For comparison, 4,4 ″ ″-bis (9H-carbazol-9-yl) -1,1 ′: 2 ′, 1 ″: 2 ″, 1 ″ ″-quarterphenyl (4CzPBP) is used for the host layer. The blue phosphor element of Comparative Example 1 used was made and the performance was evaluated. The structural formula of 4CzPBP is shown below.
Figure 0005325402
In addition, 3,3 ″ ″-bis (N, N-di-p-tolyl) -1,1 ′: 2 ′, 1 ″: 2 ″, 1 ″ ″ − used for each hole transport layer. The structural formula of quarterphenyl (3DTAPBP) is shown below.
Figure 0005325402
The structural formula of 3,3 ′, 5,5′-tetra [3- (pyridin-3-yl) phenyl] -1,1′-biphenyl (tetra-mPyPhBP) used for each electron transport layer is shown below. .
Figure 0005325402

素子の構成
比較例1
Ref.1.○:ITO/TPDPES(20nm)/3DTAPBP(30nm)/4CzPBP:FIrpic(13wt%)(10nm)/tetra−mPyPhBP(40nm)/LiF(0.5nm)/Al(100nm);
参考
Device1.◇:ITO/TPDPES(20nm)/3DTAPBP(30nm)/35DCzPPy:FIrpic(13wt%)(10nm)/tetra−mPyPhBP(40nm)/LiF(0.5nm)/Al(100nm);
参考
Device2.△:ITO/TPDPES(20nm)/3DTAPBP(30nm)/26DCzPPy:FIrpic(13wt%)(10nm)/tetra−mPyPhBP(40nm)/LiF(0.5nm)/Al(100nm);
実施例
Device3.□:ITO/TPDPES(20nm)/3DTAPBP(30nm)/DCzPMPm:FIrpic(13wt%)(10nm)/tetra−mPyPhBP(40nm)/LiF(0.5nm)/Al(100nm).
これらの素子の
電流密度−電圧特性は図3に、
輝度−電圧特性は図4に、
電力効率−電圧特性は図5に、
電流効率−電圧特性は図6に、
電力効率−輝度特性は図7に、
外部量子効率−輝度特性は図8に、
ELスペクトルは図9に、
ELスペクトル(拡大)は図10に、
それぞれ示す。
Device configuration comparison example 1
Ref. 1. ○: ITO / TPDPES (20 nm) / 3DTAPBP (30 nm) / 4CzPBP: FIrpic (13 wt%) (10 nm) / tetra-mPyPhBP (40 nm) / LiF (0.5 nm) / Al (100 nm);
Reference example 3
Device1. ◇: ITO / TPDPES (20 nm) / 3DTAPBP (30 nm) / 35 DCzPPy: FIrpic (13 wt%) (10 nm) / tetra-mPyPhBP (40 nm) / LiF (0.5 nm) / Al (100 nm);
Reference example 4
Device2. Δ: ITO / TPDPES (20 nm) / 3DTAPBP (30 nm) / 26 DCzPPy: FIrpic (13 wt%) (10 nm) / tetra-mPyPhBP (40 nm) / LiF (0.5 nm) / Al (100 nm);
Example 2
Device3. □: ITO / TPDPES (20 nm) / 3DTAPBP (30 nm) / DCzPMPm: FIrpic (13 wt%) (10 nm) / tetra-mPyPhBP (40 nm) / LiF (0.5 nm) / Al (100 nm).
The current density-voltage characteristics of these elements are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The power efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The power efficiency-luminance characteristics are shown in FIG.
The external quantum efficiency-luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
The EL spectrum (enlarged) is shown in FIG.
Each is shown.

これらの素子の100cd/mにおける電気化学特性を表3に、1000cd/mにおける電気化学特性を表4に示す。

Figure 0005325402
P.E.=Power Efficiency:電力効率
Q.E.=Quantum Efficiency:外部量子効率
Current density:電密度
Figure 0005325402
表3は、各電子輸送材料を用いた素子を作成したときの輝度100cd/mにおける素子にかかる電圧、電流密度、電力効率、外部量子効率を列挙している。表4は1000cd/mにおける素子にかかる電圧、電流密度、電力効率、外部量子効率を列挙している。
35DCzPPyについては4CzPBPに比べて電流密度が大きいので電子の移動度が大きいと考えられる。しかし電力効率、外部量子効率が劣るのは、素子中でのホールと電子のキャリアバランスが適正でないからで、これは素子の膜厚を検討すれば改善されると考えられる。26DCzPPyとDCzPMPmについては、電力効率、量子効率から4CzPBPと同等もしくはそれ以上の性能を有するものと判断できる。 The electrochemical characteristics at 100 cd / m 2 of these elements are shown in Table 3, and the electrochemical characteristics at 1000 cd / m 2 are shown in Table 4.
Figure 0005325402
P. E. = Power Efficiency: Power efficiency Q. E. = Quantum Efficiency: The external quantum efficiency Current density: current density
Figure 0005325402
Table 3 lists the voltage, current density, power efficiency, and external quantum efficiency applied to the device at a luminance of 100 cd / m 2 when a device using each electron transport material is created. Table 4 lists the voltage, current density, power efficiency, and external quantum efficiency applied to the device at 1000 cd / m 2 .
Since 35DCzPPy has a higher current density than 4CzPBP, it is considered that electron mobility is large. However, the reason why the power efficiency and the external quantum efficiency are inferior is that the carrier balance between holes and electrons in the device is not appropriate, and this is considered to be improved by examining the film thickness of the device. About 26DCzPPy and DCzPMPm, it can be judged from the power efficiency and the quantum efficiency that the performance is equal to or higher than that of 4CzPBP.

参考例1の35DCzPPy、参考例2の26DCzPPyおよび実施例のDCzPMPmのUV吸収曲線を示す。The UV absorption curves of 35DCzPPy of Reference Example 1, 26DCzPPy of Reference Example 2, and DCzPMPm of Example 1 are shown. 参考例1の35DCzPPy、参考例2の26DCzPPyおよび実施例のDCzPMPmのフォトルミネッセンス曲線を示す。Photoluminescence curves of 35DCzPPy of Reference Example 1, 26DCzPPy of Reference Example 2, and DCzPMPm of Example 1 are shown. 実施例2、参考例3〜4および比較例1の電流密度−電圧特性を示す。The current density-voltage characteristics of Example 2, Reference Examples 3 to 4 and Comparative Example 1 are shown. 実施例2、参考例3〜4および比較例1の輝度−電圧特性を示す。The luminance-voltage characteristics of Example 2, Reference Examples 3 to 4 and Comparative Example 1 are shown. 実施例2、参考例3〜4および比較例1の電力効率−電圧特性を示す。The power efficiency-voltage characteristics of Example 2, Reference Examples 3 to 4 and Comparative Example 1 are shown. 実施例2、参考例3〜4および比較例1の電流効率−電圧特性を示す。The current efficiency-voltage characteristics of Example 2, Reference Examples 3 to 4 and Comparative Example 1 are shown. 実施例2、参考例3〜4および比較例1の電力効率−輝度特性を示す。The power efficiency-luminance characteristics of Example 2, Reference Examples 3 to 4 and Comparative Example 1 are shown. 実施例2、参考例3〜4および比較例1の外部量子効率−輝度特性を示す。The external quantum efficiency-luminance characteristic of Example 2, Reference Examples 3-4, and Comparative Example 1 is shown. 実施例2、参考例3〜4および比較例1のELスペクトルを示す。The EL spectra of Example 2, Reference Examples 3 to 4 and Comparative Example 1 are shown. 実施例2、参考例3〜4および比較例1のELスペクトル(拡大)を示す。The EL spectrum (expansion) of Example 2, Reference Examples 3-4, and Comparative Example 1 is shown. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図。Sectional drawing which shows an example of the organic electroluminescent element in this invention.

1 基板
2 陽極(ITO)
3 発光層
4 陰極
5 正孔輸送層(ホール輸送層)
6 電子輸送層
7 正孔注入層(ホール注入層)
8 電子注入層
9 正孔ブロック層(ホールブロック層)
1 Substrate 2 Anode (ITO)
3 Light emitting layer 4 Cathode 5 Hole transport layer (hole transport layer)
6 Electron transport layer 7 Hole injection layer (hole injection layer)
8 Electron injection layer 9 Hole blocking layer (hole blocking layer)

Claims (3)

下記一般式(1)で示されるビカルバゾール誘導体。
Figure 0005325402
(式中、Qは
Figure 0005325402
あり、R1〜4および 19 は水素および炭素数1〜6の直鎖または分岐のアルキル基よりなる群から選ばれた基であり、R20は炭素数1〜6の直鎖または分岐のアルキル基であり、R5〜12は水素、炭素数1〜6の直鎖または分岐のアルキル基、炭素数1〜6の直鎖または分岐のアルコキシ基および炭素数1〜6の直鎖または分岐のアルキルアミノ基よりなる群からそれぞれ独立して選ばれた基である。)
A bicarbazole derivative represented by the following general formula (1).
Figure 0005325402
(Where Q is
Figure 0005325402
In and, R 1 to 4 and R 19 are hydrogen and straight-chain or branched alkyl group selected from the group consisting of groups having 1 to 6 carbon atoms, R 20 is a straight-chain or branched having 1 to 6 carbon atoms R 5-12 is hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, and a linear chain having 1 to 6 carbon atoms or Each group is independently selected from the group consisting of branched alkylamino groups. )
請求項1記載のビカルバゾール誘導体よりなるホスト材料。   A host material comprising the bicarbazole derivative according to claim 1. 請求項1記載のビカルバゾール誘導体を用いた有機エレクトロルミネッセンス素子。   An organic electroluminescence device using the bicarbazole derivative according to claim 1.
JP2007202970A 2007-08-03 2007-08-03 Novel bicarbazole derivative, host material and organic electroluminescence device using the same Active JP5325402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202970A JP5325402B2 (en) 2007-08-03 2007-08-03 Novel bicarbazole derivative, host material and organic electroluminescence device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202970A JP5325402B2 (en) 2007-08-03 2007-08-03 Novel bicarbazole derivative, host material and organic electroluminescence device using the same

Publications (2)

Publication Number Publication Date
JP2009035524A JP2009035524A (en) 2009-02-19
JP5325402B2 true JP5325402B2 (en) 2013-10-23

Family

ID=40437765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202970A Active JP5325402B2 (en) 2007-08-03 2007-08-03 Novel bicarbazole derivative, host material and organic electroluminescence device using the same

Country Status (1)

Country Link
JP (1) JP5325402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11522142B2 (en) 2017-02-24 2022-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element material, light-emitting element, light-emitting device, electronic device, lighting device, and organometallic complex

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2134809B1 (en) * 2007-04-13 2020-09-02 Cheil Industries Inc. Material for organic photoelectric device including electron transporting unit and hole transporting unit, and organic photoelectric device including the same
TWI431003B (en) 2010-10-21 2014-03-21 Ind Tech Res Inst Organic compound and organic electroluminescence device employing the same
US20130264561A1 (en) * 2010-12-20 2013-10-10 E I Du Pont De Nemours And Company Electroactive compositions for electronic applications
US8895157B2 (en) 2011-02-01 2014-11-25 Nitto Denko Corporation Host material for lighting devices
KR102310048B1 (en) * 2011-04-07 2021-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
US9178164B2 (en) 2011-08-05 2015-11-03 Industrial Technology Research Institute Organic compound and organic electroluminescent device employing the same
TWI425076B (en) 2011-11-01 2014-02-01 Ind Tech Res Inst Carbazole derivatives and organic light-emitting diodes comprising the same
JP6076153B2 (en) * 2012-04-20 2017-02-08 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, DISPLAY DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE
WO2014021572A1 (en) * 2012-07-31 2014-02-06 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
US9142710B2 (en) 2012-08-10 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
CN104017566A (en) * 2013-02-28 2014-09-03 海洋王照明科技股份有限公司 Bipolar blue-phosphorescence material, preparation method thereof and organic electroluminescent device
JP2014175616A (en) * 2013-03-12 2014-09-22 Ube Ind Ltd Organic electroluminescent element containing binuclear iridium complex in luminescent layer
US10439156B2 (en) 2013-05-17 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, lighting device, and electronic device
WO2015029807A1 (en) * 2013-08-30 2015-03-05 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN104370887B (en) * 2013-12-26 2016-08-24 北京阿格蕾雅科技发展有限公司 The synthetic method of double [3-(N-carbazyl) phenyl] pyridine compounds and their of 2,6-
JP2016056169A (en) * 2014-09-05 2016-04-21 株式会社半導体エネルギー研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and luminaire
JP6764671B2 (en) 2015-04-14 2020-10-07 株式会社半導体エネルギー研究所 Heterocyclic compounds, light emitting devices, light emitting devices, electronic devices, and lighting devices
JP6846876B2 (en) 2015-05-12 2021-03-24 株式会社半導体エネルギー研究所 Compounds, light emitting elements, display modules, lighting modules, light emitting devices, display devices, lighting devices, and electronic devices
KR101880595B1 (en) * 2015-12-10 2018-07-20 성균관대학교산학협력단 Organic electroluminescent compound, producing method of the same and organic electroluminescent device including the same
KR102575341B1 (en) * 2016-12-27 2023-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting element, light emitting device, electronic device, and lighting device
JP2018104359A (en) * 2016-12-27 2018-07-05 株式会社半導体エネルギー研究所 Organic compound, light emitting element, light emitting device, electronic apparatus, and illumination device
JP2018131407A (en) * 2017-02-15 2018-08-23 株式会社半導体エネルギー研究所 Light emitting element, light emitting device, electronic apparatus and illumination device
CN109627233A (en) * 2018-07-27 2019-04-16 华南理工大学 A kind of organic photoelectrical material of azacyclic molecules and its preparation method and application replaced based on carbazole derivates
KR102664397B1 (en) 2019-02-26 2024-05-08 삼성전자주식회사 Heterocyclic compound and organic light emitting device including the same
KR20210038761A (en) * 2019-09-30 2021-04-08 삼성디스플레이 주식회사 Organic electroluminescence device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610503B2 (en) * 1988-11-15 1997-05-14 キヤノン株式会社 Electrophotographic photoreceptor
JP4003299B2 (en) * 1998-07-06 2007-11-07 三菱化学株式会社 Organic electroluminescence device
JP2003031371A (en) * 2001-07-17 2003-01-31 Mitsubishi Chemicals Corp Organic electroluminescent element and blue light emitting element
EP2169028B1 (en) * 2002-03-22 2018-11-21 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
EP1502936A1 (en) * 2002-03-25 2005-02-02 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
JP4103491B2 (en) * 2002-08-07 2008-06-18 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
JP4158562B2 (en) * 2003-03-12 2008-10-01 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
JP2004311404A (en) * 2003-03-26 2004-11-04 Konica Minolta Holdings Inc Organic electroluminescent element, illumination device and display device
JP2004336427A (en) * 2003-05-08 2004-11-25 Mitsubishi Electric Corp Search circuit and packet transfer device
TWI428053B (en) * 2004-02-09 2014-02-21 Idemitsu Kosan Co Organic electroluminescent element
JP2006054236A (en) * 2004-08-10 2006-02-23 Konica Minolta Holdings Inc Organic electroluminescence element, display device, and illuminator
US20060088728A1 (en) * 2004-10-22 2006-04-27 Raymond Kwong Arylcarbazoles as hosts in PHOLEDs
JP4810669B2 (en) * 2004-11-25 2011-11-09 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
JP5082230B2 (en) * 2004-12-10 2012-11-28 パイオニア株式会社 Organic compounds, charge transport materials, and organic electroluminescent devices
JP5878272B2 (en) * 2005-03-23 2016-03-08 株式会社半導体エネルギー研究所 COMPOSITE MATERIAL, LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE AND ELECTRIC DEVICE
JP4865258B2 (en) * 2005-06-21 2012-02-01 キヤノン株式会社 1,8-naphthyridine compound and organic light-emitting device using the same
KR101511788B1 (en) * 2005-12-12 2015-04-13 호도가야 가가쿠 고교 가부시키가이샤 m-CARBAZOLYLPHENYL COMPOUNDS
EP2134809B1 (en) * 2007-04-13 2020-09-02 Cheil Industries Inc. Material for organic photoelectric device including electron transporting unit and hole transporting unit, and organic photoelectric device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11522142B2 (en) 2017-02-24 2022-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element material, light-emitting element, light-emitting device, electronic device, lighting device, and organometallic complex

Also Published As

Publication number Publication date
JP2009035524A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5325402B2 (en) Novel bicarbazole derivative, host material and organic electroluminescence device using the same
JP5063992B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
KR101738607B1 (en) Organic electroluminescent device
JP5207760B2 (en) Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP4878819B2 (en) Novel triazine derivative and organic electroluminescence device containing the same
EP2447335B1 (en) Compound for organic photoelectric device, organic light emitting diode including the same, and display including the organic light emitting diode
KR101247626B1 (en) Compounds for organic photoelectric device and organic photoelectric device containing the same
JP2008120696A (en) Novel tripyridylphenyl derivative, electron-transporting material comprising the same and organoelectroluminescent element comprising the same
JP5495578B2 (en) Novel triarylphosphine oxide derivative, host material comprising the same, and organic electroluminescence device containing the same
JP2008106015A (en) New phenanthroline derivative, its lithium complex, electron transport material using the same, electron injection material and organic el element
JP4960045B2 (en) Heteroaryl compound having novel biphenyl central skeleton and organic electroluminescence device comprising the same
JP5086608B2 (en) Novel di (phenanthroline) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5783749B2 (en) 1,8-aryl substituted naphthalene derivative having excimer characteristics and organic EL device using the same
JP5201956B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
US20120214269A1 (en) Tetraphenylsilane compounds suitable as organic hole-transport materials
JP4648922B2 (en) Novel pyrimidinyl group-containing iridium complex, light emitting material comprising the same, and organic EL device using the same
JP5220429B2 (en) NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME
JP5371312B2 (en) Novel dicarbazolylphenyl derivative, host material using the same, and organic electroluminescence device
JP5349889B2 (en) Novel terphenyl derivative, electron transport material comprising the same, and organic electroluminescence device including the same
KR20150124924A (en) Novel compound and organic electroluminescent device comprising same
JP2010090084A (en) Novel bis(carbazolylphenyl) derivative, host material, and organic electroluminescent element each employing the same
JP2010013421A (en) New bis(dicarbazolylphenyl) derivative, host material using the same and organic electroluminescencent device
JP5674266B2 (en) Novel carbazole derivative, host material comprising the same, and organic electroluminescence device including the same
JP5798754B2 (en) Novel substituted diphenylcarbazole derivative, host material comprising the derivative, and organic electroluminescence device comprising the derivative
JP5001914B2 (en) Host material comprising bisphosphine dioxide derivative and organic electroluminescence device containing bisphosphine dioxide derivative

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5325402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250