JP5220429B2 - NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME - Google Patents

NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME Download PDF

Info

Publication number
JP5220429B2
JP5220429B2 JP2008025705A JP2008025705A JP5220429B2 JP 5220429 B2 JP5220429 B2 JP 5220429B2 JP 2008025705 A JP2008025705 A JP 2008025705A JP 2008025705 A JP2008025705 A JP 2008025705A JP 5220429 B2 JP5220429 B2 JP 5220429B2
Authority
JP
Japan
Prior art keywords
organic
layer
light emitting
organic electroluminescent
electron transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008025705A
Other languages
Japanese (ja)
Other versions
JP2008214339A (en
Inventor
淳二 城戸
勇進 夫
誠 吉崎
吉則 大前
平之介 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2008025705A priority Critical patent/JP5220429B2/en
Publication of JP2008214339A publication Critical patent/JP2008214339A/en
Application granted granted Critical
Publication of JP5220429B2 publication Critical patent/JP5220429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

本発明は、新規なジピレン誘導体、それよりなる電子輸送材料、発光材料およびそれを含む有機エレクトロルミネッセンス素子に関する。   The present invention relates to a novel dipyrene derivative, an electron transport material comprising the same, a light emitting material, and an organic electroluminescent device including the same.

有機エレクトロルミネッセンスは1960年代、M.Popeらが厚さ10〜20μmのアントラセン単結晶に銀ペーストで電極を付け、約400Vの直流を印加することによってアントラセンからの発光を観察したことが発端である(非特許文献1)。しかしながらこの時点では十分なキャリア注入はできていなかったために、発光も弱いものでしかなかった。その後、注入型のエレクトロルミネッセンスを有機薄膜化することで面状の発光を取り出し、駆動電圧を下げ、成膜加工性を良くする試みがなされた。   Organic electroluminescence was developed in the 1960s by M.C. First, Pope et al. Observed light emission from anthracene by attaching an electrode with a silver paste to an anthracene single crystal having a thickness of 10 to 20 μm and applying a direct current of about 400 V (Non-patent Document 1). However, at this time, sufficient carrier injection was not possible, and the light emission was only weak. Thereafter, an attempt was made to improve the film formability by taking out planar light emission by reducing the injection type electroluminescence into an organic thin film, lowering the driving voltage.

1987年KodakのC.W.Tangらは、それまで分析化学の分野で金属の定量分析用の試薬として使用されていた8−キノリノールを配位子として用いたアルミニウム錯体を電子輸送性発光材料、トリフェニルジアミン誘導体であるTAPCをホール輸送性材料として用い、真空蒸着法により透明電極上に1000Å以下の超薄膜を積層させることで10V以下の直流電圧駆動で緑色の1000cd/m以上の発光輝度、発光効率1.5lm/Wという実用的な特性の面状発光を示す機能分離積層型有機エレクトロルミネッセンス素子を報告した(非特許文献2)。
これに続き安達らは、有機薄膜の注入電流の挙動に系統的な差異が存在することから、有機材料の電位的特性(より電子輸送性か、またはホール輸送性かという電位的特性)を分類し、その性質により、用いる有機エレクトロルミネッセンス素子の構造を変化させる必要があることを提案した(非特許文献3、4)。
1987 Kodak's C.I. W. Tang et al. Used an aluminum complex using 8-quinolinol as a ligand, which has been used as a reagent for quantitative analysis of metals in the field of analytical chemistry, as an electron transporting luminescent material, and TAPC, a triphenyldiamine derivative. Used as a hole-transporting material, by laminating an ultra-thin film of 1000 mm or less on a transparent electrode by a vacuum deposition method, green emission luminance of 1000 cd / m 2 or more with a DC voltage drive of 10 V or less, luminous efficiency 1.5 lm / W A function-separated stacked organic electroluminescence device that exhibits planar light emission with practical characteristics has been reported (Non-Patent Document 2).
Following this, Adachi et al. Classified the potential characteristics of organic materials (potential characteristics of more electron transport or hole transport) due to the systematic difference in the behavior of the injection current of organic thin films. And it proposed that the structure of the organic electroluminescent element to be used needs to be changed by the property (nonpatent literatures 3 and 4).

有機エレクトロルミネッセンス素子に用いられる有機材料には低分子材料と高分子材料の二つがあり、ことに低分子材料の発展がめざましい。低分子に用いられる材料としてホール輸送材料や電子輸送材料、発光層に用いられる有機金属錯体、またドーパントとして用いられる蛍光色素などがある。
ホール輸送材料は、アリールアミン構造をとるものがほとんどであり、有機エレクトロルミネッセンス素子で用いられるものとしては、テトラフェニルジアミン誘導体であるTPD(N,N′−ジトリル−N,N′−ジフェニル−1,1′−ビフェニル)が挙げられるが、ガラス転移温度(Tg)が63℃と低く、耐熱性に問題があり、素子劣化の原因となっていた。この問題を解決すべく、ナフチル基を導入し立体障害を大きくすることでTgを95℃と高くしたα−NPD〔N,N′−ジ(1−ナフチル)−N,N′−ジフェニル−1,1′−ビフェニル〕が提案され、広く用いられるようになった。
現在ではさらに立体障害が大きく、剛直な官能基や骨格をもたせた100℃を超えるような高いTgを有するホール輸送材料としてスターバースト型のアリールアミン類(非特許文献5、6)やスピロ化合物(非特許文献7)などが多数合成されている。
There are two types of organic materials used for organic electroluminescence devices: low molecular materials and high molecular materials. In particular, the development of low molecular materials is remarkable. Examples of materials used for low molecules include hole transport materials and electron transport materials, organometallic complexes used for light-emitting layers, and fluorescent dyes used as dopants.
Most of the hole transport materials have an arylamine structure, and TPD (N, N′-ditolyl-N, N′-diphenyl-1), which is a tetraphenyldiamine derivative, is used as an organic electroluminescence device. , 1′-biphenyl), but the glass transition temperature (Tg) is as low as 63 ° C., which has a problem in heat resistance and causes deterioration of the device. In order to solve this problem, α-NPD [N, N′-di (1-naphthyl) -N, N′-diphenyl-1] having a Tg as high as 95 ° C. by introducing a naphthyl group to increase steric hindrance. , 1'-biphenyl] has been proposed and has been widely used.
At present, starburst type arylamines (Non-patent Documents 5 and 6) and spiro compounds (Hypertransport materials having a high Tg exceeding 100 ° C. having a rigid functional group or skeleton having a larger steric hindrance) Many non-patent documents 7) have been synthesized.

また電子輸送材料については、Alqのような有機金属錯体のほかにオキサジアゾール誘導体(非特許文献3、4)やトリアゾール誘導体(非特許文献8)などが多数報告されている。
これらの化合物は、イオン化ポテンシャルが大きくホールブロック効果が高いため電子輸送材料として適しているが、発光層の有機化合物と分子間錯形成をするものもあり、発光層本来の発光色が得られなかったりすることが見受けられる。そのため電子輸送材料でこのような錯形成を防ぐための改善が必要となった。
Regarding electron transport materials, in addition to organometallic complexes such as Alq 3 , many oxadiazole derivatives (Non-Patent Documents 3 and 4), triazole derivatives (Non-Patent Document 8) and the like have been reported.
These compounds are suitable as electron transport materials because of their high ionization potential and high hole blocking effect. However, some compounds form intermolecular complexes with organic compounds in the light-emitting layer, and the original light-emitting color of the light-emitting layer cannot be obtained. Can be seen. Therefore, it was necessary to improve the electron transport material to prevent such complex formation.

W.Helfrich, W.G.Schneider Phys. Rev. Lett., 14 229 (1965)W. Helfrich, W.H. G. Schneider Phys. Rev. Lett. , 14 229 (1965) C.W.Tang, Van Slyke Appl. Phys. Lett., 55 931 (1987)C. W. Tang, Van Slyke Appl. Phys. Lett. , 55 931 (1987) C.Adachi, T.Tsutsui and S.Saito Appl. Phys. Lett., 55 1489 (1989)C. Adachi, T .; Tsutsui and S.T. Saito Appl. Phys. Lett. , 55 1489 (1989) C.Adachi, T.Tsutsui and S.Saito Appl. Phys. Lett., 57 531 (1990)C. Adachi, T .; Tsutsui and S.T. Saito Appl. Phys. Lett. , 57 531 (1990) Y.Shirota, T.Kobata and N.Noma, Chem.Lett., 1145 (1989)Y. Shirota, T .; Kobata and N.K. Noma, Chem. Lett. , 1145 (1989) Y.Kuwabara, H.Ogawa, H.Inada, N.Noma and Y.Shirota Adv. Mater., 6 677 (1994)Y. Kuwabara, H .; Ogawa, H .; Inada, N.A. Noma and Y.M. Shirota Adv. Mater. , 6 677 (1994) J.Salbeck, N.Yu, J.Bauer, F.Weissortel and H.Bestgen Synth. Met., 91 209 (1997)J. et al. Salbeck, N.M. Yu, J .; Bauer, F.A. Weissortel and H.M. Bestgen Synth. Met. , 91 209 (1997) J.Kido M.Kimura and K.Nagai Science 267 1332 (1995)J. et al. Kido M.M. Kimura and K.K. Nagai Science 267 1332 (1995)

本発明の目的は、新規なジピレン誘導体、それよりなる電子輸送材料、発光材料およびそれを含む有機エレクトロルミネッセンス素子を提供する点にある。   An object of the present invention is to provide a novel dipyrene derivative, an electron transport material comprising the same, a light emitting material, and an organic electroluminescence device including the same.

本発明の第1は、下記一般式(1)
(式中、Qは
よりなる群から選ばれた基であり、R〜Rは、水素、炭素数1〜6の直鎖または分岐のアルキル基、炭素数1〜6の直鎖または分岐のアルコキシ基および炭素数1〜6の直鎖または分岐のアルキルアミノ基よりなる群からそれぞれ独立して選ばれた基であり、R10 20 は、水素および炭素数1〜6の直鎖または分岐のアルキル基よりなる群からそれぞれ独立して選ばれた基である)
で示されるジピレン誘導体に関する。
本発明の第2は、請求項1記載のジピレン誘導体よりなる電子輸送材料に関する。
本発明の第3は、請求項1記載のジピレン誘導体よりなる発光材料に関する。
本発明の第4は、請求項1記載のジピレン誘導体を含む有機エレクトロルミネッセンス素子に関する。
本発明の第5は、請求項1記載のジピレン誘導体を電子輸送層に用いた有機エレクトロルミネッセンス素子に関する。
本発明の第6は、請求項1記載のジピレン誘導体を発光層に用いた有機エレクトロルミネッセンス素子に関する。
The first of the present invention is the following general formula (1)
(Where Q is
R 1 to R 9 are groups selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, and the number of carbon atoms R 10 to R 20 are groups independently selected from the group consisting of 1 to 6 linear or branched alkylamino groups, and R 10 to R 20 are each selected from hydrogen and a linear or branched alkyl group having 1 to 6 carbon atoms. Each group is independently selected from the group
It is related with the dipyrene derivative shown by these.
The second of the present invention relates to an electron transport material comprising the dipylene derivative according to claim 1.
A third aspect of the present invention relates to a light emitting material comprising the dipylene derivative according to claim 1.
4th of this invention is related with the organic electroluminescent element containing the dipyrene derivative of Claim 1.
5th of this invention is related with the organic electroluminescent element which used the dipyrene derivative | guide_body of Claim 1 for the electron carrying layer.
6th of this invention is related with the organic electroluminescent element which used the dipyrene derivative of Claim 1 for the light emitting layer.

本発明におけるR〜RおよびR10 20 における炭素数1〜6の直鎖または分岐のアルキル基としては、メチル、エチル、n−プロピル、iso−プロピル、n−ブチル、iso−ブチル、sec−ブチル、tert−ブチル、n−ペンチル、iso−ペンチル、2,2−ジメチルプロピル、n−ヘキシル、2−メチルペンチル、3−メチルペンチル、4−メチルペンチル、2,2−ジメチルブチル、2,3−ジメチルブチル、3,3−ジメチルブチルなどを挙げることができる。 Examples of the linear or branched alkyl group having 1 to 6 carbon atoms in R 1 to R 9 and R 10 to R 20 in the present invention include methyl, ethyl, n-propyl, iso-propyl, n-butyl, and iso-butyl. , Sec-butyl, tert-butyl, n-pentyl, iso-pentyl, 2,2-dimethylpropyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,2-dimethylbutyl, Examples include 2,3-dimethylbutyl and 3,3-dimethylbutyl.

本発明におけるR〜Rにおける炭素数1〜6の直鎖または分岐のアルコキシ基は、−OHの水素を前記アルキル基で置換されたタイプのものであり、炭素数1〜6の直鎖または分岐のアルキル基を持つアルキルアミノ基は、−NHの水素の1部または全部が前記アルキル基で置換されたタイプのものである。 The linear or branched alkoxy group having 1 to 6 carbon atoms in R 1 to R 9 in the present invention is a type in which hydrogen of —OH is substituted with the alkyl group, and the linear chain having 1 to 6 carbon atoms. Alternatively, the alkylamino group having a branched alkyl group is a type in which part or all of the hydrogen of —NH 2 is substituted with the alkyl group.

本発明の化合物は、下記の反応により製造する事ができる。
なお、前記式中Qは
よりなる群から選ばれた基であり、R〜Rは、水素、炭素数1〜6の直鎖または分岐のアルキル基、炭素数1〜6の直鎖または分岐のアルコキシ基および炭素数1〜6の直鎖または分岐のアルキルアミノ基よりなる群からそれぞれ独立して選ばれた基であり、R10 20 は、水素および炭素数1〜6の直鎖または分岐のアルキル基よりなる群からそれぞれ独立して選ばれた基であり、Xはハロゲンであり、Pd(dba)は下記式に示すトリス(ジベンジリデンアセトン)ジパラジウムであり、PCyはトリシクロホスフィンである。
The compound of the present invention can be produced by the following reaction.
In the above formula, Q is
R 1 to R 9 are groups selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, and the number of carbon atoms R 10 to R 20 are groups independently selected from the group consisting of 1 to 6 linear or branched alkylamino groups, and R 10 to R 20 are each selected from hydrogen and a linear or branched alkyl group having 1 to 6 carbon atoms. X is halogen, Pd 2 (dba) 3 is tris (dibenzylideneacetone) dipalladium represented by the following formula, and PCy 3 is tricyclophosphine. .

本発明化合物の具体例を以下に例示する。
Specific examples of the compound of the present invention are illustrated below.

本発明の新規なジピレン誘導体は高い電子輸送性能を有する。従って電子輸送材料として使用することができる。またピレン骨格を有することから発光材料としても使用することができる。
本発明の新規なジピレン誘導体を有機エレクトロルミネッセンスに使用する場合、適当な発光材料と組み合わせて使用することができる。
本発明の新規なジピレン誘導体を電子輸送層に用いる場合、本発明の化合物は電子輸送材料として使用できる。また他の電子輸送材料と組み合わせて使用することができる。
本発明の新規なジピレン誘導体を発光層に用いる場合、本発明の化合物は発光材料として使用できる。また他の発光材料と組み合わせて使用することができる。
The novel dipylene derivative of the present invention has high electron transport performance. Therefore, it can be used as an electron transport material. Further, since it has a pyrene skeleton, it can also be used as a light emitting material.
When the novel dipyrene derivative of the present invention is used for organic electroluminescence, it can be used in combination with a suitable light emitting material.
When the novel dipyrene derivative of the present invention is used for an electron transport layer, the compound of the present invention can be used as an electron transport material. It can also be used in combination with other electron transport materials.
When the novel dipyrene derivative of the present invention is used for a light emitting layer, the compound of the present invention can be used as a light emitting material. It can also be used in combination with other light emitting materials.

次に本発明の有機エレクトロルミネッセンス素子について説明する。本発明の有機EL素子は、陽極と陰極間に一層もしくは多層の有機化合物を積層した素子であり、該有機化合物層の少なくとも一層が本発明のジピレン誘導体を含有する。有機EL素子が一層の場合、陽極と陰極間に発光層を設けている。発光層は、発光材料を含有しそれに加えて陽極から注入した正孔もしくは陰極から注入した電子を発光材料まで輸送するのが目的で、本発明の化合物もしくは既存の正孔輸送材料もしくは電子輸送材料を含有していても良い。多層型の有機EL素子の構成例としては、陽極(例えばITO)/ホール輸送層/発光層/電子輸送層/陰極、陽極(ITO)/ホール輸送層/発光層/電子輸送層/電子注入層/陰極、陽極(ITO)/ホール輸送層/発光層/ホールブロック層/電子輸送層/陰極、陽極(ITO)/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極、陽極(ITO)/ホール注入層/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極等の多層構成で積層したものが挙げられる。また、必要に応じて陰極上に封止層を有していても良い。本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。   Next, the organic electroluminescence element of the present invention will be described. The organic EL device of the present invention is a device in which a single layer or a multilayer organic compound is laminated between an anode and a cathode, and at least one layer of the organic compound layer contains the dipyrene derivative of the present invention. When the organic EL element is a single layer, a light emitting layer is provided between the anode and the cathode. The light-emitting layer contains the light-emitting material, and in addition to that, the compound of the present invention or the existing hole transport material or electron transport material is used for transporting holes injected from the anode or electrons injected from the cathode to the light-emitting material. It may contain. Examples of the configuration of the multilayer organic EL element include an anode (for example, ITO) / hole transport layer / light emitting layer / electron transport layer / cathode, anode (ITO) / hole transport layer / light emitting layer / electron transport layer / electron injection layer. / Cathode, anode (ITO) / Hole transport layer / light emitting layer / hole block layer / electron transport layer / cathode, anode (ITO) / hole transport layer / light emitting layer / hole block layer / electron transport layer / electron injection layer / cathode And those laminated in a multilayer structure such as anode (ITO) / hole injection layer / hole transport layer / light emitting layer / hole block layer / electron transport layer / electron injection layer / cathode. Moreover, you may have a sealing layer on a cathode as needed. The organic electroluminescence device of the present invention is preferably supported on a substrate.

正孔輸送層、電子輸送層および発光層のそれぞれの層は、一層構造であっても、多層構造であっても良い。また正孔輸送層、電子輸送層はそれぞれの層で注入機能を受け持つ層(正孔注入層および電子注入層)と輸送機能を受け持つ層(正孔輸送層および電子輸送層)を別々に設けることもできる。
本発明の有機エレクトロルミネッセンス素子は、上記構成例に限らず、種々の構成とすることができる。必要に応じて、正孔輸送成分と発光層成分、あるいは電子輸送層成分と発光層成分を混合した層を設けても良い。
Each of the hole transport layer, the electron transport layer, and the light emitting layer may have a single layer structure or a multilayer structure. In addition, the hole transport layer and the electron transport layer should be provided separately with a layer responsible for the injection function (hole injection layer and electron injection layer) and a layer responsible for the transport function (hole transport layer and electron transport layer). You can also.
The organic electroluminescence element of the present invention is not limited to the above configuration example, and can have various configurations. If necessary, a layer in which a hole transport component and a light emitting layer component or an electron transport layer component and a light emitting layer component are mixed may be provided.

以下本発明の有機エレクトロルミネッセンス素子の構成要素に関して、ITO(陽極)/ホール(正孔)輸送層/発光層/電子輸送層/陰極からなる素子構成を例として取り上げて説明する。
基板の素材については特に制限はなく、従来の有機エレクトロルミネッセンス素子に慣用されているものであれば良く、例えば、ガラス、石英ガラス、透明プラスチックなどからなるものを用いることができる。
Hereinafter, the constituent elements of the organic electroluminescence element of the present invention will be described by taking as an example an element structure composed of ITO (anode) / hole (hole) transport layer / light emitting layer / electron transport layer / cathode.
There is no restriction | limiting in particular about the raw material of a board | substrate, What is necessary is just used conventionally for the conventional organic electroluminescent element, For example, what consists of glass, quartz glass, a transparent plastic etc. can be used.

本発明の有機エレクトロルミネッセンス素子の陽極としては、仕事関数の大きな金属単体(4eV以上)、仕事関数の大きな金属同士の合金(4eV以上)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、金、銀、銅等の金属、ITO(インジウム−スズオキサイド)、酸化スズ(SnO)、酸化亜鉛(ZnO)などの導電性透明材料、ポリピロール、ポリチオフェン等の導電性高分子材料が挙げられる。陽極はこれらの電極材料を、例えば蒸着、スパッタリング、塗布などの方法により形成することができる。陽極のシート電気抵抗は数百Ω/cm以下が好ましい。陽極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。 As an anode of the organic electroluminescence device of the present invention, an electrode material may be a single metal having a high work function (4 eV or more), an alloy of metals having a high work function (4 eV or more), a conductive substance, or a mixture thereof. preferable. Specific examples of such electrode materials include metals such as gold, silver, and copper, conductive transparent materials such as ITO (indium-tin oxide), tin oxide (SnO 2 ), and zinc oxide (ZnO), polypyrrole, and polythiophene. Examples thereof include conductive polymer materials such as For the anode, these electrode materials can be formed by a method such as vapor deposition, sputtering, or coating. The sheet electrical resistance of the anode is preferably several hundred Ω / cm 2 or less. The thickness of the anode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm.

陰極としては、仕事関数の小さな金属単体(4eV以下)、仕事関数の小さな同士の合金(4eV以下)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、リチウム、リチウム−インジウム合金、ナトリウム、ナトリウム−カリウム合金、マグネシウム、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム、アルミニウム−リチウム合金、アルミニウム−マグネシウム合金などが挙げられる。陰極はこれらの電極材料を、例えば蒸着、スパッタリングなどの方法により、薄膜を形成させることにより作成することができる。陰極のシート電気抵抗は数百Ω/cm以下が好ましい。陰極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。本発明の有機EL素子の発光を効率よく取り出すために、陽極または陰極の少なくとも一方の電極は透明もしくは半透明であることが好ましい。 As the cathode, an electrode material is preferably a single metal having a low work function (4 eV or less), an alloy of small work functions (4 eV or less), a conductive substance, or a mixture thereof. Specific examples of such electrode materials include lithium, lithium-indium alloy, sodium, sodium-potassium alloy, magnesium, magnesium-silver alloy, magnesium-indium alloy, aluminum, aluminum-lithium alloy, and aluminum-magnesium alloy. Can be mentioned. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet electrical resistance of the cathode is preferably several hundred Ω / cm 2 or less. The thickness of the cathode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm. In order to efficiently extract light emitted from the organic EL device of the present invention, at least one of the anode and the cathode is preferably transparent or translucent.

本発明の有機エレクトロルミネッセンス素子の正孔輸送層は、正孔伝達化合物からなるもので、陽極より注入された正孔を発光層に伝達する機能を有している。電界が与えた2つの電極の間に正孔伝達化合物が配置されて陽極から正孔が注入された場合、少なくとも10−6cm/V・秒以上の正孔移動度を有する正孔伝達物質が好ましい。本発明の有機エレクトロルミネッセンス素子の正孔輸送層に使用する正孔伝達物質は、前記の好ましい性能を有するものであれば特に制限はない。従来から光導電材料において正孔の電荷注入材料として慣用されているものや有機エレクトロルミネッセンス素子の正孔輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。 The hole transport layer of the organic electroluminescence device of the present invention is made of a hole transfer compound and has a function of transferring holes injected from the anode to the light emitting layer. A hole transport material having a hole mobility of at least 10 −6 cm 2 / V · sec when a hole transport compound is disposed between two electrodes to which an electric field is applied and holes are injected from an anode Is preferred. The hole transport material used for the hole transport layer of the organic electroluminescence device of the present invention is not particularly limited as long as it has the above-mentioned preferable performance. Any one of materials conventionally used as a hole charge injection material in a photoconductive material or a known material used for a hole transport layer of an organic electroluminescence element can be selected and used. .

前記の正孔伝達物質としては、たとえば銅フタロシアニンなどのフタロシアニン誘導体、N,N,N′,N′−テトラフェニル−1,4−フェニレンジアミン、N,N′−ジ(m−トリル)−N,N′−ジフェニル−4,4−ジアミノフェニル(TPD)、N,N′−ジ(1−ナフチル)−N,N′−ジフェニル−4,4−ジアミノフェニル(α−NPD)等のトリアリールアミン誘導体、ポリフェニレンジアミン誘導体、ポリチオフェン誘導体、および水溶性のPEDOT−PSS(ポリエチレンジオキサチオフェン−ポリスチレンスルホン酸)などが挙げられる。正孔輸送層は、これらの他の正孔伝達化合物一種または二種以上からなる一層で構成されたものでよく、前記の正孔伝達物質とは別の化合物からなる正孔輸送層を積層したものでも良い。   Examples of the hole transport material include phthalocyanine derivatives such as copper phthalocyanine, N, N, N ′, N′-tetraphenyl-1,4-phenylenediamine, and N, N′-di (m-tolyl) -N. , N′-diphenyl-4,4-diaminophenyl (TPD), N, N′-di (1-naphthyl) -N, N′-diphenyl-4,4-diaminophenyl (α-NPD), etc. Examples thereof include amine derivatives, polyphenylenediamine derivatives, polythiophene derivatives, and water-soluble PEDOT-PSS (polyethylenedioxathiophene-polystyrenesulfonic acid). The hole transport layer may be composed of one or more of these other hole transport compounds, and a hole transport layer composed of a compound different from the hole transport material is laminated. Things can be used.

正孔注入材料としては、下記化学式に示されるPEDOT−PSS(ポリマー混合物)やDNTPDを挙げることができる。nは、重合体の基本鎖が多数存在することを示す。
正孔輸送材料としては、下記化学式に示すTPD、DTASi、α−NPDなどを挙げることができる。
Examples of the hole injection material include PEDOT-PSS (polymer mixture) and DNTPD represented by the following chemical formula. n indicates that a large number of polymer basic chains exist.
Examples of the hole transport material include TPD, DTASi, α-NPD, and the like represented by the following chemical formula.

本発明の有機エレクトロルミネッセンス素子の発光層については、本発明のジピレン誘導体を用いることができる。また従来の公知の材料についても特に制限はなく任意のものを選択して用いることができる。
発光材料としては、ペリレン誘導体、ナフタセン誘導体、キナクリドン誘導体、クマリン誘導体(例えばクマリン1、クマリン540、クマリン545など)ピラン誘導体(例えばDCM−1、DCM−2、DCJTBなど)、有機金属錯体、例えばトリス(8−ヒドロキシキノリノラト)アルミニウム錯体(Alq)、トリス(4−メチル−8−ヒドロキシキノリノラト)アルミニウム錯体(Almq)等の蛍光材料や[2−(4,6−ジフルオロフェニル)ピリジル−N,C2′]イリジウム(III)ピコリレート(FIrpic)、トリス{1−[4−(トリフルオロメチル)フェニル]−1H−ピラゾラート−N,C2′}イリジウム(III)(Irtfmppz)、ビス[2−(4′,6′−ジフルオロフェニル)ピリジナト−N,C2′]イリジウム(III)テトラキス(1−ピラゾリル)ボレート(FIr6)、トリス(2−フェニルピリジナト)イリジウム(III)(Irppy)などのリン光材料などを挙げることができる。
The dipyrene derivative of the present invention can be used for the light emitting layer of the organic electroluminescence device of the present invention. Moreover, there is no restriction | limiting in particular also about the conventionally well-known material, Arbitrary things can be selected and used.
Examples of the light-emitting material include perylene derivatives, naphthacene derivatives, quinacridone derivatives, coumarin derivatives (eg, coumarin 1, coumarin 540, coumarin 545), pyran derivatives (eg, DCM-1, DCM-2, DCJTB, etc.), organometallic complexes, eg, tris. Fluorescent materials such as (8-hydroxyquinolinolato) aluminum complex (Alq 3 ) and tris (4-methyl-8-hydroxyquinolinolato) aluminum complex (Almq 3 ) and [2- (4,6-difluorophenyl) Pyridyl-N, C2 ′] iridium (III) picolylate (FIrpic), tris {1- [4- (trifluoromethyl) phenyl] -1H-pyrazolate-N, C2 ′} iridium (III) (Irtfmpppz 3 ), bis [2- (4 ′, 6′-difluorophenyl) pyridina -N, C2 '] iridium (III) tetrakis (1-pyrazolyl) borate (FIr6), tris (2-phenylpyridinato) iridium (III) (Irppy 3) and the like phosphorescent material such as.

発光層は、ホスト材料とゲスト材料(ドーパント)から形成することもできる[Appl.Phys.Lett.,65 3610 (1989)]。特にリン光材料を発光層に使用する場合、ホスト材料の使用が必要であり、この時使用されるホスト材料としては4,4′−ジ(N−カルバゾリル)−1,1′−ビフェニル(CBP)、1,4−ジ(N−カルバゾリル)ベンゼン−2,2′−ジ[4″−(N−カルバゾリル)フェニル]−1,1′−ビフェニル(4CzPBP)等が挙げられる。   The light-emitting layer can also be formed of a host material and a guest material (dopant) [Appl. Phys. Lett. , 65 3610 (1989)]. In particular, when a phosphorescent material is used for the light emitting layer, it is necessary to use a host material. As the host material used at this time, 4,4′-di (N-carbazolyl) -1,1′-biphenyl (CBP) ), 1,4-di (N-carbazolyl) benzene-2,2′-di [4 ″-(N-carbazolyl) phenyl] -1,1′-biphenyl (4CzPBP) and the like.

ゲスト材料は、ホスト材料に対して好ましくは0.01〜40重量%であり、より好ましくは0.1〜20重量%である。ゲスト材料としては、下記に示す従来公知のFIrpic、Irppy、FIr6等を挙げることができる。
The guest material is preferably 0.01 to 40% by weight, more preferably 0.1 to 20% by weight with respect to the host material. Examples of guest materials include conventionally known FIrpic, Irppy 3 , FIr 6 and the like shown below.

本発明の有機エレクトロルミネッセンス素子の電子輸送層の材料としては、本発明の新規なジピレン誘導体が好ましい。このものは単独で使用できるが他の電子輸送材料と併用しても構わない。   As a material for the electron transport layer of the organic electroluminescence device of the present invention, the novel dipyrene derivative of the present invention is preferable. Although this thing can be used independently, you may use together with another electron transport material.

本発明の有機エレクトロルミネッセンス素子は、電子注入性をさらに向上させる目的で陰極と有機層の間に導電体から構成される電子注入層をさらに設けても良い。ここで使用される導電体としては、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属有機錯体から選択される少なくとも一つの金属化合物を使用することが好ましい。アルカリ金属ハロゲン化物としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、塩化リチウムなどが挙げられる。アルカリ土類金属ハロゲン化物としては、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウムなどが挙げられる。アルカリ金属有機錯体としては、8−ヒドロキシキノリノラトリチウム、8−ヒドロキシキノリノラトセシウムなどが挙げられる。   In the organic electroluminescence device of the present invention, an electron injection layer composed of a conductor may be further provided between the cathode and the organic layer for the purpose of further improving the electron injection property. As the conductor used here, it is preferable to use at least one metal compound selected from alkali metal halides, alkaline earth metal halides, and alkali metal organic complexes. Examples of the alkali metal halide include lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, and lithium chloride. Examples of the alkaline earth metal halide include magnesium fluoride, calcium fluoride, barium fluoride, and strontium fluoride. Examples of the alkali metal organic complex include 8-hydroxyquinolinolatolithium and 8-hydroxyquinolinolatocesium.

正孔輸送層、発光層の形成方法については特に限定されるものではない。例えば乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)、湿式製膜法[溶媒塗布法(例えばスピンコート法、キャスト法、インクジェット法など)]を使用することができる。本発明の新規なジピレン誘導体は、乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)が好ましい。電子輸送層の製膜については、湿式製膜法で行うと下層が溶出する恐れがあるため乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)に限定される。素子の作成については上記の製膜法を併用しても構わない。
真空蒸着法により正孔輸送層、発光層、電子輸送層などの各層を形成する場合、真空蒸着条件は特に限定されるものではない。通常10−5Torr程度以下の真空下で50〜500℃程度のボート温度(蒸着原温度)、−50〜300℃程度の基板温度で、0.01〜50nm/sec.程度蒸着することが好ましい。正孔輸送層、発光層、電子輸送層の各層を複数の化合物を使用して形成する場合、化合物を入れたボートをそれぞれ温度制御しながら共蒸着することが好ましい。
The method for forming the hole transport layer and the light emitting layer is not particularly limited. For example, a dry film forming method (for example, a vacuum vapor deposition method, an ionization vapor deposition method) or a wet film forming method [a solvent coating method (for example, a spin coating method, a casting method, an ink jet method, etc.)] can be used. The novel dipyrene derivative of the present invention is preferably a dry film forming method (for example, a vacuum deposition method, an ionization deposition method, etc.). The film formation of the electron transport layer is limited to a dry film formation method (for example, a vacuum vapor deposition method, an ionization vapor deposition method, etc.) because the lower layer may be eluted when the wet film formation method is used. For the production of the element, the above film forming method may be used in combination.
When forming each layer such as a hole transport layer, a light emitting layer, and an electron transport layer by a vacuum deposition method, the vacuum deposition conditions are not particularly limited. Usually, under a vacuum of about 10 −5 Torr or less, a boat temperature (deposition source temperature) of about 50 to 500 ° C., a substrate temperature of about −50 to 300 ° C., and 0.01 to 50 nm / sec. Vapor deposition is preferred. When forming each layer of a positive hole transport layer, a light emitting layer, and an electron carrying layer using a some compound, it is preferable to co-evaporate the boat which put the compound, respectively controlling temperature.

正孔輸送層、発光層を溶媒塗布法で形成する場合、各層を構成する成分を溶媒に溶解または分散させて塗布液とする。溶媒としては、炭化水素系溶媒(例えばヘプタン、トルエン、キシレン、シクロヘキサン等)、ケトン系溶媒(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)、ハロゲン系溶媒(例えばジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル等)、アルコール系溶媒(例えばメタノール、エタノール、ブタノール、メチルセロソルブ、エチルセロソルブ等)、エーテル系溶媒(例えばジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン等)、非プロトン性溶媒(例えばN,N′−ジメチルアセトアミド、ジメチルスルホキシド等)、水等が挙げられる。溶媒は単独で使用しても良く、複数の溶媒を併用しても良い。   When forming the hole transport layer and the light emitting layer by a solvent coating method, the components constituting each layer are dissolved or dispersed in a solvent to obtain a coating solution. Solvents include hydrocarbon solvents (eg, heptane, toluene, xylene, cyclohexane, etc.), ketone solvents (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), halogen solvents (eg, dichloromethane, chloroform, chlorobenzene, dichlorobenzene, etc.) Ester solvents (eg, ethyl acetate, butyl acetate, etc.), alcohol solvents (eg, methanol, ethanol, butanol, methyl cellosolve, ethyl cellosolve, etc.), ether solvents (eg, dibutyl ether, tetrahydrofuran, 1,4-dioxane, 1 , 2-dimethoxyethane, etc.), aprotic solvents (eg, N, N′-dimethylacetamide, dimethyl sulfoxide, etc.), water and the like. The solvent may be used alone, or a plurality of solvents may be used in combination.

正孔輸送層、発光層、電子輸送層等の各層の膜厚は、特に限定されるものではないが、通常5〜5,000nmになるようにする。
本発明の有機エレクトロルミネッセンス素子は、酸素や水分等の接触を遮断する目的で保護層(封止層)を設けたり、不活性物質中に素子を封入して保護することができる。不活性物質としては、パラフィン、シリコンオイル、フルオロカーボン等が挙げられる。保護層に使用する材料としては、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、ポリエステル、ポリカーボネート、光硬化性樹脂等がある。
The thickness of each layer such as the hole transport layer, the light emitting layer, and the electron transport layer is not particularly limited, but is usually 5 to 5,000 nm.
The organic electroluminescence device of the present invention can be protected by providing a protective layer (sealing layer) for the purpose of blocking contact with oxygen, moisture, etc., or by enclosing the device in an inert material. Examples of the inert substance include paraffin, silicon oil, and fluorocarbon. Examples of the material used for the protective layer include fluororesin, epoxy resin, silicone resin, polyester, polycarbonate, and photocurable resin.

本発明の有機エレクトロルミネッセンス素子は、通常直流駆動の素子として使用できる。直流電圧を印加する場合、陽極をプラス、陰極をマイナスの極性として通常1.5〜20V程度印加すると発光が観察される。また本発明の有機エレクトロルミネッセンス素子は交流駆動の素子としても使用できる。交流電圧を印加する場合には、陽極がプラス、陰極がマイナスの状態になった時に発光する。本発明の有機エレクトロルミネッセンス素子は、例えば電子写真感光体、フラットパネルディスプレイなどの平面発光体、複写機、プリンター、液晶ディスプレイのバックライト、計器等の光源、各種発光素子、各種表示装置、各種標識、各種センサー、各種アクセサリーなどに使用することができる。   The organic electroluminescence device of the present invention can be used as a normal DC drive device. When a DC voltage is applied, light emission is usually observed when about 1.5 to 20 V is applied with the positive polarity of the anode and the negative polarity of the cathode. The organic electroluminescence device of the present invention can also be used as an AC drive device. When an AC voltage is applied, light is emitted when the anode is in a positive state and the cathode is in a negative state. The organic electroluminescence device of the present invention includes, for example, a flat light emitter such as an electrophotographic photosensitive member and a flat panel display, a copying machine, a printer, a backlight of a liquid crystal display, a light source such as an instrument, various light emitting devices, various display devices, and various signs. It can be used for various sensors and various accessories.

図48〜61に、本発明の有機エレクトロルミネッセンス素子の好ましい例を示す。
図48は、本発明の有機エレクトロルミネッセンス素子の一例を示す断面図である。図48は、基板1上に陽極2、発光層3および陰極4を順次設けた構成のものである。ここで使用する発光材料は、それ自体が正孔輸送性、電子輸送性および発光性の機能を単一で有している場合や、それぞれの機能を有する化合物を混合して使用する場合に有用であり、この発光層3に本発明化合物を用いることができる。
48 to 61 show preferred examples of the organic electroluminescence element of the present invention.
FIG. 48 is a cross-sectional view showing an example of the organic electroluminescence element of the present invention. FIG. 48 shows a configuration in which an anode 2, a light emitting layer 3 and a cathode 4 are sequentially provided on a substrate 1. The light-emitting material used here is useful when it has a single hole-transporting property, electron-transporting property, and light-emitting function, or a mixture of compounds having the respective functions. The compound of the present invention can be used for the light emitting layer 3.

図49は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図49は、基板1上に陽極2、正孔輸送層5、発光層3および陰極4を順次設けた構成のものである。この場合、発光層は電子輸送性の機能を有している場合に有用であり、この発光層3に本発明化合物を用いることができる。   FIG. 49 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 49 shows a configuration in which an anode 2, a hole transport layer 5, a light emitting layer 3, and a cathode 4 are sequentially provided on a substrate 1. In this case, the light emitting layer is useful when it has an electron transporting function, and the compound of the present invention can be used for the light emitting layer 3.

図50は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図50は、基板1上に陽極2、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。この場合、発光層は正孔輸送性の機能を有している場合に有用であり、この発光層3に本発明化合物を用いることができる。   FIG. 50 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 50 shows a structure in which an anode 2, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the light emitting layer is useful when it has a hole transporting function, and the compound of the present invention can be used for the light emitting layer 3.

図51は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図51は、基板1上に陽極2、正孔輸送層5、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。これはキャリア輸送と発光の機能を分離したものであり、材料選択の自由度が増すために、発光の高効率化や発光色の自由度が増すことになる。本発明の化合物は、発光層や電子輸送層に用いることができる。   FIG. 51 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 51 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This is a separation of the functions of carrier transport and light emission, and the degree of freedom in material selection increases, so that the efficiency of light emission and the degree of freedom in light emission color increase. The compound of this invention can be used for a light emitting layer or an electron carrying layer.

図52は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図52は、基板1上に陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。この場合、正孔注入層7を設けることにより、陽極2と正孔輸送層5の密着性を高めたり、陽極からの正孔の注入を良くし、発光素子の低電圧化に効果がある。本発明の化合物は、発光層や電子輸送層に用いることができる。   FIG. 52 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 52 shows a structure in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the provision of the hole injection layer 7 improves the adhesion between the anode 2 and the hole transport layer 5, improves the injection of holes from the anode, and is effective in lowering the voltage of the light emitting element. The compound of this invention can be used for a light emitting layer or an electron carrying layer.

図53は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図53は、基板1上に陽極2、正孔輸送層5、発光層3、電子輸送層6、電子注入層8および陰極4を順次設けた構成のものである。この場合、陰極4から電子の注入を良くし、発光素子の低電圧化に効果がある。本発明の化合物は、発光層や電子輸送層に用いることができる。   FIG. 53 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 53 shows a configuration in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, injection of electrons from the cathode 4 is improved, which is effective for lowering the voltage of the light emitting element. The compound of this invention can be used for a light emitting layer or an electron carrying layer.

図54は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図54は、基板1上に陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6、電子注入層8および陰極4を順次設けた構成のものである。この場合、陽極2から正孔の注入を良くし、陰極4から電子注入を良くし、最も低電圧駆動に効果がある構成である。本発明の化合物は、発光層や電子輸送層に用いることができる。   FIG. 54 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 54 shows a configuration in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, the injection of holes from the anode 2 is improved and the injection of electrons from the cathode 4 is improved, which is the most effective for driving at a low voltage. The compound of this invention can be used for a light emitting layer or an electron carrying layer.

図55〜61は素子の中に正孔ブロック層を挿入したものの断面図である。正孔ブロック層は、陽極から注入された正孔、あるいは発光層3で再結合により生成した励起子が、陰極4に抜けることを防止する効果があり、有機エレクトロルミネッセンス素子の発光効率の向上に効果がある。正孔ブロック層9については、発光層3と陰極4の間もしくは発光層3と電子輸送層6の間あるいは発光層3と電子注入層8の間に挿入することができる。より好ましいものは発光層3と電子輸送層6の間である。   55 to 61 are sectional views of a device in which a hole blocking layer is inserted. The hole blocking layer has an effect of preventing holes injected from the anode or excitons generated by recombination in the light emitting layer 3 from escaping to the cathode 4, thereby improving the light emission efficiency of the organic electroluminescence device. effective. The hole blocking layer 9 can be inserted between the light emitting layer 3 and the cathode 4, between the light emitting layer 3 and the electron transport layer 6, or between the light emitting layer 3 and the electron injection layer 8. More preferred is between the light emitting layer 3 and the electron transport layer 6.

図55〜61で、正孔輸送層5,正孔注入層7、電子輸送層6、電子注入層8、発光層3、正孔ブロック層9のそれぞれの層は、一層構造であっても多層構造であっても良い。
図48〜61は、あくまでも基本的な素子構成であり、本発明の化合物は、発光層や電子輸送層に用いることができる。本発明の化合物を用いた有機エレクトロルミネッセンス素子の構成はこれに限定されるものではない。
55 to 61, each of the hole transport layer 5, the hole injection layer 7, the electron transport layer 6, the electron injection layer 8, the light emitting layer 3, and the hole blocking layer 9 has a single layer structure, but is a multilayer. It may be a structure.
48 to 61 show basic element configurations to the last, and the compound of the present invention can be used for a light emitting layer and an electron transport layer. The structure of the organic electroluminescent element using the compound of the present invention is not limited to this.

前記電子注入層に用いる電子注入材料としては、公知のもののほか、本出願人の特願2006−292032号にかかる化合物、例えば下記化合物群を例示することができる。
Examples of the electron injecting material used for the electron injecting layer include known compounds as well as compounds according to Japanese Patent Application No. 2006-292032 of the applicant, for example, the following compound group.

本発明の新規なジピレン誘導体は、Alq等の従来の電子輸送層に比べ電子輸送能が非常に大きい。また移動度も大きく素子中でのホールとのキャリアーバランスにも優れている。また発光材料として使用した場合、青色から緑色にかけての発光を示し素子のフルカラー用あるいは白色用材料として適しているので、本発明の新規なジピレン誘導体は工業的に極めて重要なものである。 The novel dipyrene derivative of the present invention has a very large electron transport ability as compared with a conventional electron transport layer such as Alq 3 . In addition, the mobility is large and the carrier balance with the holes in the element is excellent. In addition, when used as a light emitting material, it exhibits light emission from blue to green and is suitable as a full color or white material for the device, so that the novel dipyrene derivative of the present invention is extremely important industrially.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1
3,8−ジ(1−ピレニル)−1,10−フェナントロリン(略称DPyre−Phen)の合成
ピレン−1−ホウ酸(PyrebAc)(6.75mmol,1.66g)と3,8−ジブロモ−1,10−フェナントロリン(DBPhen)(3.07mmol,1.06g)を1,4−ジオキサン(100ml)に溶解させ、リン酸カリウム(9.21mmol)とイオン交換水(7.5ml)を加え、窒素バブリングを1時間行った。その後、トリシクロホスフィン〔PCy〕(0.13mmol:式中の%は、ピレン−1−ホウ酸に対する%である)とトリス(ジベンジリデンアセトン)ジパラジウム〔Pd(dba)〕(0.06mmol:式中の%は、ピレン−1−ホウ酸に対する%である)を加え、窒素気流下100℃で16時間反応させた。反応終了後、1,4−ジオキサンをエバポレーターで除去し、クロロホルムで抽出した後、イオン交換水、飽和食塩水で洗浄し、エバポレーターにより溶媒を除去した。精製はカラムクロマトグラフィー(クロロホルム:メタノール=100:1)で行ったあと、再結晶(クロロホルム:n−へキサン=2:1)、昇華精製を行い、黄色の粉体を得た。同定は、H−NMRスペクトル及びMassスペクトルにより行った。(収量0.82g、収率46%)
実施例1の化合物の融点(Tm)、ガラス転移温度(Tg)および分解温度(Td)を表1に示す。
Tm(融点)は、DSC(Differential Scanning Calorimeter:示差熱量計)にサンプルを加え、昇温してゆくと吸熱カーブが現れるので、その極大のところの温度を読んでその温度をTmとする。
Tg(ガラス転移温度)については、同じくDSCの中にサンプルを加え、溶融させたものを急冷し、2〜3回繰り返すとガラス転移を表すカーブがチャート上に現れるので、そのカーブを接線で結び、その交点をTgとして採用する。
Td(分解温度)はDTA(Differential Thermal Analyzer:示差熱分析装置)にサンプルを加え加熱してゆくと、サンプルの熱によって分解し重量が減少しだす。その現象が開始しだしたところの温度を読んで、その温度をTdとする。
このものの高真空昇華精製前の融点のDSC曲線を図1に、その3回目測定の拡大図を図2に、高真空昇華精製後の融点のDSC曲線を図3に、その拡大図を図4に示す。このもののH−NMRスペクトル(重クロロホルム溶媒中、内部標準テトラメチルシラン使用、400MHz)(全領域)を図5に、その拡大図(7〜10ppm)を図6に、Massスペクトルを図7示す。
Example 1
Synthesis of 3,8-di (1-pyrenyl) -1,10-phenanthroline (abbreviation DPpyre-Phen)
Pyrene-1-boric acid (PyrebAc) (6.75 mmol, 1.66 g) and 3,8-dibromo-1,10-phenanthroline (DBPhen) (3.07 mmol, 1.06 g) were added to 1,4-dioxane (100 ml). ), Potassium phosphate (9.21 mmol) and ion-exchanged water (7.5 ml) were added, and nitrogen bubbling was performed for 1 hour. Thereafter, tricyclophosphine [PCy 3 ] (0.13 mmol:% in the formula is% relative to pyrene-1-boric acid) and tris (dibenzylideneacetone) dipalladium [Pd 2 (dba) 3 ] (0 0.06 mmol:% in the formula is% relative to pyrene-1-boric acid), and reacted at 100 ° C. for 16 hours under a nitrogen stream. After completion of the reaction, 1,4-dioxane was removed with an evaporator, extracted with chloroform, washed with ion-exchanged water and saturated saline, and the solvent was removed with an evaporator. Purification was performed by column chromatography (chloroform: methanol = 100: 1), followed by recrystallization (chloroform: n-hexane = 2: 1) and sublimation purification to obtain a yellow powder. Identification was performed by 1 H-NMR spectrum and Mass spectrum. (Yield 0.82g, Yield 46%)
Table 1 shows the melting point (Tm), glass transition temperature (Tg) and decomposition temperature (Td) of the compound of Example 1.
As for Tm (melting point), an endothermic curve appears when a sample is added to DSC (Differential Scanning Calorimeter) and the temperature is raised, and the temperature at the maximum is read and Tm is defined as Tm.
As for Tg (glass transition temperature), a sample is added to DSC, the melted material is rapidly cooled, and if it is repeated 2 to 3 times, a curve representing the glass transition appears on the chart. The intersection is adopted as Tg.
When Td (decomposition temperature) is heated by adding a sample to DTA (Differential Thermal Analyzer), it decomposes by the heat of the sample and begins to decrease in weight. Read the temperature at which the phenomenon started, and let that temperature be Td.
FIG. 1 shows the DSC curve of the melting point before high vacuum sublimation purification, FIG. 2 shows an enlarged view of the third measurement, FIG. 3 shows the DSC curve of the melting point after high vacuum sublimation purification, and FIG. Shown in The 1 H-NMR spectrum (using internal standard tetramethylsilane in a deuterated chloroform solvent, 400 MHz) (all regions) of this product is shown in FIG. 5, its enlarged view (7 to 10 ppm) is shown in FIG. 6, and the Mass spectrum is shown in FIG. .

実施例2
3,5−ジ(1−ピレニル)−ピリジン(略称35PYREPY)の合成
3,5−ジブロモピリジン(35DBPY)(4.0mmol,0.9g)とピレン−1−ホウ酸(PyrebAc)(8.8mmol,2.2g)をトルエン(80ml)/エタノール(40ml)に溶解させ、炭酸カリウム(24mmol)とイオン交換水(12ml)を加え、窒素バブリングを1時間行った。その後、テトラキス(トリフェニルホスフィン)パラジウム〔Pd(phP)〕(0.4mmol)を加え、窒素気流下80℃で12時間反応させた。反応終了後、反応溶液にクロロホルムを加え撹拌した。その後、トルエンで抽出し、イオン交換水、飽和食塩水で洗浄した。その後、無水硫酸マグネシウムで乾燥させた後、エバポレーターにより溶媒を除去した。精製はカラムクロマトグラフィー(クロロホルム)で行ったあと、昇華精製を行い、黄色の結晶を得た。同定は、H−NMRスペクトル及び元素分析により行った(収量1.54g、収率80%)。
表2はこのものの元素分析の結果である。またこのもののクロロホルム中(濃度1×10−5mol/l)の紫外−可視吸収スペクトル(UV)、励起光スペクトル(λex)およびフォトルミネッセンス発光スペクトル(λem)と薄膜(Film)状での紫外−可視吸収スペクトル(UV)、励起光スペクトル(λex)およびフォトルミネッセンス発光スペクトル(λem)を表3に示す。
このものの紫外−可視吸収スペクトルは図8に、励起スペクトルと発光スペクトルを図9に示す。またH−NMRスペクトル(重クロロホルム溶媒中、内部標準テトラメチルシラン使用、400MHz)(全領域)を図10に、その拡大図(7〜10ppm)を図11に示す。
誤差は測定値が理論値よりも小さい場合を−で表す。
λmaxは極大を表す。
Example 2
Synthesis of 3,5-di (1-pyrenyl) -pyridine (abbreviation 35PYREPY)
3,5-dibromopyridine (35DBPY) (4.0 mmol, 0.9 g) and pyrene-1-boric acid (PyrebAc) (8.8 mmol, 2.2 g) were dissolved in toluene (80 ml) / ethanol (40 ml). Potassium carbonate (24 mmol) and ion-exchanged water (12 ml) were added, and nitrogen bubbling was performed for 1 hour. Then, tetrakis (triphenylphosphine) palladium [Pd (ph 3 P) 4 ] (0.4 mmol) was added and reacted at 80 ° C. for 12 hours under a nitrogen stream. After completion of the reaction, chloroform was added to the reaction solution and stirred. Then, it extracted with toluene and wash | cleaned with ion-exchange water and a saturated salt solution. Then, after drying with anhydrous magnesium sulfate, the solvent was removed by an evaporator. Purification was performed by column chromatography (chloroform), followed by sublimation purification to obtain yellow crystals. Identification was performed by 1 H-NMR spectrum and elemental analysis (yield 1.54 g, yield 80%).
Table 2 shows the results of elemental analysis of this product. In addition, ultraviolet-visible absorption spectrum (UV), excitation light spectrum (λex) and photoluminescence emission spectrum (λem) in chloroform (concentration 1 × 10 −5 mol / l) and ultraviolet-film in a thin film (Film) form. Table 3 shows the visible absorption spectrum (UV), excitation light spectrum (λex), and photoluminescence emission spectrum (λem).
The ultraviolet-visible absorption spectrum of this product is shown in FIG. 8, and the excitation spectrum and emission spectrum are shown in FIG. Further, a 1 H-NMR spectrum (using an internal standard tetramethylsilane in deuterated chloroform solvent, 400 MHz) (all regions) is shown in FIG. 10, and an enlarged view (7 to 10 ppm) is shown in FIG.
The error is represented by-when the measured value is smaller than the theoretical value.
λmax represents the maximum.

実施例3
2,6−ジ(1−ピレニル)−ピリジン(略称26PYREPY)の合成
2,6−ジブロモピリジン(26DBPY)(4.0mmol,0.9g)とピレン−1−ホウ酸(PyrebAc)(8.8mmol,2.2g)をトルエン(80ml)/エタノール(40ml)に溶解させ、炭酸カリウム(24mmol)とイオン交換水(12ml)を加え、窒素バブリングを1時間行った。その後、テトラキス(トリフェニルホスフィン)パラジウム(0.4mmol)を加え、窒素気流下80℃で12時間反応させた。反応終了後、反応溶液にクロロホルムを加え撹拌した。その後、トルエンで抽出し、イオン交換水、飽和食塩水で洗浄した。その後、無水硫酸マグネシウムで乾燥させた後、エバポレーターにより溶媒を除去した。精製はカラムクロマトグラフィー(クロロホルム:ヘキサン=1:1)で行ったあと、昇華精製を行い、黄色の結晶を得た。同定は、H−NMRスペクトル及び元素分析により行った。(収量1.05g、収率57%)
表4はこのものの元素分析の結果である。またこのもののクロロホルム中(濃度1×10−5mol/l)の紫外−可視吸収スペクトル(UV)、励起光スペクトル(λex)およびフォトルミネッセンス発光スペクトル(λem)と薄膜(Film)状での紫外−可視吸収スペクトル(UV)、励起光スペクトル(λex)およびフォトルミネッセンス発光スペクトル(λem)を表5に示す。
このものの紫外−可視吸収スペクトルは図12に、励起スペクトルと発光スペクトルを図13に示す。またH−NMRスペクトル(重クロロホルム溶媒中、内部標準テトラメチルシラン使用、400MHz)(全領域)を図14に、その拡大図(7〜10ppm)を図15に示す。
誤差は測定値が理論値よりも小さい場合を−で表す。
λmaxは極大を表す。
Example 3
Synthesis of 2,6-di (1-pyrenyl) -pyridine (abbreviation 26PYREPY)
2,6-dibromopyridine (26DBPY) (4.0 mmol, 0.9 g) and pyrene-1-boric acid (PyrebAc) (8.8 mmol, 2.2 g) were dissolved in toluene (80 ml) / ethanol (40 ml). Potassium carbonate (24 mmol) and ion-exchanged water (12 ml) were added, and nitrogen bubbling was performed for 1 hour. Then, tetrakis (triphenylphosphine) palladium (0.4 mmol) was added and reacted at 80 ° C. for 12 hours under a nitrogen stream. After completion of the reaction, chloroform was added to the reaction solution and stirred. Then, it extracted with toluene and wash | cleaned with ion-exchange water and a saturated salt solution. Then, after drying with anhydrous magnesium sulfate, the solvent was removed by an evaporator. Purification was performed by column chromatography (chloroform: hexane = 1: 1), followed by sublimation purification to obtain yellow crystals. Identification was performed by 1 H-NMR spectrum and elemental analysis. (Yield 1.05 g, Yield 57%)
Table 4 shows the results of elemental analysis of this product. In addition, ultraviolet-visible absorption spectrum (UV), excitation light spectrum (λex) and photoluminescence emission spectrum (λem) in chloroform (concentration 1 × 10 −5 mol / l) and ultraviolet-film in a thin film (Film) form. Table 5 shows the visible absorption spectrum (UV), excitation light spectrum (λex), and photoluminescence emission spectrum (λem).
The ultraviolet-visible absorption spectrum of this product is shown in FIG. 12, and the excitation spectrum and emission spectrum are shown in FIG. In addition, FIG. 14 shows a 1 H-NMR spectrum (using an internal standard tetramethylsilane in deuterated chloroform solvent, 400 MHz) (all regions), and FIG. 15 shows an enlarged view (7 to 10 ppm).
The error is represented by-when the measured value is smaller than the theoretical value.
λmax represents the maximum.

実施例4
4,6−ジ(1−ピレニル)ピリミジン(略称46PYREPYM)の合成
4,6−ジクロロピリミジン(46DClPYM)(4.0mmol,0.4g)とピレン−1−ホウ酸(PyrebAc)(8.8mmol,2.2g)をアセトニトリル(80ml)に溶解させ、炭酸ナトリウム(24mmol)とイオン交換水(30ml)を加え、窒素バブリングを1時間行った。その後、ビス(トリフェニルホスフィン)パラジウムジクロライド(0.16mmol)を加え、窒素気流下60℃で12時間反応させた。反応終了後、反応溶液を濾過し析出物を回収し、析出物をイオン交換水、n−ヘキサンで洗浄した。その後、真空乾燥機で溶媒を除去した。精製はカラムクロマトグラフィー(クロロホルム)で行ったあと、昇華精製を行い結晶を得た。同定は、H−MRNスペクトル及び元素分析により行った。(収量0.27g、、黄色の収率14%)
表6はこのものの元素分析の結果である。またこのもののクロロホルム中(濃度1×10−5mol/l)の紫外−可視吸収スペクトル(UV)、励起光スペクトル(λex)およびフォトルミネッセンス発光スペクトル(λem)と薄膜(film)状での紫外−可視吸収スペクトル(UV)、励起光スペクトル(λex)およびフォトルミネッセンス発光スペクトル(λem)を表7に示す。
このものの紫外−可視吸収スペクトルは図16に、励起スペクトルと発光スペクトルを図17に示す。またH−NMRスペクトル(重クロロホルム溶媒中、内部標準テトラメチルシラン使用、400MHz)(全領域)を図18に、その拡大図(7〜10ppm)を図19に示す。
誤差は測定値が理論値よりも小さい場合を−で表す。
λmaxは極大を表す。
Example 4
Synthesis of 4,6-di (1-pyrenyl) pyrimidine (abbreviation 46PYREPYM)
4,6-dichloropyrimidine (46DClPYM) (4.0 mmol, 0.4 g) and pyrene-1-boric acid (PyrebAc) (8.8 mmol, 2.2 g) were dissolved in acetonitrile (80 ml), and sodium carbonate (24 mmol) was dissolved. ) And ion-exchanged water (30 ml) were added, and nitrogen bubbling was performed for 1 hour. Then, bis (triphenylphosphine) palladium dichloride (0.16 mmol) was added and reacted at 60 ° C. for 12 hours under a nitrogen stream. After completion of the reaction, the reaction solution was filtered to collect the precipitate, and the precipitate was washed with ion-exchanged water and n-hexane. Thereafter, the solvent was removed with a vacuum dryer. Purification was performed by column chromatography (chloroform), followed by sublimation purification to obtain crystals. Identification was performed by 1 H-MRN spectrum and elemental analysis. (Yield 0.27 g, yellow yield 14%)
Table 6 shows the results of elemental analysis of this product. In addition, ultraviolet-visible absorption spectrum (UV), excitation light spectrum (λex) and photoluminescence emission spectrum (λem) in chloroform (concentration 1 × 10 −5 mol / l) and ultraviolet-film in the form of a thin film (film). Table 7 shows the visible absorption spectrum (UV), excitation light spectrum (λex), and photoluminescence emission spectrum (λem).
The ultraviolet-visible absorption spectrum of this product is shown in FIG. 16, and the excitation spectrum and emission spectrum are shown in FIG. In addition, FIG. 18 shows a 1 H-NMR spectrum (using internal standard tetramethylsilane in deuterated chloroform solvent, 400 MHz) (all regions), and FIG. 19 shows an enlarged view (7 to 10 ppm).
The error is represented by-when the measured value is smaller than the theoretical value.
λmax represents the maximum.

実施例2の3,5−ジ(1−ピレニル)−ピリジン、実施例3の2,6−ジ(1−ピレニル)−ピリジン、実施例4の4,6−ジ(1−ピレニル)ピリミジンのTm、Tg、Tdを測定し、熱特性を評価した。その結果を表8に示す。
また紫外−可視吸収スペクトル、発光スペクトルおよびイオン化ポテンシャル(AC−3)を測定し、電気化学特性を評価した。その結果を表9に示す。
Ip:イオン化ポテンシャル
Eg:エネルギーギャップ
Ea:エネルギーアフィニティ(電子親和力)
エネルギーギャップ(Eg)については、蒸着機で作成した薄膜を紫外−可視吸光度計で薄膜の吸収曲線を測定する。その薄膜の短波長側の立ち上がりのところに接線を引き、求まった交点の波長W(nm)を次の式に代入し目的の値を求める。それによって得た値がEgになる。
Eg=1240÷W
例えば接線を引いて求めた値W(nm)が470nmだったとしたらこの時のEgの値は
Eg=1240÷470=2.63(eV)
と言うことになる。
IP(イオン化ポテンシャル)はイオン化ポテンシャル測定装置(例えば理研計器AC−3)を使用して測定し、測定するサンプルがイオン化を開始したところの電圧(eV)の値を読む。
Ea(電子親和力)は、IpからEgを引いた値である。
本明細書における波長に関する強度(intensity a.u.)の測定は、浜松ホトニクス社製ストリークカメラを用いて、クライオスタット中で4.2Kにおいて測定した。
Of 3,5-di (1-pyrenyl) -pyridine of Example 2, 2,6-di (1-pyrenyl) -pyridine of Example 3, 4,6-di (1-pyrenyl) pyrimidine of Example 4 Tm, Tg, and Td were measured to evaluate thermal characteristics. The results are shown in Table 8.
In addition, an ultraviolet-visible absorption spectrum, an emission spectrum and an ionization potential (AC-3) were measured to evaluate electrochemical characteristics. The results are shown in Table 9.
Ip: ionization potential Eg: energy gap Ea: energy affinity (electron affinity)
Regarding the energy gap (Eg), an absorption curve of the thin film prepared with a vapor deposition machine is measured with an ultraviolet-visible absorptiometer. A tangent line is drawn at the short-wavelength rising edge of the thin film, and the target wavelength is obtained by substituting the obtained wavelength W (nm) of the intersection into the following equation. The value obtained thereby becomes Eg.
Eg = 1240 ÷ W
For example, if the value W (nm) obtained by drawing a tangent is 470 nm, the value of Eg at this time is Eg = 1240 ÷ 470 = 2.63 (eV)
Would be said.
IP (ionization potential) is measured using an ionization potential measuring device (for example, Riken Keiki AC-3), and the value of the voltage (eV) at which the sample to be measured starts ionization is read.
Ea (electron affinity) is a value obtained by subtracting Eg from Ip.
Intensity au in this specification was measured at 4.2K in a cryostat using a streak camera manufactured by Hamamatsu Photonics.

実施例5、6、7および比較例1
電子輸送材料として、実施例2で得られた35PYREPY、実施例3で得られた26PYREPY、実施例4で得られた46PYREPYMを用い、また比較のためAlqを用いた下記構成の素子を作りその性能を評価した。
素子の構成
比較例1
Device1(△):[ITO/NPD(40nm)/Alq(60nm)/LiF(0.5nm)/Al(100nm)]
実施例5
Device2(●):[ITO/NPD(40nm)/Alq(30nm)/35PYREPY(30nm)/LiF(0.5nm)/Al(100nm)]
実施例6
Device3(◆):[ITO/NPD(40nm)/Alq(30nm)/26PYREPY(30nm)/LiF(0.5nm)/Al(100nm)]
実施例7
Device4(黒三角):[ITO/NPD(40nm)/Alq(30nm)/46PYREPYM(30nm)/LiF(0.5nm)/Al(100nm)]
これらの素子の
エレクトロルミネッセンス(EL)スペクトルは図20に、
エネルギ−ダイアグラムは図21に、
電流密度−電圧特性は図22、23に、
輝度−電圧特性は図24に
視感効率−電圧特性は図25に、
電流効率−電圧特性は図26に、
輝度−電流密度特性は図27に、
それぞれ示す。
なお、図22の縦軸は実数表示であるが、電圧の低い部分の電流密度が見にくいので、図23では縦軸を対数表示に変更した。
素子の電気化学特性は表10に示す。
Examples 5, 6, 7 and Comparative Example 1
As an electron transport material, 35PYREPY obtained in Example 2, 26PYREPY obtained in Example 3, 46PYREPYM obtained in Example 4 were used, and for comparison, an element having the following configuration using Alq 3 was prepared. Performance was evaluated.
Device configuration comparison example 1
Device 1 (Δ): [ITO / NPD (40 nm) / Alq 3 (60 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 5
Device 2 (●): [ITO / NPD (40 nm) / Alq 3 (30 nm) / 35 PYREPY (30 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 6
Device 3 (◆): [ITO / NPD (40 nm) / Alq 3 (30 nm) / 26 PYREPY (30 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 7
Device 4 (black triangle): [ITO / NPD (40 nm) / Alq 3 (30 nm) / 46 PYREPYM (30 nm) / LiF (0.5 nm) / Al (100 nm)]
The electroluminescence (EL) spectra of these devices are shown in FIG.
The energy diagram is shown in FIG.
The current density-voltage characteristics are shown in FIGS.
Luminance-voltage characteristics are shown in FIG. 24. Luminous efficiency-voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The luminance-current density characteristics are shown in FIG.
Each is shown.
Although the vertical axis in FIG. 22 is a real number display, the current density in the low voltage portion is difficult to see, so the vertical axis is changed to a logarithmic display in FIG.
The electrochemical characteristics of the device are shown in Table 10.

実施例8、9、10および比較例2
電子輸送材料として、実施例2で得られた35PYREPYを用い、電子輸送層の膜厚を40nm、30nmおよび20nmに変化させた素子と、比較のためAlqを用いた下記構成の素子を作りその性能を評価した。
素子の構成
比較例2
Device5(△):[ITO/NPD(40nm)/Alq(60nm)/LiF(0.5nm)/Al(100nm)]
実施例8
Device6(●):[ITO/NPD(40nm)/Alq(20nm)/35PYREPY(40nm)/LiF(0.5nm)/Al(100nm)]
実施例9
Device7(◆):[ITO/NPD(40nm)/Alq(30nm)/35PYREPY(30nm)/LiF(0.5nm)/Al(100nm)]
実施例10
Device8(黒三角):[ITO/NPD(40nm)/Alq(40nm)/35PYREPY(20nm)/LiF(0.5nm)/Al(100nm)]
これらの素子の
エレクトロルミネッセンス(EL)スペクトルは図28に、
エネルギ−ダイアグラムは図29に、
電流密度−電圧特性は図30、31に、
輝度−電圧特性は図32に
視感効率−電圧特性は図33に、
電流効率−電圧特性は図34に、
輝度−電流密度特性は図35に、
それぞれ示す。
なお、図30の縦軸は実数表示であるが、電圧の低い部分の電流密度が見にくいので、図31では縦軸を対数表示に変更した。
素子の電気化学特性は表11に示す。
Examples 8, 9, and 10 and Comparative Example 2
Using 35PYREPY obtained in Example 2 as an electron transport material, an element in which the thickness of the electron transport layer was changed to 40 nm, 30 nm, and 20 nm, and an element having the following configuration using Alq 3 for comparison were prepared. Performance was evaluated.
Element configuration comparison example 2
Device 5 (Δ): [ITO / NPD (40 nm) / Alq 3 (60 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 8
Device 6 (●): [ITO / NPD (40 nm) / Alq 3 (20 nm) / 35 PYREPY (40 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 9
Device 7 (◆): [ITO / NPD (40 nm) / Alq 3 (30 nm) / 35 PYREPY (30 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 10
Device 8 (black triangle): [ITO / NPD (40 nm) / Alq 3 (40 nm) / 35 PYREPY (20 nm) / LiF (0.5 nm) / Al (100 nm)]
The electroluminescence (EL) spectra of these devices are shown in FIG.
The energy diagram is shown in FIG.
The current density-voltage characteristics are shown in FIGS.
Luminance-voltage characteristics are shown in FIG. 32. Luminous efficiency-voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The luminance-current density characteristics are shown in FIG.
Each is shown.
In addition, although the vertical axis | shaft of FIG. 30 is a real number display, since the current density of the part with a low voltage is hard to see, the vertical axis | shaft was changed into the logarithm display in FIG.
Table 11 shows the electrochemical characteristics of the device.

実施例11、12、13および比較例3
電子輸送兼発光材料として、実施例2で得られた35PYREPY、実施例3で得られた26PYREPY、実施例4で得られた46PYREPYMを用い、また比較のためAlqを用いた下記構成の素子を作りその性能を評価した。
素子の構成
比較例3
Device9(△):[ITO/NPD(40nm)/Alq(60nm)/LiF(0.5nm)/Al(100nm)]
実施11
Device10(●):[ITO/NPD(40nm)/35PYREPY(60nm)/LiF(0.5nm)/Al(100nm)]
実施例12
Device11(◆):[ITO/NPD(40nm)/26PYREPY(60nm)/LiF(0.5nm)/Al(100nm)]
実施例13
Device12(黒三角):[ITO/NPD(40nm)/46PYREPYM(60nm)/LiF(0.5nm)/Al(100nm)]
これらの素子の
エレクトロルミネッセンス(EL)スペクトルは図36に、
電流密度−電圧特性は図37、38に、
輝度−電圧特性は図39に
視感効率−電圧特性は図40に、
電流効率−電圧特性は図41に、
輝度−電流密度特性は図42に、
それぞれ示す。
なお、図37の縦軸は実数表示であるが、電圧の低い部分の電流密度が見にくいので、図38では縦軸を対数表示に変更した。
素子の電気化学特性は表12に示す。
Examples 11, 12, 13 and Comparative Example 3
35PYREPY obtained in Example 2, 26PYREPY obtained in Example 3 and 46PYREPYM obtained in Example 4 were used as electron transporting and light-emitting materials, and an element having the following configuration using Alq 3 was used for comparison. The performance was evaluated.
Device configuration comparison example 3
Device 9 (Δ): [ITO / NPD (40 nm) / Alq 3 (60 nm) / LiF (0.5 nm) / Al (100 nm)]
Implementation 11
Device 10 (●): [ITO / NPD (40 nm) / 35 PYREPY (60 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 12
Device 11 (◆): [ITO / NPD (40 nm) / 26 PYREPY (60 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 13
Device 12 (black triangle): [ITO / NPD (40 nm) / 46 PYREPYM (60 nm) / LiF (0.5 nm) / Al (100 nm)]
The electroluminescence (EL) spectra of these devices are shown in FIG.
The current density-voltage characteristics are shown in FIGS.
Luminance-voltage characteristics are shown in FIG. 39. Luminous efficiency-voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The luminance-current density characteristics are shown in FIG.
Each is shown.
Note that although the vertical axis in FIG. 37 is a real number display, the current density in the low voltage portion is difficult to see, so in FIG. 38 the vertical axis is changed to a logarithmic display.
Table 12 shows the electrochemical characteristics of the device.

実施例14、15、16
実施例2で得られた35PYREPY、実施例3で得られた26PYREPY、実施例4で得られた46PYREPYMを用いジピレン誘導体の単層膜の蒸着膜での蛍光量子収率を測定した。
真空蒸着法で石英基板に50nmの厚みで製膜した単層膜を、有機EL量子効率測定装置(浜松ホトニクス製C9920−01)を用い、励起波長325nmにて単層膜の絶対発光量子収率の測定を行った。
測定結果は、
1) ブランクの石英基板の325nmの吸収ピーク(山)の面積を求める。
2) 石英基板上の単層膜の325nmの吸収ピーク(山)面積を求める。
3) 石英基板上の単層膜測定結果で新たにできた山(発光ピーク)の面積を求める。
4) 1)から2)を引いた面積が3)でできた山(発光ピーク)の面積を作製するために費やされたものである。
1)から3)の値より、次の式で求めることができる。
蛍光量子収率(%)=3)の面積÷[1)の面積−2)の面積]×100
この結果を表13に示す。また
35PYREPYの測定結果は図43に、
26PYREPYの測定結果は図44に、
46PYREPYMの測定結果は図45に、
それぞれ示す。
なお、石英は光が失活する要素がないので、入った光がそのまま光量子に変化する。したがって、石英の光量子効率は0%である。一方、有機薄膜は入った光のすべてが光量子に変化せず、1部はどうしても失活するが、本発明化合物はその失活する程度が低い。
Examples 14, 15, 16
Using 35 PYREPY obtained in Example 2, 26 PYREPY obtained in Example 3, and 46 PYREPYM obtained in Example 4, the fluorescence quantum yield in the vapor-deposited film of the dipyrene derivative was measured.
Using an organic EL quantum efficiency measurement device (C9920-01, manufactured by Hamamatsu Photonics), a single layer film formed by vacuum evaporation on a quartz substrate with a thickness of 50 nm is used to obtain an absolute emission quantum yield of the single layer film at an excitation wavelength of 325 nm. Was measured.
The measurement result is
1) Obtain the area of the absorption peak (mountain) at 325 nm of the blank quartz substrate.
2) The absorption peak (mountain) area of a single layer film on a quartz substrate at 325 nm is obtained.
3) Obtain the area of the peak (emission peak) newly formed from the measurement result of the single layer film on the quartz substrate.
4) The area obtained by subtracting 2) from 1) was spent to produce the area of the peak (luminescence peak) formed in 3).
From the values of 1) to 3), it can be obtained by the following equation.
Fluorescence quantum yield (%) = 3) area ÷ [1) area−2) area] × 100
The results are shown in Table 13. The measurement result of 35PYREPY is shown in FIG.
The measurement result of 26PYREPY is shown in FIG.
The measurement result of 46PYREPYM is shown in FIG.
Each is shown.
In addition, since quartz has no element that deactivates light, the incident light is directly converted into photons. Therefore, the photon efficiency of quartz is 0%. On the other hand, all of the light entering the organic thin film does not change to photons, and one part is inactivated by necessity, but the compound of the present invention has a low degree of inactivation.

実施例17、18、19
実施例2で得られた35PYREPY、実施例3で得られた26PYREPY、実施例4で得られた46PYREPYMを用い、電子オンリーデバイス(Electron only device)を作製し、電子の入りやすさを測定した。電子オンリーデバイスとは、有機エレクトロルミネッセンス素子から正孔輸送(ホール輸送)層を除去した素子である。ITOからの正孔(ホール)の出入りを完全に止めるために、ITOの上に正孔(ホール)ブロック層を1層設けているのが特徴である。
実施例17
Device13(●):[ITO/BCP(10nm)/35PYREPY(100nm)/LiF(0.5nm)/Al(100nm)]
実施例18
Device14(◆):[ITO/BCP(10nm)/26PYREPY (100nm)/LiF(0.5nm)/Al(100nm)]
実施例19
Device15(黒三角):[ITO/BCP(10nm)/46PYREPYM(100nm)/LiF(0.5nm)/Al(100nm)]
これらの素子の電流密度−電圧特性は図46に示す。
Examples 17, 18, 19
Using 35 PYREPY obtained in Example 2, 26 PYREPY obtained in Example 3, and 46 PYREPYM obtained in Example 4, an electron-only device (Electron only device) was manufactured, and the ease of entering electrons was measured. An electron-only device is an element obtained by removing a hole transport (hole transport) layer from an organic electroluminescence element. In order to completely stop the entrance / exit of holes from the ITO, one hole block layer is provided on the ITO.
Example 17
Device 13 (●): [ITO / BCP (10 nm) / 35 PYREPY (100 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 18
Device 14 (◆): [ITO / BCP (10 nm) / 26 PYREPY (100 nm) / LiF (0.5 nm) / Al (100 nm)]
Example 19
Device 15 (black triangle): [ITO / BCP (10 nm) / 46 PYREPYM (100 nm) / LiF (0.5 nm) / Al (100 nm)]
The current density-voltage characteristics of these elements are shown in FIG.

実施例20、21、22および比較例4
実施例2で得られた35PYREPY、実施例3で得られた26PYREPY、実施例4で得られた46PYREPYMの素子中での電子の移動度を測定するために下記の素子を作製した。また比較のためAlqの素子も同様に作製した。
実施例20
Device16(●):[ITO/35PYREPY(4μm)/Al(100nm)]
実施例21
Device17(◆):[ITO/26PYREPY(4μm)/Al(100nm)]
実施例22
Device18(黒三角):[ITO/46PYREPYM(4μm)/Al(100nm)]
比較例4
Device19:(△):[ITO/Alq(4μm)/Al(100nm)]
これらの素子の移動度−電界強度特性は図47に示す。
Examples 20, 21, 22 and Comparative Example 4
In order to measure the electron mobility in the 35PYREPY obtained in Example 2, the 26PYREPY obtained in Example 3, and the 46PYREPYM obtained in Example 4, the following devices were prepared. For comparison, an Alq 3 element was also produced in the same manner.
Example 20
Device 16 (●): [ITO / 35PYREPY (4 μm) / Al (100 nm)]
Example 21
Device 17 (◆): [ITO / 26PYREPY (4 μm) / Al (100 nm)]
Example 22
Device 18 (black triangle): [ITO / 46 PYREPYM (4 μm) / Al (100 nm)]
Comparative Example 4
Device 19: (Δ): [ITO / Alq 3 (4 μm) / Al (100 nm)]
The mobility-electric field strength characteristics of these elements are shown in FIG.

実施例23
2,5−ジ(ピレン−1−イル)チオフェン(略称DPyreTh)の合成
下記表14に示すように、窒素気流下で4つ口フラスコに2,5−ジブロモチオフェン 0.34g、1−ピレンボロン酸 1.77g、トルエン 20ml、エタノール 10ml、炭酸カリウム水溶液(2M濃度)を加え、4時間窒素バブリングを行った。その後テトラキス(トリフェニルホスフィン)パラジウム(0)〔Pd(PPh〕0..208gを加え、攪拌しながら12時間還流を行った。
クロロホルムとイオン交換水、飽和食塩水で分散洗浄を行い、トルエンを用いて再結晶を行った。その後ガラスチューブオーブン(GTO)で粗精製を行い、ついで昇華精製を行って精製した。図62、63のH−NMR・Massスペクトルにより目的物が合成されていることを確認した。図63は、図62の拡大図である。
2,5−DBrTh=2,5−ジブロモチオフェン(2,5−Dibromothiophene)
PyreBAc=1−ピレンホウ酸(1−Pyreneboronic Acid)
Pd(PPh=テトラキス(トリフェニルホスフィンパラジウム)(0)〔Tetrakis(triphenylphosphine)Palladium(0)〕
図64には、2,5−ジ(ピレン−1−イル)チオフェンのMassスペクトルを示し、図65には、その熱物性評価を示す1種の融解曲線であり、図中、
(1)の曲線は、DPyreThの示差走査熱量計(DSC)(Thermo plus EVO/DSC8230)を用いた第1回目の加熱による融解曲線であり、
(2)の曲線は、第2回目の加熱による融解曲線であり、
(3)の曲線は、第3回目の加熱による融解曲線である。
図中、縦軸は熱量であり、横軸は温度である。
図66は、TGA(熱天秤)であり、ライン(イ)は熱重量減少曲線であり、ライン(ロ)は、その加熱状況を示す曲線である。横軸は温度を表わし、左縦軸は加熱度合いを示し、右縦軸は熱重量減少率を示している〔前記(イ)に対応〕。
図66からみて、2,5−ジ(ピレン−1−イル)チオフェンの融点、ガラス転移点、分解温度は下記表に示すとおりである。
図67に、2,5−ジ(ピレン−1−イル)チオフェンの光学物性評価を示す。図67および表16の結果は該化合物のトルエン溶液(PL強度を測定する時の濃度は1×10−7mol/lであり、UV強度を測定する時の濃度は1×10−5mol/lである)を用いたデータである。
図67の縦軸は規格化されたPL強度、UV強度を示し、横軸は波長である。
図68および表17は2,5−ジ(ピレン−1−イル)チオフェンのクロロホルム溶液(PL強度を測定する時の濃度は1×10−7mol/lであり、UV強度を測定する時の濃度は1×10−5mol/lである)を用いた光学物性評価を示す。
図68の縦軸は規格化されたPL強度、UV強度を示し、横軸は波長である。
図69および表18は2,5−ジ(ピレン−1−イル)チオフェンの膜厚(膜厚622nm)を用いて、その光学物性評価を行った結果である。
図70は、2,5−ジ(ピレン−1−イル)チオフェンのフォトルミネッセンス強度を石英との対比において示すものである。
Example 23
Synthesis of 2,5-di (pyren-1-yl) thiophene (abbreviation DPyreTh)
As shown in Table 14 below, 0.34 g of 2,5-dibromothiophene, 1.77 g of 1-pyreneboronic acid, 20 ml of toluene, 10 ml of ethanol, and an aqueous potassium carbonate solution (2M concentration) were added to a four-necked flask under a nitrogen stream. Nitrogen bubbling was performed for 4 hours. Then tetrakis (triphenylphosphine) palladium (0) [Pd (PPh 3 ) 4 ] 0. . 208 g was added and refluxed for 12 hours with stirring.
Dispersion washing was performed with chloroform, ion-exchanged water and saturated saline, and recrystallization was performed using toluene. Thereafter, rough purification was performed in a glass tube oven (GTO), followed by purification by sublimation. It was confirmed that the target product was synthesized by 1 H-NMR / Mass spectra shown in FIGS. FIG. 63 is an enlarged view of FIG.
2,5-DBrTh = 2,5-dibromothiophene (2,5-Dibrothiophene)
PyreBAc = 1-pyreneboric acid
Pd (PPh 3 ) 4 = tetrakis (triphenylphosphine palladium) (0) [Tetrakis (triphenylphosphine) Palladium (0)]
FIG. 64 shows a mass spectrum of 2,5-di (pyren-1-yl) thiophene, and FIG. 65 shows one kind of melting curve showing its thermophysical evaluation.
The curve of (1) is a melting curve by the first heating using a differential scanning calorimeter (DSC) (Thermo plus EVO / DSC8230) of DPyTh,
The curve of (2) is a melting curve by the second heating,
The curve (3) is a melting curve by the third heating.
In the figure, the vertical axis is the amount of heat, and the horizontal axis is the temperature.
FIG. 66 shows a TGA (thermobalance), line (A) is a thermogravimetric decrease curve, and line (B) is a curve showing the heating state. The horizontal axis represents the temperature, the left vertical axis represents the degree of heating, and the right vertical axis represents the thermal weight reduction rate (corresponding to (i) above).
As seen from FIG. 66, the melting point, glass transition point, and decomposition temperature of 2,5-di (pyren-1-yl) thiophene are as shown in the following table.
FIG. 67 shows the evaluation of optical properties of 2,5-di (pyren-1-yl) thiophene. The results shown in FIG. 67 and Table 16 are the toluene solution of the compound (the concentration when measuring PL intensity is 1 × 10 −7 mol / l, and the concentration when measuring UV intensity is 1 × 10 −5 mol / l). l).
In FIG. 67, the vertical axis represents normalized PL intensity and UV intensity, and the horizontal axis represents wavelength.
FIG. 68 and Table 17 show a chloroform solution of 2,5-di (pyren-1-yl) thiophene (concentration when measuring PL intensity is 1 × 10 −7 mol / l, and when measuring UV intensity. The optical property evaluation using a concentration of 1 × 10 −5 mol / l) is shown.
The vertical axis in FIG. 68 shows the normalized PL intensity and UV intensity, and the horizontal axis is the wavelength.
FIG. 69 and Table 18 show the results of optical property evaluation using the film thickness (film thickness 622 nm) of 2,5-di (pyren-1-yl) thiophene.
FIG. 70 shows the photoluminescence intensity of 2,5-di (pyren-1-yl) thiophene in comparison with quartz.

実施例24
実施例23で得られた2,5−ジ(ピレン−1−イル)チオフェン(DPyreTh)を用いて、下記構成の有機EL素子を作成した。
素子構成
ITO/DPyreTh40nm/Alq60nm/LiF0.5nm/Al100nm
この有機EL素子の蛍光スペクトル(ELスペクトル)を図71に、
電流密度−電圧特性を図72に、
輝度−電圧特性を図73に、
視感効率−輝度特性を図74に、
電流効率−輝度特性を図75に、
輝度−電流密度特性を図76に、
それぞれ示す。
また。該デバイスの初期特性は下記表19に示す。
Example 24
Using 2,5-di (pyren-1-yl) thiophene (DPyreTh) obtained in Example 23, an organic EL device having the following constitution was produced.
Device structure ITO / DPyreTh40nm / Alq 3 60nm / LiF0.5nm / Al100nm
The fluorescence spectrum (EL spectrum) of this organic EL element is shown in FIG.
The current density-voltage characteristics are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency-luminance characteristics are shown in FIG.
The current efficiency vs. luminance characteristics are shown in FIG.
FIG. 76 shows the luminance-current density characteristics.
Each is shown.
Also. The initial characteristics of the device are shown in Table 19 below.

実施例25
実施例23で得られたDPyreThを用いて、下記構成の有機EL素子を作成した。
素子構成
ITO/α−NPD40nm/Alq30nm/DPyreTh30nm/LiF0.5nm/Al100nm
この有機EL素子の蛍光スペクトル(ELスペクトル)を図77に、
電流密度−電圧特性を図78に、
輝度−電圧特性を図79に、
視感効率−輝度特性を図80に、
電流効率−輝度特性を図81に、
輝度−電流密度特性を図82に、
それぞれ示す。
また。該デバイスの初期特性は下記表20に示す。
Example 25
Using the DPyThh obtained in Example 23, an organic EL element having the following configuration was prepared.
Element configuration ITO / α-NPD 40 nm / Alq 3 30 nm / DPyTh 30 nm / LiF 0.5 nm / Al 100 nm
The fluorescence spectrum (EL spectrum) of this organic EL element is shown in FIG.
The current density-voltage characteristics are shown in FIG.
Fig. 79 shows the luminance-voltage characteristics.
The luminous efficiency-luminance characteristics are shown in FIG.
The current efficiency-luminance characteristics are shown in FIG.
The luminance-current density characteristics are shown in FIG.
Each is shown.
Also. The initial characteristics of the device are shown in Table 20 below.

実施例1の3,8−ジ(1−ピレニル)−1,10−フェナントロリンDPyre−Phenの高真空昇華精製前の融点のDSC曲線を示す。The DSC curve of melting | fusing point before the high vacuum sublimation purification of 3,8- di (1-pyrenyl) -1,10-phenanthroline DPyre-Phen of Example 1 is shown. 図1のDSC曲線の3回目測定の拡大図を示す。The enlarged view of the 3rd measurement of the DSC curve of FIG. 1 is shown. 実施例1の3,8−ジ(1−ピレニル)−1,10−フェナントロリンDPyre−Phenの高真空昇華精製後の融点のDSC曲線を示す。丸で囲っているところについては発熱状態を表し、このものの純度が向上したため見られる現象である。The DSC curve of melting | fusing point after the high vacuum sublimation refinement | purification of 3,8- di (1-pyrenyl) -1,10-phenanthroline DPyre-Phen of Example 1 is shown. The area surrounded by a circle represents a heat generation state, which is a phenomenon seen because the purity of this material has improved. 図3のDSC曲線の3回目測定の拡大図を示す。The enlarged view of the 3rd measurement of the DSC curve of FIG. 3 is shown. 実施例1の3,8−ジ(1−ピレニル)−1,10−フェナントロリンDPyre−PhenのH−NMRスペクトル(重クロロホルム溶媒中、内部標準テトラメチルシラン使用、400MHz)(全領域)を示す。1 shows the 1 H-NMR spectrum of 3,8-di (1-pyrenyl) -1,10-phenanthroline DPyre-Phen in Example 1 (using internal standard tetramethylsilane, 400 MHz in deuterated chloroform solvent) (all regions). . 図5のH−NMRスペクトル拡大図(7〜10ppm)を示す。The 1 H-NMR spectrum enlarged view (7-10 ppm) of FIG. 5 is shown. 実施例1の3,8−ジ(1−ピレニル)−1,10−フェナントロリンDPyre−Phen のMassスペクトルを図7示す。FIG. 7 shows the mass spectrum of 3,8-di (1-pyrenyl) -1,10-phenanthroline DPyre-Phen in Example 1. 実施例2の3,5−ジ(1−ピレニル)−ピリジン(35PYREPY)のクロロホルム中と薄膜状でそれぞれ測定した紫外−可視吸収スペクトルを示す。The ultraviolet-visible absorption spectrum measured in chloroform and the thin film form of 3,5-di (1-pyrenyl) -pyridine (35PYREPY) of Example 2 is shown. 実施例2の3,5−ジ(1−ピレニル)−ピリジン(35PYREPY)のクロロホルム中と薄膜状でそれぞれ測定した励起スペクトルと発光スペクトルを示す。The excitation spectrum and emission spectrum of 3,5-di (1-pyrenyl) -pyridine (35PYREPY) of Example 2 measured in chloroform and in the form of a thin film are shown. 実施例2の3,5−ジ(1−ピレニル)−ピリジン(35PYREPY)のH−NMRスペクトル(重クロロホルム溶媒中、内部標準テトラメチルシラン使用、400MHz)(全領域)を示す。1 shows the 1 H-NMR spectrum of 3,5-di (1-pyrenyl) -pyridine (35PYREPY) of Example 2 (using internal standard tetramethylsilane, 400 MHz in deuterated chloroform solvent) (all regions). 図10のH−NMRスペクトル拡大図(7〜10ppm)を示す。The 1 H-NMR spectrum enlarged view (7-10 ppm) of FIG. 10 is shown. 実施例3の2,6−ジ(1−ピレニル)−ピリジン(26PYREPY)のクロロホルム中と薄膜状でそれぞれ測定した紫外−可視吸収スペクトルを示す。The ultraviolet-visible absorption spectrum which measured the 2, 6- di (1-pyrenyl) -pyridine (26PYREPY) of Example 3 in chloroform and a thin film form, respectively is shown. 実施例3の2,6−ジ(1−ピレニル)−ピリジン(26PYREPY)のクロロホルム中と薄膜状でそれぞれ測定した励起スペクトルと発光スペクトルを示す。The excitation spectrum and emission spectrum of 2,6-di (1-pyrenyl) -pyridine (26PYREPY) of Example 3 measured in chloroform and in the form of a thin film are shown. 実施例3の2,6−ジ(1−ピレニル)−ピリジン(26PYREPY)のH−NMRスペクトル(重クロロホルム溶媒中、内部標準テトラメチルシラン使用、400MHz)(全領域)を示す。1 shows the 1 H-NMR spectrum of 2,6-di (1-pyrenyl) -pyridine (26PYREPY) of Example 3 (using internal standard tetramethylsilane, 400 MHz in deuterated chloroform solvent) (all regions). 図14のH−NMRスペクトル拡大図(7〜10ppm)を示す。 1 H-NMR spectrum enlarged view of FIG. 14 shows the (7~10ppm). 実施例4の4,6−ジ(1−ピレニル)ピリミジン(46PYREPYM)のクロロホルム中と薄膜状でそれぞれ測定した紫外−可視吸収スペクトルを示す。The ultraviolet-visible absorption spectrum measured in chloroform and the thin film form of 4,6-di (1-pyrenyl) pyrimidine (46PYREPYM) of Example 4 is shown. 実施例4の4,6−ジ(1−ピレニル)ピリミジン(46PYREPYM)のクロロホルム中と薄膜状でそれぞれ測定した励起スペクトルと発光スペクトルを示す。The excitation spectrum and emission spectrum of 4,6-di (1-pyrenyl) pyrimidine (46PYREPYM) of Example 4 measured in chloroform and in the form of a thin film are shown. 実施例4の4,6−ジ(1−ピレニル)ピリミジン(46PYREPYM)のH−NMRスペクトル(重クロロホルム溶媒中、内部標準テトラメチルシラン使用、400MHz)(全領域)を示す。1 shows the 1 H-NMR spectrum of 4,6-di (1-pyrenyl) pyrimidine (46PYREPYM) in Example 4 (using internal standard tetramethylsilane, 400 MHz in deuterated chloroform solvent) (all regions). 図18の拡大図(7〜10ppm)を示す。The enlarged view (7-10 ppm) of FIG. 18 is shown. 実施例5〜7および比較例1の有機エレクトロルミネセンス素子(有機EL素子)のエレクトロルミネッセンス(EL)スペクトルを示す。The electroluminescence (EL) spectrum of Examples 5-7 and the organic electroluminescent element (organic EL element) of the comparative example 1 is shown. 実施例5〜7および比較例1の有機エレクトロルミネセンス素子(有機EL素子)のエネルギ−ダイアグラムを示す。The energy diagram of the organic electroluminescent element (organic EL element) of Examples 5-7 and Comparative Example 1 is shown. 実施例5〜7および比較例1の有機エレクトロルミネセンス素子(有機EL素子)の実数表示の電流密度−電圧特性を示す。The current density-voltage characteristic of the real number display of Examples 5-7 and the organic electroluminescent element (organic EL element) of Comparative Example 1 is shown. 実施例5〜7および比較例1の有機エレクトロルミネセンス素子(有機EL素子)の片対数表示の電流密度−電圧特性を示す。The current density-voltage characteristic of the semi logarithm display of the organic electroluminescent element (organic EL element) of Examples 5-7 and Comparative Example 1 is shown. 実施例5〜7および比較例1の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電圧特性を示す。The brightness | luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 5-7 and Comparative Example 1 is shown. 実施例5〜7および比較例1の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 5-7 and Comparative Example 1 is shown. 実施例5〜7および比較例1の有機エレクトロルミネセンス素子(有機EL素子)の電流効率−電圧特性を示す。The current efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 5 to 7 and Comparative Example 1 is shown. 実施例5〜7および比較例1の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電流密度特性を示す。The brightness | luminance-current density characteristic of the organic electroluminescent element (organic EL element) of Examples 5-7 and Comparative Example 1 is shown. 実施例8〜10および比較例2の有機エレクトロルミネセンス素子(有機EL素子)のエレクトロルミネッセンス(EL)スペクトルを示す。The electroluminescence (EL) spectrum of the organic electroluminescent element (organic EL element) of Examples 8 to 10 and Comparative Example 2 is shown. 実施例8〜10および比較例2の有機エレクトロルミネセンス素子(有機EL素子)のエネルギ−ダイアグラムを示すThe energy diagram of the organic electroluminescent element (organic EL element) of Examples 8-10 and Comparative Example 2 is shown. 実施例8〜10および比較例2の有機エレクトロルミネセンス素子(有機EL素子)の実数表示の電流密度−電圧特性を示す。The current density-voltage characteristic of the real number display of Examples 8-10 and the organic electroluminescent element (organic EL element) of Comparative Example 2 is shown. 実施例8〜10および比較例2の有機エレクトロルミネセンス素子(有機EL素子)の片対数表示の電流密度−電圧特性を示す。The current density-voltage characteristic of the semilog display of the organic electroluminescent element (organic EL element) of Examples 8 to 10 and Comparative Example 2 is shown. 実施例8〜10および比較例2の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電圧特性を示す。The brightness | luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 8-10 and the comparative example 2 is shown. 実施例8〜10および比較例2の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 8 to 10 and Comparative Example 2 is shown. 実施例8〜10および比較例2の有機エレクトロルミネセンス素子(有機EL素子)の電流効率−電圧特性を示す。The current efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 8 to 10 and Comparative Example 2 is shown. 実施例8〜10および比較例2の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電流密度特性を示す。The brightness | luminance-current density characteristic of the organic electroluminescent element (organic EL element) of Examples 8-10 and Comparative Example 2 is shown. 実施例11〜13および比較例3の有機エレクトロルミネッセンス素子(有機EL素子)のエレクトロルミネッセンス(EL)スペクトルを示す。The electroluminescence (EL) spectrum of the organic electroluminescent element (organic EL element) of Examples 11-13 and Comparative Example 3 is shown. 実施例11〜13および比較例3の有機エレクトロルミネッセンス素子(有機EL素子)の実数表示の電流密度−電圧特性を示す。The current density-voltage characteristic of the real number display of the organic electroluminescent element (organic EL element) of Examples 11-13 and Comparative Example 3 is shown. 実施例11〜13および比較例3の有機エレクトロルミネッセンス素子(有機EL素子)の片対数表示の電流密度−電圧特性を示す。The current density-voltage characteristic of the semi-log display of the organic electroluminescent element (organic EL element) of Examples 11-13 and Comparative Example 3 is shown. 実施例11〜13および比較例3の有機エレクトロルミネッセンス素子(有機EL素子)の輝度−電圧特性を示す。The brightness | luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 11-13 and Comparative Example 3 is shown. 実施例11〜13および比較例3の有機エレクトロルミネッセンス素子(有機EL素子)の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 11-13 and Comparative Example 3 is shown. 実施例11〜13および比較例3の有機エレクトロルミネッセンス素子(有機EL素子)の電流効率−電圧特性を示す。The current efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 11-13 and Comparative Example 3 is shown. 実施例11〜13および比較例3の有機エレクトロルミネッセンス素子(有機EL素子)の輝度−電流密度特性を示す。The brightness | luminance-current density characteristic of the organic electroluminescent element (organic EL element) of Examples 11-13 and Comparative Example 3 is shown. 実施例14(35PYREPY)の蛍光量子収率〔光量子数(フォトン数)−波長〕を示す。The fluorescence quantum yield [photon number (photon number) -wavelength] of Example 14 (35PYREPY) is shown. 実施例15(26PYREPY)の蛍光量子収率〔光量子数(フォトン数)−波長〕を示す。The fluorescence quantum yield [photon number (photon number) -wavelength] of Example 15 (26PYREPY) is shown. 実施例16(46PYREPYM)の蛍光量子収率〔光量子数(フォトン数)−波長〕を示す。The fluorescence quantum yield [photon number (photon number) -wavelength] of Example 16 (46PYREPYM) is shown. 実施例17〜19の電子オンリーデバイスの電流密度−電圧特性を示す。The current density-voltage characteristic of the electronic only device of Examples 17-19 is shown. 実施例20〜22および比較例4の電子移動度測定素子の移動度−電界強度を示す。The mobility-electric field strength of the electron mobility measuring elements of Examples 20 to 22 and Comparative Example 4 is shown. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 2,5−ジ(ピレン−1−イル)チオフェンのH−NMRスペクトルを示す。 1 shows the 1 H-NMR spectrum of 2,5-di (pyren-1-yl) thiophene. 図62の拡大図である。FIG. 63 is an enlarged view of FIG. 62. 2,5−ジ(ピレン−1−イル)チオフェンのMassスペクトル(質量スペクトル)を示す。2 shows a mass spectrum (mass spectrum) of 2,5-di (pyren-1-yl) thiophene. 2,5−ジ(ピレン−1−イル)チオフェンの熱物性を評価したグラフである。It is the graph which evaluated the thermophysical property of 2, 5- di (pyren-1-yl) thiophene. 2,5−ジ(ピレン−1−イル)チオフェンのTGA(熱天秤)であり、ライン(イ)は熱重量減少曲線であり、ライン(ロ)はその加熱状況を示す曲線である。It is TGA (thermobalance) of 2,5-di (pyren-1-yl) thiophene, line (A) is a thermogravimetric decrease curve, and line (B) is a curve showing the heating state. 2,5−ジ(ピレン−1−イル)チオフェンのトルエン溶液を用いて測定した2,5−ジ(ピレン−1−イル)チオフェンの光学物性評価を示すグラフである。It is a graph which shows the optical physical-property evaluation of 2, 5- di (pyren- 1-yl) thiophene measured using the toluene solution of 2, 5- di (pyren- 1-yl) thiophene. 2,5−ジ(ピレン−1−イル)チオフェンのクロロホルム溶液を用いて測定した2,5−ジ(ピレン−1−イル)チオフェンの光学物性評価を示すグラフである。It is a graph which shows the optical physical-property evaluation of 2, 5- di (pyren- 1-yl) thiophene measured using the chloroform solution of 2, 5- di (pyren- 1-yl) thiophene. 2,5−ジ(ピレン−1−イル)チオフェン薄膜を用いて測定した2,5−ジ(ピレン−1−イル)チオフェンの光学物性評価を示すグラフである。It is a graph which shows the optical physical-property evaluation of the 2, 5- di (pyren- 1-yl) thiophene measured using the 2, 5- di (pyren- 1-yl) thiophene thin film. 石英と2,5−ジ(ピレン−1−イル)チオフェンのフォトルミネッセンス強度(規格化)を示すグラフである。It is a graph which shows the photoluminescence intensity | strength (normalization) of quartz and 2, 5- di (pyren-1-yl) thiophene. 実施例24の有機エレクトロルミネッセンス素子(有機EL素子)のエレクトロルミネッセンススペクトル(蛍光スペクトル)を示す。The electroluminescent spectrum (fluorescence spectrum) of the organic electroluminescent element (organic EL element) of Example 24 is shown. 実施例24の有機エレクトロルミネッセンス素子(有機EL素子)の電流密度−電圧特性を示す。The current density-voltage characteristic of the organic electroluminescent element (organic EL element) of Example 24 is shown. 実施例24の有機エレクトロルミネッセンス素子(有機EL素子)の輝度−電圧特性を示す。The luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Example 24 is shown. 実施例24の有機エレクトロルミネッセンス素子(有機EL素子)の視感効率−輝度特性を示す。The luminous efficiency-luminance characteristic of the organic electroluminescent element (organic EL element) of Example 24 is shown. 実施例24の有機エレクトロルミネッセンス素子(有機EL素子)の電流効率−輝度特性を示す。The current efficiency-luminance characteristic of the organic electroluminescent element (organic EL element) of Example 24 is shown. 実施例24の有機エレクトロルミネッセンス素子(有機EL素子)の輝度−電圧密度特性を示す。The luminance-voltage density characteristic of the organic electroluminescent element (organic EL element) of Example 24 is shown. 実施例25の有機エレクトロルミネッセンス素子(有機EL素子)のエレクトロルミネッセンススペクトル(蛍光スペクトル)を示す。The electroluminescent spectrum (fluorescence spectrum) of the organic electroluminescent element (organic EL element) of Example 25 is shown. 実施例25の有機エレクトロルミネッセンス素子(有機EL素子)の電流密度−電圧特性を示す。The current density-voltage characteristic of the organic electroluminescent element (organic EL element) of Example 25 is shown. 実施例25の有機エレクトロルミネッセンス素子(有機EL素子)の輝度−電圧特性を示す。The luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Example 25 is shown. 実施例25の有機エレクトロルミネッセンス素子(有機EL素子)の視感効率−輝度特性を示す。The luminous efficiency-luminance characteristic of the organic electroluminescent element (organic EL element) of Example 25 is shown. 実施例25の有機エレクトロルミネッセンス素子(有機EL素子)の電流効率−輝度特性を示す。The current efficiency-luminance characteristic of the organic electroluminescent element (organic EL element) of Example 25 is shown. 実施例25の有機エレクトロルミネッセンス素子(有機EL素子)の輝度−電圧密度特性を示す。The luminance-voltage density characteristic of the organic electroluminescent element (organic EL element) of Example 25 is shown.

1 基板
2 陽極(ITO)
3 発光層
4 陰極
5 正孔輸送層(ホール輸送層)
6 電子輸送層
7 正孔注入層(ホール注入層)
8 電子注入層
9 正孔ブロック層(ホールブロック層)
1 Substrate 2 Anode (ITO)
3 Light emitting layer 4 Cathode 5 Hole transport layer (hole transport layer)
6 Electron transport layer 7 Hole injection layer (hole injection layer)
8 Electron injection layer 9 Hole blocking layer (hole blocking layer)

Claims (6)

下記一般式(1)
(式中、Qは
よりなる群から選ばれた基であり、R〜Rは、水素、炭素数1〜6の直鎖または分岐のアルキル基、炭素数1〜6の直鎖または分岐のアルコキシ基および炭素数1〜6の直鎖または分岐のアルキルアミノ基よりなる群からそれぞれ独立して選ばれた基であり、R10 20 は、水素および炭素数1〜6の直鎖または分岐のアルキル基よりなる群からそれぞれ独立して選ばれた基である)
で示されるジピレン誘導体。
The following general formula (1)
(Where Q is
R 1 to R 9 are groups selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, and the number of carbon atoms R 10 to R 20 are groups independently selected from the group consisting of 1 to 6 linear or branched alkylamino groups, and R 10 to R 20 are each selected from hydrogen and a linear or branched alkyl group having 1 to 6 carbon atoms. Each group is independently selected from the group
A dipyrene derivative represented by
請求項1記載のジピレン誘導体よりなる電子輸送材料。   An electron transport material comprising the dipyrene derivative according to claim 1. 請求項1記載のジピレン誘導体よりなる発光材料。   A luminescent material comprising the dipyrene derivative according to claim 1. 請求項1記載のジピレン誘導体を含む有機エレクトロルミネッセンス素子。   An organic electroluminescence device comprising the dipyrene derivative according to claim 1. 請求項1記載のジピレン誘導体を電子輸送層に用いた有機エレクトロルミネッセンス素子。   An organic electroluminescence device using the dipyrene derivative according to claim 1 for an electron transport layer. 請求項1記載のジピレン誘導体を発光層に用いた有機エレクトロルミネッセンス素子。   An organic electroluminescence device using the dipyrene derivative according to claim 1 as a light emitting layer.
JP2008025705A 2007-02-06 2008-02-05 NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME Active JP5220429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025705A JP5220429B2 (en) 2007-02-06 2008-02-05 NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007026312 2007-02-06
JP2007026312 2007-02-06
JP2008025705A JP5220429B2 (en) 2007-02-06 2008-02-05 NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME

Publications (2)

Publication Number Publication Date
JP2008214339A JP2008214339A (en) 2008-09-18
JP5220429B2 true JP5220429B2 (en) 2013-06-26

Family

ID=39834808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025705A Active JP5220429B2 (en) 2007-02-06 2008-02-05 NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME

Country Status (1)

Country Link
JP (1) JP5220429B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640460B2 (en) * 2009-06-03 2014-12-17 東レ株式会社 Light emitting device and light emitting device material
JP5783749B2 (en) * 2011-02-15 2015-09-24 ケミプロ化成株式会社 1,8-aryl substituted naphthalene derivative having excimer characteristics and organic EL device using the same
KR20140087828A (en) * 2012-12-31 2014-07-09 삼성디스플레이 주식회사 Condensed cyclic compound and organic light-emitting diode comprising the same
KR102235598B1 (en) * 2014-03-11 2021-04-05 삼성디스플레이 주식회사 Condensed cyclic compound and organic light-emitting diode comprising the same
CN108079299B (en) * 2018-02-11 2020-12-01 国家纳米科学中心 Composite nano particle and preparation method and application thereof
JP7325731B2 (en) 2018-08-23 2023-08-15 国立大学法人九州大学 organic electroluminescence element
CN114133406A (en) * 2021-11-24 2022-03-04 南京邮电大学 Conjugated organic complex of europium (III) and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109765A (en) * 2001-09-28 2003-04-11 Canon Inc Organic light emitting element
JP2003109763A (en) * 2001-09-28 2003-04-11 Canon Inc Organic light emitting element
JP2005123164A (en) * 2003-09-24 2005-05-12 Fuji Photo Film Co Ltd Light emitting device
PL1888539T3 (en) * 2005-06-10 2014-03-31 Basf Se Hydroxyphenyltriazines with an aromatic carbocyclic fused ring system
JP4865258B2 (en) * 2005-06-21 2012-02-01 キヤノン株式会社 1,8-naphthyridine compound and organic light-emitting device using the same

Also Published As

Publication number Publication date
JP2008214339A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5063992B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP4878819B2 (en) Novel triazine derivative and organic electroluminescence device containing the same
JP5207760B2 (en) Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same
KR101773936B1 (en) New organic electroluminescent compounds and organic electroluminescent device comprising the same
CN111499646B (en) Heterocyclic compound and organic light-emitting element using same
JP5325402B2 (en) Novel bicarbazole derivative, host material and organic electroluminescence device using the same
JP5770637B2 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
KR101663527B1 (en) New organic electroluminescent compounds and organic electroluminescent device comprising the same
JP2008120696A (en) Novel tripyridylphenyl derivative, electron-transporting material comprising the same and organoelectroluminescent element comprising the same
JP5495578B2 (en) Novel triarylphosphine oxide derivative, host material comprising the same, and organic electroluminescence device containing the same
JP2007070282A (en) Novel triarylboron derivative and organic electroluminescent device containing the same
JP2008106015A (en) New phenanthroline derivative, its lithium complex, electron transport material using the same, electron injection material and organic el element
JP5201956B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5220429B2 (en) NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME
JP4960045B2 (en) Heteroaryl compound having novel biphenyl central skeleton and organic electroluminescence device comprising the same
JP5086608B2 (en) Novel di (phenanthroline) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5727237B2 (en) Novel bicarbazolyl derivative, host material comprising the same, and organic electroluminescence device using the same
JP5476034B2 (en) Novel triarylamine compound, hole transport material comprising the same, and organic electroluminescence device using the same
KR20140010875A (en) New organic electroluminescent compounds and organic electroluminescent device comprising the same
JP5114070B2 (en) Fluorene derivative, electron transport material comprising the same, electron injection material, and organic electroluminescence device using the same
JP5349889B2 (en) Novel terphenyl derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP2010090084A (en) Novel bis(carbazolylphenyl) derivative, host material, and organic electroluminescent element each employing the same
JP5371312B2 (en) Novel dicarbazolylphenyl derivative, host material using the same, and organic electroluminescence device
JP5674266B2 (en) Novel carbazole derivative, host material comprising the same, and organic electroluminescence device including the same
JP5492424B2 (en) Organic radical compounds and organic devices using them

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5220429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250