JP5322384B2 - Electrical multilayer components and layer stacks - Google Patents

Electrical multilayer components and layer stacks Download PDF

Info

Publication number
JP5322384B2
JP5322384B2 JP2006501507A JP2006501507A JP5322384B2 JP 5322384 B2 JP5322384 B2 JP 5322384B2 JP 2006501507 A JP2006501507 A JP 2006501507A JP 2006501507 A JP2006501507 A JP 2006501507A JP 5322384 B2 JP5322384 B2 JP 5322384B2
Authority
JP
Japan
Prior art keywords
layer
ceramic
component
target fracture
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006501507A
Other languages
Japanese (ja)
Other versions
JP2006518934A (en
Inventor
ラゴスニッヒ ハインツ
ラゴスニッヒ ジグリット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of JP2006518934A publication Critical patent/JP2006518934A/en
Application granted granted Critical
Publication of JP5322384B2 publication Critical patent/JP5322384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/508Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers

Abstract

A multilayer electrical component includes a plurality of ceramic layers disposed along an axis, a plurality of electrode layers disposed between the plurality of ceramic layers and in electrical contact with the ceramic layers, and a ceramic breach layer disposed between a first and a second ceramic layer of the plurality of ceramic layers along the axis. The ceramic breach layer has a lower breach stability than the plurality of ceramic layers with regard to tensile stresses in the direction of the axis.

Description

本発明は、電気的な多層構成部材であって、互いに重ねられた複数のセラミック層及び、該セラミック層間に位置する電極層を備えている形式のものに関する。さらに本発明は層スタックに関する。   The present invention relates to an electrical multi-layer component having a plurality of ceramic layers stacked on each other and an electrode layer positioned between the ceramic layers. The invention further relates to a layer stack.

公知の圧電アクチュエータにおいては、1つのスタック内に、互いに重ねられた圧電セラミック性の層を配置してある。セラミック性の層間には内側電極を配置してある。重ねられた各2つの電極層への電圧の印加で発生する電界によってセラミック性の層は、圧電効果に基づき微小なひずみを生ぜしめる。互いに重ねられたセラミック性の層のひずみは、スタックの長手方向で合計される。   In known piezoelectric actuators, piezoelectric ceramic layers stacked on top of each other are arranged in one stack. Inner electrodes are arranged between the ceramic layers. Due to the electric field generated by the application of voltage to each of the two electrode layers stacked, the ceramic layer causes minute strains based on the piezoelectric effect. The strains of the ceramic layers stacked on top of each other are summed in the longitudinal direction of the stack.

圧電アクチュエータにおいて内側電極の外側接触を簡単な手段で行うために、通常は圧電アクチュエータの縁部でいわゆる不活性の1つの領域には、同じ電極に属する内側電極のみを重ねてある。別の電極に所属する内側電極は、前記領域でアクチュエータの縁部までは延びておらず、即ちアクチュエータの内部の区分内に限定されている。活性の領域、即ち両方の電極の電極層を互いに重ねてある中央の領域とは異なって、不活性領域では圧電性の層は電圧の印加に際してほとんどひずみを生ぜしめず、その結果、アクチュエータの縁部の不活性領域は、活性領域のひずみに起因する引っ張り応力にさらされることになる。重ねられた圧電性の層の数並びに印加される電圧の大きさに応じて、不活性領域の縁に発生する引っ張り応力も大きくなる。   In order to make the outer contact of the inner electrode with a simple means in the piezoelectric actuator, usually only the inner electrode belonging to the same electrode is superimposed on one so-called inactive region at the edge of the piezoelectric actuator. The inner electrode belonging to another electrode does not extend to the edge of the actuator in the region, i.e. is limited to a section inside the actuator. Unlike the active region, i.e., the central region where the electrode layers of both electrodes overlap each other, in the inactive region, the piezoelectric layer causes little distortion upon application of voltage, resulting in an actuator edge. The inactive region of the part is exposed to tensile stress due to the strain of the active region. Depending on the number of piezoelectric layers superimposed and the magnitude of the applied voltage, the tensile stress generated at the edge of the inactive region also increases.

このような引っ張り応力は、圧電アクチュエータの作動に際し若しくは圧電性層内の分極に際して圧電アクチュエータの縁部領域に亀裂を生ぜしめてしまうことになる。亀裂は圧電アクチュエータの運転時間の経過に伴って圧電アクチュエータの内部へ進行して、活性領域で内側電極を裂断してしまう。このような裂断は構成部材内で電流遮断、若しくは焼損、或いは内部短絡を生ぜしめてしまう。内側電極内での亀裂を避けることは試みられている。   Such tensile stress will cause cracks in the edge region of the piezoelectric actuator during operation of the piezoelectric actuator or during polarization in the piezoelectric layer. The crack progresses to the inside of the piezoelectric actuator as the operation time of the piezoelectric actuator elapses, and tears the inner electrode in the active region. Such breakage may cause current interruption, burnout, or internal short circuit within the component. Attempts have been made to avoid cracks in the inner electrode.

亀裂の回避のためにドイツ連邦共和国特許出願公開第19928178A1号明細書に記載の手段では、圧電アクチュエータを複数の部分アクチュエータに区分けしてあり、この場合に部分アクチュエータは該部分アクチュエータの製造の後に互いに積み重ねられて、接着によって互いに結合されるようになっている。不活性領域の内側の境界に生じる引っ張り応力は、もはやアクチュエータの全高さにわたって合計されることはなくなっている。各個別の部分アクチュエータ内でのみ作用する引っ張り応力は、部分アクチュエータの重ねられた層の数が少ないので小さい。   In order to avoid cracks, the means described in DE 199 28 178 A1 divides the piezoelectric actuator into a plurality of partial actuators, in which case the partial actuators are mutually connected after the production of the partial actuators. They are stacked and joined together by bonding. The tensile stresses occurring at the inner boundary of the inactive region are no longer summed over the entire height of the actuator. The tensile stress acting only within each individual partial actuator is small due to the small number of layered layers of partial actuators.

前記特許出願公開明細書に記載の手段においては欠点として、複数の部分アクチュエータを互いに積み重ねた状態での寸法精度が極めて低い。さらに、複数の部分アクチュエータの相互の積み重ねは追加的な製造工程を必要とし、その結果、追加的な費用が生じる。   In the means described in the patent application publication specification, as a drawback, the dimensional accuracy in a state in which a plurality of partial actuators are stacked on each other is extremely low. Furthermore, the mutual stacking of multiple partial actuators requires additional manufacturing steps, resulting in additional costs.

圧電アクチュエータの内側電極内の亀裂を避けるために、さらにドイツ連邦共和国特許出願公開第19802302号明細書に記載の手段では、不活性領域を互いに90°ずらした積み重ねによって圧電アクチュエータの全周にわたって分配するようになっている。このような構成においては欠点として、外側接続が煩雑であり、即ち圧電アクチュエータは4つのすべての側面で接続されなければならない。   In order to avoid cracks in the inner electrode of the piezoelectric actuator, the means described in DE 198 02 302 further distribute the inert areas over the entire circumference of the piezoelectric actuator by stacking 90 ° apart from each other. It is like that. In such a configuration, the disadvantage is that the outer connection is cumbersome, ie the piezoelectric actuator must be connected on all four sides.

さらにドイツ連邦共和国特許出願公開第10016428A1号明細書に記載の手段においては、不活性領域の箇所における内側電極層の厚さを不活性領域内に付加的に設けられた絶縁性補償層によって補償するようになっている。このような手段は、圧電アクチュエータの製造過程を煩雑にして不都合である。   Further, in the means described in German Patent Application No. 10016428A1, the thickness of the inner electrode layer at the position of the inactive region is compensated by an insulating compensation layer additionally provided in the inactive region. It is like that. Such means is disadvantageous because it complicates the manufacturing process of the piezoelectric actuator.

従って本発明の課題は、電気的な多層構成部材を改善して、内側電極における亀裂発生のおそれを簡単に避けることができるようにすることである。   Accordingly, it is an object of the present invention to improve the electrical multilayer component so that the risk of cracking in the inner electrode can be easily avoided.

前記課題は、請求項1に記載の電気的な多層構成部材によって解決される。多層構成部材の有利な実施態様が従属請求項に記載してある。層スタックを別の請求項に記載してある。   The object is solved by an electrical multilayer component according to claim 1. Advantageous embodiments of the multilayer component are described in the dependent claims. The layer stack is described in another claim.

本発明に基づく電気的な多層構成部材は、重ねられた複数のセラミック性の層(セラミック層)を有している。セラミック層は構成部材の縦軸線に沿って配置されている。セラミック層間に電極層を配置してある。さらに縦軸線の少なくとも1つの箇所でセラミック層間にセラミック質の1つの目標破断層(目標裂断層)を設けてあり、該目標破断層は縦軸線方向の引っ張り応力に対して、セラミック層に比べて低い安定性若しくは低い強度を有している。   The electrical multilayer component according to the present invention has a plurality of ceramic layers (ceramic layers) stacked. The ceramic layer is disposed along the longitudinal axis of the component. An electrode layer is disposed between the ceramic layers. Furthermore, one target fracture layer (target fracture layer) made of ceramic is provided between the ceramic layers at at least one point on the vertical axis, and the target fracture layer is more resistant to tensile stress in the vertical axis direction than the ceramic layer. It has low stability or low strength.

前記構造の多層構成部材においては利点として、構成部材内で縦軸線に対して垂直に発生する亀裂は目標破断層に生ぜしめられ、それというのは目標破断層の、引っ張り応力に対する安定性は最小になっているからである。亀裂の広がり若しくは進行は目標破断層に沿ってのみ行われ、その結果、電極層の亀裂を確実に避けている。   As an advantage in a multilayer component of the above structure, a crack that occurs perpendicular to the longitudinal axis in the component is generated in the target fracture layer because the target fracture layer has minimal stability against tensile stress. Because it is. Crack propagation or progression occurs only along the target fracture layer, thus ensuring that the electrode layer is not cracked.

電気的な構成部材の実施態様では、目標破断層の低い安定性は、目標破断層がセラミック層に比べて高い多孔性を有していることによって達成される。   In the electrical component embodiment, the low stability of the target break layer is achieved by having a high porosity in the target break layer compared to the ceramic layer.

有利には構成部材は、互いに重ねられたセラミック性のグリーンシート及び該グリーンシート間に配置された電極層から成るスタックの焼結によって製造される。このようなスタックから成るモノリシック(一体式)の構成部材は、簡単かつ安価に製造可能でありかつ後続の処理過程にとって十分な機械的な安定性を有している。   The component is preferably produced by sintering a stack consisting of ceramic green sheets stacked on top of each other and electrode layers arranged between the green sheets. A monolithic component comprising such a stack can be manufactured easily and inexpensively and has sufficient mechanical stability for subsequent processing steps.

構成部材の、縦軸線の方向に作用する引っ張り応力に起因する最大負荷をさらに減少させるために、縦軸線の複数の箇所に目標破断層を設けてある。これによって構成部材は目標破断層を介して複数の部分・構成部材に区分けされ、この場合に各部分・構成部材は引っ張り応力による負荷に関して互いに分離されたもの若しくは独立したものと見なされる。即ち、構成部材の全長にわたって引っ張り応力が合計されることはなく、従って構成部材内に不都合な亀裂を生ぜしめることにならない。   In order to further reduce the maximum load caused by the tensile stress acting in the direction of the vertical axis of the component member, target fracture layers are provided at a plurality of locations on the vertical axis. As a result, the constituent member is divided into a plurality of parts / components via the target fracture layer, and in this case, the parts / components are regarded as being separated from each other or independent from each other with respect to the load caused by the tensile stress. That is, the tensile stresses are not summed over the entire length of the component and therefore do not cause inconvenient cracks in the component.

セラミック性の多層構成部材の多孔性の層は、特に外部から構成部材の微小孔内に侵入する液体及びガスに関連して電位的に弱い箇所を成すものである。従って有利には、目標破断層を構成部材の作動時の電場から遠ざけて、不都合なマイグレーション効果(migration effect)を避けるようになっている。このことを達成するために、目標破断層に最も近く隣接する両方の電極層は構成部材の同一の電極に所属して配置されている。これによって、電場は目標破断層上にはほとんど生ぜしめられない。   The porous layer of the ceramic multi-layer structural member forms a weak point in terms of potential particularly in relation to the liquid and gas that enter the micropores of the structural member from the outside. Thus, advantageously, the target rupture layer is kept away from the electric field during operation of the component so as to avoid inconvenient migration effects. In order to achieve this, both electrode layers closest to and adjacent to the target fracture layer are arranged to belong to the same electrode of the component. As a result, an electric field is hardly generated on the target fracture layer.

構成部材の実施態様では、目標破断層の多孔性はセラミック層の多孔性に比べて1.2乃至3倍高くなっている。多孔性のこのような比若しくは増大値は次のような方法によって得られる。即ち、構成部材は縦方向研磨面で考察される。セラミック層内にも目標破断層内にも現れる微小孔は、微小孔の周囲のセラミック材料の色若しくは明暗・コントラストによって異なっている。各種の層にとって、即ちセラミック層及び目標破断層にとって単位面積当たりの微小孔の面積割合を求める。微小孔の両方の面積割合の商値(quotient)は、多孔性の増大値若しくは割増量を表している。   In the embodiment of the component, the porosity of the target fracture layer is 1.2 to 3 times higher than the porosity of the ceramic layer. Such a ratio or increase in porosity is obtained by the following method. That is, the component is considered on the longitudinally polished surface. The micropores appearing in the ceramic layer and in the target fracture layer differ depending on the color or brightness / darkness / contrast of the ceramic material around the micropores. For various layers, that is, for the ceramic layer and the target fracture layer, the area ratio of the micropores per unit area is obtained. The quotient of the area ratio of both of the micropores represents an increased value or an increased amount of porosity.

多孔性は理論的に可能な密度の比で表されてもよい。この場合にはセラミック層は理論的な密度のほぼ97〜98%の密度を有しており、目標破断層は理論的な密度の90〜95%の密度を有している。   The porosity may be expressed as a theoretically possible density ratio. In this case, the ceramic layer has a density of approximately 97-98% of the theoretical density, and the target fracture layer has a density of 90-95% of the theoretical density.

さらに有利には、目標破断層はセラミック層と同一の材料で形成されている。これによって構成部材の材料の種類を少なくでき、その結果、構成部材の製造のための後続の過程、例えば結合剤除去並びに焼結を簡単に実施できて有利である。   More preferably, the target break layer is made of the same material as the ceramic layer. This makes it possible to reduce the type of material of the component, and as a result, the subsequent processes for the production of the component, such as binder removal and sintering, can be easily carried out.

本発明に基づく電気的な多層構成部材は圧電アクチュエータとして有利に用いられる。圧電アクチュエータは作動に際して活性領域と不活性領域との間の境界面に引っ張り応力を発生させるものの、該引っ張り応力は目標破断層によって補償され、その結果、セラミック層内の内側電極の亀裂若しくは裂断を避けることができる。   The electrical multilayer component according to the invention is advantageously used as a piezoelectric actuator. Piezoelectric actuators generate a tensile stress at the interface between the active and inactive regions in operation, but the tensile stress is compensated by the target fracture layer, resulting in cracking or breaking of the inner electrode in the ceramic layer. Can be avoided.

さらに、本発明に基づく前述の多層構成部材の製造のために適した層スタックを提供する。このような層スタックは、互いに積み重ねられたセラミック性のグリーンシートを有しており、該グリーンシートはセラミック粉末及び有機質の結合剤を含んでいる。該グリーンシートのうちの少なくとも1つは、残りのグリーンシートに比べて結合材の高められた体積含有率を有している。   Furthermore, a layer stack suitable for the production of the aforementioned multilayer component according to the invention is provided. Such layer stacks have ceramic green sheets stacked on top of each other, the green sheets including ceramic powder and organic binder. At least one of the green sheets has an increased volume content of binder compared to the remaining green sheets.

前記層スタックにおいては利点として、層スタックの1つ若しくは複数のグリーンシート内の結合剤の割合を高めることによって、多孔性の高いセラミック質の層の成形が可能である。結合剤は焼結の前に脱炭過程によって除去され、層内の高い割合の結合剤の存在する箇所に微小孔が形成される。   As an advantage in the layer stack, it is possible to form a highly porous ceramic layer by increasing the proportion of binder in one or more green sheets of the layer stack. The binder is removed by a decarburization process prior to sintering, and micropores are formed where high proportions of binder are present in the layer.

結合材の体積含有率は1.5乃至3倍高められていると有利である。これにより、セラミック層内にセラミック粉末の少なすぎる箇所が存在するというおそれは避けられ、その結果、焼結の後には1つのモノリシックの構成部材ではなく、すでに作動前に若しくは使用前に個別の部分・構成部材に区分けされた1つの構成部材が得られる。   It is advantageous if the volume content of the binder is increased by 1.5 to 3 times. This avoids the risk that there are too few locations of the ceramic powder in the ceramic layer, so that after sintering it is not a single monolithic component, but already separate parts before operation or before use. -One component member divided into the component members is obtained.

次に本発明を図示の実施例に基づき詳細に説明する。図面において、図1は本発明に基づく多層構成部材の実施例の斜視図であり、図2は図1の構成部材の部分縦断面図である。   Next, the present invention will be described in detail based on the illustrated embodiment. In the drawings, FIG. 1 is a perspective view of an embodiment of a multilayer component according to the present invention, and FIG. 2 is a partial longitudinal sectional view of the component of FIG.

図1及び図2には圧電式のアクチュエータを示してあり、アクチュエータは複数のセラミック層1を仮想の1つの縦軸線3に沿って互いに上下に積層することによって形成されている。セラミック層1のためのセラミック材料としては特に、例えばPb 0.96 Cu 0.02 Nd 0.02 (Zr 0.54 Ti 0.46 )O 3 の組成のPZTセラミックを用いるとよい。 1 and 2 show a piezoelectric actuator, which is formed by stacking a plurality of ceramic layers 1 on each other along a virtual longitudinal axis 3. Particularly the ceramic material for the ceramic layer 1, for example, Pb 0.96 Cu 0.02 Nd 0.02 (Zr 0.54 Ti 0.46) may be used to PZ T ceramic composition of O 3.

さらに電極層2a,2bを設けてあり、電極層はそれぞれ隣接の2つのセラミック層1間に配置されている。この場合に電極層2aは、電気的な構成部材の一方の電極に対応して配置されており、電極層2bは電気的な構成部材の他方の電極に対応して配置されている。電気的な構成部材の右側の縁部まで達している電極層2bは、外側接点部材51によって互いに導電接続されており、かつ外側接点部材51は電圧源の1つの電極の印加を可能にしている。   Furthermore, electrode layers 2a and 2b are provided, and each electrode layer is disposed between two adjacent ceramic layers 1. In this case, the electrode layer 2a is disposed corresponding to one electrode of the electrical component, and the electrode layer 2b is disposed corresponding to the other electrode of the electrical component. The electrode layers 2b reaching the right edge of the electrical component are conductively connected to each other by an outer contact member 51, and the outer contact member 51 enables the application of one electrode of a voltage source. .

電気的な構成部材の左側の縁部まで達している電極層2aは、該構成部材の左側に配置されているものの図1では見えない外側接点部材52によって互いに導電接続されている。外側接点部材52に、電圧源の別の電極を接続するようになっている。   The electrode layers 2a reaching the left edge of the electrical component are conductively connected to each other by an outer contact member 52 that is arranged on the left side of the component but not visible in FIG. Another electrode of the voltage source is connected to the outer contact member 52.

不活性領域7の範囲では、電極層2a,2bは互いにオーバーラップされておらず、即ち1つの極の電極層、例えば電極層2a(図2、参照)のみが、不活性領域7に存在している。不活性領域7の内側の縁に生じる引っ張り応力(矢印8で示す)が圧電アクチュエータの内部へ不都合に伝播するのを防止するために、圧電アクチュエータの縦軸線3に沿って分配された目標破断層4を設けてあり、該目標破断層(目標裂断層)においては多孔性をセラミック層1に比べて増してある。従って亀裂6は、目標破断層4内に存在する微小孔を伝って広がりやすくなっており、このことは亀裂6を目標破断層4に沿って切り開く、即ち進行させ若しくは導くことにつながる。その結果、亀裂6が上方へ若しくは下方へそれて電極層2a又は2bを破断して損傷させてしまうというようなおそれは避けられる。   In the region of the inactive region 7, the electrode layers 2 a and 2 b do not overlap each other, that is, only one electrode layer, for example, the electrode layer 2 a (see FIG. 2) exists in the inactive region 7. ing. The target fracture layer distributed along the longitudinal axis 3 of the piezoelectric actuator in order to prevent the tensile stress (indicated by arrow 8) generated at the inner edge of the inactive region 7 from undesirably propagating into the interior of the piezoelectric actuator. 4 is provided, and in the target fracture layer (target fracture fault), the porosity is increased as compared with the ceramic layer 1. Therefore, the crack 6 tends to spread through the micropores existing in the target fracture layer 4, which leads to the crack 6 being cut along the target fracture layer 4. As a result, the risk that the crack 6 is deflected upward or downward to break and damage the electrode layer 2a or 2b is avoided.

目標破断層4を圧電アクチュエータの作動時にもできるだけ電場なしに保つために、図2に示してあるように、目標破断層4に隣接の電極層2aは圧電アクチュエータの同じ電極に対応して配置されている。   In order to keep the target breaking layer 4 as free of an electric field as possible even when the piezoelectric actuator is operated, as shown in FIG. 2, the electrode layer 2a adjacent to the target breaking layer 4 is disposed corresponding to the same electrode of the piezoelectric actuator. ing.

縦軸線3に沿った目標破断層4の分配は次のように行われており、即ち、目標破断層によって区分けされて成る各部分アクチュエータ9は、通常の作動時に若しくは圧電アクチュエータの分極の際に発生する引っ張り応力がアクチュエータ内に亀裂を生ぜしめ得ないような低い高さで形成されている。   The distribution of the target fracture layer 4 along the longitudinal axis 3 is performed as follows: each partial actuator 9 divided by the target fracture layer is in normal operation or during polarization of the piezoelectric actuator. It is formed at a low height such that the generated tensile stress cannot cause cracks in the actuator.

例えば30mmの高さの圧電アクチュエータにおいては、該圧電アクチュエータを9つの目標破断層4によって10個の部分アクチュエータ9に区分けしてあり、各部分アクチュエータは3mmの高さを有している。3mmの高さは、本発明の実施例ではセラミック層1の37枚の数に相当する。   For example, in a piezoelectric actuator having a height of 30 mm, the piezoelectric actuator is divided into ten partial actuators 9 by nine target breaking layers 4, and each partial actuator has a height of 3 mm. The height of 3 mm corresponds to the number of 37 ceramic layers 1 in the embodiment of the present invention.

電極層2a,2bの材料としては、例えば銀及びパラジウムから成る混合物が考えられ、これは圧電活性作用のセラミック層と一緒の焼結に適している。さらに、銅を含む若しくは完全に銅から成る電極層2a,2bも使用可能である。   As a material of the electrode layers 2a and 2b, for example, a mixture of silver and palladium is conceivable, which is suitable for sintering together with a piezoelectric layer having a piezoelectric activity. Furthermore, electrode layers 2a and 2b containing copper or made entirely of copper can also be used.

図1及び図2に示す圧電アクチュエータの製造は、層スタック(layer stack)を用いて行われ、層スタックの外観は図1及び図2に示す構成部材とほぼ同じであり、層スタックには外側接点部材51,52も亀裂6も存在していない。セラミック層、電極層及び目標破断層から成る構造は、1つの層スタックの構造に相当しており、セラミック層は前段階ではセラミック粉末及び有機質の結合剤を含むグリーンシートとして形成されている。電極層は金属粉末含有のペーストとして形成されている。目標破断層は、セラミック層と同様にグリーンシートとして形成されており、後に目標破断層として処理されるべき層の有機質の結合剤の割合は、残りのセラミック性の層に比べて高くなっている。例として、セラミック性の層のために用いられるグリーンシートは、有機質の結合剤の30%の体積含有率を有している。層スタックの特定の層の体積含有率を高めるために、特定の層の体積含有率は50乃至60%に高められてよい。有機質の結合剤のこのような体積含有率においては、シート成形に際してセラミック粉末が集塊するというような問題は生じない。   The piezoelectric actuator shown in FIGS. 1 and 2 is manufactured using a layer stack, and the appearance of the layer stack is almost the same as the components shown in FIGS. 1 and 2, and the layer stack has an outer side. Neither the contact members 51, 52 nor the crack 6 exists. The structure composed of the ceramic layer, the electrode layer, and the target fracture layer corresponds to the structure of one layer stack, and the ceramic layer is formed as a green sheet containing ceramic powder and an organic binder in the previous stage. The electrode layer is formed as a paste containing metal powder. The target rupture layer is formed as a green sheet in the same manner as the ceramic layer, and the proportion of the organic binder in the layer to be treated as the target rupture layer later is higher than that of the remaining ceramic layers. . As an example, the green sheet used for the ceramic layer has a volume content of 30% of the organic binder. In order to increase the volume content of a particular layer of the layer stack, the volume content of a particular layer may be increased to 50-60%. Such a volume content of the organic binder does not cause a problem that the ceramic powder is agglomerated during sheet forming.

構成部材は、層スタック内に存在する複数の層を一緒に焼結することによって成形される。焼結成形は唯一の製造工程で行われる。   The component is formed by sintering together multiple layers present in the layer stack. Sintering is performed in a single manufacturing process.

前述の電気的な多層構成部材は、前記セラミック材料に限定されるものではない。圧電効果を有するあらゆるセラミック材料を用いることが可能である。さらに構成部材は圧電アクチュエータに限定されるものではない。電気的な機能を生ぜしめるあらゆるセラミック材料と用いることも可能である。該構成部材は特に、縦方向若しくは長手方向の引っ張り負荷にさらされる箇所に用いられ得るものである。   The aforementioned electrical multilayer component is not limited to the ceramic material. Any ceramic material having a piezoelectric effect can be used. Further, the constituent member is not limited to the piezoelectric actuator. It can also be used with any ceramic material that produces an electrical function. The component can be used in particular where it is exposed to a longitudinal or longitudinal tensile load.

本発明に基づく構成部材の斜視図The perspective view of the component based on this invention 図1の構成部材の部分縦断面図Partial longitudinal sectional view of the component shown in FIG.

符号の説明Explanation of symbols

1 セラミック層、 2a,2b 電極層、 3 縦軸線、 4 目標破断層、 9 部分構成部材、 51,52 外側接点部材   DESCRIPTION OF SYMBOLS 1 Ceramic layer, 2a, 2b Electrode layer, 3 Vertical axis, 4 Target fracture | rupture layer, 9 Partial component member, 51,52 Outer contact member

Claims (11)

電気的な多層構成部材であって、
該多層構成部材は、圧電式のアクチュエータとして形成されていて、1つの縦軸線(3)に沿って配置して互いに重ねられた複数のセラミック層(1)及び、前記セラミック層間に位置する電極層(2a,2b)を備えており、
前記縦軸線(3)の少なくとも1つの箇所で2つのセラミック層(1)間で、各セラミック層(1)に直接接触するセラミック性の目標破断層(4)を設けてあり、該目標破断層は縦軸線方向の引っ張り応力(8)に対して、前記セラミック層(1)に比べて低い安定性を有しており、このような構成により、前記多層構成部材の運転時若しくは前記セラミック層(1)の分極時に発生する亀裂は、前記目標破断層(4)に沿ってのみ進行するようになっており、
構成部材は2つの外側接点部材(51,52)を有しており、各1つの目標破断層(4)に隣接の電極層(2a,2b)は、電圧源の1つの電極に接続される一方の外側接点部材(51又は52)に導電接続されており、電極層(2a,2b)は、構成部材の同じ極に所属して配置されていることを特徴とする多層構成部材。
An electrical multilayer component,
The multilayer component is formed as a piezoelectric actuator, and is arranged along one longitudinal axis (3) and stacked on top of each other, and an electrode layer positioned between the ceramic layers (2a, 2b)
A ceramic target fracture layer (4) in direct contact with each ceramic layer (1 ) is provided between two ceramic layers (1) at at least one location on the longitudinal axis (3), and the target fracture layer Has a lower stability than the ceramic layer (1) with respect to the tensile stress (8) in the direction of the vertical axis. With such a configuration, the multilayered component can be operated or the ceramic layer ( Cracks generated during the polarization of 1) advance only along the target fracture layer (4) ,
The component has two outer contact members (51, 52), and the electrode layers (2a, 2b) adjacent to each one target break layer (4) are connected to one electrode of the voltage source. A multi-layer structural member characterized in that it is electrically connected to one outer contact member (51 or 52), and the electrode layers (2a, 2b) belong to the same pole of the structural member.
目標破断層(4)はセラミック層(1)よりも高い多孔性を有している請求項1に記載の構成部材。   The component according to claim 1, wherein the target fracture layer (4) has a higher porosity than the ceramic layer (1). 焼結によって製造可能なモノリシックの構成部材として形成してある請求項1又は2に記載の構成部材。   3. The component according to claim 1, wherein the component is formed as a monolithic component that can be manufactured by sintering. 多層構成部材の縦軸線(3)の複数の箇所に目標破断層(4)を設けてある請求項1から3のいずれか1項に記載の構成部材。   The constituent member according to any one of claims 1 to 3, wherein the target fracture layer (4) is provided at a plurality of locations on the longitudinal axis (3) of the multilayer constituent member. 目標破断層(4)の多孔性は、セラミック層(1)に比べて1.2乃至3倍高くなっている請求項1からのいずれか1項に記載の構成部材。 The component according to any one of claims 1 to 4 , wherein the porosity of the target fracture layer (4) is 1.2 to 3 times higher than that of the ceramic layer (1). 目標破断層(4)はセラミック層(1)と同じセラミック材料から成形されている請求項1からのいずれか1項に記載の構成部材。 Predetermined breaking layer (4) is component according to any one of claims 1-5, which is molded from the same ceramic material as the ceramic layer (1). 構成部材は目標破断層(4)を介して複数の部分・構成部材に区分けされている請求項1からのいずれか1項に記載の構成部材。 The constituent member according to any one of claims 1 to 6 , wherein the constituent member is divided into a plurality of parts / constituent members via a target fracture layer (4). 圧電式のアクチュエータは目標破断層(4)を介して複数の部分・アクチュエータに区分けされている請求項1からのいずれか1項に記載の構成部材。 The component according to any one of claims 1 to 7 , wherein the piezoelectric actuator is divided into a plurality of parts / actuators via a target fracture layer (4). 請求項1からのいずれか1項に記載の構成部材の製造のための層スタックであって、互いに積み重ねられたセラミック性のグリーンシートを有しており、グリーンシートはセラミック粉末及び有機質の結合剤を含んでおり、グリーンシートのうちの少なくとも1つは、残りのグリーンシートに比べて結合剤の割合の高められた体積含有率を有していることを特徴とする層スタック。 A layer stack for manufacturing a component according to any one of claims 1 to 8 , comprising ceramic green sheets stacked on top of each other, wherein the green sheets are a combination of ceramic powder and organic matter. A layer stack comprising an agent, wherein at least one of the green sheets has an increased volume content of binder relative to the remaining green sheets. 結合剤の体積含有率は1.5乃至3倍高められている請求項に記載の層スタック。 The layer stack according to claim 9 , wherein the volume content of the binder is increased by 1.5 to 3 times. 層スタックは、結合剤の割合の高められた体積含有率を有するグリーンシートを介して複数の部分・層スタックに区分けされている請求項10に記載の層スタック。 11. A layer stack according to claim 10 , wherein the layer stack is divided into a plurality of partial / layer stacks via green sheets having an increased volume content of binder.
JP2006501507A 2003-02-24 2004-02-19 Electrical multilayer components and layer stacks Expired - Lifetime JP5322384B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10307825A DE10307825A1 (en) 2003-02-24 2003-02-24 Electrical multilayer component and layer stack
DE10307825.8 2003-02-24
PCT/DE2004/000313 WO2004077583A1 (en) 2003-02-24 2004-02-19 Electrical multilayered component and layer stack

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012168808A Division JP2012216874A (en) 2003-02-24 2012-07-30 Electrical multilayered component and layer stack

Publications (2)

Publication Number Publication Date
JP2006518934A JP2006518934A (en) 2006-08-17
JP5322384B2 true JP5322384B2 (en) 2013-10-23

Family

ID=32841835

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006501507A Expired - Lifetime JP5322384B2 (en) 2003-02-24 2004-02-19 Electrical multilayer components and layer stacks
JP2012168808A Pending JP2012216874A (en) 2003-02-24 2012-07-30 Electrical multilayered component and layer stack

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012168808A Pending JP2012216874A (en) 2003-02-24 2012-07-30 Electrical multilayered component and layer stack

Country Status (5)

Country Link
US (1) US7358655B2 (en)
EP (1) EP1597780B1 (en)
JP (2) JP5322384B2 (en)
DE (2) DE10307825A1 (en)
WO (1) WO2004077583A1 (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1246914C (en) * 1999-12-16 2006-03-22 埃普科斯股份有限公司 Piezoelectric component
DE10234787C1 (en) * 2002-06-07 2003-10-30 Pi Ceramic Gmbh Keramische Tec Manufacturing method for monolithic multi-layer piezoceramic actuator with microfaults provided in actuator joints parallel to inner electrodes
DE102004047105A1 (en) * 2004-09-29 2006-05-24 Robert Bosch Gmbh Piezo actuator with stress-relieving structures
DE102004050803A1 (en) * 2004-10-19 2006-04-20 Robert Bosch Gmbh piezo actuator
DE102005018791A1 (en) 2005-01-18 2006-07-27 Epcos Ag Piezo actuator with low stray capacitance
DE102005002980B3 (en) * 2005-01-21 2006-09-07 Siemens Ag Monolithic multilayer actuator and method for its production
WO2006087871A1 (en) * 2005-02-15 2006-08-24 Murata Manufacturing Co., Ltd. Multilayer piezoelectric device
DE102005015112B4 (en) * 2005-04-01 2007-05-24 Siemens Ag Monolithic piezoelectric component with mechanical decoupling layer, method for manufacturing the component and use of the component
DE102005026717B4 (en) * 2005-06-09 2016-09-15 Epcos Ag Piezoelectric multilayer component
DE102005063652B3 (en) 2005-06-09 2020-06-04 Tdk Electronics Ag Piezoelectric multilayer component
US8441174B2 (en) * 2005-06-15 2013-05-14 Kyocera Corporation Multilayer piezoelectric element and injector using the same
DE102005050340A1 (en) * 2005-07-26 2007-02-22 Siemens Ag Method of manufacturing a piezoactuator having a monolithic multilayer structure
DE502006004677D1 (en) * 2005-07-26 2009-10-08 Siemens Ag MONOLITHIC PIEZOACTOR WITH ROTATION OF THE POLARIZATION DIRECTION IN THE TRANSITION AREA AND USE OF THE PIEZOACTOR
DE102005052686A1 (en) * 2005-07-26 2007-02-15 Siemens Ag Method for manufacturing piezo actuator, involves coupling piezoelectric inactive end area with assigned end surface of piezoelectric active area with formation of transition section between piezoelectric active and inactive end area
ATE533189T1 (en) 2005-09-16 2011-11-15 Delphi Tech Holding Sarl PIEZOELECTRIC ACTUATOR
CN101789486B (en) * 2005-09-29 2012-10-31 京瓷株式会社 Laminated piezoelectric element and jetting apparatus using same
JP5162119B2 (en) * 2006-01-23 2013-03-13 日本碍子株式会社 Multilayer piezoelectric / electrostrictive element
US7443080B2 (en) * 2006-01-23 2008-10-28 Ngk Insulators, Ltd. Laminated piezoelectric/electrostrictive device
DE102006031085A1 (en) 2006-03-16 2007-09-20 Epcos Ag Piezoelectric multilayer actuator for use in e.g. diesel engine of motor vehicle, has electrode layer whose material texture changes with respect to ceramic layers, so that electrode layer absorbs mechanical stress in layer
DE102006026644A1 (en) * 2006-06-08 2007-12-13 Robert Bosch Gmbh Piezoelectric actuator
CN101542765B (en) 2006-08-09 2011-05-18 欧陆汽车有限责任公司 Piezoceramic multilayer actuator with high reliability
JP5050164B2 (en) * 2006-10-20 2012-10-17 京セラ株式会社 Piezoelectric actuator unit and manufacturing method thereof
DE102006049892A1 (en) * 2006-10-23 2008-05-08 Siemens Ag Monolithic piezo actuator with transition zone and safety layer as well as use of the piezo actuator
WO2008053569A1 (en) 2006-10-31 2008-05-08 Kyocera Corporation Multi-layer piezoelectric element and injection apparatus employing the same
CN102290526B (en) * 2006-11-29 2014-04-16 京瓷株式会社 Laminated piezoelectric element, jetting device provided with the laminated piezoelectric element and fuel jetting system
WO2008072767A1 (en) * 2006-12-15 2008-06-19 Kyocera Corporation Laminated piezoelectric element, jetting device provided with the laminated piezoelectric element, and fuel jetting system and
DE102006062076A1 (en) 2006-12-29 2008-07-10 Siemens Ag Piezoceramic multilayer actuator and method for its production
DE102007005341A1 (en) * 2007-02-02 2008-08-07 Epcos Ag Multi-layer component and method for producing a multilayer component
ATE528802T1 (en) * 2007-02-19 2011-10-15 Siemens Ag PIEZO-CERAMIC MULTI-LAYER ACTUATOR AND PRODUCTION METHOD THEREOF
DE102007008120A1 (en) * 2007-02-19 2008-08-21 Siemens Ag Piezo stack and method for producing a piezo stack
EP1978567B1 (en) * 2007-02-19 2014-06-25 Continental Automotive GmbH Piezoceramic multilayer actuator and method of manufacturing a piezoceramic multilayer actuator
EP1978569B1 (en) * 2007-02-19 2011-11-30 Siemens Aktiengesellschaft Piezoceramic multilayer actuator and method of manufacturing a piezoceramic multilayer actuator
WO2008117476A1 (en) 2007-03-27 2008-10-02 Kyocera Corporation Multi-layer piezoelectric element and method of producing the same
DE102007015446A1 (en) * 2007-03-30 2008-10-02 Siemens Ag Piezoelectric device with security layer and infiltration barrier and method for its production
DE102007015457B4 (en) 2007-03-30 2009-07-09 Siemens Ag Piezoelectric device with security layer, process for its production and use
DE102007022093A1 (en) 2007-05-11 2008-11-13 Epcos Ag Piezoelectric multilayer component
DE102007037500A1 (en) * 2007-05-11 2008-11-13 Epcos Ag Piezoelectric multilayer component
JP5205852B2 (en) * 2007-08-03 2013-06-05 Tdk株式会社 Piezoelectric device
CN101790803B (en) * 2007-08-29 2012-07-18 京瓷株式会社 Laminated piezoelectric element, and jetting apparatus and fuel jetting system provided with laminated piezoelectric element
DE102007041079A1 (en) 2007-08-30 2009-03-05 Epcos Ag Piezoelectric multi-layer component, has stack of piezo-ceramic layers, which are arranged over each other, where stack includes layers crushed into pieces under front-side fixation of stack and dividing stack into stack elements
WO2009038080A1 (en) * 2007-09-18 2009-03-26 Kyocera Corporation Stacked piezoelectric element, and jet device and fuel jet system equipped with the same
DE102007046077A1 (en) * 2007-09-26 2009-04-02 Epcos Ag Piezoelectric multilayer component
JP5090462B2 (en) 2007-10-29 2012-12-05 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system
CN101878549B (en) * 2007-11-28 2013-06-19 京瓷株式会社 Laminated piezoelectric element, and injection device and fuel injection system having the element
DE102007060167A1 (en) * 2007-12-13 2009-06-25 Robert Bosch Gmbh Piezoelectric actuator with a multilayer structure of piezoelectric elements and a method for its production
EP2237337B1 (en) * 2007-12-26 2016-03-16 Kyocera Corporation Laminated piezoelectric element, and injection device and fuel injection system using the same
JP5587793B2 (en) * 2008-01-23 2014-09-10 エプコス アクチエンゲゼルシャフト Piezoelectric multilayer components
JP2011510505A (en) 2008-01-23 2011-03-31 エプコス アクチエンゲゼルシャフト Piezoelectric multilayer components
EP2232599B1 (en) * 2008-01-23 2014-12-24 Epcos AG Piezoelectric multilayer component
DE102008011414A1 (en) * 2008-02-27 2009-09-10 Continental Automotive Gmbh Method for polarizing a piezoceramic
JP5319196B2 (en) * 2008-07-29 2013-10-16 京セラ株式会社 Multilayer piezoelectric element, injection device and fuel injection system using the same
DE102008052914A1 (en) * 2008-08-01 2010-04-08 Epcos Ag Piezo actuator with predetermined breaking layer
JP5342846B2 (en) * 2008-10-15 2013-11-13 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system
WO2010044396A1 (en) * 2008-10-15 2010-04-22 京セラ株式会社 Laminated piezoelectric element, jetting device provided with the laminated piezoelectric element, and fuel jetting system
JP2010109057A (en) * 2008-10-29 2010-05-13 Kyocera Corp Stacked piezoelectric device, and injection apparatus and fuel injection system equipped with the same
JP5403986B2 (en) * 2008-10-15 2014-01-29 京セラ株式会社 Multilayer piezoelectric element, injection device using the same, and fuel injection system
DK2359419T3 (en) * 2008-11-20 2013-04-15 Ceramtec Gmbh Multilayer actuator with outer electrodes made of a metallic, porous, expandable conductive layer
WO2010101056A1 (en) * 2009-03-04 2010-09-10 京セラ株式会社 Laminated piezoelectric element, jetting device provided with same, and fuel jetting system
DE102009043220A1 (en) 2009-05-29 2010-12-02 Epcos Ag Piezoelectric component
DE102009043000A1 (en) 2009-05-29 2010-12-02 Epcos Ag Piezoelectric multilayer component
EP2472620B1 (en) 2009-08-27 2018-06-13 Kyocera Corporation Multilayer piezoelectric element, and injection device and fuel injection device using the same
DE102010005403A1 (en) 2010-01-22 2011-07-28 Epcos Ag, 81669 Method for producing a piezoelectric multilayer component and piezoelectric multilayer component
DE102010005906A1 (en) 2010-01-27 2011-07-28 Epcos Ag, 81669 Piezoelectric component
DE102010006587A1 (en) 2010-02-02 2011-08-04 Epcos Ag, 81669 Piezoelectric component
RU2447544C1 (en) * 2010-12-01 2012-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" Piezoelectric device
DE102011087183A1 (en) 2011-11-28 2013-05-29 Robert Bosch Gmbh Piezoelectric component e.g. piezoelectric actuator, for fuel injection valves, has releasing agent layer provided with ceramic layer, applied at side of ceramic layer and partially extended over isolating zone
DE102011089773A1 (en) 2011-12-23 2013-06-27 Robert Bosch Gmbh Piezoelectric actuator for fuel injection valve for combustion engine, has actuator main portion which comprises primary electrode layer and secondary electrode layer that are arranged on opposite sides of ceramic layer
GB2502971B (en) 2012-06-11 2017-10-04 Knowles (Uk) Ltd A capacitive structure
US9818925B2 (en) 2012-06-14 2017-11-14 Canon Kabushiki Kaisha Vibrating body, method of manufacturing the same and vibration type drive device
DE102012111023A1 (en) 2012-11-15 2014-05-15 Epcos Ag Multilayer capacitor and method for producing a multilayer capacitor
DE102015101311B4 (en) * 2015-01-29 2019-12-05 Tdk Electronics Ag Method for producing piezoelectric multilayer components
CN107240639A (en) * 2017-07-27 2017-10-10 苏州攀特电陶科技股份有限公司 Prevent actuator, preparation method and the terminal of Crack Extension
DE102020118857B4 (en) * 2020-07-16 2023-10-26 Tdk Electronics Ag Multilayer capacitor

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187612A (en) * 1987-01-29 1988-08-03 株式会社小松製作所 Method of forming laminated layers of laminated unit
JPS63288075A (en) * 1987-05-20 1988-11-25 Nec Corp Electrostrictive effect element
JP2644876B2 (en) * 1988-03-04 1997-08-25 株式会社日立製作所 Method for producing functional ceramic article
DE68918473T2 (en) * 1988-03-04 1995-02-09 Hitachi Ltd Functional ceramic molded body and process for its production.
JP2532626B2 (en) * 1988-12-07 1996-09-11 松下電器産業株式会社 Green sheet for laminated porcelain capacitors
US4932119A (en) * 1989-03-28 1990-06-12 Litton Systems, Inc. Method of making standard electrodisplacive transducers for deformable mirrors
US5089739A (en) * 1990-03-19 1992-02-18 Brother Kogyo Kabushiki Kaisha Laminate type piezoelectric actuator element
DE4029972A1 (en) * 1990-09-21 1992-03-26 Siemens Ag Laminated ultrasonic transducer - with porous piezo-ceramic and electrodes, giving good electrical and acoustic match and high coupling factor
JPH04214686A (en) * 1990-10-05 1992-08-05 Nec Corp Electrostrictive effect element
JPH04274378A (en) * 1991-03-01 1992-09-30 Nec Corp Peizoelectric/electrostrictive effect element
JPH05206534A (en) * 1992-01-29 1993-08-13 Toyota Motor Corp Monolithic piezoelectric element
JPH06181343A (en) * 1992-12-11 1994-06-28 Hitachi Metals Ltd Laminated displacement element and manufacture thereof
JPH08274381A (en) * 1995-03-31 1996-10-18 Chichibu Onoda Cement Corp Stacked piezoelectric actuator and its manufacture
MY120414A (en) * 1995-10-03 2005-10-31 Tdk Corp Multilayer ceramic capacitor
DE19643148C2 (en) * 1996-10-18 2003-08-28 Epcos Ag Manufacturing process for ceramic bodies with microstructure and uses
DE19648545B4 (en) * 1996-11-25 2009-05-07 Ceramtec Ag Monolithic multilayer actuator with external electrodes
DE19704389C2 (en) * 1997-02-06 1999-02-04 Fraunhofer Ges Forschung Single element actuator
DE19709690A1 (en) * 1997-03-10 1998-09-17 Siemens Ag Multilayer ceramic body with monolithic structure
DE19709691A1 (en) * 1997-03-10 1998-09-17 Siemens Ag Structured ceramic body production
DE19735649C2 (en) * 1997-08-16 2000-08-31 Fraunhofer Ges Forschung Damping arrangement
JPH11163428A (en) * 1997-11-21 1999-06-18 Hitachi Ltd Electrode structure for piezoelectric element and its manufacture
DE19802302A1 (en) * 1998-01-22 1999-07-29 Bosch Gmbh Robert Piezoelectric actuator used e.g. for a fuel injection valve, a hydraulic valve, a micro-pump or an electrical relay
JP3867823B2 (en) * 1998-03-13 2007-01-17 キヤノン株式会社 Manufacturing method of laminated piezoelectric element
JP3826587B2 (en) * 1998-10-20 2006-09-27 ブラザー工業株式会社 Inkjet head drive device
DE19928178A1 (en) * 1999-06-19 2000-08-10 Bosch Gmbh Robert Piezoactuator e.g. for valve, has multilayer construction of piezo layers, intermediate electrodes, alternating lateral electrode contacting, and division of multilayer structure into sub-actuators
JP3433160B2 (en) * 1999-10-01 2003-08-04 日本碍子株式会社 Piezoelectric / electrostrictive device
JP4854831B2 (en) * 2000-03-17 2012-01-18 太平洋セメント株式会社 Multilayer piezoelectric actuator
DE10016428A1 (en) 2000-04-01 2001-10-18 Bosch Gmbh Robert Electroceramic multilayer component, has filler layers between internal electrodes
JP2002054526A (en) * 2000-05-31 2002-02-20 Denso Corp Piezoelectric element for injector
DE10152490A1 (en) * 2000-11-06 2002-05-08 Ceramtec Ag External electrodes on piezoceramic multilayer actuators
JP2003324223A (en) * 2002-05-01 2003-11-14 Denso Corp Laminated piezoelectric element
DE10234787C1 (en) 2002-06-07 2003-10-30 Pi Ceramic Gmbh Keramische Tec Manufacturing method for monolithic multi-layer piezoceramic actuator with microfaults provided in actuator joints parallel to inner electrodes
JP4931334B2 (en) * 2004-05-27 2012-05-16 京セラ株式会社 Injection device
DE102004047105A1 (en) * 2004-09-29 2006-05-24 Robert Bosch Gmbh Piezo actuator with stress-relieving structures

Also Published As

Publication number Publication date
DE10307825A1 (en) 2004-09-09
EP1597780A1 (en) 2005-11-23
JP2012216874A (en) 2012-11-08
DE502004011734D1 (en) 2010-11-18
WO2004077583A1 (en) 2004-09-10
JP2006518934A (en) 2006-08-17
US20060238073A1 (en) 2006-10-26
US7358655B2 (en) 2008-04-15
EP1597780B1 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP5322384B2 (en) Electrical multilayer components and layer stacks
US7420319B2 (en) Piezoelectric component with predetermined breaking point and method for manufacturing and using the component
EP1753039B1 (en) Multilayer piezoelectric element
US7579937B2 (en) Laminated inductor and method of manufacture of same
US20100225204A1 (en) Piezoelectric stack and method for producing a piezoelectric stack
US10510488B2 (en) Multilayer ceramic capacitor
KR102083781B1 (en) Multilayer coil component
JPH09270540A (en) Laminated piezoelectric actuator element and manufacturing method thereof
US8132304B2 (en) Method of manufacturing a piezoelectric actuator
WO2013191277A1 (en) Multilayer ceramic capacitor
JP5511394B2 (en) Piezoelectric component having an infiltration barrier and a protective layer and method for manufacturing the piezoelectric component
JPH07335478A (en) Manufacture of layered ceramic electronic component
JP2015523725A (en) Multilayer device manufacturing method and multilayer device
JP5878130B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP2013519223A (en) Piezo component
TW201707021A (en) Multilayer ceramic electronic component
JP4670260B2 (en) Multilayer electronic components
JP2001352110A (en) Laminated type piezoelectric ceramics
JP4272183B2 (en) Multilayer electronic components
JP5674768B2 (en) Piezoelectric multilayer components
JP4651930B2 (en) Electronic components
JPH05190373A (en) Manufacture of laminated ceramic capacitor
JP6144757B2 (en) Multilayer device manufacturing method and multilayer device manufactured by the method
JP4359873B2 (en) Ceramic laminated electromechanical transducer and method for manufacturing the same
JP2000012375A (en) Laminated ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100401

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100701

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100708

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100730

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100901

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110714

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110722

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110815

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110914

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120806

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130115

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130121

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5322384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250