JP5321322B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP5321322B2
JP5321322B2 JP2009177598A JP2009177598A JP5321322B2 JP 5321322 B2 JP5321322 B2 JP 5321322B2 JP 2009177598 A JP2009177598 A JP 2009177598A JP 2009177598 A JP2009177598 A JP 2009177598A JP 5321322 B2 JP5321322 B2 JP 5321322B2
Authority
JP
Japan
Prior art keywords
accelerator
control
amount
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009177598A
Other languages
English (en)
Other versions
JP2011032881A (ja
Inventor
将 天内
秀明 高橋
健一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009177598A priority Critical patent/JP5321322B2/ja
Publication of JP2011032881A publication Critical patent/JP2011032881A/ja
Application granted granted Critical
Publication of JP5321322B2 publication Critical patent/JP5321322B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、直噴型内燃機関の制御装置に関するものである。
排気浄化触媒の暖機制御のために成層燃焼時に点火時期を遅角する直噴型内燃機関において、暖機制御中にアクセルペダルが踏込まれたら、スロットルバルブを徐々に閉じて空気量を徐減させるものが知られている(特許文献1)。
特開2002−89339号公報
しかしながら、アクセル踏込み量が暖機制御時のスロットル開度以上にスロットルバルブを開く量である場合には、上記従来技術ではスロットル開度を一旦小さくしてから大きくする必要があるので、加速応答性が低下する。
本発明が解決しようとする課題は、触媒の暖機制御時に加速要求があった場合の応答性を高めることができる内燃機関の制御装置を提供することである。
本発明は、排気浄化触媒の暖気制御時のスロットル開度から要求されたスロットル開度へ移行する際の最終目標スロットル開度の制限量を、アクセルの踏込み量に応じた量に設定することによって上記課題を解決する。
本発明によれば、排気浄化触媒の暖機制御中にアクセルが踏込まれたら、要求されたスロットル開度へ移行する際の最終目標スロットル開度の制限量を、アクセル踏込み量に応じた量に設定し、すなわち、アクセル踏込み量が大きい場合は制限量を大きくするので、加速要求に応じた空気量まで素早く増加させることができる。その結果、加速応答性が向上する。
本発明の一実施の形態を適用した内燃機関を示すブロック図である。 図1のエンジンコントローラの制御手順を示すフローチャートである。 冷機始動時の排気浄化触媒の暖機制御の基本例を示すタイムチャートである。 図3Aにおいて暖機制御から加速要求があった場合の比較例に係る制御例を示すタイムチャートである。 図2に示す実施形態において暖機制御から加速要求があった場合の制御例を示すタイムチャートである。 図1のエンジンコントローラの他の制御手順(その1)を示すフローチャートである。 図1のエンジンコントローラの他の制御手順(その2)を示すフローチャートである。 図4A及び図4Bに示す実施形態において暖機制御から加速要求があった場合の制御例を示すタイムチャートである。 図5Aの最終目標スロットル開度の拡大図である。 本発明の他の実施の形態を適用した内燃機関を示すブロック図である。 図6のエンジンコントローラの制御手順を示すフローチャートである。
《第1実施形態》
図1は、本発明の一実施の形態を適用した直噴型多気筒エンジンEGを示すブロック図であり、エンジンEGの吸気通路111には、エアーフィルタ112、吸入空気流量を検出するエアフローメータ113、吸入空気流量を制御するスロットルバルブ114およびコレクタ115が設けられている。
スロットルバルブ114には、当該スロットルバルブ114の開度を調整するDCモータ等のアクチュエータ116が設けられている。このスロットルバルブアクチュエータ116は、運転者のアクセルペダル操作量等に基づき演算される要求トルクを達成するように、エンジンコントロールユニット11からの駆動信号に基づき、スロットルバルブ114の開度を電子制御する。また、スロットルバルブ114の開度を検出するスロットルセンサ117が設けられて、その検出信号をエンジンコントロールユニット1へ出力する。なお、スロットルセンサ117はアイドルスイッチとしても機能させることができる。
燃料噴射バルブ118は、燃焼室123に臨ませて設けられている。燃料噴射バルブ118は、エンジンコントロールユニット11において設定される駆動パルス信号によって開弁駆動され、図外の燃料ポンプから圧送されてプレッシャレギュレータにより所定圧力に制御された燃料を筒内に直接噴射する。本例では、吸気行程にて1回目の燃料噴射を行うとともに続く圧縮行程にて2回目の燃料噴射を行う成層燃焼モードと、吸気行程にて燃料噴射を行う均質燃焼モードとが切り換えられる。たとえば低回転運転領域においては成層燃焼モードが実行され、これ以外の運転領域においては均質燃焼モードが実行される。
シリンダ119と、当該シリンダ内を往復移動するピストン120の冠面と、吸気バルブ121及び排気バルブ122が設けられたシリンダヘッドとで囲まれる空間が燃焼室123を構成する。点火プラグ124は、各気筒の燃焼室123に臨んで装着され、エンジンコントロールユニット11からの点火信号に基づいて吸入混合気に対して点火を行う。
特に本例では、冷機始動時における排気浄化触媒127の暖機を行うために、上述した成層燃焼を行う燃焼モードにおいて点火時期を遅角させ、膨張行程においても燃焼を長く持続させて排気ガス温度を高める制御(以下、単に触媒の暖機制御ともいう。)が実行される。これによりエミッション性能が向上するが、触媒の暖機制御中にアクセルが踏まれて加速要求があると、当該暖機制御から加速要求量に応じてたとえば均質燃焼に応答性良く移行する必要がある。この場合の制御の詳細は後述する。なお、排気浄化触媒127の暖機は、本例の成層燃焼モードにおけるリタード点火以外にも、均質燃焼モードにおいて点火時期を遅角させてもよい。
一方、排気通路125には、排気中の特定成分、たとえば酸素濃度を検出することにより排気、ひいては吸入混合気の空燃比を検出する空燃比センサ126が設けられ、その検出信号はエンジンコントロールユニット11へ出力される。この空燃比センサ126は、リッチ・リーン出力する酸素センサであっても良いし、空燃比をリニアに広域に亘って検出する広域空燃比センサであってもよい。
また、排気通路125には、排気を浄化するための排気浄化触媒127が設けられている。この排気浄化触媒127としては、ストイキ(理論空燃比,λ=1、空気重量/燃料重量=14.7)近傍において排気中の一酸化炭素COと炭化水素HCを酸化するとともに、窒素酸化物NOxの還元を行って排気を浄化することができる三元触媒、或いは排気中の一酸化炭素COと炭化水素HCの酸化を行う酸化触媒を用いることができる。
排気通路125の排気浄化触媒127の下流側には、排気中の特定成分、たとえば酸素濃度を検出し、リッチ・リーン出力する酸素センサ128が設けられ、その検出信号はエンジンコントロールユニット11へ出力される。ここでは、酸素センサ128の検出値により、空燃比センサ126の検出値に基づく空燃比フィードバック制御を補正することで、空燃比センサ126の劣化等に伴う制御誤差を抑制する等のために(いわゆるダブル空燃比センサシステム採用のために)、下流側酸素センサ128を設けて構成したが、空燃比センサ126の検出値に基づく空燃比フィードバック制御を行なわせるだけで良い場合には、酸素センサ128を省略することができる。
なお、図1において129はマフラである。
エンジンEGのクランク軸130にはクランク角センサ131が設けられ、エンジンコントロールユニット11は、クランク角センサ131から機関回転と同期して出力されるクランク単位角信号を一定時間カウントすることで、又は、クランク基準角信号の周期を計測することで、機関回転速度Neを検出することができる。
エンジンEGの冷却ジャケット132には、水温センサ133が当該冷却ジャケットに臨んで設けられ、冷却ジャケット131内の冷却水温度Twを検出し、これをエンジンコントロールユニット11へ出力する。
図示を省略するアクセルペダルにはアクセル開度を検出するアクセル開度センサ140が設けられ、アクセル開度センサ140で検出された検出信号はエンジンコントロールユニット11へ出力される。
次に制御内容を説明する。
本例では排気浄化触媒127の暖機制御中にアクセルが踏込まれた場合に、この加速要求に対して応答性良くスロットルバルブ114を制御する手順を、図2を参照しながら説明する。
図2のステップS1では、触媒の暖機制御を実行する条件が成立したか否かを判定する。たとえば、冷機始動時には排気浄化触媒127の温度が活性化温度未満になっているので、水温センサ133とクランク角センサ131から冷機始動時か否かを判定し、冷機始動時である場合は触媒の暖機制御が必要であるとしてステップS2へ進む。冷機始動時でない場合はステップS1に戻る。
ステップS2では吸気行程で1回目の燃料噴射を行うとともに続く圧縮行程で2回目の燃料噴射を行い、さらに点火時期を上死点近傍で遅角する。これにより、膨張行程においても燃焼を持続させることができ排気ガス温度が高くなるので、排気浄化触媒127を短時間で活性化温度まで昇温させることができる。
なお、排気浄化触媒127の温度が活性化温度に達したら触媒の暖機制御を終了して通常のアイドル状態に移行する。図3Aは、触媒の暖機制御からアイドル状態へ移行する際の点火プラグ124に対するリタードフラグ、アクセル開度、目標スロットル開度、実スロットル開度、吸気量および点火時期をそれぞれ示すタイムチャートである。同図に示す状態は、触媒の暖機制御からアイドル状態への移行を示すものであり、この間にアクセル開度が常にゼロとなっている状態を示す。
時間tにおいてリタードフラグがONからOFFになることで目標スロットル開度が触媒暖機制御時の目標スロットル開度からアイドル時の目標スロットル開度に減少する。また、実スロットル開度が触媒暖機制御時の開度からアイドル時の開度に減少することにともない吸気量も減少する。なお、スロットルバルブ114の動作にはある程度の遅れが生じるので吸気量は同図に示すように徐々に減少する。そのため、この吸気量の減少に応じて点火時期を徐々に進角する。
図2のステップS3では触媒の暖機制御中にアクセルの踏込みがあったか否かを判定し、アクセルが踏込まれない場合はステップ1へ戻り以上の処理を繰り返す。なお、図2では省略したが、触媒の暖機制御中に排気浄化触媒127が活性化温度に達したら触媒の暖機制御を終了する。
ステップS3にてアクセルが踏込まれた場合はステップS4へ進み、アクセル開度センサ140からアクセル開度を入力する。そして、ステップS5にて、ステップS4で検出されたアクセル開度が触媒の暖機制御を終了して均質燃焼に移行すべき量であるか否かを判定するために、検出されたアクセル開度が予め設定された閾値以上か否かが判定される。
ステップS5の判定の結果、検出されたアクセル開度が閾値未満である場合は、均質燃焼に移行するほどの加速要求ではないと判断してステップS7へ進み、成層燃焼、すなわち触媒の暖機制御を継続する。これに対し、ステップS5の判定の結果、検出されたアクセル開度が閾値以上である場合はステップS6へ進み、成層燃焼を終了する処理に移行する。
続くステップS8では、アクセル開度センサ140の検出信号から、アクセル踏込み速度、すなわち現在のアクセル開度から前回検出したアクセル開度を減算した値ΔAPOを演算する。ただし、アクセル開度センサ140は所定の時間間隔でアクセル開度を検出しているので、厳密にはこれを単位時間当たりの量に換算した値をアクセル踏込み速度とする。
続くステップS9では、スロットルバルブ114のスロットル開度を触媒の暖機制御の開度から加速要求に応じた開度に移行する際の制限量を演算する。ここで触媒の暖機制御中に加速要求があった場合のスロットル開度の制限量について、図3Bを参照して説明する。
図3Bは、触媒の暖機制御中にアクセルが踏込まれた場合に、比較例に係る制御内容を示すものであり、点火プラグ124に対するリタードフラグ、アクセル開度、目標スロットル開度、実スロットル開度、吸気量および点火時期をそれぞれ示すタイムチャートである。同図に示す状態は、時間tにおいてアクセルの踏込みがあり、これにともないリタードフラグがONからOFFになると、目標スロットル開度が一旦アイドル開度になったのちアクセル開度に応じたスロットル開度まで増加する。また、実スロットル開度も一旦アイドル開度になったのち増加するので、吸気量も一旦減少したのち増加し、アクセル開度に応じた吸気量に漸近する。
このように同図に示す制御では、アクセルの踏み込みがあってから吸気量がアクセル開度に応じた量になるまでに時間がかかるので、加速レスポンスが悪いという問題がある。特に背景技術の欄で触れた従来技術によれば、リタードフラグがONからOFFになると目標スロットル開度を徐々に減少させるので、加速レスポンスはさらに悪化する。
これに対し本例では、以下の処理を実行することでこの加速レスポンスを改善する。
すなわちステップS9では、ステップS8で演算したアクセル踏込み速度ΔAPOから同図に示す制御マップを用いて目標スロットル移行時の加重係数WKを求める。本例の制御マップでは、アクセルの踏込み速度ΔAPOが大きくなるほど加重係数WKを一次関数的に大きくする。ただし、アクセル踏込み速度ΔAPOと加重係数WKとの関係は同図に示す一次関数にのみ限定されず、アクセルの踏込み速度ΔAPOが大きくなるほど加重係数WKを大きくする関係であればよい。
ステップS10では現在のスロットル開度TVnowをスロットルセンサ117にて検出する。ステップS11では、アクセル開度から均質燃焼時の目標スロットル開度TVtgを演算する。そして、ステップS12にて、ステップ9〜11で求められた加重係数WKと、現在のスロットル開度TVnowと、目標スロットル開度TVtgから、最終目標スロットル開度TVofを下記加重平均式により演算する。
[数1]
TVof=TVnow・WK+TVtg(1−WK)
以上の処理を所定の時間間隔で実行し、それぞれ最終目標スロットル開度TVofを演算しつつスロットルバルブ114を駆動し、均質燃焼に移行する。これによりアクセルの踏込みに応じた加速要求に対し、所定のトルクを確保した燃焼を行うことができる。
図3Cは、触媒の暖機制御中にアクセルが踏込まれた場合にこの制御を実行した場合の、点火プラグ124に対するリタードフラグ、アクセル開度、目標スロットル開度、実スロットル開度、吸気量および点火時期をそれぞれ示すタイムチャートである。同図に示すように時間tにおいてアクセルの踏込みがあり、これにともないリタードフラグがONからOFFになるが、最終目標スロットル開度は上記ステップS9〜S12の処理、特にステップS9の加重係数の設定により一旦小さくなる量が制限されるので、アクセル開度に応じたスロットル開度に達するまでの時間が短くなる。
これにともない、実スロットル開度も一旦小さくなる量が制限された状態で大きくなるので、吸気量もアクセル開度に応じた吸気量に達するまでの時間が短くなる。このように本例に示す制御では、アクセルの踏み込みがあってから吸気量がアクセル開度に応じた量になるまでの時間が短くなるので、加速レスポンスが向上することになる。
《第2実施形態》
上述した実施の形態では、触媒の暖機制御時のスロットル開度から均質燃焼時のスロットル開度への移行時にアクセル踏込み量(上記例ではアクセル踏込み速度ΔAPO)に応じて加重平均の加重係数を設定した(図2のステップS9〜S12)が、かかる移行時のアクセル踏込み量に応じたスロットル開度の制限は加重係数以外にも実現することができる。
図4A及び図4Bは、図2の制御手順に対する他の制御手順を示すフローチャートであり、本例では触媒の暖機制御時のアクセル開度から最終目標アクセル開度への移行時期に遅延時間を設定する。
なお、図4AのステップS21〜S28の処理は上述した図2のステップS1〜S8と同じであるため、その説明をここに援用する。
ステップS29では、スロットルバルブ114のスロットル開度を触媒の暖機制御の開度から加速要求に応じた開度に移行する際の制限量を演算する。すなわちステップS29では、ステップS28で演算したアクセル踏込み速度ΔAPOから同図に示す制御マップを用いて目標スロットル移行時の遅延時間DLYを求める。本例の制御マップでは、アクセルの踏込み速度ΔAPOが大きくなるほど遅延時間DLYを一次関数的に大きくする。ただし、アクセル踏込み速度ΔAPOと遅延時間DLYとの関係は同図に示す一次関数にのみ限定されず、アクセルの踏込み速度ΔAPOが大きくなるほど遅延時間DLYを大きくする関係であればよい。
ステップS30では現在のスロットル開度TVnowをスロットルセンサ117にて検出する。ステップS31では、アクセル開度から均質燃焼時の目標スロットル開度TVtgを演算する。そして、ステップS32にて、成層燃焼を終了してからの時間TIMの計測を開始する。
図4BのステップS33では、ステップS29で求められた遅延時間DLYとステップS32でセットされた経過時間TIMとを比較し、経過時間TIMが遅延時間DLYに達するまではステップS36へ進む。そして、成層燃焼時の目標スロットル開度を維持し、ステップS37にて最終目標スロットル開度TVofをステップS30で検出された現在のスロットル開度TVnowに設定し、スロットルバルブ114の開度を維持する。
これに対し、ステップS33にて経過時間TIMが遅延時間DLYに達したらステップS34へ進み、均質燃焼時の目標スロットル開度に移行し、ステップS35にて最終目標スロットル開度TVofをステップS31で演算された目標スロットル開度TVtgに設定し、スロットルバルブ114の開度を変更する。
以上の処理を所定の時間間隔で実行し、それぞれ最終目標スロットル開度TVofを演算しつつ、遅延時間DLYが経過するまではスロットルバルブ114の開度を維持し、遅延時間DLYが経過したらスロットルバルブ114を駆動する。これによりアクセルの踏込みに応じた加速要求に対し、所定のトルクを確保した燃焼を行うことができる。
図5Aは、触媒の暖機制御中にアクセルが踏込まれた場合にこの制御を実行した場合の、点火プラグ124に対するリタードフラグ、アクセル開度、目標スロットル開度、実スロットル開度、吸気量および点火時期をそれぞれ示すタイムチャートである。図5Bは最終目標スロットル開度の拡大図である。同図に示すように時間tにおいてアクセルの踏込みがあり、これにともないリタードフラグがONからOFFになるが、最終目標スロットル開度は上記ステップS29〜S37の処理、特にステップS29の遅延時間DLYの設定により一旦小さくなる量が制限されるので、アクセル開度に応じたスロットル開度に達するまでの時間が短くなる。
これにともない、実スロットル開度も一旦小さくなる量が制限された状態で大きくなるので、吸気量もアクセル開度に応じた吸気量に達するまでの時間が短くなる。このように本例に示す制御では、アクセルの踏み込みがあってから吸気量がアクセル開度に応じた量になるまでの時間が短くなるので、加速レスポンスが向上することになる。
《第3実施形態》
図6は本発明の他の実施の形態を適用した内燃機関EGを示すブロック図であり、過給機付き直噴型エンジンの例を示す。なお、過給機30以外の構成は上述した第1実施形態と同じであるため、図1と共通する部材に同一の符号を付し、その説明をここに援用する。
同図に示す過給機30は、排気通路125に設けられたタービン302と、ロータシャフト303を介してタービン302に直結されたコンプレッサ304とを備え、排気ガスによりタービン302を回転させ、これにより回転するコンプレッサ304によって吸気を圧縮してコレクタ115へ送り込む。
過給機30のタービン302側には、燃焼室123からの排気ガスの一部または全部が、タービン302を迂回して排気浄化触媒127に至る迂回通路305が設けられ、この迂回通路305を通過する排気ガス量を制御するウェイストゲートバルブ301が当該迂回通路305に設けられている。ウェイストゲートバルブ301には、当該ウェイストゲートバルブ301の開度を検出する開度センサが設けられ、当該開度センサの検出信号はコントロールユニット11に出力される。そして、ウェイストゲートバルブ301は、エンジンEGの運転状態に応じて目標過給圧となるように、排気ガスの一部または全部を迂回通路305側へ逃がすように開閉制御する。
吸気通路111のコンプレッサ304の下流とスロットルバルブ114との間には、過給機30のコンプレッサ304によって圧縮されて高温となった吸気を冷却するインタークーラ306が設けられている。このインタークーラ306は空冷式または水冷式のいずれをも用いることができる。
また、吸気通路111のコンプレッサ304の上流とインタークーラ306の下流との間には、インタークーラ306を迂回する還流通路40が設けられ、この還流通路40に還流バルブ41が設けられている。還流バルブ41はコントロールユニット11からの駆動信号に基づいて還流通路40を開閉し、たとえばアクセル開度がゼロになってスロットルバルブ114が閉じたときにコンプレッサ304で圧縮された吸気を、還流通路40を介して吸気通路111の上流に還流させる。
次に制御内容を説明する。
本例では排気浄化触媒127の暖機制御中にアクセルが踏込まれた場合に、この加速要求に対して応答性良くスロットルバルブ114を制御する手順を、図7を参照しながら説明する。なお、図7のステップS41〜S47の処理は上述した図2のステップS1〜S7と同じであるため、その説明をここに援用する。ただし、ステップ42では過給機30のウェイストゲートバルブ301は開とし、過給しないこととする。
ステップS45では、ステップS44で検出されたアクセル開度が触媒の暖機制御を終了して均質燃焼に移行すべき量であるか否かを判定するために、検出されたアクセル開度が予め設定された閾値以上か否かが判定される。そして、ステップS45の判定の結果、検出されたアクセル開度が閾値未満である場合は、均質燃焼に移行するほどの加速要求ではないと判断してステップS47へ進み、成層燃焼、すなわち触媒の暖機制御を継続する。この場合は、ステップS49にて過給機30のウェイストゲートバルブ301を開いたままとする。
これに対し、ステップS45の判定の結果、検出されたアクセル開度が閾値以上である場合はステップS46へ進み、成層燃焼を終了する処理に移行する。そして、ステップS48にて過給機30のウェイストゲートバルブ301を閉じて過給機30を駆動する。なお、ステップS50〜S53までの処理は、図2に示すステップS8〜S11と同じであり、アクセル踏込み速度ΔAPOから目標スロットル開度への移行時の加重係数WKを求め、現在のスロットル開度TVnowと均質燃焼時の目標スロットル開度TVtgを求める。
ステップ54では、ステップ48及びS49にて実行されたウェイストゲートバルブ301の開閉状態を判定し、ウェイストゲートバルブ301が閉じている場合(過給機30が駆動)はステップS55へ進み、ステップ50〜53で求められた加重係数WKと、現在のスロットル開度TVnowと、目標スロットル開度TVtgから、最終目標スロットル開度TVofを上述した第1実施形態と同じ加重平均式により演算する。以上の処理を所定の時間間隔で実行し、それぞれ最終目標スロットル開度TVofを演算しつつスロットルバルブ114を駆動し、均質燃焼に移行する。
これに対して、ウェイストゲートバルブ301が開いている場合(過給機30が非駆動)はステップS56へ進み、ステップ52で検出された現在のスロットル開度を最終目標スロットル開度TVofに設定し、開度を維持する。
以上のとおり本例では、触媒の暖機制御から均質燃焼への移行に際し、スロットル開度をアクセルの踏込み量に応じた量に設定する前に過給機30を駆動するので、タービン側302に排気ガスが導入され、コンプレッサ304が駆動し、燃焼室123に空気が過給される。その結果、アクセルの踏込み量に応じた加速要求に対しさらに応答性を向上させることができる。
なお、図6に示す過給機30の迂回通路305及びウェイストゲートバルブ301に代えて、タービン302の上流側の排気通路125に、当該排気通路125の断面積を制御する可変ノズルを設けた可変容量式過給機に対しても同様の制御を実行することができる。この場合は、図7のステップS48に代えて可変ノズルを開いてタービン302を駆動し、ステップS49に代えて可変ノズルを閉じる制御を実行する。また、図7のステップS54に代えて可変ノズルが開いているか否かを判定し、可変ノズルが開いている場合はステップS55へ進み、可変ノズルが閉じている場合はステップS56へ進む。
上記アクセル開度センサ140が本発明に係る検出手段に相当し、上記エンジンコントロールユニット11が本発明に係る制御手段に相当し、上記ウェイストゲートバルブ301が本発明に係るバイパスバルブに相当する。
EG…エンジン(内燃機関)
11…エンジンコントローラ
111…吸気通路
112…エアーフィルタ
113…エアフローメータ
114…スロットルバルブ
115…コレクタ
116…スロットルバルブアクチュエータ
117…スロットルセンサ
118…燃料噴射バルブ
119…シリンダ
120…ピストン
121…吸気バルブ
122…排気バルブ
123…燃焼室
124…点火プラグ
125…排気通路
126…空燃比センサ
127…排気浄化触媒
128…酸素センサ
129…マフラ
130…クランク軸
131…クランク角センサ
132…冷却ジャケット
133…水温センサ
140…アクセル開度センサ
30…過給機
301…ウェイストゲートバルブ
302…タービン
303…ロータシャフト
304…コンプレッサ
305…迂回通路
306…インタークーラ
40…還流通路
41…還流バルブ

Claims (8)

  1. 排気浄化触媒の暖機制御のために点火時期を遅角する内燃機関の制御装置において、
    アクセルの踏込み量を検出する検出手段と、
    前記暖機制御中に前記アクセルが踏込まれた場合に、前記暖機制御時のスロットル開度から前記アクセルの踏込み量に応じたスロットル開度へ移行する際の目標スロットル開度の制限量を、前記アクセルの踏込み量に応じた量に設定する制御手段と、を備える内燃機関の制御装置。
  2. 請求項1に記載の内燃機関の制御装置において、
    前記アクセルの踏込み量が大きいほど、前記制限量を大きくする内燃機関の制御装置。
  3. 請求項1または2に記載の内燃機関の制御装置において、
    前記制御手段は、前記アクセルの踏込み量が所定値以上の場合は前記目標スロットル開度の制限量を前記アクセルの踏込み量に応じた量に設定し、前記アクセルの踏込み量が前記所定値未満の場合は前記暖機制御時のスロットル開度を維持する内燃機関の制御装置。
  4. 請求項1〜3のいずれか一項に記載の内燃機関の制御装置において、
    前記制御手段は、現在のアクセル開度と目標アクセル開度との加重平均の加重係数を前記アクセルの踏込み量に応じて設定する内燃機関の制御装置。
  5. 請求項1〜3のいずれか一項に記載の内燃機関の制御装置において、
    前記制御手段は、現在のアクセル開度から目標アクセル開度への移行時期に遅延時間を設定する内燃機関の制御装置。
  6. 請求項1〜5のいずれか一項に記載の内燃機関の制御装置において、
    前記内燃機関は、前記内燃機関の燃焼室に過給する過給機を備え、
    前記制御手段は、前記暖機制御中に前記アクセルが踏込まれた場合に、前記制限量を前記アクセルの踏込み量に応じた量に設定する前に、前記過給機を作動する内燃機関の制御装置。
  7. 請求項6に記載の内燃機関の制御装置において、
    前記過給機は、前記過給機のタービンを迂回する迂回通路に設けられて排気ガス量を制御するバイパスバルブを備え、
    前記制御手段は、前記暖機制御中に前記アクセルが踏込まれた場合に、前記制限量を前記アクセルの踏込み量に応じた量に設定する前に、前記バイパスバルブを閉じる内燃機関の制御装置。
  8. 請求項6に記載の内燃機関の制御装置において、
    前記過給機は、タービンの上流側の排気通路の開口面積を制御する可変ノズルを備え、
    前記制御手段は、前記暖機制御中に前記アクセルが踏込まれた場合に、前記制限量を前記アクセルの踏込み量に応じた量に設定する前に、前記可変ノズルを開く内燃機関の制御装置。
JP2009177598A 2009-07-30 2009-07-30 内燃機関の制御装置 Expired - Fee Related JP5321322B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177598A JP5321322B2 (ja) 2009-07-30 2009-07-30 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177598A JP5321322B2 (ja) 2009-07-30 2009-07-30 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2011032881A JP2011032881A (ja) 2011-02-17
JP5321322B2 true JP5321322B2 (ja) 2013-10-23

Family

ID=43762211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177598A Expired - Fee Related JP5321322B2 (ja) 2009-07-30 2009-07-30 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP5321322B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020004056B1 (pt) * 2017-08-30 2023-03-21 Nissan Motor Co., Ltd Método de controle para motor de combustão interna, e sistema de controle para motor de combustão interna
JP2020143660A (ja) * 2019-03-08 2020-09-10 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3141563B2 (ja) * 1992-09-21 2001-03-05 日産自動車株式会社 内燃機関の空気量制御装置
JPH11291791A (ja) * 1998-04-14 1999-10-26 Honda Motor Co Ltd 車両の駆動力制御装置
JP3890827B2 (ja) * 1999-09-28 2007-03-07 トヨタ自動車株式会社 内燃機関の制御装置
JP2003120353A (ja) * 2001-10-12 2003-04-23 Nissan Motor Co Ltd 内燃機関の過給圧制御装置

Also Published As

Publication number Publication date
JP2011032881A (ja) 2011-02-17

Similar Documents

Publication Publication Date Title
KR100879486B1 (ko) 엔진
JP3926522B2 (ja) 過給機付エンジンの吸気制御装置
JP4733002B2 (ja) 内燃機関の排ガス浄化装置
US8903633B2 (en) Control system for internal combustion engine
EP2787203A1 (en) Control device for internal combustion engine
JP2009191745A (ja) 内燃機関の制御装置
JP4893514B2 (ja) 過給機付き内燃機関の制御装置
JP2007332867A (ja) 内燃機関の制御装置
JP3992016B2 (ja) 予混合圧縮自着火式内燃機関の制御装置
JP2005023850A (ja) 内燃機関の空燃比制御装置
JP5332962B2 (ja) 内燃機関の制御装置
JP6241412B2 (ja) 内燃機関の制御装置
US7997067B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP4510654B2 (ja) 内燃機関の排ガス浄化装置
JP4510651B2 (ja) 内燃機関の排ガス浄化装置
JP5321322B2 (ja) 内燃機関の制御装置
JP4510656B2 (ja) 内燃機関の排ガス浄化装置
JP2009074366A (ja) 内燃機関の可変動弁装置
JP2002332877A (ja) 自動車用4サイクルエンジン
JP2009103014A (ja) 内燃機関の制御装置
JP2019060311A (ja) 内燃機関の制御装置、及び内燃機関の制御方法
JP4468287B2 (ja) 内燃機関の排ガス浄化装置
JP5263249B2 (ja) 過給機付き内燃機関の可変バルブタイミング制御装置
JP5303349B2 (ja) 内燃機関のegr制御装置
JP2007291990A (ja) 吸気制御弁開度推定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees