JP5315764B2 - Cold iron source melting method in hot metal container - Google Patents

Cold iron source melting method in hot metal container Download PDF

Info

Publication number
JP5315764B2
JP5315764B2 JP2008105960A JP2008105960A JP5315764B2 JP 5315764 B2 JP5315764 B2 JP 5315764B2 JP 2008105960 A JP2008105960 A JP 2008105960A JP 2008105960 A JP2008105960 A JP 2008105960A JP 5315764 B2 JP5315764 B2 JP 5315764B2
Authority
JP
Japan
Prior art keywords
hot metal
cold iron
iron source
amount
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008105960A
Other languages
Japanese (ja)
Other versions
JP2009256716A (en
Inventor
浩二 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008105960A priority Critical patent/JP5315764B2/en
Publication of JP2009256716A publication Critical patent/JP2009256716A/en
Application granted granted Critical
Publication of JP5315764B2 publication Critical patent/JP5315764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、溶銑容器内に冷鉄源を装入した後、高炉からの溶銑を受銑して、溶銑に冷鉄源を溶解させる方法に関する。 The present invention relates to a method of receiving a hot iron from a blast furnace after charging a cold iron source in a hot metal vessel and melting the cold iron source in the hot metal.

製鉄所においては、高炉で製造した溶銑を、溶銑容器(例えば、トピードカー)に受銑し、その輸送途中で、脱珪、脱硫等の処理を行った溶銑を、転炉装入鍋を介して転炉に装入し、吹錬を行って鋼を製造している。吹錬により鋼を製造する方法では、高炉から受銑した溶銑だけでなく、溶銑の含有している成分(C、Si)を燃焼させて得られる熱源を利用して溶銑に固体の冷鉄源(例えば、スクラップ)を溶かすことで、その生産量を向上させている。
この冷鉄源の溶銑への溶解方法としては、例えば、トピードカー内に予め冷鉄源を投入し、溶銑を受銑することにより、転炉での溶銑配合率(HMR)の低下を可能とする方法がある。この方法としては、例えば、特許文献1に、トピードカー内に50〜100トンの溶銑を残し、その中に冷鉄源(屑鉄)を投入する方法がある。また、特許文献2には、溶銑排出後のトピードカー内に冷鉄源を投入して、その冷鉄源によりトピードカーの放熱ロスを低減する方法がある。
In the steelworks, hot metal produced in a blast furnace is received in a hot metal vessel (for example, a topped car), and hot metal that has been subjected to desiliconization, desulfurization, etc., is transported through a converter charging pan during its transportation. It is charged into the converter and blown to produce steel. In the method of producing steel by blowing, not only the hot metal received from the blast furnace, but also a solid cold iron source in the hot metal using a heat source obtained by burning the components (C, Si) contained in the hot metal. The production volume is improved by melting (for example, scrap).
As a method for melting the cold iron source into the hot metal, for example, a cold iron source is put in a topped car in advance and the hot metal is received to thereby reduce the hot metal content ratio (HMR) in the converter. There is a way. As this method, for example, Patent Document 1 includes a method in which 50 to 100 tons of hot metal is left in a topped car and a cold iron source (scrap iron) is put therein. Patent Document 2 discloses a method in which a cold iron source is introduced into the topped car after hot metal discharge, and the heat dissipation loss of the topped car is reduced by the cold iron source.

特開昭49−79911号公報JP 49-79911 A 特開昭54−142116号公報JP 54-142116 A

しかしながら、製鋼工程の操業において、炭素分を含んだ冷鉄源を、炭素飽和状態の溶銑に溶解させた場合、溶銑の温度低下と過飽和の炭素により、溶銑の溶存炭素が余剰となるため、大気に放出される。この炭素分は、転炉であれば、燃焼源として燃焼させ、熱源として活用できるものの、前記した溶解方法の場合には、炭素を大気に放散するのみであり、エネルギーロスが発生する。このため、冷鉄源を溶銑に溶解するための熱源が減少し、溶銑への冷鉄源の溶解量を、新たな熱源を使用することなく、更に増やすことができず、溶鋼の生産量を経済的に向上させることができなかった。 However, in the operation of the steelmaking process, when a cold iron source containing carbon is dissolved in the hot metal in a carbon saturated state, the dissolved carbon in the hot metal becomes surplus due to the temperature drop of the hot metal and supersaturated carbon. To be released. In the case of a converter, this carbon component can be burned as a combustion source and used as a heat source. However, in the case of the above-described melting method, only carbon is diffused into the atmosphere, resulting in energy loss. For this reason, the heat source for dissolving the cold iron source in the hot metal decreases, the amount of the cold iron source dissolved in the hot metal cannot be increased further without using a new heat source, and the production amount of molten steel is reduced. It could not be improved economically.

本発明はかかる事情に鑑みてなされたもので、大気に放出される炭素量を低減し、新たな熱源を使用することなく、従来よりも多くの冷鉄源を溶銑に溶解させることができ、溶鋼の生産量を経済的に向上できる溶銑容器内での冷鉄源溶解方法を提供することを目的とする。 The present invention has been made in view of such circumstances, reducing the amount of carbon released to the atmosphere, without using a new heat source, it is possible to dissolve more cold iron sources than in the past, It aims at providing the cold iron source melting method in the hot metal container which can improve the production amount of molten steel economically.

上記の課題を解決するためになされた本発明の要旨は、以下の通りである。
(1)溶銑容器内に冷鉄源を装入した後、高炉からの溶銑を受銑して、該溶銑に前記冷鉄源を溶解させる方法において、
前記溶銑への前記冷鉄源の溶解に伴う前記溶銑のC濃度の希釈量ΔC質量%が、前記冷鉄源による前記溶銑の温度降下と、前記溶銑を前記高炉から転炉へ搬送する間の前記溶銑の温度降下に伴う該溶銑の溶存Cの析出量ΔC質量%以上となるように、前記溶銑容器内に装入する前記冷鉄源の装入量及び含有C濃度のいずれか一方又は双方を決定することを特徴とする溶銑容器内での冷鉄源溶解方法。
The gist of the present invention made to solve the above problems is as follows.
(1) In the method of receiving the molten iron from the blast furnace after charging the cold iron source in the molten iron container and dissolving the cold iron source in the molten iron,
1 % by mass of C concentration of the hot metal accompanying dissolution of the cold iron source in the hot metal is a temperature drop of the hot metal due to the cold iron source, and while the hot metal is transported from the blast furnace to the converter. so that the deposition amount of dissolved C in solution pig iron with temperature drop of the molten iron [Delta] C 2 mass% or more, either one of the charging amount and the content C concentration of the cold iron source charged into the hot metal vessel Alternatively, a method for melting a cold iron source in a hot metal container, wherein both are determined.

)前記溶銑のC濃度の希釈量ΔC質量%と、該溶銑の溶存Cの析出量ΔC質量%は、それぞれ以下の式で求めることを特徴とする()記載の溶銑容器内での冷鉄源溶解方法。
ΔC=A−(W×A+W×A)/(W+W
ΔC(ΔT1+ΔT2)×2.54×0.0001
ここで、Aは溶銑のC濃度(質量%)、Aは冷鉄源の平均C濃度(質量%)、Wは溶銑量(質量)、Wは冷鉄源量(質量)、ΔT1は冷鉄源1トンあたりの溶銑の温度降下(℃)、ΔT2は高炉から転炉へ搬送する間の溶銑の温度降下(℃)である。
( 2 ) The molten metal C concentration dilution amount ΔC 1 mass% and the dissolved C precipitation amount ΔC 2 mass% of the molten iron are obtained by the following equations, respectively, in the molten iron container according to ( 1 ) Cold iron source dissolution method.
ΔC 1 = A 1 − (W 1 × A 1 + W 2 × A 2 ) / (W 1 + W 2 )
ΔC 2 = (ΔT1 + ΔT2) × 2.54 × 0.0001
Here, A 1 is the C concentration (mass%) of hot metal, A 2 is the average C concentration (mass%) of the cold iron source, W 1 is the amount of hot metal (mass), W 2 is the amount of cold iron source (mass) , the delta T1 temperature drop of the molten iron per Hiyatetsugen 1 t (° C.), delta] T2 is the temperature drop of the molten iron during transporting from the blast to the converter (° C.).

本発明に係る溶銑容器内での冷鉄源溶解方法は、溶銑への冷鉄源の溶解に伴う溶銑のC濃度の希釈量ΔC質量%が、溶銑の温度降下に伴う溶銑の溶存Cの析出量ΔC質量%以上となるように、冷鉄源の装入量と含有C濃度を決定するので、大気に放出される炭素量を低減、更には無くすことができる。これにより、新たな熱源を使用することなく、従来よりも多くの冷鉄源を溶銑に溶解できるので、熱源の有効活用が図れ、溶鋼の生産量を経済的に向上できる。 In the method for melting a cold iron source in the hot metal container according to the present invention, the dilution amount ΔC 1 mass% of the C concentration of the hot metal accompanying the dissolution of the cold iron source in the hot metal is the amount of dissolved C of the hot metal accompanying the temperature drop of the hot metal. Since the amount of cold iron source and the concentration of contained C are determined so that the amount of precipitation ΔC is 2 % by mass or more, the amount of carbon released into the atmosphere can be reduced and even eliminated. Thereby, since many cold iron sources can be melt | dissolved in hot metal rather than using a new heat source conventionally, a heat source can be utilized effectively and the production amount of molten steel can be improved economically.

また、溶銑の溶存Cの析出量ΔC質量%は、冷鉄源による溶銑の温度降下と、溶銑を高炉から転炉へ搬送する間の溶銑の温度降下に伴うものであるので、溶銑の溶存Cが大気に放出されないように、冷鉄源の装入量と含有C濃度を、更に細かく決定できる。これにより、更に熱源の有効活用が図れ、溶鋼の生産量を経済的に向上できる。
そして、溶銑のC濃度の希釈量ΔC質量%と、溶銑の溶存Cの析出量ΔC質量%を、それぞれ式を用いて求める場合、溶銑容器内に装入する冷鉄源の種類、及びその装入量の決定作業が容易であり、作業性が良好になる。
Also, precipitation amount [Delta] C 2 wt% of dissolved C in the molten iron, the temperature drop of the molten iron by the cold iron source, since those with temperature drop hot metal while conveying the hot metal from the blast furnace to the converter, the hot metal dissolved The amount of cold iron source and the concentration of contained C can be determined more finely so that C is not released into the atmosphere. As a result, the heat source can be used more effectively, and the production amount of molten steel can be improved economically.
The dilution amount and [Delta] C 1 mass% of C concentration of the molten iron, when the deposition amount [Delta] C 2 wt% of dissolved C in the molten iron obtained using each type, the type of cold iron source charged into the hot metal container, and The operation for determining the amount of charging is easy, and the workability is improved.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は冷鉄源の溶銑への装入原単位と冷鉄源の溶銑への溶解前後における溶銑のC濃度の希釈量ΔC及び溶銑の溶存Cの析出量ΔCとの関係を示す説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is the relationship between the deposition amount [Delta] C 2 of dissolved C in the amount of dilution [Delta] C 1 and molten iron C concentration of molten iron before and after dissolution in molten iron instrumentation Nyuhara units and Hiyatetsu source to the hot metal Hiyatetsugen It is explanatory drawing which shows.

本発明の一実施の形態に係る溶銑容器内での冷鉄源溶解方法は、溶銑容器(例えば、トピードカー)内に冷鉄源を装入した後、高炉からの溶銑を受銑して、溶銑に冷鉄源を溶解させる方法であり、炭素飽和状態の溶銑の含有炭素分(以下、炭素をCともいう)が析出して大気へ放出されることなく、その後に行う転炉操業において、熱源として有効活用する方法である。以下、詳しく説明する。 The method for melting a cold iron source in a hot metal container according to an embodiment of the present invention is a method of inserting a cold iron source in a hot metal container (for example, a topped car), receiving hot metal from a blast furnace, In the converter operation to be performed after that, the carbon content (hereinafter, carbon is also referred to as C) deposited in the hot metal in the carbon saturated state is not precipitated and released into the atmosphere. It is a method to effectively use as. This will be described in detail below.

まず、溶銑容器内に予め冷鉄源を前置きした後、高炉から溶銑を受銑する。
この冷鉄源は、例えば、鉄スクラップ、型銑等であり、そのうちの1種類を溶銑容器内に装入する場合は、その含有C濃度が、また、複数種類を装入する場合は、その平均含有C濃度が、溶銑のC濃度未満となるものを使用する。
高炉から受銑した溶銑は、その製造過程により、炭素飽和状態となっている。このため、冷鉄源を、この炭素飽和状態の溶銑に溶解させた場合、溶銑の温度が低下するため、溶銑の飽和C濃度が減少し、大気へ放出されることになる。
First, a cold iron source is placed in advance in the hot metal container, and then the hot metal is received from the blast furnace.
This cold iron source is, for example, iron scrap, mold, etc., when one of them is charged in the hot metal container, its concentration of C is contained, and when plural types are charged, The average C concentration is less than the C concentration of hot metal.
The hot metal received from the blast furnace is saturated with carbon due to its production process. For this reason, when a cold iron source is dissolved in this carbon-saturated hot metal, since the temperature of the hot metal is lowered, the saturated C concentration of the hot metal is reduced and released to the atmosphere.

従って、溶銑の温度降下に伴う溶銑の溶存Cの析出量以上に、溶銑のC濃度を冷鉄源で希釈すれば、溶銑の溶存Cが大気へ放出されることを防止できることが分かる。
即ち、溶銑への冷鉄源の溶解に伴う溶銑のC濃度の希釈量ΔC質量%(以下、単にΔCともいう)が、冷鉄源による溶銑の温度降下に伴う溶銑の溶存Cの析出量ΔC質量%(以下、単にΔCともいう)以上となるように、溶銑容器内に装入する冷鉄源の種類(含有C濃度)とその装入量を決定する。
更に、溶銑容器に受銑された溶銑は、高炉から転炉へ搬送される間に、溶銑の温度降下を招くため、この温度降下による溶銑の溶存Cの析出量が、上記した溶銑の溶存Cの析出量ΔC質量%に含まれることが好ましい。
Therefore, it can be understood that if the C concentration of the hot metal is diluted with the cold iron source to be more than the precipitation amount of the hot metal dissolved C accompanying the temperature drop of the hot metal, the hot metal dissolved C can be prevented from being released into the atmosphere.
That is, the amount of dilution C of the hot metal C accompanying the dissolution of the cold iron source in the hot metal 1 % by mass (hereinafter also simply referred to as ΔC 1 ) is the precipitation of dissolved C in the hot metal accompanying the temperature drop of the hot metal due to the cold iron source. The type (contained C concentration) of the cold iron source to be charged in the hot metal container and its charging amount are determined so that the amount becomes ΔC 2 mass% (hereinafter also simply referred to as “ΔC 2 ”) or more.
Furthermore, since the hot metal received in the hot metal vessel causes a temperature drop of the hot metal while it is transported from the blast furnace to the converter, the amount of dissolved C in the hot metal caused by this temperature drop is the above-described dissolved C of hot metal. It is preferable to be contained in the precipitation amount ΔC of 2 mass%.

なお、溶銑のC濃度の希釈量ΔC質量%と、溶銑の溶存Cの析出量ΔC質量%は、それぞれ以下の式で求めることが可能である。
ΔC=A−(W×A+W×A)/(W+W) ・・・(1)
ΔC=f(ΔT1)+f(ΔT2) ・・・(2)
ここで、Aは溶銑のC濃度(質量%)、Aは冷鉄源の平均のC濃度(質量%)、Wは溶銑量(質量)、Wは冷鉄源量(質量)、f(ΔT1)とf(ΔT2)はΔT1とΔT2の関数(例えば、係数が2.54×0.0001)、ΔT1は冷鉄源1トンあたりの溶銑の温度降下(℃)、ΔT2は高炉から転炉へ搬送する間の溶銑の温度降下(℃)である。
In addition, the dilution amount ΔC 1 mass% of the hot metal C concentration and the precipitation amount ΔC 2 mass% of dissolved hot metal C can be obtained by the following equations, respectively.
ΔC 1 = A 1 − (W 1 × A 1 + W 2 × A 2 ) / (W 1 + W 2 ) (1)
ΔC 2 = f (ΔT1) + f (ΔT2) (2)
Here, A 1 is the C concentration (mass%) of hot metal, A 2 is the average C concentration (mass%) of the cold iron source, W 1 is the amount of hot metal (mass), and W 2 is the amount of cold iron source (mass). , F (ΔT1) and f (ΔT2) are functions of ΔT1 and ΔT2 (for example, the coefficient is 2.54 × 0.0001), ΔT1 is a temperature drop (° C.) of hot metal per ton of cold iron source, and ΔT2 is a blast furnace This is the temperature drop (° C) of the hot metal during the transfer from the furnace to the converter.

ここで、上記した(1)式、(2)式を使用し、溶銑容器内に装入する冷鉄源の含有C濃度ごとに、冷鉄源の装入量と冷鉄源による溶銑の温度降下に伴う溶銑の溶存Cの析出量との関係を算出した結果の一例について、図1を参照しながら説明する。
溶銑のC濃度の希釈量ΔC質量%の算出に際しては、溶銑の溶存C濃度を4.7質量%とし、含有C濃度が1質量%(細実線)、2質量%(点線)、3質量%(一点鎖線)、及び4質量%(二点鎖線)の各冷鉄源の装入量を、それぞれ溶銑1トンあたり0を超え30kg以下の範囲で変化させた。また、溶銑の溶存Cの析出量ΔC質量%の算出に際しては、(ΔT1+ΔT2)×2.54×0.0001、冷鉄源による溶銑の温度降下を溶銑1トンあたり0.9(℃/kg)、溶銑を高炉から転炉へ搬送する間の溶銑の温度降下を150℃とし、冷鉄源の装入量を、溶銑1トンあたり0を超え30kg以下の範囲で変化させた(太実線)。
これにより、図1に示す結果が得られた。
Here, using the above-mentioned formulas (1) and (2), the amount of cold iron source charged and the temperature of the hot metal by the cold iron source for each C concentration of the cold iron source charged in the hot metal container An example of the result of calculating the relationship with the amount of deposited C of hot metal accompanying the descent will be described with reference to FIG.
When calculating the dilution amount ΔC 1 % by mass of the hot metal C concentration, the dissolved C concentration of the hot metal is 4.7% by mass, and the contained C concentration is 1% by mass (thin solid line), 2% by mass (dotted line), 3% by mass % (One-dot chain line) and 4% by mass (two-dot chain line) of the respective cold iron sources were varied in the range of more than 0 and 30 kg or less per ton of hot metal. Further, when calculating the precipitation amount ΔC 2 mass% of the molten C in the hot metal, (ΔT1 + ΔT2) × 2.54 × 0.0001, the temperature drop of the hot metal due to the cold iron source was 0.9 (° C./kg/ton ), The temperature drop of the hot metal while conveying the hot metal from the blast furnace to the converter was set to 150 ° C, and the charging amount of the cold iron source was changed in the range of more than 0 and 30 kg or less per ton of hot metal (thick solid line) .
Thereby, the result shown in FIG. 1 was obtained.

この図1において、前記したΔCを示す各線がΔCを示す線以上となるように、溶銑容器内に装入する冷鉄源の装入量及びC濃度のいずれか一方又は双方を決定する。
具体的には、図1において、例えば、冷鉄源を溶銑1トンあたり20kg溶解させようとするならば、前記したΔCがΔC以上となる含有C濃度が1質量%と2質量%の冷鉄源を、溶銑容器内に装入すれば、炭素の大気への放出が抑制、更には防止できることが分かる。なお、冷鉄源の装入量とC濃度の決定に際しては、図1を使用することなく、演算手段により、ΔCとΔCをそれぞれ算出し、その数値比較を行ってもよい。
このように、冷鉄源が装入され、更に溶銑が受銑された溶銑容器を、転炉へ搬送し、引き続き転炉操業を行って、溶鋼を製造する。
In FIG. 1, one or both of the charged amount and C concentration of the cold iron source charged in the hot metal vessel is determined so that each line indicating ΔC 1 is equal to or greater than the line indicating ΔC 2. .
Specifically, in FIG. 1, for example, if it is intended to dissolve a cold iron source by 20 kg per ton of hot metal, the concentration of contained C at which ΔC 1 is equal to or greater than ΔC 2 is 1% by mass and 2% by mass. It can be seen that if the cold iron source is charged into the hot metal vessel, the release of carbon into the atmosphere can be suppressed and further prevented. In determining the charging amount of the cold iron source and the C concentration, ΔC 1 and ΔC 2 may be calculated by the calculation means without using FIG. 1, and the numerical comparison may be performed.
In this way, the molten iron container in which the cold iron source is charged and the molten iron is received is transported to the converter, and the converter is continuously operated to produce molten steel.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、溶銑容器内に、炭素量が0.1〜4.5質量%の冷鉄源(ここでは、鉄スクラップを使用)を5〜50トン前置きした後、高炉から、炭素量が4.5〜4.8質量%の溶銑を450〜500トン受銑して、試験を行った。この試験条件と、各試験条件から算出されたΔCとΔCと、その試験結果を、表1にそれぞれ示す。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, a cold iron source (here, using iron scrap) having a carbon content of 0.1 to 4.5% by mass in a hot metal vessel is placed in front of 5 to 50 tons, and then the carbon content is 4. The test was conducted by receiving 450 to 500 tons of hot metal of 5 to 4.8% by mass. Table 1 shows the test conditions, ΔC 1 and ΔC 2 calculated from the test conditions, and the test results.

Figure 0005315764
Figure 0005315764

なお、表1に示す溶銑のC濃度の希釈量ΔCは、表1に示す溶銑の重量及び炭素量と冷鉄源の重量及び炭素量を使用し、前記した式(1)により求めた。この溶銑の炭素量は、出銑時と搬送後の溶銑の炭素濃度を化学分析して測定し、この差分より析出した炭素量を計算することで求めている。
また、溶銑の溶存Cの析出量ΔCは、表1に示す冷鉄源起因と搬送起因の溶銑温度降下量を使用し、前記した式(2)、具体的には{(冷鉄源起因の溶銑温度降下量)+(搬送起因の溶銑温度降下量)}×2.54×0.0001により求めた。この溶銑温度降下量は、過去の操業実績より求めた値である。また、2.54×0.0001は、溶銑温度の降下に伴う溶存炭素の析出量(飽和炭素の変化量)に基づく値である。
そして、試験結果は、溶銑への冷鉄源の溶解に際し、新たな熱源を使用する必要があったか否かにより判定した。
The dilution amount ΔC 1 of the hot metal C concentration shown in Table 1 was obtained by the above-described formula (1) using the weight and carbon amount of the hot metal and the weight and carbon amount of the cold iron source shown in Table 1. The amount of carbon in the hot metal is obtained by chemical analysis of the carbon concentration of the hot metal during and after feeding and by calculating the amount of precipitated carbon from this difference.
Moreover, the precipitation amount ΔC 2 of the dissolved C in the hot metal uses the amount of temperature drop of the hot metal caused by the cold iron source and the conveyance shown in Table 1, and the above formula (2), specifically {(because of the cold iron source) Of molten iron temperature) + (amount of molten iron temperature decreased due to conveyance)} × 2.54 × 0.0001. This hot metal temperature drop is a value obtained from past operating results. Further, 2.54 × 0.0001 is a value based on the amount of dissolved carbon deposited (amount of change in saturated carbon) accompanying a decrease in hot metal temperature.
The test result was determined by whether or not a new heat source had to be used when the cold iron source was dissolved in the hot metal.

表1に示す実施例1〜10は、溶銑のC濃度の希釈量ΔCが、溶銑の溶存Cの析出量ΔC以上(ΔC−ΔC≧0)であり、新たな熱源を使用する必要がなく、試験結果も良好であった(○)。
一方、比較例1〜5は、冷鉄源の炭素量が高く、溶銑のC濃度の希釈量ΔCが、溶銑の溶存Cの析出量ΔC未満(ΔC−ΔC<0)であり、新たな熱源を使用することなく、溶銑へ冷鉄源を溶解させることができなかった(×)。
以上の結果から、本発明の溶銑容器内での冷鉄源溶解方法を使用することで、新たな熱源を使用することなく、従来よりも多くの冷鉄源を溶銑に溶解させることができ、溶鋼の生産量を経済的に向上できることを確認できた。
In Examples 1 to 10 shown in Table 1, the dilution amount ΔC 1 of the hot metal C concentration is equal to or more than the precipitation amount ΔC 2 of the hot metal dissolved C (ΔC 1 −ΔC 2 ≧ 0), and a new heat source is used. It was not necessary and the test result was also good (◯).
On the other hand, in Comparative Examples 1 to 5, the carbon content of the cold iron source is high, and the dilution amount ΔC 1 of the hot metal C concentration is less than the precipitation amount ΔC 2 of the dissolved hot metal C (ΔC 1 −ΔC 2 <0). The cold iron source could not be dissolved in the hot metal without using a new heat source (×).
From the above results, by using the cold iron source melting method in the hot metal container of the present invention, it is possible to dissolve more cold iron sources in hot metal than before without using a new heat source, It was confirmed that the production of molten steel can be improved economically.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の溶銑容器内での冷鉄源溶解方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、溶銑のC濃度の希釈量ΔC質量%と、溶銑の溶存Cの析出量ΔC質量%を、それぞれ(1)式、(2)式を使用して求めた場合について説明したが、希釈量ΔC質量%と析出量ΔC質量%が得られるのであれば、これらの式を使用することに限定されるものではない。例えば、(2)式の溶銑の飽和C濃度は、J.Chipmanの式(C%=1.34+f(Δt)×T)を使用してもよく、またFe−C系平衡状態図を用いてもよい。なお、f(Δt)は、前記した溶銑温度の降下に伴う溶存炭素の析出量に基づく値、即ち2.54×0.0001であり、Tは、冷鉄源1トンあたりの溶銑温度降下(℃)である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the cold iron source melting method in the hot metal container of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.
Moreover, in the said embodiment, the dilution amount (DELTA) C 1 mass% of hot metal C density | concentration and the precipitation amount (DELTA) C 2 mass% of dissolved C of hot metal are calculated | required using (1) Formula and (2) Formula, respectively. However, the present invention is not limited to using these equations as long as a dilution amount ΔC of 1 % by mass and a precipitation amount of ΔC of 2 % by mass are obtained. For example, the saturated C concentration of the hot metal in formula (2) is J.P. The Chipman equation (C% = 1.34 + f (Δt) × T 1 ) may be used, and an Fe—C system equilibrium diagram may be used. Note that f (Δt) is a value based on the amount of dissolved carbon deposited as the hot metal temperature decreases, that is, 2.54 × 0.0001, and T 1 is a hot metal temperature drop per ton of cold iron source. (° C).

冷鉄源の溶銑への装入原単位と冷鉄源の溶銑への溶解前後における溶銑のC濃度の希釈量ΔC及び溶銑の溶存Cの析出量ΔCとの関係を示す説明図である。Is a diagram showing the relationship between precipitation amount [Delta] C 2 dilution amount [Delta] C 1 and molten iron of dissolved C in the C concentration in the molten iron before and after dissolution in molten iron instrumentation Nyuhara units and Hiyatetsu source to the hot metal Hiyatetsugen .

Claims (2)

溶銑容器内に冷鉄源を装入した後、高炉からの溶銑を受銑して、該溶銑に前記冷鉄源を溶解させる方法において、
前記溶銑への前記冷鉄源の溶解に伴う前記溶銑のC濃度の希釈量ΔC質量%が、前記冷鉄源による前記溶銑の温度降下と、前記溶銑を前記高炉から転炉へ搬送する間の前記溶銑の温度降下に伴う該溶銑の溶存Cの析出量ΔC質量%以上となるように、前記溶銑容器内に装入する前記冷鉄源の装入量及び含有C濃度のいずれか一方又は双方を決定することを特徴とする溶銑容器内での冷鉄源溶解方法。
In the method of charging the cold iron source in the hot metal container, receiving the hot metal from the blast furnace, and dissolving the cold iron source in the hot metal,
1 % by mass of C concentration of the hot metal accompanying dissolution of the cold iron source in the hot metal is a temperature drop of the hot metal due to the cold iron source, and while the hot metal is transported from the blast furnace to the converter. so that the deposition amount of dissolved C in solution pig iron with temperature drop of the molten iron [Delta] C 2 mass% or more, either one of the charging amount and the content C concentration of the cold iron source charged into the hot metal vessel Alternatively, a method for melting a cold iron source in a hot metal container, wherein both are determined.
請求項記載の溶銑容器内での冷鉄源溶解方法において、前記溶銑のC濃度の希釈量ΔC質量%と、該溶銑の溶存Cの析出量ΔC質量%は、それぞれ以下の式で求めることを特徴とする溶銑容器内での冷鉄源溶解方法。
ΔC=A−(W×A+W×A)/(W+W
ΔC(ΔT1+ΔT2)×2.54×0.0001
ここで、Aは溶銑のC濃度(質量%)、Aは冷鉄源の平均C濃度(質量%)、Wは溶銑量(質量)、Wは冷鉄源量(質量)、ΔT1は冷鉄源1トンあたりの溶銑の温度降下(℃)、ΔT2は高炉から転炉へ搬送する間の溶銑の温度降下(℃)である。
In the cold iron source melting method in the hot metal container according to claim 1 , the amount of dilution C of the hot metal C concentration 1 % by mass and the amount of precipitation C of the hot metal dissolved C 2 % by mass are respectively expressed by the following equations: A method for melting a cold iron source in a hot metal vessel, characterized in that it is obtained.
ΔC 1 = A 1 − (W 1 × A 1 + W 2 × A 2 ) / (W 1 + W 2 )
ΔC 2 = (ΔT1 + ΔT2) × 2.54 × 0.0001
Here, A 1 is the C concentration (mass%) of hot metal, A 2 is the average C concentration (mass%) of the cold iron source, W 1 is the amount of hot metal (mass), W 2 is the amount of cold iron source (mass) , the delta T1 temperature drop of the molten iron per Hiyatetsugen 1 t (° C.), delta] T2 is the temperature drop of the molten iron during transporting from the blast to the converter (° C.).
JP2008105960A 2008-04-15 2008-04-15 Cold iron source melting method in hot metal container Active JP5315764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105960A JP5315764B2 (en) 2008-04-15 2008-04-15 Cold iron source melting method in hot metal container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105960A JP5315764B2 (en) 2008-04-15 2008-04-15 Cold iron source melting method in hot metal container

Publications (2)

Publication Number Publication Date
JP2009256716A JP2009256716A (en) 2009-11-05
JP5315764B2 true JP5315764B2 (en) 2013-10-16

Family

ID=41384498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105960A Active JP5315764B2 (en) 2008-04-15 2008-04-15 Cold iron source melting method in hot metal container

Country Status (1)

Country Link
JP (1) JP5315764B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061748B2 (en) * 2013-03-27 2017-01-18 株式会社神戸製鋼所 Method of charging cold iron source
WO2024018783A1 (en) * 2022-07-19 2024-01-25 Jfeスチール株式会社 Cold iron source solubility estimation device, cold iron source solubility estimation method, and refining treatment method for molten iron

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979911A (en) * 1972-12-09 1974-08-01
JPH0689393B2 (en) * 1990-04-16 1994-11-09 新日本製鐵株式会社 Method for estimating molten iron C concentration in iron-containing cold material melting method
JPH05148525A (en) * 1991-11-22 1993-06-15 Nippon Steel Corp Treatment of molten iron
JP4772477B2 (en) * 2005-11-25 2011-09-14 新日本製鐵株式会社 Steel making

Also Published As

Publication number Publication date
JP2009256716A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
TW201435089A (en) Converter steelmaking method
JP5315764B2 (en) Cold iron source melting method in hot metal container
JP5807720B2 (en) Hot metal refining method
JP6816777B2 (en) Slag forming suppression method and converter refining method
JP4464343B2 (en) Aluminum killed steel manufacturing method
TWI667350B (en) Pretreatment method of lyophilization and manufacturing method of extremely low phosphorus steel
JP2013127089A (en) Method for pretreating molten iron
JP6897274B2 (en) Pretreatment method of hot metal
KR101185240B1 (en) Method of desulfuration of return molten steel using slag made in KR desulfuration process
JP4440202B2 (en) How to put cold iron into hot metal ladle
JP5365464B2 (en) Steel refining method using electric furnace
JP2006283164A (en) Method for desulfurize-treating chromium-contained molten iron
JP2011184753A (en) Method for desiliconizing molten iron
CN113056566A (en) Carbon increasing material and carbon increasing method using same
JP5434205B2 (en) How to reuse converter slag
JP4639943B2 (en) Hot metal desulfurization method
JP3735211B2 (en) Converter refining method for adjusting the silicon content
JP3918695B2 (en) Method for producing ultra-low sulfur steel
JP5522202B2 (en) How to remove hot metal
JP4701752B2 (en) Hot metal pretreatment method
JP2017145435A (en) Method for desiliconizing molten iron
CN116949239A (en) Converter smelting method for replacing light burned dolomite with RH gunning mix waste refractory
JP6414097B2 (en) How to reuse molten steel
JP3842714B2 (en) Converter operation method
JP2020105586A (en) Hot slag recycling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R151 Written notification of patent or utility model registration

Ref document number: 5315764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350