WO2024018783A1 - Cold iron source solubility estimation device, cold iron source solubility estimation method, and refining treatment method for molten iron - Google Patents

Cold iron source solubility estimation device, cold iron source solubility estimation method, and refining treatment method for molten iron Download PDF

Info

Publication number
WO2024018783A1
WO2024018783A1 PCT/JP2023/021995 JP2023021995W WO2024018783A1 WO 2024018783 A1 WO2024018783 A1 WO 2024018783A1 JP 2023021995 W JP2023021995 W JP 2023021995W WO 2024018783 A1 WO2024018783 A1 WO 2024018783A1
Authority
WO
WIPO (PCT)
Prior art keywords
dissolution rate
iron source
cold iron
carbon concentration
cold
Prior art date
Application number
PCT/JP2023/021995
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 服部
玲 横森
太 小笠原
涼 川畑
直樹 菊池
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024018783A1 publication Critical patent/WO2024018783A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals

Definitions

  • the present invention provides a cold iron source dissolution rate estimating device, a cold iron source dissolution rate estimation method, and a molten iron refining method using the same for estimating the dissolution rate of a cold iron source in a molten iron refining process using a cold iron source as a raw material. Regarding.
  • the amount of CO2 generated when using a cold iron source is approximately 500 kg per ton of crude steel (excluding the amount of CO2 generated during reduced iron production), and compared to the blast furnace method, the amount of CO2 generated per ton of crude steel is approximately 500 kg. Emissions can be reduced to about 1/4. Therefore, in order to reduce CO2 emissions in the steel industry, it can be said that it is effective to reduce the amount of blast furnace pig iron used by reducing the hot metal content ratio in converters and to increase the amount of cold iron source used by introducing electric furnaces.
  • the main method for determining the presence or absence of unmelted cold iron source is to use sensing to determine the timing of complete melting of the cold iron source.
  • Many methods for determining the timing of complete melting of a cold iron source are targeted at electric furnaces, and these methods monitor temperature, pressure, vibration, light, etc. inside the furnace and determine whether the cold iron source is completely melted based on changes in the temperature, pressure, vibration, light, etc. Determine the timing.
  • Patent Document 1 the refractory temperature is measured at multiple points in the thickness direction using a temperature probe embedded in the side wall of the converter body, and the refractory surface temperature (molten iron temperature ) is disclosed.
  • This method focuses on the fact that the temperature rise rate of molten iron increases after the cold iron source in the furnace is completely melted. According to Patent Document 1, it is possible to determine when the cold iron source is completely melted from the temperature change of the molten iron.
  • Non-Patent Documents 1 and 2 According to the dissolution models of cold iron sources disclosed in Non-Patent Documents 1 and 2, by assuming the heat transfer coefficient between molten iron and cold iron source and the mass transfer coefficient of molten iron, it is possible to accurately predict the melting behavior of cold iron source. It is said to be predictable.
  • To apply the cold iron source dissolution model to actual operations it is necessary to continuously or intermittently input information such as molten iron temperature and molten iron carbon concentration obtained by sensing etc.
  • Patent Document 1 does not mention the threshold value of the temperature rise rate of molten iron, which is the standard for determining the complete melting timing of a cold iron source, and the determination is influenced by the subjectivity of the observer.
  • the temperature transition of the molten iron changes due to factors such as changes in the top and bottom blowing flow rates, so there is a great concern that misjudgments or judgment delays may occur.
  • heat transfer and carburization transfer of mass from molten iron to the surface layer of the cold iron source
  • the carbon concentration of the molten iron does not exceed the carbon concentration of the cold iron source, or the presence of solidification elements. Since carburization does not occur below and the driving force for melting the cold iron source is only heat transfer, the melting rate of the cold iron source can be calculated by considering the heat balance near the molten iron-cold iron source interface. On the other hand, if the molten iron carbon concentration exceeds the carbon concentration of the cold iron source, carburization will occur after the solidification elements are remelted, so when calculating the dissolution rate of the cold iron source, the carbon mass balance should be used instead of the heat balance near the interface. need to be considered. In this way, it is common to change the dissolution rate calculation formula depending on the driving force for melting the cold iron source, but in reality, the dissolution mechanism cannot be clearly distinguished.
  • Non-Patent Documents 1 and 2 accuracy is ensured by using heat transfer coefficients and mass transfer coefficients as fitting parameters.
  • the values of the fitting parameters are disclosed only for specific molten iron and cold iron source conditions mentioned in the literature, and there is a problem in that they lack general versatility.
  • the present invention was made in view of these problems, and provides a cold iron source dissolution rate estimation device, a cold iron source dissolution rate estimation method, and a cold iron source dissolution rate estimation method that can calculate the dissolution rate of a cold iron source using highly versatile parameters.
  • the purpose of the present invention is to provide a method for refining molten iron using the method.
  • a cold iron source melting rate estimating device for estimating the melting rate of the cold iron source in a molten iron refining process using a cold iron source as a raw material, which includes information on the molten iron and the cold iron source.
  • an acquisition unit that acquires information
  • a calculation unit that uses the furnace information to calculate an interfacial carbon concentration between the cold iron source and the molten iron, a dissolution rate of the cold iron source, and a dissolution rate of the cold iron source
  • an output unit that outputs the dissolution rate, and when the interfacial carbon concentration satisfies at least one of the following formulas (1) and (2), the calculation unit outputs the dissolution rate calculated one step before.
  • the calculation unit uses the interfacial carbon concentration to calculate the dissolution rate of the cold iron source.
  • a cold iron source dissolution rate estimating device that calculates a first dissolution rate or the second dissolution rate, and sets the calculated first dissolution rate or the second dissolution rate as the dissolution rate of the cold iron source.
  • C is the molten iron carbon concentration (mass%)
  • C i is the interfacial carbon concentration (mass%)
  • C i,t-1 is the molten iron carbon concentration (mass%).
  • the calculation unit estimates the dissolution rate of the cold iron source from time to time by repeatedly calculating the interfacial carbon concentration, the dissolution rate of the cold iron source, and the dissolution rate of the cold iron source. , the cold iron source dissolution rate estimation device according to [1] or [2]. [4] Estimate the dissolution rate of the cold iron source at the end of the refining process using the cold iron source dissolution rate estimating device according to any one of [1] to [3], and estimate the dissolution rate of the cold iron source at the end of the refining process.
  • a method for refining molten iron includes performing at least one of adding a heat raising material and extending the molten iron treatment.
  • a cold iron source melting rate estimation method for estimating the melting rate of the cold iron source in a molten iron refining process using the cold iron source as a raw material comprising: a method for estimating the melting rate of the cold iron source; an acquisition step of acquiring information; a calculation step of calculating an interfacial carbon concentration between the cold iron source and the molten iron, a dissolution rate of the cold iron source, and a dissolution rate of the cold iron source using the furnace information; an output step of outputting the dissolution rate, and when the interfacial carbon concentration satisfies at least one of the following formulas (1) and (2), the calculation step Using the interfacial carbon concentration, calculate the first dissolution rate from the heat transfer equation and the second dissolution rate from the carbon material balance equation, and divide
  • a cold iron source dissolution rate estimation method comprising calculating a first dissolution rate or the second dissolution rate, and setting the calculated first dissolution rate or the second dissolution rate as the dissolution rate of the cold iron source.
  • C is the molten iron carbon concentration (mass%)
  • C i is the interfacial carbon concentration (mass%)
  • C i ,t-1 is the molten iron carbon concentration (mass%)
  • C i,t-1 is the carbon concentration of the molten iron (mass%).
  • the method for estimating a cold iron source dissolution rate according to [5], which specifies an apportionment ratio for apportioning the second dissolution rate. [7]
  • the interfacial carbon concentration, the dissolution rate of the cold iron source, and the dissolution rate of the cold iron source are repeatedly calculated to estimate the dissolution rate of the cold iron source from time to time.
  • the cold iron source dissolution rate estimation method according to [5] or [6].
  • a method for refining molten iron includes performing at least one of adding a heat raising material and extending the molten iron treatment.
  • the dissolution rate of a cold iron source can be calculated using an apportionment ratio that can be determined more easily than fitting parameters, so the method for estimating the dissolution rate of a cold iron source according to the present invention is more versatile than before. It can be said that this is a method for calculating the dissolution rate of a cold iron source with a high
  • FIG. 1 is a schematic diagram of a converter type refining furnace equipped with a cold iron source melting rate estimation device according to the present invention.
  • FIG. 2 is a graph showing the proportional distribution ratio for hot metal temperatures of 1450 to 1480° C. in Table 1.
  • FIG. 3 is a flowchart illustrating the flow of a cold iron source dissolution rate estimation method.
  • FIG. 4 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 1.
  • FIG. 5 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 2.
  • FIG. 6 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 3.
  • FIG. 1 is a schematic diagram of a converter type refining furnace equipped with a cold iron source melting rate estimation device according to the present invention.
  • reference numeral 10 is a converter-type refining furnace
  • reference numeral 20 is a converter-type refining furnace control device
  • reference numeral 50 is an operator.
  • the converter type refining furnace control device 20 includes a process computer 22, an operation control computer 24, and a cold iron source melting rate estimation device 30.
  • the converter type refining furnace 10 iron scrap is charged into the furnace as a cold iron source using a scrap chute, and then hot metal 11 is charged into the furnace using a charging pot.
  • Oxygen gas (industrial pure oxygen) is supplied from a top blowing lance 14 to the hot metal 11 charged in the furnace, and stirring gas 13 is supplied from a tuyere (not shown) installed at the bottom of the furnace. It is configured to be blown into the hot metal 11 in the furnace.
  • Hot metal 11 charged into the furnace is oxidized and refined by oxygen gas supplied from top blowing lance 14 while being stirred by stirring gas 13 .
  • preliminary dephosphorization treatment of the hot metal 11 and decarburization treatment of the hot metal 11 (hereinafter also referred to as "decarburization refining”) are generally performed as refining treatment methods.
  • iron scrap is first charged as a source of cold iron into the converter-type smelting furnace 10 using a scrap chute (not shown), and then a charging pot (not shown) is charged into the converter type smelting furnace 10.
  • Hot metal 11 is charged into the furnace using the method. After charging the hot metal 11, oxygen gas is supplied from the top blowing lance 14, nitrogen gas etc. is supplied as the stirring gas 13 from the tuyeres at the bottom of the furnace, and auxiliary raw materials such as heating materials and solvents are added to the hot metal. No. 11 is subjected to preliminary dephosphorization treatment.
  • a predetermined value for example, 0.050% by mass or less
  • the preliminary dephosphorization treatment is finished. After the preliminary dephosphorization treatment, dephosphorized hot metal is produced in the furnace.
  • oxygen gas is supplied from the top blowing lance 14, and stirring gas 13 is supplied from the tuyere at the bottom of the furnace, and auxiliary materials such as coolant, heating material, solvent, etc. is added at appropriate times to decarburize the hot metal 11.
  • the decarburization treatment of the hot metal 11 proceeds by a decarburization reaction (C+O ⁇ CO) between oxygen gas and carbon in the molten iron, and the carbon concentration of the molten iron in the furnace reaches a predetermined value (for example, 0.05% by mass or less).
  • the decarburization process is carried out until the After decarburization, decarburized molten steel is produced in the furnace.
  • "molten iron” is either hot metal or molten steel.
  • the hot metal in the furnace changes into molten steel as the decarburization treatment progresses. Since it is difficult to distinguish and display the molten metal in the furnace during the decarburization process as molten pig iron and molten steel, molten pig iron and molten steel are collectively referred to as "molten iron.”
  • the process computer 22 determines the hot metal temperature and hot metal component concentration at the end of the preliminary dephosphorization process, the amount of oxygen that should be supplied in order to set the molten iron temperature and the molten iron component concentration at the end of the decarburization process to target values, and This is a device that calculates the necessity and amount of input of coolant or heating material.
  • the operation control computer 24 determines the hot metal temperature, hot metal component concentration, and decarburization at the end of the preliminary dephosphorization treatment based on the amount of oxygen calculated by the process computer 22 and the input amount of the coolant or heating material. This is a device that controls operating conditions (oxygen gas supply amount, lance height, stirring gas supply amount, auxiliary material input amount, etc.) so that the molten steel temperature and molten steel component concentration at the end of treatment reach target values. Signals from the operational control computer 24 are fed back to the process computer 22 in order to control the refining even more precisely.
  • the cold iron source dissolution rate estimating device 30 will be used to estimate hot metal 11 using a converter type refining furnace 10 that uses iron scrap having a lower carbon concentration than the hot metal 11 as a cold iron source. This will be explained using an example in which it is applied to preliminary dephosphorization treatment.
  • the cold iron source dissolution rate estimating device 30 is applicable not only to the converter type smelting furnace 10 but also to an electric furnace type smelting furnace, and also to decarburization treatment of the hot metal 11.
  • the cold iron source melting rate estimation device 30 is a calculation device that constitutes a part of the converter type smelting furnace control device 20.
  • the cold iron source dissolution rate estimating device 30 includes a control section 32, a storage section 34, and an output section 40.
  • the control unit 32 is, for example, a CPU or the like, and causes the control unit 32 to function as an acquisition unit 36 and a calculation unit 38 by executing a program read from the storage unit 34 .
  • the output unit 40 is, for example, an LCD or CRT display.
  • the storage unit 34 is, for example, an information recording medium such as an update-recordable flash memory, a built-in hard disk or a hard disk connected via a data communication terminal, a memory card, and a read/write device thereof.
  • the storage unit 34 records programs for executing the functions of the acquisition unit 36 and the calculation unit 38, as well as calculation formulas, data, etc. used in the programs.
  • the acquisition unit 36 acquires in-furnace information through information input by the operator 50 or from an in-furnace sensor provided in the converter type refining furnace 10 via the process computer 22 .
  • the furnace information includes information on the hot metal 11 and iron scrap. Specifically, the furnace information includes the charging amount of hot metal 11 charged into the furnace, the initial carbon concentration of hot metal 11, the charging amount of iron scrap, the initial carbon concentration of iron scrap, the density of iron scrap, and the iron This includes the latent heat of melting of scrap.
  • the acquisition unit 36 also acquires the momentary temperature of the hot metal 11, the bottom blowing flow rate of the stirring gas 13, and the furnace pressure as in-furnace information.
  • the acquisition unit 36 outputs the acquired furnace information to the calculation unit 38.
  • the calculation unit 38 uses the in-furnace information to calculate the interfacial carbon concentration between the iron scrap charged into the converter type refining furnace 10 and the hot metal 11, the iron scrap dissolution rate, and the iron scrap dissolution rate.
  • the calculation unit 38 first calculates the interfacial carbon concentration between the hot metal 11 and the iron scrap, and if the calculated interfacial carbon concentration satisfies at least one of the following equations (1) and (2), the calculation unit 38 calculates the interfacial carbon concentration between the hot metal 11 and the iron scrap.
  • the first dissolution rate is calculated from the heat transfer equation
  • the second dissolution rate is calculated from the carbon mass balance equation
  • the first dissolution rate and the second dissolution rate are calculated.
  • the dissolution rate of iron scrap is calculated by proportionally dividing the dissolution rate. Note that if at least one of the following equations (1) and (2) is satisfied in the calculation one step before, the interfacial carbon concentration calculated one step before is used.
  • C is the carbon concentration (mass%) of the hot metal 11
  • C i is the interfacial carbon concentration (mass%)
  • C i,t-1 is calculated one step before. is the interfacial carbon concentration (mass%).
  • the subscript t-1 means a value calculated one step before.
  • the calculation unit 38 calculates the dissolution rate of iron scrap by proportionally dividing the first dissolution rate calculated from the heat balance formula and the second dissolution rate derived from the carbon material balance using the proportional division ratio.
  • the values of the proportion ratio when the carbon concentration of the cold iron source is 0.05% by mass are shown in Table 1 below.
  • a table of proportional division ratios for proportionally dividing the first dissolution rate and the second dissolution rate shown in Table 1 is created in advance for each carbon concentration of the cold iron source and stored in the storage unit 34.
  • FIG. 2 is a graph showing the proportional distribution ratio for hot metal temperatures of 1450 to 1480°C in Table 1.
  • the horizontal axis is the molten iron carbon concentration (mass %)
  • the vertical axis is the proportion ratio (-).
  • the proportional distribution ratio for each molten iron carbon concentration is plotted on a predetermined curve. Therefore, for example, by determining the proportional distribution ratio of three different molten iron carbon concentrations and determining the curve (broken line in FIG. 2) using the three points, it is possible to determine the proportional distribution ratio of other molten iron carbon concentrations.
  • the cold iron source dissolution rate estimation method according to the present embodiment using the apportionment ratio is a cold iron source dissolution rate estimation method that is more versatile than the conventional method. This can be said to be a method for calculating the dissolution rate of iron sources.
  • the calculation unit 38 reads out the table of apportionment ratios corresponding to the carbon concentration of the iron scrap from the storage unit 34, and specifies the values in the table corresponding to the temperature of the hot metal 11 and the carbon concentration of the molten iron as the apportionment ratio. That is, the calculation unit 38 specifies the proportional distribution ratio based on the molten iron temperature, the molten iron carbon concentration, and the carbon concentration of the cold iron source.
  • the calculation unit 38 calculates the dissolution rate of iron scrap by proportionally dividing the first dissolution rate and the second dissolution rate using the specified proportion ratio. On the other hand, when the calculated interfacial carbon concentration does not satisfy either of the above equations (1) and (2), the calculation unit 38 calculates the first dissolution rate or the second dissolution rate using the calculated interfacial carbon concentration. Calculate. In this case, since the first dissolution rate and the second dissolution rate are the same dissolution rate, the first dissolution rate or the second dissolution rate is taken as the dissolution rate of the iron scrap.
  • the calculation unit 38 uses the calculated iron scrap dissolution rate to calculate the iron scrap dissolution rate. In this way, the calculation unit 38 calculates the melting rate of iron scrap using the furnace information.
  • the calculation unit 38 outputs the calculated iron scrap dissolution rate to the output unit 40.
  • the output unit 40 displays the calculation result of the melting rate of iron scrap so that the operator 50 who operates the converter type refining furnace 10 can visually check the result. Thereby, the operator 50 can confirm how much iron scrap is being melted during processing of the charge by looking at the display on the output unit 40, and can perform operations according to the melting rate of the iron scrap. For example, the dissolution rate of iron scrap at the end of the preliminary dephosphorization treatment of hot metal 11 is estimated, and if the undissolved rate of iron scrap calculated from the dissolution rate exceeds 5% by mass, the addition of a heating material It is preferable to carry out at least one operation of molten iron preliminary dephosphorization treatment extension. This makes it possible to reduce the amount of iron scrap that remains unmelted at the end of the preliminary dephosphorization process.
  • W is the mass (ton) of hot metal 11 in the furnace
  • W 0 is the charging amount (ton) of hot metal 11
  • W SO is the charging amount (ton) of iron scrap
  • S m is the dissolution rate (mass %) of iron scrap
  • C is the carbon concentration (mass %) of hot metal 11
  • C0 is the initial carbon concentration (mass %) of hot metal 11
  • C S0 is the initial carbon concentration of iron scrap (mass %).
  • Carbon concentration (mass%) is the mass (ton) of hot metal 11 in the furnace
  • W 0 is the charging amount (ton) of hot metal 11
  • W SO is the charging amount (ton) of iron scrap
  • S m is the dissolution rate (mass %) of iron scrap
  • C is the carbon concentration (mass %) of hot metal 11
  • C0 is the initial carbon concentration (mass %) of hot metal 11
  • C S0 is the initial carbon concentration of iron scrap (mass %). Carbon concentration (mass%).
  • the calculated carbon concentration C of molten steel deviates from the actual carbon concentration of molten steel at the final stage of treatment where decarburization progresses. It is expected that. However, since the molten steel temperature is high at the end of the decarburization process, the influence of the carbon concentration C of the molten steel on the dissolution rate of iron scrap is small, so the dissolution rate S m of the cold iron source does not deviate greatly.
  • the physical property values of the hot metal 11 are calculated using the following formulas (5) to (12).
  • is the density of the hot metal 11 (ton/m 3 )
  • ⁇ B is the bottom-blowing stirring power (W/ton)
  • Q B is the bottom-blowing flow rate (Nm 3 /min)
  • T is the The temperature of the hot metal 11 (°C)
  • g is the gravitational acceleration (m/s 2 )
  • L is the bath depth (m)
  • P is the furnace pressure (Pa)
  • h is the hot metal-iron scrap It is the interfacial heat transfer coefficient (W/(m 2 ⁇ K))
  • D is the diffusion coefficient of the hot metal 11 (m 2 /s).
  • Equation (5) is an empirical formula obtained from the scrap melting behavior in a top-blown 310 ton converter to a bottom-blown 240 ton converter described in Publication 1 below.
  • Equation (10) is an equation derived from the Chilton-Colburn similarity law. Note that (-) means dimensionless.
  • interface carbon concentration The carbon concentration at the interface between hot metal and scrap iron
  • interface temperature the temperature at the interface between molten iron and cold iron source
  • T i is the interface temperature (°C)
  • T S is the cold iron source temperature (°C)
  • ⁇ S is the density of iron scrap (ton/m 3 )
  • Hs is the latent heat of melting of iron scrap.
  • MJ/ton v is the dissolution rate (mm/s) of iron scrap (v>0: melting
  • v ⁇ 0 growth (solidification shell formation)
  • ⁇ i is the heat of the hot metal-iron scrap interface.
  • Conductivity (W/(m ⁇ K)) hot metal side thermal conductivity at interface).
  • T L,0 is the liquidus temperature (°C) of pure iron (carbon concentration 0 mass%)
  • a is It is a coefficient.
  • the coefficient of the above equation (15) and the liquidus temperature of pure iron are calculated using the following equations (16) and (17).
  • the coefficients calculated by the following equations (16) and (17) and the liquidus temperature of pure iron are used to calculate C i in the next step.
  • interface heat transfer coefficient the heat transfer coefficient of the hot metal-iron scrap interface
  • interface heat transfer coefficient the heat transfer coefficient of the hot metal-iron scrap interface
  • the interfacial carbon concentration calculated here satisfies at least one of the following formulas (1) and (2), the interfacial carbon concentration calculated one step before is used instead of the calculated interfacial carbon concentration. , calculate the first dissolution rate from the above equation (13), calculate the second dissolution rate from the above equation (14), and divide the first dissolution rate and the second dissolution rate proportionally. Calculate the dissolution rate of scrap.
  • the calculation unit 38 calculates the dissolution rate of iron scrap by proportionally dividing the first dissolution rate and the second dissolution rate at a specific proportion.
  • equations (13) and (14) it is preferable to use equations (13) and (14) depending on the driving force for iron scrap melting, but in reality, the mechanism of iron scrap melting cannot be clearly distinguished. Therefore, if either equation (13) or equation (14) is used to calculate the dissolution rate of iron scrap, the dissolution rate of iron scrap that matches the actual phenomenon cannot be obtained.
  • the calculation unit 38 specifies the first dissolution rate calculated from equation (13) and the second dissolution rate calculated from equation (14). Calculate the dissolution rate of iron scrap by apportioning it at the proportion of . Specifically, the dissolution rate of iron scrap is calculated using the following equation (19).
  • v S (first dissolution rate) x (1-Z) + (second dissolution rate) x Z... (19)
  • v S is the dissolution rate (m/min) of iron scrap
  • Z is the proportionate ratio (-).
  • the dissolution rate of iron scrap is calculated using the interfacial carbon concentration.
  • the first dissolution rate calculated from equation (13) and the second dissolution rate calculated from equation (14) become equal. Therefore, in this case, the first dissolution rate or the second dissolution rate calculated using the interfacial carbon concentration is the dissolution rate of the iron scrap. In this way, the calculation unit 38 calculates the dissolution rate of iron scrap.
  • the dissolution rate of iron scrap can be calculated using the dissolution rate of iron scrap and the following formula (20).
  • t s0 is the initial thickness (mm) of the iron scrap
  • ⁇ t is the calculation time interval [s].
  • ⁇ S is the thermal diffusivity (m 2 /s) of the iron scrap
  • x is the position in the thickness direction of the iron scrap
  • one unit of x in this embodiment is t S0 /100.
  • subscripts i+1 and i-1 represent the iron scrap temperatures of calculation elements adjacent to the molten iron element side and the iron scrap center side, respectively.
  • the temperature distribution of iron scrap is determined one-dimensionally using the above equation (21). To calculate this equation (21), it is necessary to discretize it as in the above equation (22). Therefore, the temperature distribution of iron scrap obtained from equation (22) becomes a discontinuous temperature distribution for each calculated thickness interval ⁇ x.
  • the thickness interval ⁇ x is set to 1/100 of t S0 , there are 100 calculation elements representing iron scrap at the start of calculation (at the start of melting).
  • One calculation element representing an interface is adjacent to the iron scrap element group, and a calculation element group representing molten iron is adjacent to the opposite side of the interface element.
  • the initial number of molten iron elements is arbitrary, but it is preferably determined based on the allowable calculation cost. As the number of elements increases, the calculation cost increases, but the melting behavior when the solidified shell expands greatly in the initial stage of iron scrap melting can be calculated with higher accuracy.
  • the thickness of all calculation elements is ⁇ x, and the calculation element thickness, the number of interface elements, and the total number of calculation elements are constant during calculation.
  • the number of iron scrap elements and the number of molten iron elements during calculation change depending on the momentary iron scrap melting rate S m determined from the above equation (20). For example, if the melting rate is 2% by mass at a certain time, the number of iron scrap elements at that time is 98, and the number of molten iron elements increases by two.
  • the interface element always exists between the iron scrap element group and the molten iron element group, it moves toward the iron scrap element side by a distance of 2 ⁇ x from the initial position.
  • the melting rate is less than 0 (during solidification shell generation)
  • the iron scrap elements increase and the molten iron elements decrease, so the interfacial elements move toward the molten iron elements.
  • Temperature distribution calculations first determine whether each calculation element corresponds to an iron scrap element, interface element, or molten iron element according to the iron scrap melting rate at that time, and then calculate the temperature distribution for each element as shown below. seek.
  • Iron scrap element Calculated according to equation (22) above. However, the center of the steel scrap is treated as an adiabatic boundary (temperature is equal to that of adjacent elements).
  • Interface element Interface temperature T i calculated from the above equation (15).
  • Molten iron element Molten iron temperature T, and temperature unevenness of the molten iron is not considered.
  • dT S /dx used in equation (13) in the next step is calculated by dividing the temperature difference between the interface temperature Ti and the iron scrap element adjacent to the interface temperature by the thickness ⁇ x of the calculation element.
  • dT S /dx used in equation (13) in the next step obtain the furnace information again and use equations (3) to (21) above to calculate the steel scrap value after the calculation time interval ⁇ t seconds.
  • the dissolution rate may be calculated.
  • thermal diffusivity of iron scrap in the above equations (21) and (22) can be calculated using the following equations (23), (24), and (25).
  • ⁇ S is the thermal conductivity of iron scrap (W/(m ⁇ K))
  • C PS is the specific heat of iron scrap (MJ/(t ⁇ K)).
  • FIG. 3 is a flow diagram illustrating the flow of the cold iron source dissolution rate estimation method.
  • the processing of the cold iron source dissolution rate estimation method according to this embodiment will be explained using FIG. 3.
  • the cold iron source dissolution rate estimation method according to the present embodiment is started, for example, by an instruction from the operator 50 at any time before and during the preliminary dephosphorization treatment of the hot metal 11.
  • the acquisition unit 36 of the cold iron source melting rate estimating device 30 executes the acquisition step and obtains the charging amount of the hot metal 11 charged into the furnace, the initial carbon concentration of the hot metal 11, and the iron scrap loading as furnace information. Information on the hot metal 11 and the iron scrap, such as the input amount, the initial carbon concentration of the iron scrap, the density of the iron scrap, and the latent heat of melting of the iron scrap, is acquired.
  • the acquisition unit 36 acquires the bottom blowing flow rate of the stirring gas 13, the momentary temperature of the hot metal 11, and the furnace pressure as furnace information (step S101). The acquisition unit 36 outputs this in-furnace information to the calculation unit 38.
  • the calculation unit 38 executes the calculation step and calculates the interfacial carbon concentration C i using the furnace information and the above equations (3) to (18) (step S102).
  • the calculation unit 38 replaces the calculated interfacial carbon concentration C i with the one calculated one step earlier.
  • the first dissolution rate and the second dissolution rate are calculated using the interfacial carbon concentration C i,t-1 , and by proportionally dividing the first dissolution rate and the second dissolution rate, the Calculate the dissolution rate.
  • the first dissolution rate or the second dissolution rate is determined using the calculated interfacial carbon concentration C i .
  • the speed is calculated, and the calculated first dissolution rate or second dissolution rate is set as the dissolution rate of the iron scrap (step S103).
  • the calculation unit 38 executes a calculation step and calculates the iron scrap dissolution rate S m using the iron scrap dissolution rate and the above equation (20) (step S104). Further, the calculation unit 38 executes a calculation step and calculates the temperature distribution of the iron scrap using the above equation (21) (step S105).
  • the calculation unit 38 outputs the dissolution rate S m of iron scrap to the output unit 40 .
  • the output unit 40 executes the output step and outputs the dissolution rate S m (step S106).
  • the calculation unit 38 determines whether the calculated iron scrap dissolution rate S m is 100 or more (step S107). If it is determined that the iron scrap melting rate S m is 100 or more (step S107: Yes), the calculation unit 38 concludes that the iron scrap is completely melted and ends this process. On the other hand, if it is determined that the melting rate S m of iron scrap is less than 100 (step S107: No), the calculation unit 38 returns the process to step S101 and again executes the processes of steps S101 to S107 to calculate the Calculate the dissolution rate S of iron scrap after a time interval ⁇ t seconds.
  • the method for estimating the cold iron source dissolution rate according to the present embodiment can be performed at every moment until the iron scrap is completely melted in the preliminary dephosphorization process of the hot metal 11.
  • the dissolution rate S m of iron scrap can be calculated.
  • a square pure iron sample (100 x 100 x 50 mm) imitating a cold iron source (iron scrap) was immersed 80 mm into 500 kg of molten iron produced using a cylindrical atmospheric furnace with an inner diameter of 430 mm.
  • the dissolution rate of a square pure iron sample after a predetermined period of time was estimated using the method for estimating the dissolution rate of a cold iron source based on the morphology.
  • the square pure iron sample was immersed in molten iron for a predetermined period of time, then collected and cooled in air, and the dissolution rate of the square pure iron sample was actually measured using the following equation (26).
  • S p is the dissolution rate (mass %) of the square pure iron sample
  • L S0 and L S are the thicknesses (mm) of the square pure iron sample before and after immersion, respectively.
  • thermocouple In order to measure the molten iron temperature and molten iron carbon concentration, temperature measurement with an immersion thermocouple and collection of molten iron samples for chemical analysis were performed before and after immersing a square pure iron sample in molten iron.
  • Example 1 the dissolution rate of a square pure iron sample was estimated using the cold iron source dissolution rate estimation method according to the present embodiment when the square pure iron sample was preheated to 1200°C and when it was not preheated. did.
  • the conditions of Example 1 are shown in Table 2 below.
  • FIG. 4 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 1.
  • the vertical axis is the dissolution rate (mass %) of the square pure iron sample
  • the horizontal axis is the dissolution time (seconds).
  • each profile shows the dissolution rate estimated by the cold iron source dissolution rate estimation method
  • each plot shows the dissolution rate of a square pure iron sample calculated using the above equation (26) after being collected after immersion and air-cooled. The actual measured value of the ratio (mass%) is shown.
  • Example 2 the dissolution rate of a square pure iron sample when using molten iron whose initial temperature was varied in the range of 1430 to 1610°C was estimated using the cold iron source dissolution rate estimation method according to the present embodiment.
  • the conditions of this Example 2 are shown in Table 3 below.
  • FIG. 5 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 2.
  • the vertical axis is the dissolution rate (mass %) of the square pure iron sample, and the horizontal axis is the dissolution time (seconds).
  • each profile shows the dissolution rate estimated by the cold iron source dissolution rate estimation method, and each plot shows the square pure iron sample recovered after immersion and air-cooled, and calculated using the above equation (26). Measured values of dissolution rate (mass%) are shown.
  • the estimated value of the dissolution rate and the experimental value almost matched under the conditions of Inventive Examples 11 to 16 in which the initial temperature of the molten iron was changed. From this result, it was confirmed that the dissolution rate of a cold iron source can be estimated with high accuracy by using the cold iron source dissolution rate estimation method according to the present embodiment.
  • Example 3 the dissolution rate of the cold iron source is estimated from the first dissolution rate obtained from equation (13) or the second dissolution rate obtained from equation (14), and the first dissolution rate obtained from equation (13).
  • the dissolution rate estimated by estimating the dissolution rate of the cold iron source from the dissolution rate obtained by proportionally dividing the dissolution rate and the second dissolution rate obtained from equation (14) was confirmed.
  • the conditions of this Example 3 are shown in Table 4 below.
  • FIG. 6 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 3.
  • the vertical axis is the dissolution rate (mass %) of the square pure iron sample
  • the horizontal axis is the dissolution time (seconds).
  • the profile shown by the solid line shows the dissolution rate estimated by the cold iron source dissolution rate estimation method
  • the profile shown by the broken line shows the dissolution rate estimated using only equation (13) or equation (14). shows.
  • the circle plot shows the actual value of the dissolution rate (mass %) of the square pure iron sample, which was collected after immersion, air-cooled, and calculated using the above equation (26).
  • the dissolution rate of the cold iron source is calculated from the dissolution rate obtained by proportionally dividing the first dissolution rate and the second dissolution rate.
  • Invention Example 31 in which the rate was estimated, the estimated value and the experimental value almost matched.
  • the dissolution rate of the cold iron source is estimated from the dissolution rate determined only from equation (13) or equation (14).
  • the estimated and experimental values did not match. From these results, in order to estimate the dissolution rate of cold iron sources with high accuracy, the first dissolution rate calculated from the heat transfer balance equation and the second dissolution rate calculated from the carbon mass balance equation should be appropriately adjusted. It was confirmed that it is important to determine the proportionate proportion and allocate the proportions.
  • Converter type smelting furnace 11 Hot metal 13 Stirring gas 14 Top blowing lance 20 Converter type smelting furnace control device 22 Process computer 24 Operation control computer 30 Cold iron source dissolution rate estimation device 32 Control section 34 Storage section 36 Acquisition section 38 Arithmetic unit 40 Output unit 50 Operator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

Provided is a cold iron source solubility estimation device that can calculate the solubility of a cold iron source by using high-versatility parameters. This cold iron source solubility estimation device 30 estimates the solubility of a cold iron source in a refining process for molten iron that uses the cold iron source as the raw material, the device including: an acquisition unit 36 that acquires furnace information, including information about the molten iron and cold iron source; a computation unit 38 that uses the furnace information to calculate the interfacial carbon concentration between the cold iron source and the molten iron, the dissolution rate of the cold iron source, and the solubility of the cold iron source; and an output unit 40 that outputs the solubility, wherein, when the interfacial carbon concentration satisfies a prescribed condition, the computation unit uses the interfacial carbon concentration calculated one step previously to calculate a first dissolution rate from a heat transfer balance equation, and a second dissolution rate from a carbon material balance equation, and calculates the dissolution rate of the cold iron source by proportionally dividing the first dissolution rate and the second dissolution rate.

Description

冷鉄源溶解率推定装置、冷鉄源溶解率推定方法及び溶鉄の精錬処理方法Cold iron source dissolution rate estimation device, cold iron source dissolution rate estimation method, and molten iron refining processing method
 本発明は、冷鉄源を原料として用いる溶鉄の精錬処理において冷鉄源の溶解率を推定する冷鉄源溶解率推定装置、冷鉄源溶解率推定方法及びこれらを用いた溶鉄の精錬処理方法に関する。 The present invention provides a cold iron source dissolution rate estimating device, a cold iron source dissolution rate estimation method, and a molten iron refining method using the same for estimating the dissolution rate of a cold iron source in a molten iron refining process using a cold iron source as a raw material. Regarding.
 2050年カーボンニュートラルの実現に向けて、鉄鋼業界においてもCOガスの発生量低減が求められている。鉄鋼業におけるCO排出の主な要因は、高炉法における鉄鉱石還元時の石炭利用である。一般的に高炉法では、鉄鋼製品製造に際して粗鋼1トンあたり約2トンのCOが発生する。一方、高炉銑を使用せず、スクラップや還元鉄といった冷鉄源を、電力もしくは溶鉄からの伝熱、浸炭によって溶解させる場合は、石炭を必要としない。このため、冷鉄源を使用する際のCO発生量は粗鋼1トンあたり約500kg(還元鉄製造時のCO発生量は除く)となり、高炉法と比較して粗鋼1トンあたりのCO排出量を約1/4に抑えることができる。したがって、鉄鋼業でのCO排出量削減には、転炉での溶銑配合率低減による高炉銑使用量低減や電気炉導入による冷鉄源使用量の増加が有効といえる。 In order to achieve carbon neutrality in 2050, the steel industry is also required to reduce the amount of CO2 gas generated. The main cause of CO2 emissions in the steel industry is the use of coal during the reduction of iron ore in the blast furnace process. Generally, in the blast furnace process, approximately 2 tons of CO 2 is generated per 1 ton of crude steel during the production of steel products. On the other hand, if a cold iron source such as scrap or reduced iron is melted by electric power, heat transfer from molten iron, or carburization without using blast furnace pig iron, coal is not required. Therefore, the amount of CO2 generated when using a cold iron source is approximately 500 kg per ton of crude steel (excluding the amount of CO2 generated during reduced iron production), and compared to the blast furnace method, the amount of CO2 generated per ton of crude steel is approximately 500 kg. Emissions can be reduced to about 1/4. Therefore, in order to reduce CO2 emissions in the steel industry, it can be said that it is effective to reduce the amount of blast furnace pig iron used by reducing the hot metal content ratio in converters and to increase the amount of cold iron source used by introducing electric furnaces.
 一方、冷鉄源の使用量を増加させると、冷鉄源の完全溶解に要する時間が長くなる。冷鉄源を完全溶解する時間が長くなって、処理時間中に冷鉄源を溶解しきれなかった場合には操業面及び冶金面で多くのデメリットが発生する。例えば、転炉における溶銑脱燐吹錬では、サブランスが未溶解の冷鉄源に衝突しサブランスの破損が発生する。さらに、底吹羽口上に堆積した未溶解の冷鉄源が溶銑の撹拌を阻害することで脱燐不良が発生する。 On the other hand, increasing the amount of cold iron source used increases the time required for complete melting of the cold iron source. If the time required to completely melt the cold iron source becomes longer and the cold iron source cannot be completely melted during the processing time, many disadvantages will occur in terms of operation and metallurgy. For example, in hot metal dephosphorization blowing in a converter, a sublance collides with an unmolten cold iron source, causing damage to the sublance. Furthermore, the undissolved cold iron source deposited on the bottom blowing tuyeres obstructs the stirring of the hot metal, resulting in poor dephosphorization.
 また、電気炉においては冷鉄源を連続的もしくは断続的に追装するが、溶解速度に対して追装速度を速くしすぎると炉内の未溶解冷鉄源が増え、冷鉄源同士が融着して巨大な鉄塊を形成することがある。鉄塊はその体積に対する表面積の割合が小さく溶解速度が遅いので、鉄塊の発生は生産力の低下や必要な電力の増大につながる。このため、冷鉄源を効率的に溶解させるには、炉内の冷鉄源の溶け残りの有無を把握することが重要になる。 In addition, in electric furnaces, cold iron sources are added continuously or intermittently, but if the loading speed is too high compared to the melting rate, the unmelted cold iron sources in the furnace will increase, and the cold iron sources will They can fuse together to form giant iron blocks. Since iron ingots have a small surface area to volume ratio and have a slow dissolution rate, the generation of iron ingots leads to a decrease in productivity and an increase in the required power. Therefore, in order to efficiently melt the cold iron source, it is important to know whether there is any unmelted cold iron source in the furnace.
 冷鉄源の溶け残りの有無を把握する方法としては、センシングにより冷鉄源完全溶解のタイミングを判定するものが主である。冷鉄源完全溶解のタイミングを判定する方法は電気炉を対象としたものが多く、当該方法では、炉内の温度、圧力、振動、光等を監視してその変化から冷鉄源の完全溶解タイミングを判定する。 The main method for determining the presence or absence of unmelted cold iron source is to use sensing to determine the timing of complete melting of the cold iron source. Many methods for determining the timing of complete melting of a cold iron source are targeted at electric furnaces, and these methods monitor temperature, pressure, vibration, light, etc. inside the furnace and determine whether the cold iron source is completely melted based on changes in the temperature, pressure, vibration, light, etc. Determine the timing.
 例えば、特許文献1には、転炉炉体側壁に埋設した測温プローブによって耐火物温度を厚み方向に多点測定し、得られた温度勾配と耐火物残厚から耐火物表面温度(溶鉄温度)を連続推定する方法が開示されている。これは、炉内の冷鉄源が完全溶解した以降は溶鉄の温度上昇速度が増すことに着目した方法である。特許文献1によると、溶鉄の温度推移から冷鉄源の完全溶解時期が判定できるとしている。 For example, in Patent Document 1, the refractory temperature is measured at multiple points in the thickness direction using a temperature probe embedded in the side wall of the converter body, and the refractory surface temperature (molten iron temperature ) is disclosed. This method focuses on the fact that the temperature rise rate of molten iron increases after the cold iron source in the furnace is completely melted. According to Patent Document 1, it is possible to determine when the cold iron source is completely melted from the temperature change of the molten iron.
 また、実操業への適用例は乏しいものの、冷鉄源の溶解挙動を予測する一次元伝熱モデル(以下、「冷鉄源の溶解モデル」と記載する。)が報告されている。冷鉄源の溶解モデルに言及した文献としては、非特許文献1~2が挙げられる。非特許文献1~2に開示された冷鉄源の溶解モデルによると、溶鉄-冷鉄源間の熱伝達係数及び溶鉄の物質移動係数を仮定することで、精度良く冷鉄源の溶解挙動を予測できるとしている。冷鉄源の溶解モデルを実操業に適用するには、センシング等によって得られる溶鉄の温度、溶鉄炭素濃度等の情報を連続的もしくは断続的に入力する必要がある。冷鉄源の溶解モデルを用いることで冷鉄源の完全溶解タイミングだけでなく時々刻々の冷鉄源の溶解率が予測できるので、処理中に冷鉄源未溶解の発生を予測できるという利点がある。 Additionally, although there are few examples of its application to actual operations, a one-dimensional heat transfer model (hereinafter referred to as "cold iron source melting model") that predicts the melting behavior of cold iron sources has been reported. Documents mentioning the dissolution model of cold iron sources include Non-Patent Documents 1 and 2. According to the dissolution models of cold iron sources disclosed in Non-Patent Documents 1 and 2, by assuming the heat transfer coefficient between molten iron and cold iron source and the mass transfer coefficient of molten iron, it is possible to accurately predict the melting behavior of cold iron source. It is said to be predictable. To apply the cold iron source dissolution model to actual operations, it is necessary to continuously or intermittently input information such as molten iron temperature and molten iron carbon concentration obtained by sensing etc. By using a cold iron source dissolution model, it is possible to predict not only the complete dissolution timing of the cold iron source but also the momentary dissolution rate of the cold iron source, which has the advantage of being able to predict the occurrence of undissolved cold iron sources during processing. be.
特開平8-3614号公報Japanese Patent Application Publication No. 8-3614
 特許文献1では冷鉄源の完全溶解タイミング判定の基準となる溶鉄の温度上昇速度の閾値には言及しておらず、判定は観測者の主観に左右される。加えて、実操業では上底吹流量変更等の要因によっても溶鉄の温度推移が変化するため、誤判定や判定遅れの懸念が大きい。 Patent Document 1 does not mention the threshold value of the temperature rise rate of molten iron, which is the standard for determining the complete melting timing of a cold iron source, and the determination is influenced by the subjectivity of the observer. In addition, in actual operation, the temperature transition of the molten iron changes due to factors such as changes in the top and bottom blowing flow rates, so there is a great concern that misjudgments or judgment delays may occur.
 また、冷鉄源溶解の駆動力としては伝熱と浸炭(溶鉄から冷鉄源表層への物質移動)が挙げられるが、溶鉄炭素濃度が冷鉄源の炭素濃度を上回らない、もしくは凝固要素存在下では浸炭が発生せず、冷鉄源溶解の駆動力は伝熱のみであるので、冷鉄源の溶解速度計算は溶鉄-冷鉄源界面近傍の熱収支を考えればよい。一方、溶鉄炭素濃度が冷鉄源の炭素濃度を上回る場合、凝固要素が再溶解した後は浸炭が発生するので、冷鉄源の溶解速度計算の際は界面近傍の熱収支ではなく炭素物質収支を考慮する必要がある。このように、冷鉄源溶解の駆動力に応じて溶解速度計算式を変更するのが一般的だが、実際には溶解の機構ははっきり区別できるものではない。 In addition, heat transfer and carburization (transfer of mass from molten iron to the surface layer of the cold iron source) are the driving forces for cold iron source melting, but the carbon concentration of the molten iron does not exceed the carbon concentration of the cold iron source, or the presence of solidification elements. Since carburization does not occur below and the driving force for melting the cold iron source is only heat transfer, the melting rate of the cold iron source can be calculated by considering the heat balance near the molten iron-cold iron source interface. On the other hand, if the molten iron carbon concentration exceeds the carbon concentration of the cold iron source, carburization will occur after the solidification elements are remelted, so when calculating the dissolution rate of the cold iron source, the carbon mass balance should be used instead of the heat balance near the interface. need to be considered. In this way, it is common to change the dissolution rate calculation formula depending on the driving force for melting the cold iron source, but in reality, the dissolution mechanism cannot be clearly distinguished.
 例えば、溶鉄炭素濃度が冷鉄源の炭素濃度を上回っており浸炭が発生するような場合でも、溶鉄の温度が冷鉄源の液相線温度と同等もしくはそれ以上の高温であれば伝熱が冷鉄源の溶解に全く寄与しないとは考えられず、溶解の機構として浸炭と伝熱の両方を考慮する必要がある。しかし、従来の冷鉄源溶解モデルは駆動力を浸炭もしくは伝熱に限定するモデルになっている。 For example, even if the molten iron carbon concentration exceeds the carbon concentration of the cold iron source and carburization occurs, heat transfer will not occur if the molten iron temperature is equal to or higher than the liquidus temperature of the cold iron source. It cannot be considered that it does not contribute to the melting of cold iron sources at all, and it is necessary to consider both carburization and heat transfer as melting mechanisms. However, conventional cold iron source melting models limit the driving force to carburization or heat transfer.
 非特許文献1~2に開示された冷鉄源溶解モデルでは、熱伝達係数や物質移動係数をフィッティングパラメータとすることで精度を担保している。しかしながら、フィッティングパラメータの値は、文献内で言及されている特定の溶鉄及び冷鉄源の条件についてのみ明かされており、汎用性に乏しいという課題があった。本発明はこのような課題を鑑みてなされたものであり、汎用性の高いパラメータを用いて冷鉄源の溶解率を算出できる冷鉄源溶解率推定装置、冷鉄源溶解率推定方法及びこれらを用いる溶鉄の精錬処理方法を提供することを目的とする。 In the cold iron source melting models disclosed in Non-Patent Documents 1 and 2, accuracy is ensured by using heat transfer coefficients and mass transfer coefficients as fitting parameters. However, the values of the fitting parameters are disclosed only for specific molten iron and cold iron source conditions mentioned in the literature, and there is a problem in that they lack general versatility. The present invention was made in view of these problems, and provides a cold iron source dissolution rate estimation device, a cold iron source dissolution rate estimation method, and a cold iron source dissolution rate estimation method that can calculate the dissolution rate of a cold iron source using highly versatile parameters. The purpose of the present invention is to provide a method for refining molten iron using the method.
 上記課題を解決するための手段は、以下の通りである。
[1]冷鉄源を原料として用いる溶鉄の精錬処理において、前記冷鉄源の溶解率を推定する冷鉄源溶解率推定装置であって、前記溶鉄及び前記冷鉄源の情報を含む炉内情報を取得する取得部と、前記炉内情報を用いて前記冷鉄源と前記溶鉄との界面炭素濃度、前記冷鉄源の溶解速度及び前記冷鉄源の溶解率を算出する演算部と、前記溶解率を出力する出力部と、を有し、前記界面炭素濃度が下記(1)、(2)式の少なくとも一方を満足する場合には、前記演算部は、1ステップ前に算出された界面炭素濃度を用いて、伝熱収支式から第一の溶解速度を、炭素物質収支式から第二の溶解速度をそれぞれ算出し、前記第一の溶解速度と前記第二の溶解速度とを按分することで前記冷鉄源の溶解速度を算出し、前記界面炭素濃度が下記(1)、(2)式の何れも満足しない場合には、前記演算部は、前記界面炭素濃度を用いて前記第一の溶解速度又は前記第二の溶解速度を算出し、算出した前記第一の溶解速度又は前記第二の溶解速度を前記冷鉄源の溶解速度とする、冷鉄源溶解率推定装置。
 C>C・・・(1)
 C>Ci,t-1・・・(2)
 上記(1)、(2)式において、Cは溶鉄炭素濃度(質量%)であり、Cは界面炭素濃度(質量%)であり、Ci,t-1は1ステップ前に算出された界面炭素濃度(質量%)である。
[2]前記冷鉄源の炭素濃度が前記溶鉄の炭素濃度よりも低い場合に、前記演算部は、溶鉄温度、溶鉄炭素濃度及び冷鉄源の炭素濃度に基づいて前記第一の溶解速度と前記第二の溶解速度とを按分する按分比率を特定する、[1]に記載の冷鉄源溶解率推定装置。
[3]前記演算部は、前記界面炭素濃度と、前記冷鉄源の溶解速度と、前記冷鉄源の溶解率とを繰り返し算出することで、時々刻々の冷鉄源の溶解率を推定する、[1]又は[2]に記載の冷鉄源溶解率推定装置。
[4][1]から[3]のいずれかに記載の冷鉄源溶解率推定装置を用いて前記精錬処理の終了時点における前記冷鉄源の溶解率を推定し、前記終了時点における前記溶解率から算出される前記冷鉄源の未溶解率が5質量%を超える場合は、昇熱材の添加及び溶鉄処理延長のうち少なくとも1つの操作を実施する、溶鉄の精錬処理方法。
[5]冷鉄源を原料として用いる溶鉄の精錬処理において、前記冷鉄源の溶解率を推定する冷鉄源溶解率推定方法であって、前記溶鉄及び前記冷鉄源の情報を含む炉内情報を取得する取得ステップと、前記炉内情報を用いて前記冷鉄源と前記溶鉄との界面炭素濃度、前記冷鉄源の溶解速度及び前記冷鉄源の溶解率を算出する演算ステップと、前記溶解率を出力する出力ステップと、を有し、前記界面炭素濃度が下記(1)、(2)式の少なくとも一方を満足する場合には、前記演算ステップでは、1ステップ前に算出された界面炭素濃度を用いて、伝熱収支式から第一の溶解速度を、炭素物質収支式から第二の溶解速度をそれぞれ算出し、前記第一の溶解速度と前記第二の溶解速度とを按分することで前記冷鉄源の溶解速度を算出し、前記界面炭素濃度が下記(1)、(2)式の何れも満足しない場合には、前記演算ステップでは、前記界面炭素濃度を用いて前記第一の溶解速度又は前記第二の溶解速度を算出し、算出した前記第一の溶解速度又は前記第二の溶解速度を前記冷鉄源の溶解速度とする、冷鉄源溶解率推定方法。
 C>C・・・(1)
 C>Ci,t-1・・・(2)
 上記(1)、(2)式において、Cは溶鉄炭素濃度(質量%)であり、Cは界面炭素濃度(質量%)であり、Ci,t-1は1ステップ前に算出された界面炭素濃度(質量%)である。
[6]前記冷鉄源の炭素濃度が前記溶鉄の炭素濃度よりも低い場合に、前記演算ステップでは、溶鉄温度、溶鉄炭素濃度及び冷鉄源の炭素濃度に基づいて前記第一の溶解速度と前記第二の溶解速度とを按分する按分比率を特定する、[5]に記載の冷鉄源溶解率推定方法。
[7]前記演算ステップでは、前記界面炭素濃度と、前記冷鉄源の溶解速度と、前記冷鉄源の溶解率とを繰り返し算出することで、時々刻々の冷鉄源の溶解率を推定する[5]又は[6]に記載の冷鉄源溶解率推定方法。
[8][5]から[7]のいずれかに記載の冷鉄源溶解率推定方法を用いて前記精錬処理の終了時点における前記冷鉄源の溶解率を推定し、前記終了時点における前記溶解率から算出される前記冷鉄源の未溶解率が5質量%を超える場合は、昇熱材の添加及び溶鉄処理延長のうち少なくとも1つの操作を実施する、溶鉄の精錬処理方法。
The means for solving the above problems are as follows.
[1] A cold iron source melting rate estimating device for estimating the melting rate of the cold iron source in a molten iron refining process using a cold iron source as a raw material, which includes information on the molten iron and the cold iron source. an acquisition unit that acquires information; a calculation unit that uses the furnace information to calculate an interfacial carbon concentration between the cold iron source and the molten iron, a dissolution rate of the cold iron source, and a dissolution rate of the cold iron source; an output unit that outputs the dissolution rate, and when the interfacial carbon concentration satisfies at least one of the following formulas (1) and (2), the calculation unit outputs the dissolution rate calculated one step before. Using the interfacial carbon concentration, calculate the first dissolution rate from the heat transfer equation and the second dissolution rate from the carbon material balance equation, and divide the first dissolution rate and the second dissolution rate proportionally. By doing so, the dissolution rate of the cold iron source is calculated, and if the interfacial carbon concentration does not satisfy either of the following equations (1) and (2), the calculation unit uses the interfacial carbon concentration to calculate the dissolution rate of the cold iron source. A cold iron source dissolution rate estimating device that calculates a first dissolution rate or the second dissolution rate, and sets the calculated first dissolution rate or the second dissolution rate as the dissolution rate of the cold iron source.
C i >C...(1)
C i >C i,t-1 ...(2)
In the above equations (1) and (2), C is the molten iron carbon concentration (mass%), C i is the interfacial carbon concentration (mass%), and C i,t-1 is the molten iron carbon concentration (mass%). Interfacial carbon concentration (mass%).
[2] When the carbon concentration of the cold iron source is lower than the carbon concentration of the molten iron, the calculation unit calculates the first dissolution rate based on the molten iron temperature, the molten iron carbon concentration, and the carbon concentration of the cold iron source. The cold iron source dissolution rate estimation device according to [1], which specifies an apportionment ratio for apportioning the second dissolution rate.
[3] The calculation unit estimates the dissolution rate of the cold iron source from time to time by repeatedly calculating the interfacial carbon concentration, the dissolution rate of the cold iron source, and the dissolution rate of the cold iron source. , the cold iron source dissolution rate estimation device according to [1] or [2].
[4] Estimate the dissolution rate of the cold iron source at the end of the refining process using the cold iron source dissolution rate estimating device according to any one of [1] to [3], and estimate the dissolution rate of the cold iron source at the end of the refining process. When the unmelted rate of the cold iron source calculated from the rate exceeds 5% by mass, a method for refining molten iron includes performing at least one of adding a heat raising material and extending the molten iron treatment.
[5] A cold iron source melting rate estimation method for estimating the melting rate of the cold iron source in a molten iron refining process using the cold iron source as a raw material, the method comprising: a method for estimating the melting rate of the cold iron source; an acquisition step of acquiring information; a calculation step of calculating an interfacial carbon concentration between the cold iron source and the molten iron, a dissolution rate of the cold iron source, and a dissolution rate of the cold iron source using the furnace information; an output step of outputting the dissolution rate, and when the interfacial carbon concentration satisfies at least one of the following formulas (1) and (2), the calculation step Using the interfacial carbon concentration, calculate the first dissolution rate from the heat transfer equation and the second dissolution rate from the carbon material balance equation, and divide the first dissolution rate and the second dissolution rate proportionally. By doing so, the dissolution rate of the cold iron source is calculated, and if the interfacial carbon concentration does not satisfy either of the following equations (1) or (2), in the calculation step, the interfacial carbon concentration is used to calculate the dissolution rate of the cold iron source. A cold iron source dissolution rate estimation method, comprising calculating a first dissolution rate or the second dissolution rate, and setting the calculated first dissolution rate or the second dissolution rate as the dissolution rate of the cold iron source.
C i >C...(1)
C i >C i,t-1 ...(2)
In the above equations (1) and (2), C is the molten iron carbon concentration (mass%), C i is the interfacial carbon concentration (mass%), and C i ,t-1 is the molten iron carbon concentration (mass%), and C i,t-1 is the carbon concentration of the molten iron (mass%). Interfacial carbon concentration (mass%).
[6] When the carbon concentration of the cold iron source is lower than the carbon concentration of the molten iron, in the calculation step, the first dissolution rate is determined based on the molten iron temperature, the molten iron carbon concentration, and the carbon concentration of the cold iron source. The method for estimating a cold iron source dissolution rate according to [5], which specifies an apportionment ratio for apportioning the second dissolution rate.
[7] In the calculation step, the interfacial carbon concentration, the dissolution rate of the cold iron source, and the dissolution rate of the cold iron source are repeatedly calculated to estimate the dissolution rate of the cold iron source from time to time. The cold iron source dissolution rate estimation method according to [5] or [6].
[8] Estimating the dissolution rate of the cold iron source at the end of the refining process using the cold iron source dissolution rate estimation method according to any one of [5] to [7], When the unmelted rate of the cold iron source calculated from the rate exceeds 5% by mass, a method for refining molten iron includes performing at least one of adding a heat raising material and extending the molten iron treatment.
 本発明によれば、フィッティングパラメータよりも容易に求めることができる按分比率を用いて冷鉄源の溶解率を算出できるので、本発明に係る冷鉄源溶解率推定方法は、従来よりも汎用性の高い冷鉄源の溶解率の算出方法であるといえる。 According to the present invention, the dissolution rate of a cold iron source can be calculated using an apportionment ratio that can be determined more easily than fitting parameters, so the method for estimating the dissolution rate of a cold iron source according to the present invention is more versatile than before. It can be said that this is a method for calculating the dissolution rate of a cold iron source with a high
図1は、本発明に係る冷鉄源溶解率推定装置を備えた転炉型精錬炉の模式図である。FIG. 1 is a schematic diagram of a converter type refining furnace equipped with a cold iron source melting rate estimation device according to the present invention. 図2は、表1における溶銑温度が1450~1480℃の按分比率を示すグラフである。FIG. 2 is a graph showing the proportional distribution ratio for hot metal temperatures of 1450 to 1480° C. in Table 1. 図3は、冷鉄源溶解率推定方法のフローを説明するフロー図である。FIG. 3 is a flowchart illustrating the flow of a cold iron source dissolution rate estimation method. 図4は、実施例1における角型純鉄サンプルの溶解率の推定結果と実測結果を示すグラフである。FIG. 4 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 1. 図5は、実施例2における角型純鉄サンプルの溶解率の推定結果と実測結果を示すグラフである。FIG. 5 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 2. 図6は、実施例3における角型純鉄サンプルの溶解率の推定結果と実測結果を示すグラフである。FIG. 6 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 3.
 以下、添付図面を参照して、本発明の実施形態の一例を説明する。図1は、本発明に係る冷鉄源溶解率推定装置を備えた転炉型精錬炉の模式図である。図1において、符号10は転炉型精錬炉であり、符号20は転炉型精錬炉制御装置であり、符号50はオペレータである。転炉型精錬炉制御装置20は、プロセスコンピュータ22と、操業制御用コンピュータ24と、冷鉄源溶解率推定装置30と、を備える。 Hereinafter, an example of an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram of a converter type refining furnace equipped with a cold iron source melting rate estimation device according to the present invention. In FIG. 1, reference numeral 10 is a converter-type refining furnace, reference numeral 20 is a converter-type refining furnace control device, and reference numeral 50 is an operator. The converter type refining furnace control device 20 includes a process computer 22, an operation control computer 24, and a cold iron source melting rate estimation device 30.
 転炉型精錬炉10では、スクラップシュートを用いて冷鉄源として鉄スクラップが炉内に装入され、その後、装入鍋を用いて溶銑11が炉内に装入される。炉内に装入された溶銑11に向けて上吹きランス14から酸素ガス(工業用純酸素)が供給され、且つ、炉底に設置された羽口(図示せず)から撹拌用ガス13が炉内の溶銑11に吹き込まれるように構成される。炉内に装入された溶銑11は、撹拌用ガス13によって撹拌されながら、上吹きランス14から供給される酸素ガスによって酸化精錬される。転炉型精錬炉1では、一般的に、精錬処理方法として、溶銑11の予備脱燐処理、及び、溶銑11の脱炭処理(以下、「脱炭精錬」とも記載する。)が行われる。 In the converter type refining furnace 10, iron scrap is charged into the furnace as a cold iron source using a scrap chute, and then hot metal 11 is charged into the furnace using a charging pot. Oxygen gas (industrial pure oxygen) is supplied from a top blowing lance 14 to the hot metal 11 charged in the furnace, and stirring gas 13 is supplied from a tuyere (not shown) installed at the bottom of the furnace. It is configured to be blown into the hot metal 11 in the furnace. Hot metal 11 charged into the furnace is oxidized and refined by oxygen gas supplied from top blowing lance 14 while being stirred by stirring gas 13 . In the converter type refining furnace 1, preliminary dephosphorization treatment of the hot metal 11 and decarburization treatment of the hot metal 11 (hereinafter also referred to as "decarburization refining") are generally performed as refining treatment methods.
 溶銑11の予備脱燐処理では、まず、スクラップシュート(図示せず)を用いて冷鉄源として鉄スクラップが転炉型精錬炉10に装入され、その後、装入鍋(図示せず)を用いて炉内に溶銑11が装入される。溶銑11の装入後に上吹きランス14から酸素ガスが供給され、炉底の羽口から撹拌用ガス13として窒素ガスなどが供給され、昇熱材、媒溶剤などの副原料が添加されて溶銑11が予備脱燐処理される。 In the preliminary dephosphorization treatment of the hot metal 11, iron scrap is first charged as a source of cold iron into the converter-type smelting furnace 10 using a scrap chute (not shown), and then a charging pot (not shown) is charged into the converter type smelting furnace 10. Hot metal 11 is charged into the furnace using the method. After charging the hot metal 11, oxygen gas is supplied from the top blowing lance 14, nitrogen gas etc. is supplied as the stirring gas 13 from the tuyeres at the bottom of the furnace, and auxiliary raw materials such as heating materials and solvents are added to the hot metal. No. 11 is subjected to preliminary dephosphorization treatment.
 転炉型精錬炉1における溶銑11の予備脱燐処理は、酸素ガスで溶銑中の燐を酸化して燐酸化物(P)を形成させ、形成させた燐酸化物をCaO系媒溶剤の滓化によって生成するスラグ12に3CaO・P(=Ca(PO)なる安定形態で固定することによって行われる。溶銑11の予備脱燐処理では、炉内の溶銑11の燐濃度が所定値(例えば、0.050質量%以下)になったら、予備脱燐処理を終了する。予備脱燐処理後、炉内には脱燐処理された溶銑が生成される。 In the preliminary dephosphorization treatment of the hot metal 11 in the converter type refining furnace 1, phosphorus in the hot metal is oxidized with oxygen gas to form phosphorus oxides (P 2 O 5 ), and the formed phosphorus oxides are treated with a CaO-based solvent. This is done by fixing 3CaO.P 2 O 5 (=Ca 3 (PO 4 ) 2 ) in a stable form in the slag 12 produced by slag formation. In the preliminary dephosphorization treatment of the hot metal 11, when the phosphorus concentration of the hot metal 11 in the furnace reaches a predetermined value (for example, 0.050% by mass or less), the preliminary dephosphorization treatment is finished. After the preliminary dephosphorization treatment, dephosphorized hot metal is produced in the furnace.
 予備脱燐処理後の溶銑11の装入後に上吹きランス14から酸素ガスが供給され、炉底の羽口から撹拌用ガス13が供給され、冷却材、昇熱材、媒溶剤などの副原料が適時添加されて溶銑11が脱炭処理される。 After charging the hot metal 11 after the preliminary dephosphorization treatment, oxygen gas is supplied from the top blowing lance 14, and stirring gas 13 is supplied from the tuyere at the bottom of the furnace, and auxiliary materials such as coolant, heating material, solvent, etc. is added at appropriate times to decarburize the hot metal 11.
 溶銑11の脱炭処理は、酸素ガスと溶融鉄中炭素との脱炭反応(C+O→CO)によって進行し、炉内の溶融鉄の炭素濃度が所定値(例えば0.05質量%以下)になるまで、脱炭処理が行われる。脱炭処理後、炉内には脱炭処理された溶鋼が生成される。ここで、「溶鉄」とは、溶銑または溶鋼のいずれかである。溶銑11の脱炭処理では炉内の溶銑は、脱炭処理の進行に伴って溶鋼に変わる。脱炭処理中の炉内の溶湯を溶銑と溶鋼とに区別して表示することは困難であるので、溶銑と溶鋼とをまとめて「溶鉄」と記載する。 The decarburization treatment of the hot metal 11 proceeds by a decarburization reaction (C+O→CO) between oxygen gas and carbon in the molten iron, and the carbon concentration of the molten iron in the furnace reaches a predetermined value (for example, 0.05% by mass or less). The decarburization process is carried out until the After decarburization, decarburized molten steel is produced in the furnace. Here, "molten iron" is either hot metal or molten steel. In the decarburization treatment of the hot metal 11, the hot metal in the furnace changes into molten steel as the decarburization treatment progresses. Since it is difficult to distinguish and display the molten metal in the furnace during the decarburization process as molten pig iron and molten steel, molten pig iron and molten steel are collectively referred to as "molten iron."
 プロセスコンピュータ22は、予備脱燐処理終了時での溶銑温度及び溶銑成分濃度、並びに、脱炭処理終了時での溶鉄温度及び溶鉄成分濃度を目標値とするために供給すべき酸素量、及び、冷却材または昇熱材の投入要否及び投入量を算出する装置である。 The process computer 22 determines the hot metal temperature and hot metal component concentration at the end of the preliminary dephosphorization process, the amount of oxygen that should be supplied in order to set the molten iron temperature and the molten iron component concentration at the end of the decarburization process to target values, and This is a device that calculates the necessity and amount of input of coolant or heating material.
 操業制御用コンピュータ24は、プロセスコンピュータ22によって算出された酸素量、及び、冷却材または昇熱材の投入量に基づき、予備脱燐処理終了時での溶銑温度、溶銑成分濃度、及び、脱炭処理終了時での溶鋼温度、溶鋼成分濃度が目標値になるように、操業条件(酸素ガス供給量、ランス高さ、撹拌用ガス供給量、副原料投入量など)を制御する装置である。操業制御用コンピュータ24の信号は、精錬をより一層精度良く制御するために、プロセスコンピュータ22にフィードバックされる。以下、本実施形態に係る冷鉄源溶解率推定装置30を、冷鉄源として溶銑11の炭素濃度よりも炭素濃度が低い鉄スクラップを原料として用いる転炉型精錬炉10を用いた溶銑11の予備脱燐処理に適用させた例を用いて説明する。しかしながら、冷鉄源溶解率推定装置30は転炉型精錬炉10に限らず、電気炉型精錬炉にも適用でき、また、溶銑11の脱炭処理にも適用できる。 The operation control computer 24 determines the hot metal temperature, hot metal component concentration, and decarburization at the end of the preliminary dephosphorization treatment based on the amount of oxygen calculated by the process computer 22 and the input amount of the coolant or heating material. This is a device that controls operating conditions (oxygen gas supply amount, lance height, stirring gas supply amount, auxiliary material input amount, etc.) so that the molten steel temperature and molten steel component concentration at the end of treatment reach target values. Signals from the operational control computer 24 are fed back to the process computer 22 in order to control the refining even more precisely. Hereinafter, the cold iron source dissolution rate estimating device 30 according to the present embodiment will be used to estimate hot metal 11 using a converter type refining furnace 10 that uses iron scrap having a lower carbon concentration than the hot metal 11 as a cold iron source. This will be explained using an example in which it is applied to preliminary dephosphorization treatment. However, the cold iron source dissolution rate estimating device 30 is applicable not only to the converter type smelting furnace 10 but also to an electric furnace type smelting furnace, and also to decarburization treatment of the hot metal 11.
 冷鉄源溶解率推定装置30は、転炉型精錬炉制御装置20の一部を構成する演算装置である。冷鉄源溶解率推定装置30は、制御部32と、格納部34と、出力部40とを有する。制御部32は、例えば、CPU等であって、格納部34から読み出したプログラムを実行することにより、制御部32を取得部36、演算部38として機能させる。 The cold iron source melting rate estimation device 30 is a calculation device that constitutes a part of the converter type smelting furnace control device 20. The cold iron source dissolution rate estimating device 30 includes a control section 32, a storage section 34, and an output section 40. The control unit 32 is, for example, a CPU or the like, and causes the control unit 32 to function as an acquisition unit 36 and a calculation unit 38 by executing a program read from the storage unit 34 .
 出力部40は、例えば、LCDまたはCRTディスプレイ等である。格納部34は、例えば、更新記録可能なフラッシュメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、メモリーカード等の情報記録媒体及びその読み書き装置である。格納部34には、取得部36及び演算部38の各機能を実行するためのプログラムや当該プログラムで使用される演算式やデータ等が記録されている。 The output unit 40 is, for example, an LCD or CRT display. The storage unit 34 is, for example, an information recording medium such as an update-recordable flash memory, a built-in hard disk or a hard disk connected via a data communication terminal, a memory card, and a read/write device thereof. The storage unit 34 records programs for executing the functions of the acquisition unit 36 and the calculation unit 38, as well as calculation formulas, data, etc. used in the programs.
 次に、取得部36及び演算部38が実行する処理について説明する。取得部36は、オペレータ50による情報入力により、又は、転炉型精錬炉10に設けられる炉内センサーからプロセスコンピュータ22を介して炉内情報を取得する。炉内情報には、溶銑11及び鉄スクラップの情報が含まれる。具体的に炉内情報には、炉内に装入される溶銑11の装入量、溶銑11の初期炭素濃度、鉄スクラップの装入量、鉄スクラップの初期炭素濃度、鉄スクラップの密度及び鉄スクラップの溶解潜熱等が含まれる。また、取得部36は、これらの情報の他に、時々刻々の溶銑11の温度、撹拌用ガス13の底吹流量、炉内圧力を炉内情報として取得する。取得部36は取得した炉内情報を演算部38に出力する。 Next, the processing executed by the acquisition unit 36 and the calculation unit 38 will be described. The acquisition unit 36 acquires in-furnace information through information input by the operator 50 or from an in-furnace sensor provided in the converter type refining furnace 10 via the process computer 22 . The furnace information includes information on the hot metal 11 and iron scrap. Specifically, the furnace information includes the charging amount of hot metal 11 charged into the furnace, the initial carbon concentration of hot metal 11, the charging amount of iron scrap, the initial carbon concentration of iron scrap, the density of iron scrap, and the iron This includes the latent heat of melting of scrap. In addition to these pieces of information, the acquisition unit 36 also acquires the momentary temperature of the hot metal 11, the bottom blowing flow rate of the stirring gas 13, and the furnace pressure as in-furnace information. The acquisition unit 36 outputs the acquired furnace information to the calculation unit 38.
 演算部38は、当該炉内情報を用いて転炉型精錬炉10に装入された鉄スクラップと溶銑11との界面炭素濃度、鉄スクラップの溶解速度及び鉄スクラップの溶解率を算出する。演算部38は、まず、溶銑11と鉄スクラップとの界面炭素濃度を算出し、算出した界面炭素濃度が下記(1)、(2)式の少なくとも一方を満足する場合には、1ステップ前に算出された界面炭素濃度を用いて、伝熱収支式から第一の溶解速度を算出し、且つ、炭素物質収支式から第二の溶解速度を算出し、これら第一の溶解速度と第二の溶解速度とを按分することで鉄スクラップの溶解速度を算出する。なお、1ステップ前の算出においても下記(1)、(2)式の少なくとも一方を満足していた場合には、さらに1ステップ前に算出された界面炭素濃度を用いる。 The calculation unit 38 uses the in-furnace information to calculate the interfacial carbon concentration between the iron scrap charged into the converter type refining furnace 10 and the hot metal 11, the iron scrap dissolution rate, and the iron scrap dissolution rate. The calculation unit 38 first calculates the interfacial carbon concentration between the hot metal 11 and the iron scrap, and if the calculated interfacial carbon concentration satisfies at least one of the following equations (1) and (2), the calculation unit 38 calculates the interfacial carbon concentration between the hot metal 11 and the iron scrap. Using the calculated interfacial carbon concentration, the first dissolution rate is calculated from the heat transfer equation, and the second dissolution rate is calculated from the carbon mass balance equation, and the first dissolution rate and the second dissolution rate are calculated. The dissolution rate of iron scrap is calculated by proportionally dividing the dissolution rate. Note that if at least one of the following equations (1) and (2) is satisfied in the calculation one step before, the interfacial carbon concentration calculated one step before is used.
 C>C・・・(1)
 C>Ci,t-1・・・(2)
 上記(1)、(2)式において、Cは溶銑11の炭素濃度(質量%)であり、Cは界面炭素濃度(質量%)であり、Ci,t-1は1ステップ前に算出された界面炭素濃度(質量%)である。以下の説明において、添え字t-1は1ステップ前に算出された値であることを意味する。
C i >C...(1)
C i >C i,t-1 ...(2)
In the above equations (1) and (2), C is the carbon concentration (mass%) of the hot metal 11, C i is the interfacial carbon concentration (mass%), and C i,t-1 is calculated one step before. is the interfacial carbon concentration (mass%). In the following explanation, the subscript t-1 means a value calculated one step before.
 このように、演算部38は、熱収支式から算出される第一の溶解速度と炭素物質収支から導かれる第二の溶解速度とを按分比率で按分して、鉄スクラップの溶解速度を算出する。一例として、冷鉄源の炭素濃度が0.05質量%である場合の按分比率の値を下記表1に示す。 In this way, the calculation unit 38 calculates the dissolution rate of iron scrap by proportionally dividing the first dissolution rate calculated from the heat balance formula and the second dissolution rate derived from the carbon material balance using the proportional division ratio. . As an example, the values of the proportion ratio when the carbon concentration of the cold iron source is 0.05% by mass are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に示した第一の溶解速度と第二の溶解速度とを按分する按分比率の表は、冷鉄源の炭素濃度ごとに予め作成されて格納部34に格納されている。 A table of proportional division ratios for proportionally dividing the first dissolution rate and the second dissolution rate shown in Table 1 is created in advance for each carbon concentration of the cold iron source and stored in the storage unit 34.
 図2は、表1における溶銑温度が1450~1480℃の按分比率を示すグラフである。図2において、横軸は溶鉄炭素濃度(質量%)であり、縦軸は按分比率(-)である。図2に示すように、各溶鉄炭素濃度における按分比率は、所定の曲線上にプロットされる。このため、例えば、異なる溶鉄炭素濃度の按分比率を3点求め、当該3点を用いて曲線(図2の破線)を求めることで、他の溶鉄炭素濃度の按分比率を求めることができる。このように、按分比率は従来のフィッティングパラメータよりも容易に求めることができることから、当該按分比率を用いる本実施形態に係る冷鉄源溶解率推定方法は、従来の方法よりも汎用性が高い冷鉄源の溶解率の算出方法であるといえる。 FIG. 2 is a graph showing the proportional distribution ratio for hot metal temperatures of 1450 to 1480°C in Table 1. In FIG. 2, the horizontal axis is the molten iron carbon concentration (mass %), and the vertical axis is the proportion ratio (-). As shown in FIG. 2, the proportional distribution ratio for each molten iron carbon concentration is plotted on a predetermined curve. Therefore, for example, by determining the proportional distribution ratio of three different molten iron carbon concentrations and determining the curve (broken line in FIG. 2) using the three points, it is possible to determine the proportional distribution ratio of other molten iron carbon concentrations. As described above, since the apportionment ratio can be determined more easily than the conventional fitting parameters, the cold iron source dissolution rate estimation method according to the present embodiment using the apportionment ratio is a cold iron source dissolution rate estimation method that is more versatile than the conventional method. This can be said to be a method for calculating the dissolution rate of iron sources.
 演算部38は、鉄スクラップの炭素濃度に対応した按分比率の表を格納部34読み出し、溶銑11の温度及び溶鉄の炭素濃度に対応した表中の値を按分比率として特定する。すなわち、演算部38は、溶鉄温度、溶鉄炭素濃度及び冷鉄源の炭素濃度に基づいて按分比率を特定する。 The calculation unit 38 reads out the table of apportionment ratios corresponding to the carbon concentration of the iron scrap from the storage unit 34, and specifies the values in the table corresponding to the temperature of the hot metal 11 and the carbon concentration of the molten iron as the apportionment ratio. That is, the calculation unit 38 specifies the proportional distribution ratio based on the molten iron temperature, the molten iron carbon concentration, and the carbon concentration of the cold iron source.
 演算部38は、特定した按分比率で第一の溶解速度と第二の溶解速度を按分して鉄スクラップの溶解速度を算出する。一方、演算部38は、算出した界面炭素濃度が上記(1)、(2)式の何れも満足しない場合には、算出した界面炭素濃度を用いて第一の溶解速度又は第二の溶解速度を算出する。この場合、第一の溶解速度と第二の溶解速度とは同じ溶解速度になるので、第一の溶解速度又は第二の溶解速度を鉄スクラップの溶解速度とする。 The calculation unit 38 calculates the dissolution rate of iron scrap by proportionally dividing the first dissolution rate and the second dissolution rate using the specified proportion ratio. On the other hand, when the calculated interfacial carbon concentration does not satisfy either of the above equations (1) and (2), the calculation unit 38 calculates the first dissolution rate or the second dissolution rate using the calculated interfacial carbon concentration. Calculate. In this case, since the first dissolution rate and the second dissolution rate are the same dissolution rate, the first dissolution rate or the second dissolution rate is taken as the dissolution rate of the iron scrap.
 演算部38は、算出された鉄スクラップの溶解速度を用いて、鉄スクラップの溶解率を算出する。このようにして、演算部38は、炉内情報を用いて鉄スクラップの溶解率を算出する。 The calculation unit 38 uses the calculated iron scrap dissolution rate to calculate the iron scrap dissolution rate. In this way, the calculation unit 38 calculates the melting rate of iron scrap using the furnace information.
 演算部38は、算出した鉄スクラップの溶解率を出力部40に出力する。出力部40は、鉄スクラップの溶解率の算出結果を、転炉型精錬炉10を操業するオペレータ50が視認できるように表示する。これにより、オペレータ50は、出力部40の表示を見て当該チャージの処理中に、どの程度の鉄スクラップが溶解しているかを確認でき、鉄スクラップの溶解率に応じた操作を実施できる。例えば、溶銑11の予備脱燐処理の終了時点の鉄スクラップの溶解率を推定し、当該溶解率から算出される鉄スクラップの未溶解率が5質量%を超える場合には、昇温材の添加及び溶鉄予備脱燐処理延長の少なくとも1つの操作を実施することが好ましい。これにより、予備脱燐処理の終了時において未溶解となる鉄スクラップの量を減らすことができる。 The calculation unit 38 outputs the calculated iron scrap dissolution rate to the output unit 40. The output unit 40 displays the calculation result of the melting rate of iron scrap so that the operator 50 who operates the converter type refining furnace 10 can visually check the result. Thereby, the operator 50 can confirm how much iron scrap is being melted during processing of the charge by looking at the display on the output unit 40, and can perform operations according to the melting rate of the iron scrap. For example, the dissolution rate of iron scrap at the end of the preliminary dephosphorization treatment of hot metal 11 is estimated, and if the undissolved rate of iron scrap calculated from the dissolution rate exceeds 5% by mass, the addition of a heating material It is preferable to carry out at least one operation of molten iron preliminary dephosphorization treatment extension. This makes it possible to reduce the amount of iron scrap that remains unmelted at the end of the preliminary dephosphorization process.
 次に、演算部38における鉄スクラップの溶解率を算出する具体的な計算方法を説明する。なお、鉄スクラップの物性値や溶解速度などの鉄スクラップに関する式は、鉄スクラップの銘柄毎に計算するものとする。計算で用いる溶銑11の質量及び溶銑11の炭素濃度は下記(3)、(4)式を用いて算出される。 Next, a specific calculation method for calculating the dissolution rate of iron scrap in the calculation unit 38 will be explained. Note that formulas related to iron scrap, such as physical property values and dissolution rate, shall be calculated for each brand of iron scrap. The mass of the hot metal 11 and the carbon concentration of the hot metal 11 used in the calculation are calculated using the following formulas (3) and (4).
Figure JPOXMLDOC01-appb-M000002
 
 ここで、Wは炉内の溶銑11の質量(ton)であり、Wは溶銑11の装入量(tоn)であり、WS0は鉄スクラップの装入量(tоn)であり、Sは鉄スクラップの溶解率(質量%)であり、Cは溶銑11の炭素濃度(質量%)であり、Cは溶銑11の初期炭素濃度(質量%)であり、CS0は鉄スクラップの初期炭素濃度(質量%)である。
Figure JPOXMLDOC01-appb-M000002

Here, W is the mass (ton) of hot metal 11 in the furnace, W 0 is the charging amount (ton) of hot metal 11, W SO is the charging amount (ton) of iron scrap, and S m is the dissolution rate (mass %) of iron scrap, C is the carbon concentration (mass %) of hot metal 11, C0 is the initial carbon concentration (mass %) of hot metal 11, and C S0 is the initial carbon concentration of iron scrap (mass %). Carbon concentration (mass%).
 なお、(4)式において、溶銑11の炭素濃度Cは鉄スクラップ溶解率Sによってのみ変化するものとし、吹き込み酸素や大気中酸素との反応による脱炭等の影響は考慮しない。すなわち凝固シェル存在下(溶解率S<0)では溶銑11の炭素濃度Cは初期濃炭素度のまま変化しないものとする。また、転炉型精錬炉10が溶銑11の炭素濃度Cを測定する手段を有する場合には、数式(4)を計算せず、炭素濃度Cの測定値を用いてもよい。 In equation (4), it is assumed that the carbon concentration C of the hot metal 11 changes only depending on the iron scrap dissolution rate Sm , and the influence of decarburization due to the reaction with blown oxygen or atmospheric oxygen is not considered. That is, in the presence of a solidified shell (dissolution rate S m <0), the carbon concentration C of the hot metal 11 remains unchanged at the initial carbon concentration. Further, when the converter type refining furnace 10 has a means for measuring the carbon concentration C of the hot metal 11, the measured value of the carbon concentration C may be used without calculating the formula (4).
 また、本実施形態に係る冷鉄源溶解率推定装置30を脱炭処理に適用する場合、脱炭が進行する処理末期では算出される溶鋼の炭素濃度Cが実際の溶鋼の炭素濃度と乖離することが予想される。しかしながら、脱炭処理末期は溶鋼温度が高いため鉄スクラップの溶解速度に対する溶鋼の炭素濃度Cの影響が小さいので、冷鉄源の溶解率Sは大きく乖離しない。 Furthermore, when applying the cold iron source dissolution rate estimating device 30 according to the present embodiment to decarburization treatment, the calculated carbon concentration C of molten steel deviates from the actual carbon concentration of molten steel at the final stage of treatment where decarburization progresses. It is expected that. However, since the molten steel temperature is high at the end of the decarburization process, the influence of the carbon concentration C of the molten steel on the dissolution rate of iron scrap is small, so the dissolution rate S m of the cold iron source does not deviate greatly.
 溶銑11の物性値等は下記(5)~(12)式を用いて算出される。 The physical property values of the hot metal 11 are calculated using the following formulas (5) to (12).
Figure JPOXMLDOC01-appb-M000003
 
 ここで、ρは溶銑11の密度(ton/m)であり、εは底吹撹拌動力(W/ton)であり、Qは底吹流量(Nm/min)であり、Tは溶銑11の温度(℃)であり、gは重力加速度(m/s)であり、Lは浴深(m)であり、Pは炉内圧力(Pa)であり、hは溶銑-鉄スクラップ界面熱伝達率(W/(m・K))であり、Dは溶銑11の拡散係数(m/s)である。
Figure JPOXMLDOC01-appb-M000003

Here, ρ is the density of the hot metal 11 (ton/m 3 ), ε B is the bottom-blowing stirring power (W/ton), Q B is the bottom-blowing flow rate (Nm 3 /min), and T is the The temperature of the hot metal 11 (°C), g is the gravitational acceleration (m/s 2 ), L is the bath depth (m), P is the furnace pressure (Pa), and h is the hot metal-iron scrap It is the interfacial heat transfer coefficient (W/(m 2 ·K)), and D is the diffusion coefficient of the hot metal 11 (m 2 /s).
Figure JPOXMLDOC01-appb-M000004
 
 ここで、αは溶銑11の熱拡散率(m/s)、Cは溶銑11の比熱(kcal/(kg・K))、λは溶銑11の熱伝導率(W/(m・K))、μは溶銑11の粘度(mPa・s)、kは溶銑11の物質移動係数(m/s)、Scはシュミット数(-)、Prはプラントル数(-)である。数式(5)は、下記刊行物1に記載された上吹き310ton転炉~底吹240ton転炉におけるスクラップ溶解挙動から得られる経験式である。数式(10)はChilton-Colburnの相似則から導出された式である。なお、(-)は無次元であることを意味する。
Figure JPOXMLDOC01-appb-M000004

Here, α is the thermal diffusivity of the hot metal 11 (m 2 /s), C P is the specific heat of the hot metal 11 (kcal/(kg・K)), and λ is the thermal conductivity of the hot metal 11 (W/(m・K) )), μ is the viscosity of the hot metal 11 (mPa·s), k is the mass transfer coefficient (m/s) of the hot metal 11, Sc is the Schmidt number (-), and Pr is the Prandtl number (-). Equation (5) is an empirical formula obtained from the scrap melting behavior in a top-blown 310 ton converter to a bottom-blown 240 ton converter described in Publication 1 below. Equation (10) is an equation derived from the Chilton-Colburn similarity law. Note that (-) means dimensionless.
 刊行物1:H.Gaye,M.Wanin,P.Gugliermina and P.Schittly:68th Steelmaking Conf.Proc.,ISS,Detroit,MI,USA,(1985),91. Publication 1: H. Gaye, M. Wanin, P. Gugliermina and P. Schittly: 68th Steelmaking Conf. Proc. , ISS, Detroit, MI, USA, (1985), 91.
 溶銑-鉄スクラップ界面炭素濃度(以後、「界面炭素濃度」と記載する。)及び溶鉄-冷鉄源界面温度(以後、「界面温度」と記載する。)は下記(13)~(15)式を用いて算出する。下記(13)式は界面近傍の伝熱収支式であり、下記(14)式は界面近傍の炭素物質収支式であり、下記(15)式は界面の温度と炭素濃度との関係式である。この3式を用いて、界面炭素濃度及び界面温度を算出する。 The carbon concentration at the interface between hot metal and scrap iron (hereinafter referred to as "interface carbon concentration") and the temperature at the interface between molten iron and cold iron source (hereinafter referred to as "interface temperature") are calculated by formulas (13) to (15) below. Calculate using. Equation (13) below is the heat transfer balance equation near the interface, Equation (14) below is the carbon material balance equation near the interface, and Equation (15) below is the relational equation between the temperature at the interface and the carbon concentration. . Using these three equations, the interfacial carbon concentration and interfacial temperature are calculated.
Figure JPOXMLDOC01-appb-M000005
 
 ここで、Tは界面温度(℃)であり、Tは冷鉄源温度(℃)であり、ρは鉄スクラップの密度(ton/m)であり、Hsは鉄スクラップの溶解潜熱(MJ/ton)であり、vは鉄スクラップの溶解速度(mm/s)(v>0:溶解、v<0:成長(凝固シェル生成)であり、λは溶銑-鉄スクラップ界面の熱伝導率(W/(m・K))(界面の溶銑側熱伝導率)である。TL,0は純鉄(炭素濃度0質量%)の液相線温度(℃)であり、aは係数である。
Figure JPOXMLDOC01-appb-M000005

Here, T i is the interface temperature (℃), T S is the cold iron source temperature (℃), ρ S is the density of iron scrap (ton/m 3 ), and Hs is the latent heat of melting of iron scrap. (MJ/ton), v is the dissolution rate (mm/s) of iron scrap (v>0: melting, v<0: growth (solidification shell formation), and λ i is the heat of the hot metal-iron scrap interface. Conductivity (W/(m・K)) (hot metal side thermal conductivity at interface). T L,0 is the liquidus temperature (℃) of pure iron (carbon concentration 0 mass%), and a is It is a coefficient.
 また、上記(15)式の係数及び純鉄の液相線温度は、下記(16)、(17)式で算出される。下記(16)、(17)式で算出される係数及び純鉄の液相線温度は次ステップのCの算出に用いられる。 Further, the coefficient of the above equation (15) and the liquidus temperature of pure iron are calculated using the following equations (16) and (17). The coefficients calculated by the following equations (16) and (17) and the liquidus temperature of pure iron are used to calculate C i in the next step.
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 さらに、溶銑-鉄スクラップ界面の熱伝達率(以後、「界面の熱伝達率」と記載する。)は、下記(18)式で算出される。(18)式で算出される界面の熱伝達率は次ステップの界面炭素濃度の算出に用いられる。 Furthermore, the heat transfer coefficient of the hot metal-iron scrap interface (hereinafter referred to as "interface heat transfer coefficient") is calculated by the following equation (18). The interfacial heat transfer coefficient calculated by equation (18) is used to calculate the interfacial carbon concentration in the next step.
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
 ここで算出された界面炭素濃度が下記(1)、(2)式の少なくとも一方を満足する場合には、算出された界面炭素濃度に代えて1ステップ前に算出された界面炭素濃度を用いて、上記(13)式から第一の溶解速度を算出し、上記(14)式から第二の溶解速度を算出し、これら第一の溶解速度と第二の溶解速度とを按分することで鉄スクラップの溶解速度を算出する。 If the interfacial carbon concentration calculated here satisfies at least one of the following formulas (1) and (2), the interfacial carbon concentration calculated one step before is used instead of the calculated interfacial carbon concentration. , calculate the first dissolution rate from the above equation (13), calculate the second dissolution rate from the above equation (14), and divide the first dissolution rate and the second dissolution rate proportionally. Calculate the dissolution rate of scrap.
 C>C・・・(1)
 C>Ci,t-1・・・(2)
C i >C...(1)
C i >C i,t-1 ...(2)
 算出された界面炭素濃度に代えて1ステップ前に算出された界面炭素濃度を用いると、(13)式から算出される第一の溶解速度と、(14)式から算出される第一の溶解速度とが異なる値となる。演算部38は、第一の溶解速度と第二の溶解速度とを特定の按分比率で按分することで鉄スクラップの溶解速度を算出する。 If the interfacial carbon concentration calculated one step before is used instead of the calculated interfacial carbon concentration, the first dissolution rate calculated from equation (13) and the first dissolution rate calculated from equation (14) The speed will be a different value. The calculation unit 38 calculates the dissolution rate of iron scrap by proportionally dividing the first dissolution rate and the second dissolution rate at a specific proportion.
 上述したように、鉄スクラップの溶解速度の計算には、鉄スクラップ溶解の駆動力に応じて(13)式と(14)式とを使い分けることが好ましいが、実際には鉄スクラップの溶解の機構ははっきりと区別できるものではない。したがって、鉄スクラップの溶解速度の計算に(13)式と(14)式の何れか一方を用いたのでは実現象に一致する鉄スクラップの溶解速度が得られない。 As mentioned above, in calculating the dissolution rate of iron scrap, it is preferable to use equations (13) and (14) depending on the driving force for iron scrap melting, but in reality, the mechanism of iron scrap melting cannot be clearly distinguished. Therefore, if either equation (13) or equation (14) is used to calculate the dissolution rate of iron scrap, the dissolution rate of iron scrap that matches the actual phenomenon cannot be obtained.
 このため、演算部38は、鉄スクラップの溶解速度の推定精度を高めるため、(13)式から算出される第一の溶解速度と(14)式から算出される第二の溶解速度とを特定の按分比率で按分することで鉄スクラップの溶解速度を算出する。具体的には、下記(19)式で鉄スクラップの溶解速度を算出する。 Therefore, in order to increase the accuracy of estimating the dissolution rate of iron scrap, the calculation unit 38 specifies the first dissolution rate calculated from equation (13) and the second dissolution rate calculated from equation (14). Calculate the dissolution rate of iron scrap by apportioning it at the proportion of . Specifically, the dissolution rate of iron scrap is calculated using the following equation (19).
 v=(第一の溶解速度)×(1-Z)+(第二の溶解速度)×Z・・・(19)
 ここで、vは鉄スクラップの溶解速度(m/min)であり、Zは按分比率(-)である。
v S = (first dissolution rate) x (1-Z) + (second dissolution rate) x Z... (19)
Here, v S is the dissolution rate (m/min) of iron scrap, and Z is the proportionate ratio (-).
 一方、算出された界面炭素濃度が上記(1)、(2)式の何れも満足しない場合には、当該界面炭素濃度を用いて鉄スクラップの溶解速度を算出する。算出された界面炭素濃度及び界面温度を用いる場合には、(13)式から算出される第一の溶解速度と(14)式から算出される第二の溶解速度とが等しくなる。このため、この場合には、当該界面炭素濃度を用いて算出される第一の溶解速度又は第二の溶解速度を鉄スクラップの溶解速度とする。このようにして、演算部38は、鉄スクラップの溶解速度を算出する。 On the other hand, if the calculated interfacial carbon concentration does not satisfy either of the above equations (1) or (2), the dissolution rate of iron scrap is calculated using the interfacial carbon concentration. When using the calculated interfacial carbon concentration and interfacial temperature, the first dissolution rate calculated from equation (13) and the second dissolution rate calculated from equation (14) become equal. Therefore, in this case, the first dissolution rate or the second dissolution rate calculated using the interfacial carbon concentration is the dissolution rate of the iron scrap. In this way, the calculation unit 38 calculates the dissolution rate of iron scrap.
 鉄スクラップの溶解速度が算出できれば、鉄スクラップの溶解速度と下記(20)式を用いて、鉄スクラップの溶解率を算出できる。 If the dissolution rate of iron scrap can be calculated, the dissolution rate of iron scrap can be calculated using the dissolution rate of iron scrap and the following formula (20).
Figure JPOXMLDOC01-appb-M000008
 
 ここで、ts0は鉄スクラップの初期厚み(mm)であり、Δtは計算時間間隔[s]である。
Figure JPOXMLDOC01-appb-M000008

Here, t s0 is the initial thickness (mm) of the iron scrap, and Δt is the calculation time interval [s].
 最後に、下記(21)式及び(22)式を用いて鉄スクラップの温度分布を求める。 Finally, the temperature distribution of the iron scrap is determined using the following equations (21) and (22).
Figure JPOXMLDOC01-appb-M000009
 
 ここで、αSは鉄スクラップの熱拡散率(m/s)であり、xは鉄スクラップの厚み方向の位置であり、本実施形態におけるxの一単位はtS0/100である。また、添え字i+1、i-1は、それぞれ溶鉄要素側、鉄スクラップ中心側に隣接する計算要素の鉄スクラップ温度を表す。
Figure JPOXMLDOC01-appb-M000009

Here, α S is the thermal diffusivity (m 2 /s) of the iron scrap, x is the position in the thickness direction of the iron scrap, and one unit of x in this embodiment is t S0 /100. Further, subscripts i+1 and i-1 represent the iron scrap temperatures of calculation elements adjacent to the molten iron element side and the iron scrap center side, respectively.
 上記(21)式を用いて鉄スクラップの温度分布を一次元的に求める。この(21)式を計算するには上記(22)式のように離散化する必要がある。したがって、(22)式から得られる鉄スクラップの温度分布は、計算厚み間隔Δxごとの不連続な温度分布になる。 The temperature distribution of iron scrap is determined one-dimensionally using the above equation (21). To calculate this equation (21), it is necessary to discretize it as in the above equation (22). Therefore, the temperature distribution of iron scrap obtained from equation (22) becomes a discontinuous temperature distribution for each calculated thickness interval Δx.
 厚み間隔ΔxをtS0の1/100としているので、計算開始時(溶解開始時)には、鉄スクラップを表す計算要素が100個存在する。鉄スクラップ要素群には、界面を表す計算要素が1個隣接し、界面要素の反対隣には溶鉄を表す計算要素群が隣接する。溶鉄要素の初期数は任意だが、許容計算コストを基準に決定することが好ましい。要素数が多い程、計算コストが上昇する代わりに、鉄スクラップ溶解初期に凝固シェルが大きく膨らむ場合の溶解挙動が精度よく計算できる。 Since the thickness interval Δx is set to 1/100 of t S0 , there are 100 calculation elements representing iron scrap at the start of calculation (at the start of melting). One calculation element representing an interface is adjacent to the iron scrap element group, and a calculation element group representing molten iron is adjacent to the opposite side of the interface element. The initial number of molten iron elements is arbitrary, but it is preferably determined based on the allowable calculation cost. As the number of elements increases, the calculation cost increases, but the melting behavior when the solidified shell expands greatly in the initial stage of iron scrap melting can be calculated with higher accuracy.
 全ての計算要素の厚みはΔxであり、計算要素厚み、界面要素数及び合計計算要素数は計算中一定である。但し、計算中の鉄スクラップ要素数及び溶鉄要素数は上記(20)式から求められる時々刻々の鉄スクラップ溶解率Sに応じて変化する。例えば、ある時刻において溶解率が2質量%であった場合、その時刻における鉄スクラップ要素は98個となり、溶鉄要素は2個増加する。また、界面要素は常に鉄スクラップ要素群-溶鉄要素群間に存在するので、初期位置に対して2×Δxの距離だけ鉄スクラップ要素側に移動する。反対に溶解率が0未満(凝固シェル生成中)であれば、鉄スクラップ要素が増加し、溶鉄要素が減少するので、界面要素は溶鉄要素側に移動する。 The thickness of all calculation elements is Δx, and the calculation element thickness, the number of interface elements, and the total number of calculation elements are constant during calculation. However, the number of iron scrap elements and the number of molten iron elements during calculation change depending on the momentary iron scrap melting rate S m determined from the above equation (20). For example, if the melting rate is 2% by mass at a certain time, the number of iron scrap elements at that time is 98, and the number of molten iron elements increases by two. Furthermore, since the interface element always exists between the iron scrap element group and the molten iron element group, it moves toward the iron scrap element side by a distance of 2×Δx from the initial position. On the other hand, if the melting rate is less than 0 (during solidification shell generation), the iron scrap elements increase and the molten iron elements decrease, so the interfacial elements move toward the molten iron elements.
 温度分布計算は、まず、その時刻の鉄スクラップ溶解率に応じて各計算要素が鉄スクラップ要素、界面要素、溶鉄要素のいずれかに該当するかを判定し、各要素について以下のように温度分布を求める。
 鉄スクラップ要素:上記(22)式に従って算出する。但し、鉄スクラップ中心は断熱境界(隣接要素と温度が等しい)として扱う。
 界面要素:上記(15)式から算出される界面温度Tである。
 溶鉄要素:溶鉄温度Tであり、溶鉄の温度ムラは考慮しない。
Temperature distribution calculations first determine whether each calculation element corresponds to an iron scrap element, interface element, or molten iron element according to the iron scrap melting rate at that time, and then calculate the temperature distribution for each element as shown below. seek.
Iron scrap element: Calculated according to equation (22) above. However, the center of the steel scrap is treated as an adiabatic boundary (temperature is equal to that of adjacent elements).
Interface element: Interface temperature T i calculated from the above equation (15).
Molten iron element: Molten iron temperature T, and temperature unevenness of the molten iron is not considered.
 次ステップの(13)式で用いるdT/dxは、界面温度Tiと、界面温度に隣接する鉄スクラップ要素との温度の差分を計算要素の厚みΔxで除することで算出される。次ステップの(13)式で用いるdT/dxを算出した後は、再び、炉内情報を取得し、上記(3)~(21)式を用いて計算時間間隔Δt秒後における鉄スクラップの溶解率を算出してよい。このように、鉄スクラップの溶解率を繰り返し算出することで、溶銑11の予備脱燐処理中における時々刻々の鉄スクラップの溶解率を算出できる。 dT S /dx used in equation (13) in the next step is calculated by dividing the temperature difference between the interface temperature Ti and the iron scrap element adjacent to the interface temperature by the thickness Δx of the calculation element. After calculating dT S /dx used in equation (13) in the next step, obtain the furnace information again and use equations (3) to (21) above to calculate the steel scrap value after the calculation time interval Δt seconds. The dissolution rate may be calculated. By repeatedly calculating the dissolution rate of iron scrap in this manner, the dissolution rate of iron scrap at every moment during the preliminary dephosphorization process of the hot metal 11 can be calculated.
 なお、上記(21)式、(22)式の鉄スクラップの熱拡散率は下記(23)式、(24)式及び(25)式で算出できる。 Note that the thermal diffusivity of iron scrap in the above equations (21) and (22) can be calculated using the following equations (23), (24), and (25).
Figure JPOXMLDOC01-appb-M000010
 
 ここで、λは鉄スクラップの熱伝導率(W/(m×K))であり、CPSは鉄スクラップの比熱(MJ/(t×K))である。
Figure JPOXMLDOC01-appb-M000010

Here, λ S is the thermal conductivity of iron scrap (W/(m×K)), and C PS is the specific heat of iron scrap (MJ/(t×K)).
 図3は、冷鉄源溶解率推定方法のフローを説明するフロー図である。図3を用いて本実施形態に係る冷鉄源溶解率推定方法の処理を説明する。本実施形態に係る冷鉄源溶解率推定方法は、溶銑11の予備脱燐処理前及び処理中の任意の時点において、例えば、オペレータ50からの指示により開始される。 FIG. 3 is a flow diagram illustrating the flow of the cold iron source dissolution rate estimation method. The processing of the cold iron source dissolution rate estimation method according to this embodiment will be explained using FIG. 3. The cold iron source dissolution rate estimation method according to the present embodiment is started, for example, by an instruction from the operator 50 at any time before and during the preliminary dephosphorization treatment of the hot metal 11.
 冷鉄源溶解率推定装置30の取得部36は、取得ステップを実行して、炉内情報として炉内に装入される溶銑11の装入量、溶銑11の初期炭素濃度、鉄スクラップの装入量、鉄スクラップの初期炭素濃度、鉄スクラップの密度及び鉄スクラップの溶解潜熱といった溶銑11及び鉄スクラップの情報を取得する。また、取得部36は、これらとともに、撹拌用ガス13の底吹流量や、時々刻々の溶銑11の温度及び炉内圧力を炉内情報として取得する(ステップS101)。取得部36はこれらの炉内情報を演算部38に出力する。 The acquisition unit 36 of the cold iron source melting rate estimating device 30 executes the acquisition step and obtains the charging amount of the hot metal 11 charged into the furnace, the initial carbon concentration of the hot metal 11, and the iron scrap loading as furnace information. Information on the hot metal 11 and the iron scrap, such as the input amount, the initial carbon concentration of the iron scrap, the density of the iron scrap, and the latent heat of melting of the iron scrap, is acquired. In addition, the acquisition unit 36 acquires the bottom blowing flow rate of the stirring gas 13, the momentary temperature of the hot metal 11, and the furnace pressure as furnace information (step S101). The acquisition unit 36 outputs this in-furnace information to the calculation unit 38.
 演算部38は、演算ステップを実行して、炉内情報と上記(3)~(18)式とを用いて界面炭素濃度Cを算出する(ステップS102)。演算部38は、算出された界面炭素濃度Cが上記(1)、(2)式の少なくとも一方を満足する場合には、算出された界面炭素濃度Cに代えて1ステップ前に算出された界面炭素濃度Ci,t-1を用いて、第一の溶解速度と第二の溶解速度とを算出し、これら第一の溶解速度と第二の溶解速度と按分することで鉄スクラップの溶解速度を算出する。また、算出された界面炭素濃度Cが上記(1)、(2)式の何れも満足しない場合には、算出された界面炭素濃度Cを用いて第一の溶解速度又は第二の溶解速度を算出し、算出した第一の溶解速度又は第二の溶解速度を鉄スクラップの溶解速度とする(ステップS103)。 The calculation unit 38 executes the calculation step and calculates the interfacial carbon concentration C i using the furnace information and the above equations (3) to (18) (step S102). When the calculated interfacial carbon concentration C i satisfies at least one of the above equations (1) and (2), the calculation unit 38 replaces the calculated interfacial carbon concentration C i with the one calculated one step earlier. The first dissolution rate and the second dissolution rate are calculated using the interfacial carbon concentration C i,t-1 , and by proportionally dividing the first dissolution rate and the second dissolution rate, the Calculate the dissolution rate. In addition, if the calculated interfacial carbon concentration C i does not satisfy either of the above equations (1) or (2), the first dissolution rate or the second dissolution rate is determined using the calculated interfacial carbon concentration C i . The speed is calculated, and the calculated first dissolution rate or second dissolution rate is set as the dissolution rate of the iron scrap (step S103).
 演算部38は、演算ステップを実行し、鉄スクラップの溶解速度と上記(20)式を用いて鉄スクラップの溶解率Sを算出する(ステップS104)。また、演算部38は、演算ステップを実行し、上記(21)式を用いて鉄スクラップの温度分布を算出する(ステップS105)。 The calculation unit 38 executes a calculation step and calculates the iron scrap dissolution rate S m using the iron scrap dissolution rate and the above equation (20) (step S104). Further, the calculation unit 38 executes a calculation step and calculates the temperature distribution of the iron scrap using the above equation (21) (step S105).
 演算部38は、鉄スクラップの溶解率Sを出力部40に出力する。出力部40は出力ステップを実行して、溶解率Sを出力する(ステップS106)。 The calculation unit 38 outputs the dissolution rate S m of iron scrap to the output unit 40 . The output unit 40 executes the output step and outputs the dissolution rate S m (step S106).
 演算部38は、算出した鉄スクラップの溶解率Sが100以上か否かを判断する(ステップS107)。鉄スクラップの溶解率Sが100以上であると判断した場合(ステップS107:Yes)、演算部38は、鉄スクラップは完全に溶解しているとして本処理を終了させる。一方、鉄スクラップの溶解率Sが100未満であると判断した場合(ステップS107:No)、演算部38は、処理をステップS101に戻し、再び、ステップS101~S107の処理を実行して計算時間間隔Δt秒後の鉄スクラップの溶解率Sを算出する。このようにステップS101~S107の処理を繰り返し実行することで、本実施形態に係る冷鉄源溶解率推定方法は、溶銑11の予備脱燐処理において、鉄スクラップが完全溶解するまでの時々刻々の鉄スクラップの溶解率Sを算出できる。 The calculation unit 38 determines whether the calculated iron scrap dissolution rate S m is 100 or more (step S107). If it is determined that the iron scrap melting rate S m is 100 or more (step S107: Yes), the calculation unit 38 concludes that the iron scrap is completely melted and ends this process. On the other hand, if it is determined that the melting rate S m of iron scrap is less than 100 (step S107: No), the calculation unit 38 returns the process to step S101 and again executes the processes of steps S101 to S107 to calculate the Calculate the dissolution rate S of iron scrap after a time interval Δt seconds. By repeatedly performing the processes of steps S101 to S107 in this way, the method for estimating the cold iron source dissolution rate according to the present embodiment can be performed at every moment until the iron scrap is completely melted in the preliminary dephosphorization process of the hot metal 11. The dissolution rate S m of iron scrap can be calculated.
 次に実施例を説明する。本実施例では、内径430mmの円筒形大気炉を用いて溶製した溶鉄500kgに冷鉄源(鉄スクラップ)を模した角型純鉄サンプル(100×100×50mm)を80mm浸漬させ、本実施形態に係る冷鉄源溶解率推定方法を用いて所定時間経過後の角型純鉄サンプルの溶解率を推定した。角型純鉄サンプルは、溶鉄に所定時間浸漬させた後に回収して空冷し、下記(26)式を用いて角型純鉄サンプルの溶解率を実測した。 Next, an example will be described. In this example, a square pure iron sample (100 x 100 x 50 mm) imitating a cold iron source (iron scrap) was immersed 80 mm into 500 kg of molten iron produced using a cylindrical atmospheric furnace with an inner diameter of 430 mm. The dissolution rate of a square pure iron sample after a predetermined period of time was estimated using the method for estimating the dissolution rate of a cold iron source based on the morphology. The square pure iron sample was immersed in molten iron for a predetermined period of time, then collected and cooled in air, and the dissolution rate of the square pure iron sample was actually measured using the following equation (26).
Figure JPOXMLDOC01-appb-M000011
 
 ここで、Sは角型純鉄サンプル溶解率(質量%)、LS0、Lはそれぞれ浸漬前、浸漬後の角型純鉄サンプルの厚み(mm)である。
Figure JPOXMLDOC01-appb-M000011

Here, S p is the dissolution rate (mass %) of the square pure iron sample, and L S0 and L S are the thicknesses (mm) of the square pure iron sample before and after immersion, respectively.
 溶鉄温度及び溶鉄炭素濃度測定のため、溶鉄に角型純鉄サンプルを浸漬させる前後にイマージョン熱電対による測温と化学分析用の溶鉄サンプルの採取とを行った。 In order to measure the molten iron temperature and molten iron carbon concentration, temperature measurement with an immersion thermocouple and collection of molten iron samples for chemical analysis were performed before and after immersing a square pure iron sample in molten iron.
 [実施例1]
 実施例1では、角型純鉄サンプルを1200℃で予熱した場合と、予熱しなかった場合とで角型純鉄サンプルの溶解率を本実施形態に係る冷鉄源溶解率推定方法でそれぞれ推定した。実施例1の条件を下記表2に示す。
[Example 1]
In Example 1, the dissolution rate of a square pure iron sample was estimated using the cold iron source dissolution rate estimation method according to the present embodiment when the square pure iron sample was preheated to 1200°C and when it was not preheated. did. The conditions of Example 1 are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 図4は、実施例1における角型純鉄サンプルの溶解率の推定結果と実測結果を示すグラフである。図4において、縦軸は角型純鉄サンプルの溶解率(質量%)であり、横軸は溶解時間(秒)である。図4において、各プロファイルは冷鉄源溶解率推定方法で推定した溶解率を示し、各プロットは浸漬後に回収して空冷し、上記(26)式を用いて算出された角型純鉄サンプル溶解率(質量%)の実測値を示す。 FIG. 4 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 1. In FIG. 4, the vertical axis is the dissolution rate (mass %) of the square pure iron sample, and the horizontal axis is the dissolution time (seconds). In Figure 4, each profile shows the dissolution rate estimated by the cold iron source dissolution rate estimation method, and each plot shows the dissolution rate of a square pure iron sample calculated using the above equation (26) after being collected after immersion and air-cooled. The actual measured value of the ratio (mass%) is shown.
 図4に示すように、角型純鉄サンプルを予熱した場合、予熱しない場合に関わらず、溶解率の推定値と実験値とがほぼ一致した。この結果から、本実施形態に係る冷鉄源溶解率推定方法を用いることで冷鉄源の溶解率を高い精度で推定できることが確認された。 As shown in FIG. 4, when the square pure iron sample was preheated, the estimated value of the dissolution rate and the experimental value almost matched regardless of whether it was not preheated. From this result, it was confirmed that the dissolution rate of a cold iron source can be estimated with high accuracy by using the cold iron source dissolution rate estimation method according to the present embodiment.
 [実施例2]
 実施例2では、1430~1610℃の範囲で初期温度を変えた溶鉄を用いた場合の角型純鉄サンプルの溶解率を本実施形態に係る冷鉄源溶解率推定方法でそれぞれ推定した。この実施例2の条件を下記表3に示す。
[Example 2]
In Example 2, the dissolution rate of a square pure iron sample when using molten iron whose initial temperature was varied in the range of 1430 to 1610°C was estimated using the cold iron source dissolution rate estimation method according to the present embodiment. The conditions of this Example 2 are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
 図5は、実施例2における角型純鉄サンプルの溶解率の推定結果と実測結果を示すグラフである。図5において、縦軸は角型純鉄サンプルの溶解率(質量%)であり、横軸は溶解時間(秒)である。図5においても、各プロファイルは冷鉄源溶解率推定方法で推定した溶解率を示し、各プロットは浸漬後に回収して空冷し、上記(26)式を用いて算出された角型純鉄サンプル溶解率(質量%)の実測値を示す。 FIG. 5 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 2. In FIG. 5, the vertical axis is the dissolution rate (mass %) of the square pure iron sample, and the horizontal axis is the dissolution time (seconds). In Figure 5, each profile shows the dissolution rate estimated by the cold iron source dissolution rate estimation method, and each plot shows the square pure iron sample recovered after immersion and air-cooled, and calculated using the above equation (26). Measured values of dissolution rate (mass%) are shown.
 図5に示すように、溶鉄の初期温度を変えた発明例11~16の条件において溶解率の推定値と実験値とがほぼ一致した。この結果から、本実施形態に係る冷鉄源溶解率推定方法を用いることで冷鉄源の溶解率を高い精度で推定できることが確認された。 As shown in FIG. 5, the estimated value of the dissolution rate and the experimental value almost matched under the conditions of Inventive Examples 11 to 16 in which the initial temperature of the molten iron was changed. From this result, it was confirmed that the dissolution rate of a cold iron source can be estimated with high accuracy by using the cold iron source dissolution rate estimation method according to the present embodiment.
 [実施例3]
 実施例3では(13)式から求められる第一の溶解速度又は(14)式から求められる第二の溶解速度から冷鉄源の溶解率を推定した場合と(13)式から求められる第一の溶解速度と(14)式から求められる第二の溶解速度とを按分して求められる溶解速度から冷鉄源の溶解率を推定した場合とで推定される溶解率をそれぞれ確認した。この実施例3の条件を下記表4に示す。
[Example 3]
In Example 3, the dissolution rate of the cold iron source is estimated from the first dissolution rate obtained from equation (13) or the second dissolution rate obtained from equation (14), and the first dissolution rate obtained from equation (13). The dissolution rate estimated by estimating the dissolution rate of the cold iron source from the dissolution rate obtained by proportionally dividing the dissolution rate and the second dissolution rate obtained from equation (14) was confirmed. The conditions of this Example 3 are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 図6は、実施例3における角型純鉄サンプルの溶解率の推定結果と実測結果を示すグラフである。図6において、縦軸は角型純鉄サンプルの溶解率(質量%)であり、横軸は溶解時間(秒)である。図6において、実線で示したプロファイルは冷鉄源溶解率推定方法で推定した溶解率を示し、破線で示したプロファイルは、(13)式又は(14)式のみを使用して推定した溶解率を示す。また、丸プロットは、浸漬後に回収して空冷し、上記(26)式を用いて算出された角型純鉄サンプル溶解率(質量%)の実測値を示す。 FIG. 6 is a graph showing the estimated and actual measurement results of the dissolution rate of the square pure iron sample in Example 3. In FIG. 6, the vertical axis is the dissolution rate (mass %) of the square pure iron sample, and the horizontal axis is the dissolution time (seconds). In Figure 6, the profile shown by the solid line shows the dissolution rate estimated by the cold iron source dissolution rate estimation method, and the profile shown by the broken line shows the dissolution rate estimated using only equation (13) or equation (14). shows. Moreover, the circle plot shows the actual value of the dissolution rate (mass %) of the square pure iron sample, which was collected after immersion, air-cooled, and calculated using the above equation (26).
 図6に示すように、上記(1)、(2)式の少なくとも一方を満足する場合に、第一の溶解速度と第二の溶解速度を按分して求めた溶解速度から冷鉄源の溶解率を推定した発明例31は推定値と実験値とがほぼ一致した。一方、上記(1)、(2)式の少なくとも一方を満足する場合であっても(13)式、又は(14)式のみから求めた溶解速度から冷鉄源の溶解率を推定した場合には、推定値と実験値とが一致しなかった。これらの結果から、冷鉄源の溶解率を高い精度で推定するには、伝熱収支式から算出される第一の溶解速度と炭素物質収支式から算出される第二の溶解速度を適切な按分比率を定めて按分することが重要であることが確認された。 As shown in FIG. 6, when at least one of the above equations (1) and (2) is satisfied, the dissolution rate of the cold iron source is calculated from the dissolution rate obtained by proportionally dividing the first dissolution rate and the second dissolution rate. In Invention Example 31, in which the rate was estimated, the estimated value and the experimental value almost matched. On the other hand, even if at least one of the above equations (1) and (2) is satisfied, when the dissolution rate of the cold iron source is estimated from the dissolution rate determined only from equation (13) or equation (14), The estimated and experimental values did not match. From these results, in order to estimate the dissolution rate of cold iron sources with high accuracy, the first dissolution rate calculated from the heat transfer balance equation and the second dissolution rate calculated from the carbon mass balance equation should be appropriately adjusted. It was confirmed that it is important to determine the proportionate proportion and allocate the proportions.
 10 転炉型精錬炉
 11 溶銑
 13 撹拌用ガス
 14 上吹きランス
 20 転炉型精錬炉制御装置
 22 プロセスコンピュータ
 24 操業制御用コンピュータ
 30 冷鉄源溶解率推定装置
 32 制御部
 34 格納部
 36 取得部
 38 演算部
 40 出力部
 50 オペレータ
10 Converter type smelting furnace 11 Hot metal 13 Stirring gas 14 Top blowing lance 20 Converter type smelting furnace control device 22 Process computer 24 Operation control computer 30 Cold iron source dissolution rate estimation device 32 Control section 34 Storage section 36 Acquisition section 38 Arithmetic unit 40 Output unit 50 Operator

Claims (10)

  1.  冷鉄源を原料として用いる溶鉄の精錬処理において、前記冷鉄源の溶解率を推定する冷鉄源溶解率推定装置であって、
     前記溶鉄及び前記冷鉄源の情報を含む炉内情報を取得する取得部と、
     前記炉内情報を用いて前記冷鉄源と前記溶鉄との界面炭素濃度、前記冷鉄源の溶解速度及び前記冷鉄源の溶解率を算出する演算部と、
     前記溶解率を出力する出力部と、を有し、
     前記界面炭素濃度が下記(1)、(2)式の少なくとも一方を満足する場合には、前記演算部は、1ステップ前に算出された界面炭素濃度を用いて、伝熱収支式から第一の溶解速度を、炭素物質収支式から第二の溶解速度をそれぞれ算出し、前記第一の溶解速度と前記第二の溶解速度とを按分することで前記冷鉄源の溶解速度を算出し、
     前記界面炭素濃度が下記(1)、(2)式の何れも満足しない場合には、前記演算部は、前記界面炭素濃度を用いて前記第一の溶解速度又は前記第二の溶解速度を算出し、算出した前記第一の溶解速度又は前記第二の溶解速度を前記冷鉄源の溶解速度とする、冷鉄源溶解率推定装置。
     C>C・・・(1)
     C>Ci,t-1・・・(2)
     上記(1)、(2)式において、Cは溶鉄炭素濃度(質量%)であり、Cは界面炭素濃度(質量%)であり、Ci,t-1は1ステップ前に算出された界面炭素濃度(質量%)である。
    A cold iron source dissolution rate estimation device for estimating the dissolution rate of the cold iron source in a molten iron refining process using the cold iron source as a raw material,
    an acquisition unit that acquires furnace information including information on the molten iron and the cold iron source;
    a calculation unit that calculates an interfacial carbon concentration between the cold iron source and the molten iron, a dissolution rate of the cold iron source, and a dissolution rate of the cold iron source using the furnace information;
    an output unit that outputs the dissolution rate,
    When the interfacial carbon concentration satisfies at least one of the following equations (1) and (2), the calculation unit calculates the first equation from the heat transfer balance equation using the interfacial carbon concentration calculated one step before. Calculate the dissolution rate of the cold iron source by calculating the second dissolution rate from the carbon material balance equation, and proportionally dividing the first dissolution rate and the second dissolution rate,
    If the interfacial carbon concentration does not satisfy either equation (1) or (2) below, the calculation unit calculates the first dissolution rate or the second dissolution rate using the interfacial carbon concentration. A cold iron source dissolution rate estimating device, wherein the calculated first dissolution rate or the second dissolution rate is set as the dissolution rate of the cold iron source.
    C i >C...(1)
    C i >C i,t-1 ...(2)
    In the above equations (1) and (2), C is the molten iron carbon concentration (mass%), C i is the interfacial carbon concentration (mass%), and C i,t-1 is the molten iron carbon concentration (mass%). Interfacial carbon concentration (mass%).
  2.  前記冷鉄源の炭素濃度が前記溶鉄の炭素濃度よりも低い場合に、
     前記演算部は、溶鉄温度、溶鉄炭素濃度及び冷鉄源の炭素濃度に基づいて前記第一の溶解速度と前記第二の溶解速度とを按分する按分比率を特定する、請求項1に記載の冷鉄源溶解率推定装置。
    When the carbon concentration of the cold iron source is lower than the carbon concentration of the molten iron,
    The calculation unit specifies an apportionment ratio for apportioning the first dissolution rate and the second dissolution rate based on molten iron temperature, molten iron carbon concentration, and cold iron source carbon concentration. Cold iron source dissolution rate estimation device.
  3.  前記演算部は、前記界面炭素濃度と、前記冷鉄源の溶解速度と、前記冷鉄源の溶解率とを繰り返し算出することで、時々刻々の冷鉄源の溶解率を推定する、請求項1又は請求項2に記載の冷鉄源溶解率推定装置。 The calculation unit estimates the dissolution rate of the cold iron source from time to time by repeatedly calculating the interfacial carbon concentration, the dissolution rate of the cold iron source, and the dissolution rate of the cold iron source. The cold iron source dissolution rate estimation device according to claim 1 or claim 2.
  4.  請求項1又は請求項2に記載の冷鉄源溶解率推定装置を用いて前記精錬処理の終了時点における前記冷鉄源の溶解率を推定し、
     前記終了時点における前記溶解率から算出される前記冷鉄源の未溶解率が5質量%を超える場合は、昇熱材の添加及び溶鉄処理延長のうち少なくとも1つの操作を実施する、溶鉄の精錬処理方法。
    Estimating the dissolution rate of the cold iron source at the end of the refining process using the cold iron source dissolution rate estimation device according to claim 1 or 2,
    If the unmelted rate of the cold iron source calculated from the melting rate at the end point exceeds 5% by mass, refining the molten iron by performing at least one of adding a heating material and extending the molten iron treatment. Processing method.
  5.  請求項3に記載の冷鉄源溶解率推定装置を用いて前記精錬処理の終了時点における前記冷鉄源の溶解率を推定し、
     前記終了時点における前記溶解率から算出される前記冷鉄源の未溶解率が5質量%を超える場合は、昇熱材の添加及び溶鉄処理延長のうち少なくとも1つの操作を実施する、溶鉄の精錬処理方法。
    Estimating the dissolution rate of the cold iron source at the end of the refining process using the cold iron source dissolution rate estimation device according to claim 3,
    If the unmelted rate of the cold iron source calculated from the melting rate at the end point exceeds 5% by mass, refining the molten iron by performing at least one of adding a heating material and extending the molten iron treatment. Processing method.
  6.  冷鉄源を原料として用いる溶鉄の精錬処理において、前記冷鉄源の溶解率を推定する冷鉄源溶解率推定方法であって、
     前記溶鉄及び前記冷鉄源の情報を含む炉内情報を取得する取得ステップと、
     前記炉内情報を用いて前記冷鉄源と前記溶鉄との界面炭素濃度、前記冷鉄源の溶解速度及び前記冷鉄源の溶解率を算出する演算ステップと、
     前記溶解率を出力する出力ステップと、を有し、
     前記界面炭素濃度が下記(1)、(2)式の少なくとも一方を満足する場合には、前記演算ステップでは、1ステップ前に算出された界面炭素濃度を用いて、伝熱収支式から第一の溶解速度を、炭素物質収支式から第二の溶解速度をそれぞれ算出し、前記第一の溶解速度と前記第二の溶解速度とを按分することで前記冷鉄源の溶解速度を算出し、
     前記界面炭素濃度が下記(1)、(2)式の何れも満足しない場合には、前記演算ステップでは、前記界面炭素濃度を用いて前記第一の溶解速度又は前記第二の溶解速度を算出し、算出した前記第一の溶解速度又は前記第二の溶解速度を前記冷鉄源の溶解速度とする、冷鉄源溶解率推定方法。
     C>C・・・(1)
     C>Ci,t-1・・・(2)
     上記(1)、(2)式において、Cは溶鉄炭素濃度(質量%)であり、Cは界面炭素濃度(質量%)であり、Ci,t-1は1ステップ前に算出された界面炭素濃度(質量%)である。
    A cold iron source dissolution rate estimation method for estimating the dissolution rate of the cold iron source in a molten iron refining process using a cold iron source as a raw material, the method comprising:
    an acquisition step of acquiring furnace information including information on the molten iron and the cold iron source;
    a calculation step of calculating an interfacial carbon concentration between the cold iron source and the molten iron, a dissolution rate of the cold iron source, and a dissolution rate of the cold iron source using the furnace information;
    an output step of outputting the dissolution rate,
    If the interfacial carbon concentration satisfies at least one of the following equations (1) and (2), in the calculation step, the first calculation is performed from the heat transfer equation using the interfacial carbon concentration calculated one step before. Calculate the dissolution rate of the cold iron source by calculating the second dissolution rate from the carbon material balance equation, and proportionally dividing the first dissolution rate and the second dissolution rate,
    If the interfacial carbon concentration does not satisfy either of the following equations (1) or (2), in the calculation step, the first dissolution rate or the second dissolution rate is calculated using the interfacial carbon concentration. A cold iron source dissolution rate estimation method, wherein the calculated first dissolution rate or the second dissolution rate is set as the dissolution rate of the cold iron source.
    C i >C...(1)
    C i >C i,t-1 ...(2)
    In the above equations (1) and (2), C is the molten iron carbon concentration (mass%), C i is the interfacial carbon concentration (mass%), and C i,t-1 is the molten iron carbon concentration (mass%). Interfacial carbon concentration (mass%).
  7.  前記冷鉄源の炭素濃度が前記溶鉄の炭素濃度よりも低い場合に、
     前記演算ステップでは、溶鉄温度、溶鉄炭素濃度及び冷鉄源の炭素濃度に基づいて前記第一の溶解速度と前記第二の溶解速度とを按分する按分比率を特定する、請求項6に記載の冷鉄源溶解率推定方法。
    When the carbon concentration of the cold iron source is lower than the carbon concentration of the molten iron,
    7. The method according to claim 6, wherein in the calculation step, a proportional division ratio is specified for proportionally dividing the first dissolution rate and the second dissolution rate based on the molten iron temperature, the molten iron carbon concentration, and the carbon concentration of the cold iron source. Cold iron source dissolution rate estimation method.
  8.  前記演算ステップでは、前記界面炭素濃度と、前記冷鉄源の溶解速度と、前記冷鉄源の溶解率とを繰り返し算出することで、時々刻々の冷鉄源の溶解率を推定する、請求項6又は請求項7に記載の冷鉄源溶解率推定方法。 2. The calculation step estimates the dissolution rate of the cold iron source from time to time by repeatedly calculating the interfacial carbon concentration, the dissolution rate of the cold iron source, and the dissolution rate of the cold iron source. The cold iron source dissolution rate estimation method according to claim 6 or claim 7.
  9.  請求項6又は請求項7に記載の冷鉄源溶解率推定方法を用いて前記精錬処理の終了時点における前記冷鉄源の溶解率を推定し、
     前記終了時点における前記溶解率から算出される前記冷鉄源の未溶解率が5質量%を超える場合は、昇熱材の添加及び溶鉄処理延長のうち少なくとも1つの操作を実施する、溶鉄の精錬処理方法。
    Estimating the dissolution rate of the cold iron source at the end of the refining process using the cold iron source dissolution rate estimation method according to claim 6 or 7,
    If the unmelted rate of the cold iron source calculated from the melting rate at the end point exceeds 5% by mass, refining the molten iron by performing at least one of adding a heating material and extending the molten iron treatment. Processing method.
  10.  請求項8に記載の冷鉄源溶解率推定方法を用いて前記精錬処理の終了時点における前記冷鉄源の溶解率を推定し、
     前記終了時点における前記溶解率から算出される前記冷鉄源の未溶解率が5質量%を超える場合は、昇熱材の添加及び溶鉄処理延長のうち少なくとも1つの操作を実施する、溶鉄の精錬処理方法。
    Estimating the dissolution rate of the cold iron source at the end of the refining process using the cold iron source dissolution rate estimation method according to claim 8,
    If the unmelted rate of the cold iron source calculated from the melting rate at the end point exceeds 5% by mass, refining the molten iron by performing at least one of adding a heating material and extending the molten iron treatment. Processing method.
PCT/JP2023/021995 2022-07-19 2023-06-14 Cold iron source solubility estimation device, cold iron source solubility estimation method, and refining treatment method for molten iron WO2024018783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-114590 2022-07-19
JP2022114590 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024018783A1 true WO2024018783A1 (en) 2024-01-25

Family

ID=89617602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021995 WO2024018783A1 (en) 2022-07-19 2023-06-14 Cold iron source solubility estimation device, cold iron source solubility estimation method, and refining treatment method for molten iron

Country Status (1)

Country Link
WO (1) WO2024018783A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313A (en) * 1990-04-16 1992-01-06 Nippon Steel Corp Method for estimating c concentration in molten iron in iron-containing cold material melting method
JP2005206901A (en) * 2004-01-23 2005-08-04 Kobe Steel Ltd Converter operating method
JP2009256716A (en) * 2008-04-15 2009-11-05 Nippon Steel Corp Method for melting cold-iron source in molten iron vessel
JP2016132809A (en) * 2015-01-20 2016-07-25 新日鐵住金株式会社 Dephosphorization method for molten iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313A (en) * 1990-04-16 1992-01-06 Nippon Steel Corp Method for estimating c concentration in molten iron in iron-containing cold material melting method
JP2005206901A (en) * 2004-01-23 2005-08-04 Kobe Steel Ltd Converter operating method
JP2009256716A (en) * 2008-04-15 2009-11-05 Nippon Steel Corp Method for melting cold-iron source in molten iron vessel
JP2016132809A (en) * 2015-01-20 2016-07-25 新日鐵住金株式会社 Dephosphorization method for molten iron

Similar Documents

Publication Publication Date Title
Jalkanen et al. Converter steelmaking
JP6515385B2 (en) Hot metal pretreatment method and hot metal pretreatment control device
KR20230098852A (en) Converter operation method and converter blow control system
JP5924186B2 (en) Method of decarburizing and refining hot metal in converter
WO2024018783A1 (en) Cold iron source solubility estimation device, cold iron source solubility estimation method, and refining treatment method for molten iron
Khadhraoui et al. A new approach for modelling and control of dephosphorization in BOF converter
WO2023017674A1 (en) Cold iron source melting rate estimation device, converter-type refining furnace control device, cold iron source melting rate estimation method, and molten iron refining method
Vidhyasagar et al. A Static Model for Energy‐Optimizing Furnace
KR100516732B1 (en) A method for operating a steelmaking furnace to manufacture a carbon steel product
WO2022195951A1 (en) Method for operating converter furnace, and method for producing molten steel
CN113574189A (en) Method for monitoring a steelmaking process and associated computer program
JP4484717B2 (en) How to operate steelmaking equipment
KR100616137B1 (en) Apparatus for measuring the weight of converter and converter refining method using the same
Sahoo et al. Optimization of Aluminum Deoxidation Practice in the Ladle Furnace
WO2023276357A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, supplied heat quantity estimation program, and operation method for blast furnace
JP7156560B2 (en) Refining process control device and refining process control method
JPH0219416A (en) Converter blow-refining method
Laciak et al. The Analysis of the Influence of Input Parameters on the Accuracy of Temperature Model in the Steelmaking Process
Kiasaraei Decarburization and Melting Behavior of Direct-reduced Iron Pellets in Steelmaking Slag
JP3740914B2 (en) Hot metal temperature estimation method
JP5334442B2 (en) Method of charging premelt hatching accelerator
JPS6155565B2 (en)
JPH0551620A (en) Method or measuring slag height by sub-lance
Buydens et al. The dynamic control of the slag foaming operation in the electric arc furnace
JPS6256513A (en) Method for controlling end point of converter blowing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842715

Country of ref document: EP

Kind code of ref document: A1