JP3740914B2 - Hot metal temperature estimation method - Google Patents

Hot metal temperature estimation method Download PDF

Info

Publication number
JP3740914B2
JP3740914B2 JP29499799A JP29499799A JP3740914B2 JP 3740914 B2 JP3740914 B2 JP 3740914B2 JP 29499799 A JP29499799 A JP 29499799A JP 29499799 A JP29499799 A JP 29499799A JP 3740914 B2 JP3740914 B2 JP 3740914B2
Authority
JP
Japan
Prior art keywords
hot metal
temperature
slag
measured
metal temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29499799A
Other languages
Japanese (ja)
Other versions
JP2001115208A (en
Inventor
丹晴 高尾
光春 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP29499799A priority Critical patent/JP3740914B2/en
Publication of JP2001115208A publication Critical patent/JP2001115208A/en
Application granted granted Critical
Publication of JP3740914B2 publication Critical patent/JP3740914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶銑温度の推定方法に係わり、特に、溶銑を転炉に装入して酸素吹錬する前に、予め混銑車内で該溶銑から脱珪、脱燐、脱硫し、その溶銑の温度を正確且つ迅速に推定する技術である。
【0002】
【従来の技術】
近年、溶銑を転炉で酸素吹錬して溶鋼とするに当たり、転炉での吹錬負荷を低減すると共に、溶鋼を所望の組成にし易くするため、転炉に装入する溶銑から予め珪素、燐、硫黄等を除去する所謂「溶銑予備処理」が普及している。つまり、高炉から出鋼された溶銑が、まだ出銑樋、傾注樋、あるいは混銑車内に存在する間に、該溶銑に石灰系フラックス及び酸化剤を吹込み、前記成分元素をスラグへ移行し、除去するのである。
【0003】
ところで、かかる予備処理工程を経た溶銑を転炉で酸素吹錬するには、溶銑の温度を正確に知ることが必要である。なぜならば、高炉出鋼から予備処理工程を終了するまでにかなりの時間が経過しているばかりでなく、予備処理の種類、程度等によって転炉装入時の温度が変動するからである。つまり、転炉では、該溶銑の温度は、その吹錬条件(例えば、酸素ガスの吹き込み量、ランス高さ等)を決める重要な因子となるからである。そのため、現在は、溶銑の予備処理が終了し、排滓を行なう毎に溶銑の温度を測定するようにしている。具体的には、混銑車1を排滓のため傾けた際に、図4に示すように、オペレータ2が熱電対の内装された消耗型測温プルーブ3を混銑車1内の溶銑4中に挿入し、測温している。
【0004】
【発明が解決しようとする課題】
しかしながら、このような測温プルーブ3を毎回使用する方法では、オペレータ2は、高熱の環境で、自身の手で測温プルーブ3を保持しなければならず、作業は、厳しいと同時に危険性も大きい。また、該測温プルーブ3は、消耗式であるため、測温の度に新しいプルーブを使用しなければならず、そのコストも無視できない。そのため、非接触式温度計(例えば、光、放射式)での測温が望ましいく、従来から種々の試みがある。しかし、いずれの試みも測定温度の信頼性が低く、依然として測温プルーブ3の利用が継続している。
【0005】
本発明は、かかる事情に鑑み、非接触式温度計を用いて、溶銑温度を従来より正確で、且つ迅速に知ることの可能な溶銑温度の推定方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
発明者は、上記目的を達成するため、高温物体に対して従来から使用されている放射温度計での測温を見直し、実用できる技術とすることに鋭意努力した。そして、溶銑温度を直接測定するのではなく、スラグの温度を間接的に利用することで好ましい結果を見出し、本発明を完成させた。
【0007】
すなわち、本発明は、容器内にスラグと共に保持されている溶銑の温度を測定するにあたり、前記容器からスラグを流し出し、そのスラグ流の温度を放射温度計で測定すると共に、その測定値を別途求めてある溶銑温度とスラグ温度との関係に照らして、該容器内の溶銑温度を定めることを特徴とする溶銑温度の推定方法である。
【0008】
また、本発明は、前記容器が混銑車であったり、あるいは前記溶銑が溶銑予備処理後の溶銑であることを特徴とする溶銑温度の推定方法でもある。
【0009】
【発明の実施の形態】
以下、発明をなすに至った経緯も交え、本発明の実施の形態を説明する。
【0010】
放射温度計で溶銑温度を直接測定することは、従来より度々行なわれている。例えば、混銑車で溶銑の予備脱燐を行った後、混銑車を傾けて生じたスラグのみを流し出すことがある。その際、混銑車内の溶銑は開口部から観察できるので、オペレータが適当に離れた位置から放射温度計で該溶銑を観察し、測温する。しかしながら、かかる測定で得た温度値は、実際に熱電対で求めた値と大きく異なったり、測定毎の変動も大きく、実用するには、信頼性が欠けていた。
【0011】
本来、放射温度計は、3000℃までの高温物体の測温が可能とされている。しかし、被測温物体が固体(例えば、鋼鋳片、圧延材等)の場合には、有効な温度計であるが、液体の場合には、良い測温結果の報告がない。また、被測温物体からある距離以上離れると、正しい測温が行なえず、その距離は、被測温物体の大きさに比例すると言われている。
【0012】
そこで、発明者は、従来の溶銑温度の放射温度計による直接測定を見直した。その結果、被測温物体までの距離が、オペレータによって様々であるし、また被測温物体の観察面の大きさも一定していないことに気がついた。つまり、測定条件が安定せず、外乱の影響があり過ぎると考えた。
【0013】
引き続き、測定条件の安定化に着眼して、スラグあるいは溶銑を一定幅で流し、その温度を放射温度計で測定することを試みた。具体的に、取鍋、傾注樋、混銑車を用いて、それらが保持している溶銑温度を熱電対(Pt−Rh系)で実測すると共に、スラグ又は溶銑を一定幅で流出させ観察面積を固定すると共に、測定距離も固定して、その温度を放射温度計で測定する実験を多々行ない、両測定値間の相関関係を求めた。その結果を図2及び3に示す。
【0014】
図2の結果より、放射温度計による溶銑温度の測定値は、熱電対(測温プルーブ3)による溶銑温度の測定値に対して著しくばらついており、上述のように条件を整えても実用に耐える測定値が得られないことが明らかである。一方、図3の結果より、放射温度計によるスラグ温度の測定値は、熱電対(測温プルーブ3)による溶銑温度の測定値に対してばらつきの少ない、良い相関が得られることがわかった。図3の測定例では、スラグ温度は(溶銑温度+65℃)であるので、放射温度計によってスラグ温度を測定し、その値から65℃を差し引くことによって、溶銑温度を精度良く推定することができる。
【0015】
かくして、本発明は、放射温度計によるスラグ温度の測定値を利用して、溶銑温度を精度良く推定することを可能にしたのである。
【0016】
【実施例】
高炉から出銑した溶銑250トンを、混銑車1に収容し、開口から該溶銑4中に挿入したランス(図示せず)を介して、生石灰系フラックス及び酸化鉄を吹き込み、溶銑4の脱珪、脱燐を行なった。その途上で生じたスラグ5が多くなったので、排滓を行なった。その際、流出するスラグ5の温度を放射温度計6で測定し、予め求めてある前記溶銑温度とスラグ温度との相関関係に照合する本発明に係る推定方法で、混銑車1内の溶銑4の温度を決定した。スラグ温度の測定は、図1に示すように、放射温度計6を混銑車5から15m離れた位置に固定すると共に、該放射温度計6には、前記相関関係を記憶し、入力される観察データを迅速に処理する演算器7を接続して行なった。表1に、多数チャージでの推定結果を一括して示す。
【0017】
表1より、別途熱電対で測定した溶銑温度と本発明に係る溶銑温度の推定値とが良く一致しており、本発明が実用できる技術であることが明きらかである。このことは、予備処理で溶銑4の成分を所望値にしたり、その後の転炉精錬での操業条件の設定が容易、且つ正確になることを示唆している。また、従来多量に消耗していた熱電対が不要にんり、測温コストが著しく低減すると共に、オペレータも省力できるという大きな経済効果もあった。
【0018】
【表1】

Figure 0003740914
【0019】
【発明の効果】
以上述べたように、本発明により、製錬あるいは精錬容器内の溶銑温度が迅速、且つ正確に推定できるようになった。その結果、溶銑予備処理や転炉操業が、従来に比べ安定して行なえるようになる。
【図面の簡単な説明】
【図1】本発明に係る「溶銑温度の推定方法」の実施状況を示す図である。
【図2】熱電対で測定した溶銑温度と、放射温度計で測定した溶銑温度との関係を示す図である。
【図3】熱電対で測定した溶銑温度と、放射温度計で測定したスラグ温度との関係を示す図である。
【図4】従来の溶銑温度の測定状況を示す図である。
【符号の説明】
1 混銑車(容器)
2 オペレータ
3 プローブ(熱電対を内蔵)
4 溶銑
5 スラグ
6 放射温度計
7 演算器
8 表示器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot metal temperature estimation method, and in particular, before charging molten iron into a converter and performing oxygen blowing, desiliconization, dephosphorization, and desulfurization of the molten iron in advance in a kneading vehicle, This is a technique for accurately and quickly estimating.
[0002]
[Prior art]
In recent years, in order to reduce the blowing load in the converter and make it easier to make the molten steel a desired composition when oxygen is blown into the molten iron in the converter, in order to make the molten steel have a desired composition, silicon, A so-called “hot metal pretreatment” for removing phosphorus, sulfur and the like is in widespread use. That is, while the hot metal discharged from the blast furnace is still in the hot metal, decanted iron, or kneading vehicle, lime-based flux and oxidizing agent are blown into the hot metal, and the component elements are transferred to slag, It is removed.
[0003]
By the way, in order to oxygen smelt hot metal that has undergone such a pretreatment process in a converter, it is necessary to know the temperature of the hot metal accurately. This is because not only a considerable time has passed from the blast furnace steel to the completion of the pretreatment process, but the temperature at the time of charging the converter varies depending on the type and degree of the pretreatment. That is, in the converter, the temperature of the hot metal is an important factor that determines the blowing conditions (for example, the amount of oxygen gas blown in, the lance height, etc.). Therefore, at present, the hot metal preliminary processing is completed, and the temperature of the hot metal is measured every time the hot metal is discharged. Specifically, when the kneading vehicle 1 is tilted for evacuation, as shown in FIG. 4, the operator 2 puts the consumable temperature measuring probe 3 with the thermocouple inside into the hot metal 4 in the kneading vehicle 1. Inserted and temperature-measured.
[0004]
[Problems to be solved by the invention]
However, in such a method in which the temperature measuring probe 3 is used every time, the operator 2 must hold the temperature measuring probe 3 with his / her hand in a high heat environment. large. Further, since the temperature measuring probe 3 is a consumable type, a new probe must be used for each temperature measurement, and its cost cannot be ignored. Therefore, temperature measurement with a non-contact type thermometer (for example, light, radiation type) is not desirable, and there have been various attempts from the past. However, in any attempt, the reliability of the measurement temperature is low, and the use of the temperature measurement probe 3 is still continued.
[0005]
In view of such circumstances, an object of the present invention is to provide a hot metal temperature estimation method that can accurately and quickly know the hot metal temperature using a non-contact thermometer.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventor diligently made efforts to review the temperature measurement with a radiation thermometer conventionally used for a high-temperature object and to make it a practical technique. Then, instead of directly measuring the hot metal temperature, the present invention was completed by finding a preferable result by indirectly using the temperature of the slag.
[0007]
That is, in the present invention, when measuring the temperature of the hot metal held together with the slag in the container, the slag is poured out from the container, the temperature of the slag flow is measured with a radiation thermometer, and the measured value is separately added. The hot metal temperature is estimated by determining the hot metal temperature in the container in light of the relationship between the hot metal temperature and the slag temperature that has been obtained.
[0008]
The present invention is also a hot metal temperature estimation method, wherein the container is a kneading vehicle, or the hot metal is hot metal after hot metal pretreatment.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment of the present invention will be described with the background of the invention.
[0010]
Directly measuring the hot metal temperature with a radiation thermometer has been frequently performed. For example, after preliminary dephosphorization of hot metal with a kneading car, only the slag generated by tilting the kneading car may be poured out. At that time, since the hot metal in the kneading vehicle can be observed from the opening, the operator observes the hot metal with a radiation thermometer from an appropriate distance and measures the temperature. However, the temperature value obtained by such measurement is greatly different from the value actually obtained by the thermocouple, and the fluctuation at each measurement is large, so that the reliability is not practical for practical use.
[0011]
Originally, the radiation thermometer can measure the temperature of a high-temperature object up to 3000 ° C. However, when the object to be measured is a solid (for example, steel slab, rolled material, etc.), it is an effective thermometer, but when it is a liquid, there is no report of a good temperature measurement result. Further, it is said that if the distance from the object to be measured exceeds a certain distance, correct temperature measurement cannot be performed, and the distance is proportional to the size of the object to be measured.
[0012]
Therefore, the inventor reviewed the direct measurement of the hot metal temperature using a radiation thermometer. As a result, it has been found that the distance to the object to be measured varies depending on the operator, and the size of the observation surface of the object to be measured is not constant. In other words, the measurement conditions were not stable, and it was thought that there was too much influence from disturbance.
[0013]
Subsequently, focusing on stabilization of measurement conditions, we tried to flow slag or hot metal at a constant width and measure the temperature with a radiation thermometer. Specifically, using a ladle, tilting iron, and chaotic wheel, the hot metal temperature held by the ladle is measured with a thermocouple (Pt-Rh system), and the slag or hot metal is allowed to flow out with a certain width to reduce the observation area. In addition to fixing the measurement distance, many experiments were conducted to measure the temperature with a radiation thermometer, and the correlation between the two measured values was obtained. The results are shown in FIGS.
[0014]
From the results shown in FIG. 2, the measured value of the hot metal temperature by the radiation thermometer is significantly different from the measured value of the hot metal temperature by the thermocouple (temperature measuring probe 3). It is clear that a tolerable measurement cannot be obtained. On the other hand, from the result of FIG. 3, it was found that the measured value of the slag temperature by the radiation thermometer had a good correlation with little variation with respect to the measured value of the hot metal temperature by the thermocouple (temperature measuring probe 3). In the measurement example of FIG. 3, since the slag temperature is (molten metal temperature + 65 ° C.), the molten metal temperature can be accurately estimated by measuring the slag temperature with a radiation thermometer and subtracting 65 ° C. from the measured value. .
[0015]
Thus, the present invention makes it possible to accurately estimate the hot metal temperature using the measured value of the slag temperature by the radiation thermometer.
[0016]
【Example】
250 tons of hot metal discharged from the blast furnace is accommodated in the kneading wheel 1 and quick lime-based flux and iron oxide are blown through a lance (not shown) inserted into the hot metal 4 from the opening to desiliconize the hot metal 4. , Dephosphorization was performed. Since the slag 5 generated in the process increased, the slag was removed. At that time, the temperature of the slag 5 flowing out is measured by the radiation thermometer 6 and the hot metal 4 in the kneading vehicle 1 is checked by the estimation method according to the present invention in which the correlation between the hot metal temperature and the slag temperature obtained in advance is checked. The temperature of was determined. As shown in FIG. 1, the slag temperature is measured by fixing the radiation thermometer 6 at a position 15 m away from the chaotic vehicle 5 and storing the correlation in the radiation thermometer 6 and inputting the observation. This was performed by connecting a computing unit 7 for processing data quickly. Table 1 collectively shows the estimation results for a large number of charges.
[0017]
From Table 1, it is clear that the hot metal temperature separately measured with a thermocouple and the estimated value of the hot metal temperature according to the present invention are in good agreement, and the present invention is a practical technique. This suggests that the component of the hot metal 4 can be set to a desired value in the preliminary treatment, and the operation conditions can be easily and accurately set in the subsequent refining of the converter. In addition, the thermocouple, which has been consumed in a large amount in the past, is unnecessary, and the temperature measurement cost is significantly reduced.
[0018]
[Table 1]
Figure 0003740914
[0019]
【The invention's effect】
As described above, according to the present invention, the hot metal temperature in the smelting or refining vessel can be estimated quickly and accurately. As a result, hot metal pretreatment and converter operation can be performed more stably than in the past.
[Brief description of the drawings]
FIG. 1 is a diagram showing an implementation status of a “hot metal temperature estimation method” according to the present invention.
FIG. 2 is a diagram showing the relationship between the hot metal temperature measured with a thermocouple and the hot metal temperature measured with a radiation thermometer.
FIG. 3 is a diagram showing the relationship between the hot metal temperature measured with a thermocouple and the slag temperature measured with a radiation thermometer.
FIG. 4 is a view showing a conventional state of measurement of hot metal temperature.
[Explanation of symbols]
1 Chaos vehicle (container)
2 Operator 3 Probe (Built-in thermocouple)
4 Hot metal 5 Slag 6 Radiation thermometer 7 Calculator 8 Display

Claims (3)

容器内にスラグと共に保持されている溶銑の温度を測定するにあたり、
前記容器からスラグを流し出し、そのスラグ流の温度を放射温度計で測定すると共に、その測定値を別途求めてある溶銑温度とスラグ温度との関係に照らして、該容器内の溶銑温度を定めることを特徴とする溶銑温度の推定方法。
In measuring the temperature of the hot metal held together with the slag in the container,
The slag is poured out from the container, the temperature of the slag flow is measured with a radiation thermometer, and the measured value is separately determined in light of the relationship between the hot metal temperature and the slag temperature, and the hot metal temperature in the container is determined. A method for estimating the hot metal temperature.
前記容器が混銑車であることを特徴とする請求項1記載の溶銑温度の推定方法。The hot metal temperature estimation method according to claim 1, wherein the container is a chaotic vehicle. 前記溶銑が溶銑予備処理後の溶銑であることを特徴とする請求項1又は2記載の溶銑温度の推定方法。3. The hot metal temperature estimation method according to claim 1, wherein the hot metal is hot metal after hot metal pretreatment.
JP29499799A 1999-10-18 1999-10-18 Hot metal temperature estimation method Expired - Fee Related JP3740914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29499799A JP3740914B2 (en) 1999-10-18 1999-10-18 Hot metal temperature estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29499799A JP3740914B2 (en) 1999-10-18 1999-10-18 Hot metal temperature estimation method

Publications (2)

Publication Number Publication Date
JP2001115208A JP2001115208A (en) 2001-04-24
JP3740914B2 true JP3740914B2 (en) 2006-02-01

Family

ID=17815012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29499799A Expired - Fee Related JP3740914B2 (en) 1999-10-18 1999-10-18 Hot metal temperature estimation method

Country Status (1)

Country Link
JP (1) JP3740914B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206437B2 (en) * 2008-03-04 2013-06-12 新日鐵住金株式会社 Radiation temperature measuring device and radiation temperature measuring method

Also Published As

Publication number Publication date
JP2001115208A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
JP2017025379A (en) Molten iron pretreating method, and molten iron pretreatment control device
JP6536520B2 (en) Pretreatment method of hot metal in same converter
JP3740914B2 (en) Hot metal temperature estimation method
JP6601631B2 (en) Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal
JP4790489B2 (en) Converter steelmaking
Khadhraoui et al. A new approach for modelling and control of dephosphorization in BOF converter
JP7380908B2 (en) Cold iron source dissolution rate estimation device, converter type smelting furnace control device, cold iron source dissolution rate estimation method, and molten iron refining processing method
KR100616137B1 (en) Apparatus for measuring the weight of converter and converter refining method using the same
JP5155046B2 (en) How to use the ladle
JP2000273519A (en) Method for removing slag from torpedo car
WO2022195951A1 (en) Method for operating converter furnace, and method for producing molten steel
WO2024018783A1 (en) Cold iron source solubility estimation device, cold iron source solubility estimation method, and refining treatment method for molten iron
JP2824015B2 (en) Cast floor desiliconization method in blast furnace
JP2008223047A (en) Method for presuming molten steel component
JP2024059560A (en) Method for removing slag from converter-type refining furnace and method for operating converter
JPH0219416A (en) Converter blow-refining method
JP4850336B2 (en) Hot metal dephosphorization method
JP3664071B2 (en) Hot metal temperature estimation method in torpedo car
JPH06108137A (en) Method for melting low sulfur steel
JP2024059093A (en) Intermediate slag removal method in metal refining
JPS6184314A (en) Method for arc heating molten steel
JP2008196025A (en) METHOD FOR PRODUCING LOW Cr ALLOY STEEL
JP2006257468A (en) Method for setting blowing-finishing temperature in converter
Heaton et al. Developments in basic oxygen process steelmaking practices at great lakes
JPS6155565B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees