JP5299610B2 - Method for producing Ni-Cr-Fe ternary alloy material - Google Patents

Method for producing Ni-Cr-Fe ternary alloy material Download PDF

Info

Publication number
JP5299610B2
JP5299610B2 JP2008154090A JP2008154090A JP5299610B2 JP 5299610 B2 JP5299610 B2 JP 5299610B2 JP 2008154090 A JP2008154090 A JP 2008154090A JP 2008154090 A JP2008154090 A JP 2008154090A JP 5299610 B2 JP5299610 B2 JP 5299610B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
less
treatment step
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008154090A
Other languages
Japanese (ja)
Other versions
JP2009299120A (en
Inventor
亮治 桝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2008154090A priority Critical patent/JP5299610B2/en
Publication of JP2009299120A publication Critical patent/JP2009299120A/en
Application granted granted Critical
Publication of JP5299610B2 publication Critical patent/JP5299610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an Ni-Cr-Fe ternary system alloy material having a small crystal grain size and also having excellent SCC resistance. <P>SOLUTION: The method for manufacturing the Ni-Cr-Fe ternary system alloy material includes: a step (S30) of hot-forging the material having a predetermined composition; a pre-heat treatment step (S40) of heating the material so as to hold the surface temperature of the material subjected to the hot forging step (S30) during the time of &ge;1 hour to &le;3 hours at the pretreatment temperature of &ge;800&deg;C to &le;900&deg;C; and a solid solution heat treatment step (S50) of raising the surface temperature of the material heated in the hot heat treatment step (S40) from the heat treatment temperature and holding the material during the time of &ge;1 hour to &le;6 hours at &ge;1,050&deg;C to &le;1,100&deg;C. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明はNi−Cr−Fe三元系合金材の製造方法に関する。   The present invention relates to a method for producing a Ni—Cr—Fe ternary alloy material.

Ni−Cr−Fe三元系合金としては、例えばインコネル(商標)の600系統(600,625,690)が知られている。この種の合金のうち、例えばインコネル690については、約1040℃の温度で固溶化熱処理が行われる(例えば非特許文献1参照)。また、インコネル690については、耐SCC性向上に必要な結晶粒界での炭化物析出形態を実現するために、1050℃以上の固溶化熱処理による炭化物の固溶促進と結晶粒の整細粒化が必要である。
Alloy Digest Ni-266, “INCONEL Alloy 690”, エンジニアリング アロイズ ダイジェスト社(Engineering Alloys Digest, Inc.), 1981年3月
As Ni-Cr-Fe ternary alloys, for example, 600 series (600, 625, 690) of Inconel (trademark) is known. Among these types of alloys, for example, Inconel 690 is subjected to a solution heat treatment at a temperature of about 1040 ° C. (see, for example, Non-Patent Document 1). Moreover, for Inconel 690, in order to realize the carbide precipitation form at the grain boundaries necessary for improving the SCC resistance, carbide solid solution promotion and crystal grain refinement by solid solution heat treatment at 1050 ° C. or higher are performed. is necessary.
Alloy Digest Ni-266, “INCONEL Alloy 690”, Engineering Alloys Digest, Inc., March 1981

しかしながら、Ni−Cr−Fe三元系合金の再結晶温度は900℃近傍であり、1050℃以上の温度で固溶化熱処理を行うと、温度上昇と共に結晶粒が粗大化し、0.2%耐力が低下してしまう。このため、結晶粒径が小さく且つ耐SCC性に優れたNi−Cr−Fe三元系合金材を製造することは困難であった。
本発明は上述の事情に基づいてなされ、その目的とするところは、結晶粒径が小さく且つ耐SCC性に優れたNi−Cr−Fe三元系合金材の製造方法を提供することにある。
However, the recrystallization temperature of the Ni—Cr—Fe ternary alloy is around 900 ° C., and when the solution heat treatment is performed at a temperature of 1050 ° C. or higher, the crystal grains become coarse as the temperature rises, and the 0.2% proof stress is It will decline. For this reason, it has been difficult to produce a Ni—Cr—Fe ternary alloy material having a small crystal grain size and excellent SCC resistance.
The present invention has been made based on the above-described circumstances, and an object thereof is to provide a method for producing a Ni—Cr—Fe ternary alloy material having a small crystal grain size and excellent SCC resistance.

上記した目的を達成するために、本発明によれば、27.0%以上31.0%以下のクロムと、7.0%以上11.0%以下の鉄と、0.01%以上0.05%以下の炭素と、0.01%以上0.50%以下のシリコンと、0.001%以上0.015%以下の硫黄と、0.01%以上0.50%以下の銅と、0.01%以上0.50%以下のマンガンと、不可避的不純物と、残部としてのニッケルとからなる材料を熱間鍛造する工程と、
前記熱間鍛造に供された材料の表面温度を800℃以上900℃以下の前熱処理温度にて1時間以上3時間以下の間保持するよう当該材料を加熱する前熱処理工程と、前記前熱処理工程で加熱された材料の表面温度を前記前熱処理温度から上昇させて1050℃以上1100℃以下の温度で1時間以上6時間以下の間保持するよう当該材料を加熱する固溶化熱処理工程とを備えることを特徴とするNi−Cr−Fe三元系合金材の製造方法が提供される(請求項1)。
In order to achieve the above object, according to the present invention, 27.0% to 31.0% chromium, 7.0% to 11.0% iron, 0.01% to 0.00%. 05% or less of carbon, 0.01% or more and 0.50% or less of silicon, 0.001% or more and 0.015% or less of sulfur, 0.01% or more and 0.50% or less of copper, A step of hot forging a material composed of 0.01% or more and 0.50% or less of manganese, unavoidable impurities, and nickel as the balance;
A pre-heat treatment step of heating the material so that the surface temperature of the material subjected to the hot forging is maintained at a pre-heat treatment temperature of 800 ° C. or more and 900 ° C. or less for 1 hour or more and 3 hours or less; And a solution heat treatment step of heating the material so that the surface temperature of the material heated in step 1 is raised from the pre-heat treatment temperature and held at a temperature of 1050 ° C. to 1100 ° C. for 1 hour to 6 hours. The manufacturing method of the Ni-Cr-Fe ternary system alloy material characterized by these is provided (Claim 1).

本発明の請求項1のNi−Cr−Fe三元系合金材の製造方法では、1050℃以上の温度で固溶化熱処理を行ったことにより、炭素が均一且つ十分に固溶する。このため、固溶化熱処理温度から冷却した後において、適切な熱処理を行うことにより、結晶粒界への炭化物の析出状態が、耐SCC性の向上に適したものとなる。
一方、この製造方法では、固溶化熱処理前に前熱処理を行うことにより、1050℃以上の温度で固溶化熱処理を行っても、固溶化熱処理時の粒成長が抑制される。これは、前熱処理中の転位の移動及び炭化物の析出に起因している。
In the method for producing a Ni—Cr—Fe ternary alloy material according to claim 1 of the present invention, carbon is uniformly and sufficiently dissolved by performing a solution heat treatment at a temperature of 1050 ° C. or higher. For this reason, after cooling from the solution heat treatment temperature, by performing an appropriate heat treatment, the precipitation state of carbides at the grain boundaries becomes suitable for improving the SCC resistance.
On the other hand, in this manufacturing method, by performing the pre-heat treatment before the solution heat treatment, grain growth during the solution heat treatment is suppressed even if the solution heat treatment is performed at a temperature of 1050 ° C. or higher. This is due to dislocation movement and carbide precipitation during pre-heat treatment.

より詳しくは、転位の移動は、鍛造によって生じた歪みを緩和し、これにより歪みエネルギが減少する。歪みエネルギは、固溶化熱処理時の粒成長の駆動エネルギになるため、歪みエネルギが低減されることによって、固溶化熱処理時の粒成長が抑制される。
また、前熱処理中に粒界に析出した炭化物は、固溶化熱処理によって炭化物が固溶するまでの間、ピニング効果によって粒成長を抑制する。これによっても、固溶化熱処理時の粒成長が抑制される。
More specifically, the movement of dislocations relieves strain caused by forging, thereby reducing strain energy. Since strain energy becomes driving energy for grain growth during solution heat treatment, grain growth during solution heat treatment is suppressed by reducing strain energy.
Further, the carbide precipitated at the grain boundary during the pre-heat treatment suppresses the grain growth by the pinning effect until the carbide is dissolved by the solution heat treatment. This also suppresses grain growth during the solution heat treatment.

これらの結果として、この製造方法によれば、結晶粒径が小さく且つ耐SCC性に優れたNi−Cr−Fe三元系合金材が提供される。   As a result, according to this manufacturing method, a Ni—Cr—Fe ternary alloy material having a small crystal grain size and excellent SCC resistance is provided.

図1は、本発明の一実施形態のNi−Cr−Fe三元系合金材の製造方法を示すフローチャートであり、図2は、同方法の熱間鍛造以降における、時間と材料(インゴット又はビレット)の温度との関係を概略的に示すチャートである。
この製造方法では、まず、Ni−Cr−Fe三元系合金のインゴットを鋳造する(S10)。このNi−Cr−Fe三元系合金は、質量濃度で、27.0%以上31.0%以下のクロムと、7.0%以上11.0%以下の鉄と、0.01%以上0.05%以下の炭素と、0.01%以上0.50%以下のシリコンと、0.001%以上0.015%以下の硫黄と、0.01%以上0.50%以下の銅と、0.01%以上0.50%以下のマンガンと、不可避的不純物と、残部(バランス成分)としてのニッケルとからなる。
FIG. 1 is a flowchart showing a method for producing a Ni—Cr—Fe ternary alloy material according to an embodiment of the present invention, and FIG. 2 shows time and materials (ingot or billet) after hot forging of the method. ) Is a chart schematically showing the relationship with temperature.
In this manufacturing method, first, an Ni-Cr-Fe ternary alloy ingot is cast (S10). This Ni—Cr—Fe ternary alloy has a mass concentration of 27.0% to 31.0% chromium, 7.0% to 11.0% iron, 0.01% to 0%. 0.05% or less carbon, 0.01% or more and 0.50% or less silicon, 0.001% or more and 0.015% or less sulfur, 0.01% or more and 0.50% or less copper, It consists of 0.01% or more and 0.50% or less of manganese, unavoidable impurities, and nickel as the balance (balance component).

具体的には、造塊工程S10では、真空誘導炉(VIF)で原料を溶解し、ポール形状に鋳造する。このポールをエレクトロスラグ再溶解炉(ESR)で再溶解し、インゴットとした。インゴットの形状寸法は、例えば直径が550mmで長さが1300mmである。
鋳造工程S10で得られたインゴットは、例えば1170℃以下の表面温度にて、分塊鍛造されてビレットになる(S20)。
Specifically, in the ingot-making step S10, the raw material is melted in a vacuum induction furnace (VIF) and cast into a pole shape. This pole was remelted in an electroslag remelting furnace (ESR) to form an ingot. The shape of the ingot is, for example, 550 mm in diameter and 1300 mm in length.
The ingot obtained in the casting step S10 is forged into billets at a surface temperature of 1170 ° C. or less, for example (S20).

ビレットは、例えば、ビレットの表面温度が850℃以上1050℃以下の温度である間に、1.5以上3.0以下の鍛錬比で熱間鍛造され、所定の形状の鍛造材になる(S30)。この熱間鍛造によって、鍛造材における結晶粒は小さくされる。好ましくは、ASTM E112に規定される結晶粒度がNo.7以上になるよう熱間鍛造工程S30の鍛錬比が設定される。   For example, the billet is hot-forged at a forging ratio of 1.5 or more and 3.0 or less while the surface temperature of the billet is 850 ° C. or more and 1050 ° C. or less to become a forged material having a predetermined shape (S30 ). By this hot forging, the crystal grains in the forging are reduced. Preferably, the crystal grain size defined in ASTM E112 is No. The forging ratio in the hot forging step S30 is set to be 7 or more.

熱間鍛造工程S30で得られた鍛造材は、前熱処理工程(S40)及び固溶化熱処理工程(S50)に連続して供される。
具体的には、前熱処理工程S40では、鍛造材の表面温度が800℃以上900℃以下の温度(以下、前熱処理温度ともいう)にて、1時間以上3時間以下の間保持されるよう当該鍛造材が加熱される。好ましくは、前熱処理工程S40では、鍛造材の表面温度が840℃以上860℃以下の温度にて、1時間以上2時間以下の間保持されるよう当該鍛造材が加熱される。
The forged material obtained in the hot forging step S30 is continuously supplied to the pre-heat treatment step (S40) and the solution heat treatment step (S50).
Specifically, in the pre-heat treatment step S40, the surface temperature of the forging material is maintained at a temperature of 800 ° C. or higher and 900 ° C. or lower (hereinafter also referred to as a pre-heat treatment temperature) for 1 hour or longer and 3 hours or shorter. The forging material is heated. Preferably, in the pre-heat treatment step S40, the forging material is heated so that the surface temperature of the forging material is maintained at a temperature of 840 ° C. or more and 860 ° C. or less for 1 hour or more and 2 hours or less.

なお、前熱処理温度までの昇温速度は、例えば80℃/時間以上120℃/時間以下に設定される。
固溶化熱処理工程S50では、前熱処理工程S40を経た鍛造材が、当該鍛造材の表面温度が1040℃以上1100℃以下の温度(以下、固溶化熱処理温度ともいう)にて1時間以上6時間以下の間保持されるよう加熱される。
In addition, the temperature increase rate to the pre-heat treatment temperature is set to, for example, 80 ° C./hour or more and 120 ° C./hour or less.
In the solution heat treatment step S50, the forged material that has undergone the preheat treatment step S40 has a surface temperature of 1040 ° C. to 1100 ° C. (hereinafter also referred to as a solution heat treatment temperature) for 1 hour to 6 hours. Heated to be held during.

固溶化熱処理工程S50は、前熱処理処工程S40に続けて行われ、前熱処理温度から固溶化熱処理温度まで、所定の昇温速度にて鍛造材は加熱される。前熱処理温度から固溶化熱処理温度までの昇温速度は速いほうが好ましく、具体的には100℃/時間以上であるのが好ましい。一方、昇温速度の上限は、特には限定されないが、設備の関係上、例えば120℃/時間以下に設定される。   The solution heat treatment step S50 is performed subsequent to the pre-heat treatment step S40, and the forging is heated at a predetermined temperature increase rate from the pre-heat treatment temperature to the solution heat treatment temperature. The rate of temperature increase from the pre-heat treatment temperature to the solution heat treatment temperature is preferably fast, and specifically, it is preferably 100 ° C./hour or more. On the other hand, the upper limit of the rate of temperature increase is not particularly limited, but is set to 120 ° C./hour or less, for example, due to equipment.

固溶化熱処理工程S50の後、鍛造材は例えば水冷によって急冷される。急冷された鍛造材に対しては、後熱処理が行われる(S60)。この後熱処理工程S60では、例えば鍛造材の表面温度が685℃以上715℃以下の温度(以下、後熱処理温度ともいう)にて15時間以上20時間以下の間保持されるよう当該鍛造材が加熱される。
この後熱処理工程S60によって、クロムの欠乏領域の発生を抑制しながら、結晶粒界に炭化物が析出させられる。
After the solution heat treatment step S50, the forged material is quenched by, for example, water cooling. A post-heat treatment is performed on the quenched forged material (S60). In the post heat treatment step S60, the forging material is heated so that the surface temperature of the forging material is maintained at a temperature of 685 ° C. or higher and 715 ° C. or lower (hereinafter also referred to as post heat treatment temperature) for 15 hours or longer and 20 hours or shorter. Is done.
After this, the heat treatment step S60 allows carbides to precipitate at the grain boundaries while suppressing the generation of the chromium-deficient region.

後熱処理工程S60の後、鍛造材は例えば空冷され、これによりNi−Cr−Fe三元系合金材が得られる。
上述したNi−Cr−Fe三元系合金材の製造方法では、1050℃以上の固溶化熱処理温度で固溶化熱処理工程S50を行ったことにより、鍛造材中の炭素が母相中に均一且つ十分に固溶する。このため、固溶化熱処理温度から冷却した後の後熱処理S60において、結晶粒界への炭化物の析出状態が、耐SCC性の向上に適したものとなる。
After the post heat treatment step S60, the forged material is air-cooled, for example, thereby obtaining a Ni—Cr—Fe ternary alloy material.
In the above-described method for producing the Ni—Cr—Fe ternary alloy material, the solution heat treatment step S50 is performed at a solution heat treatment temperature of 1050 ° C. or higher, so that the carbon in the forging material is uniform and sufficient in the matrix phase. To dissolve. For this reason, in post-heat treatment S60 after cooling from the solution heat treatment temperature, the precipitation state of carbides at the grain boundaries becomes suitable for improving the SCC resistance.

一方、この製造方法では、固溶化熱処理工程S50の前に前熱処理工程S40を行うことにより、1050℃以上の温度で固溶化熱処理工程を行っても、固溶化熱処理時の粒成長が抑制される。これは、前熱処理中の転位の移動及び炭化物の析出に起因している。
より詳しくは、転位の移動は、鍛造によって生じた歪みを緩和し、これにより歪みエネルギが減少する。歪みエネルギは、固溶化熱処理時の粒成長の駆動エネルギになるため、歪みエネルギが低減されることによって、固溶化熱処理時の粒成長が抑制される。
On the other hand, in this manufacturing method, by performing the pre-heat treatment step S40 before the solution heat treatment step S50, the grain growth during the solution heat treatment is suppressed even if the solution heat treatment step is performed at a temperature of 1050 ° C. or higher. . This is due to dislocation movement and carbide precipitation during pre-heat treatment.
More specifically, the movement of dislocations relieves strain caused by forging, thereby reducing strain energy. Since strain energy becomes driving energy for grain growth during solution heat treatment, grain growth during solution heat treatment is suppressed by reducing strain energy.

また、前熱処理工程S40中に粒界に析出した炭化物は、固溶化熱処理工程S50で炭化物が固溶するまでの間、ピニング効果によって粒成長を抑制する。これによっても、固溶化熱処理時の粒成長が抑制される。
これらの結果として、この製造方法によれば、結晶粒径が小さく且つ耐SCC性に優れたNi−Cr−Fe三元系合金材が提供される。具体的には、この製造方法によれば、結晶粒度が3以上のNi−Cr−Fe三元系合金材を提供することが可能になる。
Further, the carbide precipitated at the grain boundaries during the pre-heat treatment step S40 suppresses the grain growth due to the pinning effect until the carbide is dissolved in the solution heat treatment step S50. This also suppresses grain growth during the solution heat treatment.
As a result, according to this manufacturing method, a Ni—Cr—Fe ternary alloy material having a small crystal grain size and excellent SCC resistance is provided. Specifically, according to this manufacturing method, it is possible to provide a Ni—Cr—Fe ternary alloy material having a crystal grain size of 3 or more.

特に、このNi−Cr−Fe三元系合金材の製造方法によれば、Ni−Cr−Fe三元系合金が上述した組成を有するインコネル690相当の合金であっても、結晶粒径が小さく且つ耐SCC性に優れたNi−Cr−Fe三元系合金材が提供される。   In particular, according to this method for producing a Ni—Cr—Fe ternary alloy material, even if the Ni—Cr—Fe ternary alloy is an alloy equivalent to Inconel 690 having the above-described composition, the crystal grain size is small. In addition, a Ni—Cr—Fe ternary alloy material excellent in SCC resistance is provided.

1.試料の調製
ロット1、2及び3として、表1に示したインコネル690相当の組成を有するインゴットをそれぞれ作製した。なお、ロット毎に、同一の溶湯から複数のインゴットを造塊した。
1. Sample Preparation Ingots having compositions corresponding to Inconel 690 shown in Table 1 were prepared as lots 1, 2, and 3, respectively. For each lot, a plurality of ingots were formed from the same molten metal.

各インゴットを分塊鍛造によりビレットにしてから、ビレットを975℃の表面温度で2.0の鍛錬比で鍛造し、直径が164mmで長さが1500mmの棒材(鍛造材)にした。   After each ingot was billeted by split forging, the billet was forged at a forging ratio of 2.0 at a surface temperature of 975 ° C. to form a bar (forged material) having a diameter of 164 mm and a length of 1500 mm.

ロット1〜3の棒材の一部は、鍛造状態のまま金属組織を観察するための参考例1〜3として取り分けられ、他の一部は、実施例1〜3及び比較例1〜3のために取り分けられた
実施例1〜のための棒材には、それぞれ前熱処理、固溶化熱処理及び後熱処理を施した。一方、比較例1〜3のための棒材には、前熱処理を省略して、固溶化処理及び後熱処理を行った。
A part of the rods of lots 1 to 3 are arranged as Reference Examples 1 to 3 for observing the metal structure in the forged state, and the other parts are those of Examples 1 to 3 and Comparative Examples 1 to 3. Was set aside for .
The bar materials for Examples 1 to 3 were subjected to pre-heat treatment, solution heat treatment, and post-heat treatment, respectively. On the other hand, the bar materials for Comparative Examples 1 to 3 were subjected to a solution treatment and a post heat treatment while omitting the preheat treatment.

具体的には、実施例1〜では、棒材を入れた加熱炉の温度を100℃/時間の昇温速度で表2に示した温度まで上昇させ、前熱処理として、当該温度で1時間保持した。この保持に続けて、加熱炉の温度を100℃/時間の昇温速度で1060℃まで上昇させ、固溶化熱処理として当該温度で2時間保持した。それから、棒材を水冷により急冷した。 Specifically, in Examples 1 to 3 , the temperature of the heating furnace containing the bar was raised to the temperature shown in Table 2 at a rate of temperature increase of 100 ° C./hour, and pre-heat treatment was performed for 1 hour at the temperature. Retained. Following this holding, the temperature of the heating furnace was increased to 1060 ° C. at a rate of temperature increase of 100 ° C./hour, and held at that temperature for 2 hours as a solution heat treatment. Then, the bar was quenched by water cooling.

この後、水冷された棒材を入れた加熱炉の温度を100℃/時間の昇温速度で700℃まで上昇させ、後熱処理として、700℃で15時間保持した。それから、空冷によって棒材の温度を室温まで下降させた。
比較例1〜3については、前熱処理を省略するように、加熱炉の温度を120℃/時間の昇温速度で1060℃まで一度に上昇させた以外は、実施例の場合と同様である。
Thereafter, the temperature of the heating furnace containing the water-cooled bar was increased to 700 ° C. at a rate of temperature increase of 100 ° C./hour, and maintained at 700 ° C. for 15 hours as a post heat treatment. Then, the bar temperature was lowered to room temperature by air cooling.
About Comparative Examples 1-3, it is the same as that of the case of an Example except having raised the temperature of the heating furnace to 1060 degreeC at once with the temperature increase rate of 120 degreeC / hour so that pre-heat processing may be abbreviate | omitted.

なお、実施例1〜の前熱処理では、加熱炉の温度を一定温度に所定時間保持しているが、加熱炉の温度を保持している間、棒材の表面温度は、加熱炉の設定温度に対して概ね±5℃の範囲にある。
また、実施例1〜及び比較例1〜の固溶化熱処理でも、加熱炉の温度を一定温度に所定時間保持しているが、加熱炉の温度を保持している間、棒材の表面温度は、加熱炉の設定温度に対して概ね±5℃の範囲にある。
In addition, in the pre-heat treatment of Examples 1 to 3 , the temperature of the heating furnace is maintained at a constant temperature for a predetermined time. While the temperature of the heating furnace is maintained, the surface temperature of the bar is set in the heating furnace. It is approximately in the range of ± 5 ° C with respect to temperature.
Also, in the solution heat treatment of Examples 1 to 3 and Comparative Examples 1 to 3 , the temperature of the heating furnace is maintained at a constant temperature for a predetermined time, but the surface of the rod is maintained while the temperature of the heating furnace is maintained. The temperature is generally in the range of ± 5 ° C. with respect to the set temperature of the heating furnace.

更に、実施例1〜及び比較例1〜の後熱処理でも、加熱炉の温度を一定温度に所定時間保持しているが、加熱炉の温度を保持している間、棒材の表面温度は、加熱炉の設定温度に対して概ね±5℃の範囲にある。
2.評価方法
(1)結晶粒度及び金属組織観察
参考例1〜3、実施例1〜及び比較例1〜の棒材の一端側及び他端側(それぞれ端からおよそ10mmの位置)における表層部および表面から直径の1/4の深さの箇所の結晶粒度をASTM E112で規定される方法で測定した。これらの結果を表2に示す。
Further, in the post heat treatment of Examples 1 to 3 and Comparative Examples 1 to 3 , the temperature of the heating furnace is maintained at a constant temperature for a predetermined time, but the surface temperature of the rod is maintained while the temperature of the heating furnace is maintained. Is approximately in the range of ± 5 ° C. with respect to the set temperature of the heating furnace.
2. Evaluation method (1) Crystal grain size and metal structure observation Surface layer part on one end side and other end side (positions of about 10 mm from each end) of the bar materials of Reference Examples 1 to 3, Examples 1 to 3 and Comparative Examples 1 to 3 In addition, the crystal grain size at a depth of 1/4 of the diameter from the surface was measured by the method defined by ASTM E112. These results are shown in Table 2.

また、結晶粒度を測定した実施例1及び比較例1の一端側の表層の金属組織を図3及び図4にそれぞれ示す。
(2)0.2%耐力
参考例1〜3、実施例1〜及び比較例1〜の棒材の一端側における、表面から直径の1/4の深さの箇所から、ASTM E8−04に規定された形状の試料を作製した。各試料のゲージ長Gは50.8mmであり、直径Dは12.7mmである。これらの試料の0.2%耐力を引張試験機を用いて測定した。結果を表に示す。
Moreover, the metal structure of the surface layer of the one end side of Example 1 and Comparative Example 1 which measured the crystal grain size is shown in FIG.3 and FIG.4, respectively.
(2) 0.2% proof stress in Reference Examples 1 to 3, at one end of the bar of Examples 1 3 and Comparative Example 1 to 3 from the point of 1/4 of the depth of the diameter from the surface, ASTM E8- A sample having a shape defined in 04 was prepared. Each sample has a gauge length G of 50.8 mm and a diameter D of 12.7 mm. The 0.2% proof stress of these samples was measured using a tensile tester. The results are shown in Table 2 .

3.評価結果
表1、図3及び図4から次のことが明らかである。
(1)実施例1〜3及び比較例1〜3では、参考例1〜3に比べて、結晶粒度の番号が小さくなっている。すなわち実施例1〜3及び比較例1〜3では、参考例1〜3に比べて、結晶粒径が大きくなっている。
3. Evaluation results From Table 1, FIG. 3 and FIG.
(1) In Examples 1 to 3 and Comparative Examples 1 to 3, the number of crystal grain sizes is smaller than in Reference Examples 1 to 3. That is, in Examples 1 to 3 and Comparative Examples 1 to 3, the crystal grain size is larger than in Reference Examples 1 to 3.

ただし、実施例1〜3と比較例1〜3とを比較すると、実施例1〜3では、全ての部位で結晶粒度が3以上であるのに対し、比較例1〜3では、いくつかの例外を除き、結晶粒度が3未満である。これより実施例1〜3では、前熱処理によって、結晶粒径が小さくなることがわかる。
(2)また、実施例1〜3の方が、比較例1〜3に比べて、0.2%耐力において優れている。
However, when Examples 1 to 3 and Comparative Examples 1 to 3 are compared, in Examples 1 to 3, the crystal grain size is 3 or more at all sites, whereas in Comparative Examples 1 to 3, The crystal grain size is less than 3 with the exception. From this, it can be seen that in Examples 1 to 3, the crystal grain size is reduced by the pre-heat treatment.
(2) Moreover, the Examples 1-3 are excellent in 0.2% yield strength compared with the Comparative Examples 1-3.

本発明は上述した一実施形態及び実施例に限定されることはなく、種々の変形が可能である。
上述した各実施例の前熱処理では、加熱炉の温度を一定温度に所定時間保持したが、前熱処理の間に、加熱炉の温度を緩やかに変化させてもよく、前熱処理される材料(鍛造材)の表面温度が、800℃以上900℃以下の範囲に1時間以上3時間以下の間入っていればよい。
The present invention is not limited to the above-described embodiment and examples, and various modifications are possible.
In the pre-heat treatment of each of the above-described embodiments, the temperature of the heating furnace is maintained at a constant temperature for a predetermined time. However, the temperature of the heating furnace may be gradually changed during the pre-heat treatment, and the material to be pre-heat treated (forging The surface temperature of the material may be in the range of 800 ° C. to 900 ° C. for 1 hour to 3 hours.

上述した一実施形態では、熱間鍛造工程S30の後に前熱処理工程S40を行ったけれども、熱間鍛造工程S30と前熱処理工程S40との間に、冷間鍛造等の他の機械加工を行ってもよい。   In the above-described embodiment, the pre-heat treatment step S40 is performed after the hot forging step S30, but other machining such as cold forging is performed between the hot forging step S30 and the pre-heat treatment step S40. Also good.

本発明の一実施形態のNi−Cr−Fe三元系合金材の製造方法の概略を示す工程図である。It is process drawing which shows the outline of the manufacturing method of the Ni-Cr-Fe ternary system alloy material of one Embodiment of this invention. 図1の製造方法における、熱間鍛造工程以降の材料の表面温度の時間変化を概略的に示すグラフである。It is a graph which shows roughly the time change of the surface temperature of the material after the hot forging process in the manufacturing method of FIG. 実施例1の一端側の表層の金属組織を示す光学顕微鏡写真である。2 is an optical micrograph showing the metallographic structure of the surface layer on one end side of Example 1. FIG. 比較例1の一端側の表層の金属組織を示す光学顕微鏡写真である。2 is an optical micrograph showing the metallographic structure of the surface layer on one end side of Comparative Example 1.

符号の説明Explanation of symbols

S30 熱間鍛造工程
S40 前熱処理工程
S50 固溶化熱処理工程
S30 Hot forging process S40 Pre-heat treatment process S50 Solution heat treatment process

Claims (1)

27.0%以上31.0%以下のクロムと、7.0%以上11.0%以下の鉄と、0.01%以上0.05%以下の炭素と、0.01%以上0.50%以下のシリコンと、0.001%以上0.015%以下の硫黄と、0.01%以上0.50%以下の銅と、0.01%以上0.50%以下のマンガンと、不可避的不純物と、残部としてのニッケルとからなる材料を熱間鍛造する工程と、
前記熱間鍛造に供された材料の表面温度を800℃以上900℃以下の前熱処理温度にて1時間以上3時間以下の間保持するよう当該材料を加熱する前熱処理工程と、
前記前熱処理工程で加熱された材料の表面温度を前記前熱処理温度から上昇させて1050℃以上1100℃以下の温度で1時間以上6時間以下の間保持するよう当該材料を加熱する固溶化熱処理工程と
を備えることを特徴とするNi−Cr−Fe三元系合金材の製造方法。
27.0% to 31.0% chromium, 7.0% to 11.0% iron, 0.01% to 0.05% carbon, 0.01% to 0.50 % Of silicon, 0.001% or more and 0.015% or less of sulfur, 0.01% or more and 0.50% or less of copper, 0.01% or more and 0.50% or less of manganese, unavoidable Hot forging a material consisting of impurities and the remaining nickel,
A pre-heat treatment step of heating the material so as to maintain the surface temperature of the material subjected to the hot forging at a pre-heat treatment temperature of 800 ° C. or more and 900 ° C. or less for 1 hour or more and 3 hours or less;
A solution heat treatment step of heating the material so that the surface temperature of the material heated in the preheat treatment step is raised from the preheat treatment temperature and held at a temperature of 1050 ° C. or higher and 1100 ° C. or lower for 1 hour or longer and 6 hours or shorter. And a method for producing a Ni—Cr—Fe ternary alloy material.
JP2008154090A 2008-06-12 2008-06-12 Method for producing Ni-Cr-Fe ternary alloy material Expired - Fee Related JP5299610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154090A JP5299610B2 (en) 2008-06-12 2008-06-12 Method for producing Ni-Cr-Fe ternary alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154090A JP5299610B2 (en) 2008-06-12 2008-06-12 Method for producing Ni-Cr-Fe ternary alloy material

Publications (2)

Publication Number Publication Date
JP2009299120A JP2009299120A (en) 2009-12-24
JP5299610B2 true JP5299610B2 (en) 2013-09-25

Family

ID=41546312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154090A Expired - Fee Related JP5299610B2 (en) 2008-06-12 2008-06-12 Method for producing Ni-Cr-Fe ternary alloy material

Country Status (1)

Country Link
JP (1) JP5299610B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
JP5613467B2 (en) * 2010-06-10 2014-10-22 Mmcスーパーアロイ株式会社 Method for producing annular molded body
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) * 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
CN102825207B (en) * 2011-06-13 2015-12-02 鞍钢重型机械有限责任公司 A kind of stainless steel main nuclear power pipeline Forging Technology
CN102601282B (en) * 2012-03-08 2013-12-25 无锡市法兰锻造有限公司 Z2CND18-12N control nitrogen stainless steel forging technology
CN102989984B (en) * 2012-08-17 2015-06-10 大连大高阀门股份有限公司 Forging process of forging and pressing central cavity through hole
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9592547B2 (en) 2012-12-10 2017-03-14 Mitsubishi Materials Corporation Method of manufacturing annular molding
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
KR101624736B1 (en) 2013-06-07 2016-05-27 한국원자력연구원 Manufacturing method of ordered alloy 690 with improved thermal conductivity and ordered alloy 690 manufactured using the method thereof
US10760147B2 (en) 2013-06-07 2020-09-01 Korea Atomic Energy Research Insitute Ordered alloy 690 with improved thermal conductivity
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145527B2 (en) * 1972-06-30 1976-12-04
JPS57149461A (en) * 1981-03-09 1982-09-16 Daido Steel Co Ltd Production of heat-resistant alloy article
JPS58113361A (en) * 1981-12-26 1983-07-06 Toshiba Corp Heat treatment of nickel superalloy
US4798633A (en) * 1986-09-25 1989-01-17 Inco Alloys International, Inc. Nickel-base alloy heat treatment
JP2002146497A (en) * 2000-11-08 2002-05-22 Daido Steel Co Ltd METHOD FOR MANUFACTURING Ni-BASED ALLOY
US7156932B2 (en) * 2003-10-06 2007-01-02 Ati Properties, Inc. Nickel-base alloys and methods of heat treating nickel-base alloys

Also Published As

Publication number Publication date
JP2009299120A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5299610B2 (en) Method for producing Ni-Cr-Fe ternary alloy material
JP6057363B1 (en) Method for producing Ni-base superalloy
AU2017232119C1 (en) Method for producing Ni-based superalloy material
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
US10344367B2 (en) Method for producing Ni-based superalloy material
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
CN103276333A (en) GH4738 nickel base superalloy casting ingot homogenization treatment method
JP6358503B2 (en) Consumable electrode manufacturing method
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
KR20190068587A (en) Process for manufacturing articles and alloys made from high-temperature, high-damage superalloys, superalloys
CN111074332B (en) Heat treatment method for rapidly eliminating microsegregation in single crystal high-temperature alloy
JP2007009279A (en) Ni-Fe-BASE ALLOY, AND METHOD FOR MANUFACTURING Ni-Fe-BASE ALLOY MATERIAL
JP6575756B2 (en) Method for producing precipitation strengthened stainless steel
JP5904409B2 (en) Manufacturing method of steel materials for molds with excellent toughness
WO2017170433A1 (en) Method for producing ni-based super heat-resistant alloy
JP6185347B2 (en) Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy
JP6805583B2 (en) Manufacturing method of precipitation type heat resistant Ni-based alloy
TW201718884A (en) Nickel-based alloy and method of producing thereof
CN116240422A (en) Super-large columnar crystal Cu-Al-Mn shape memory alloy and preparation method thereof
TW201522665A (en) Austenitic alloy and method of making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees