JP6358503B2 - Consumable electrode manufacturing method - Google Patents

Consumable electrode manufacturing method Download PDF

Info

Publication number
JP6358503B2
JP6358503B2 JP2014138662A JP2014138662A JP6358503B2 JP 6358503 B2 JP6358503 B2 JP 6358503B2 JP 2014138662 A JP2014138662 A JP 2014138662A JP 2014138662 A JP2014138662 A JP 2014138662A JP 6358503 B2 JP6358503 B2 JP 6358503B2
Authority
JP
Japan
Prior art keywords
less
consumable electrode
precipitation
carbides
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014138662A
Other languages
Japanese (ja)
Other versions
JP2016006217A (en
Inventor
彰人 和田
彰人 和田
元嗣 大▲崎▼
元嗣 大▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2014138662A priority Critical patent/JP6358503B2/en
Publication of JP2016006217A publication Critical patent/JP2016006217A/en
Application granted granted Critical
Publication of JP6358503B2 publication Critical patent/JP6358503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、エレクトロスラグ再溶解法や真空アーク再溶解法などの二次溶解において使用される消耗電極の製造方法に関し、特に、粒界炭化物を析出しやすい特定の成分組成の超耐熱合金を得るための消耗電極の製造方法に関する。   The present invention relates to a method for producing a consumable electrode used in secondary melting such as electroslag remelting or vacuum arc remelting, and in particular, to obtain a super heat resistant alloy having a specific component composition that easily precipitates grain boundary carbides. It is related with the manufacturing method of the consumable electrode for this.

一般的に、高合金である超耐熱合金は溶解・凝固の過程において偏析を生じやすく、エレクトロスラグ再溶解(ESR)法や真空アーク再溶解(VAR)法などの二次溶解を行って、比較的均質な鋳塊を得ている。ここで、二次溶解に使用される消耗電極は、冷却モールドの上に吊下されて大電流を流されることでその下端から抵抗加熱により連続的に溶解していく。かかる溶解が安定して連続するように制御できないと、均質な鋳塊を得ることはできない。   In general, super-heat-resistant alloys, which are high alloys, are prone to segregation during the melting and solidification process, and are compared by secondary melting such as electroslag remelting (ESR) or vacuum arc remelting (VAR). A homogeneous ingot is obtained. Here, the consumable electrode used for the secondary melting is suspended on the cooling mold and is continuously melted by resistance heating from the lower end thereof by flowing a large current. If such melting cannot be controlled so as to be stable and continuous, a homogeneous ingot cannot be obtained.

例えば、特許文献1では、Nb及び/又はTiを含む成分組成の超耐熱合金についての二次溶解において、消耗電極の割れに起因する不安定溶解及びこの割れによる小片そのものが未溶解のまま鋳塊に残留することを防止するための消耗電極の製造方法を開示している。Inconel(登録商標)718、A286、V57などのFe−Ni−Cr基の超耐熱合金では、ラーベス(Laves)相や炭化物が結晶粒界に析出してこれを脆化させることが知られている。消耗電極においても、特に、ラーベス相が結晶粒界に析出又は晶出していると、これを起点に二次溶解中に割れを生じ易い。つまり、二次溶解時には、消耗電極の先端に大きな温度勾配が生じるから、熱応力で脆的な結晶粒界を起点とした粒界割れが生じ、これが結晶粒界に沿って伝播すると大きな割れに至るのである。そこで、消耗電極の製造時において、融点以下であり且つラーベス相を固溶させ得るような温度で均熱処理を施すとしている。   For example, in Patent Document 1, in secondary melting of a super-heat-resistant alloy having a component composition containing Nb and / or Ti, an ingot that is unstable due to cracking of a consumable electrode and small pieces due to this cracking remain undissolved. Discloses a method of manufacturing a consumable electrode for preventing the residual electrode from remaining on the substrate. In Fe-Ni-Cr-based super heat-resistant alloys such as Inconel (registered trademark) 718, A286, and V57, it is known that Laves phases and carbides precipitate at crystal grain boundaries and embrittle them. . Also in the consumable electrode, particularly when the Laves phase is precipitated or crystallized at the crystal grain boundary, cracking is likely to occur during secondary melting starting from this. In other words, at the time of secondary melting, a large temperature gradient is generated at the tip of the consumable electrode, and therefore, a grain boundary crack occurs starting from a brittle grain boundary due to thermal stress, and if this propagates along the grain boundary, it becomes a large crack. It reaches. Therefore, in the production of the consumable electrode, soaking is performed at a temperature that is not higher than the melting point and that can dissolve the Laves phase.

また、特許文献2では、Al及びTiを含む成分組成の超耐熱合金の二次溶解において、特許文献1と同様に、消耗電極の割れに起因する不安定溶解及びその破片の鋳塊への落下について述べ、これに対して、鍛伸材について非金属介在物を溶体化するための熱処理を施すとともに、その後、油冷又は水冷によって組織調整を行う消耗電極の製造方法を開示している。Al+Tiを所定量以上含有するFe−Ni−Cr基、Ni−Cr基、Ni−Cr−Co基、又はCo基などの超耐熱合金では、特許文献1に開示のような均熱処理(溶体化熱処理)だけでは均質な鋳塊を得るには不十分であるとし、消耗電極を鍛伸して靭性を高め、更に、熱処理後に油冷又は水冷することで硬さを高くなりすぎないように組織調整し、特に、Ni(Al,Ti)の析出を防止すべきとしている。 Further, in Patent Document 2, in secondary melting of a super heat-resistant alloy having a composition containing Al and Ti, similarly to Patent Document 1, unstable melting resulting from cracking of a consumable electrode and dropping of the fragments into an ingot is performed. On the other hand, a method for producing a consumable electrode is disclosed in which heat treatment for solution of non-metallic inclusions is performed on the forged material, and then the structure is adjusted by oil cooling or water cooling. For super heat-resistant alloys such as Fe—Ni—Cr group, Ni—Cr group, Ni—Cr—Co group, or Co group containing a predetermined amount or more of Al + Ti, soaking (solution heat treatment) as disclosed in Patent Document 1 ) Alone is not sufficient to obtain a homogeneous ingot, forging the consumable electrode to improve toughness, and further adjusting the structure so that the hardness does not become too high by oil cooling or water cooling after heat treatment In particular, the precipitation of Ni 3 (Al, Ti) should be prevented.

更に、特許文献3では、Inconel(登録商標)718等のγ’析出硬化型のNi基超耐熱合金において、消耗電極の部分的な欠落を防止するためには溶体化温度よりも低い温度域で均熱処理を行って過時効状態に処理を行うべきとした消耗電極の製造方法を開示している。均熱処理は700〜950℃のγ’析出温度域で10時間以上行われ、過時効状態として硬さを低下させることで、脆化相を減少させ、消耗電極の部分的な欠落を防止できるとしている。   Further, in Patent Document 3, in a γ ′ precipitation hardening type Ni-base superalloy such as Inconel (registered trademark) 718, in order to prevent partial loss of the consumable electrode, in a temperature range lower than the solution temperature. A method for manufacturing a consumable electrode is disclosed in which soaking treatment should be performed in an overaged state. The soaking process is performed for 10 hours or more in the γ ′ precipitation temperature range of 700 to 950 ° C., and the hardness is reduced as an overaged state, thereby reducing the embrittlement phase and preventing the partial loss of the consumable electrode. Yes.

特開平9−241767号公報JP-A-9-241767 特開2000−109940号公報JP 2000-109940 A 特開2009−97073号公報JP 2009-97073 A

ところで、γ’の析出量と熱間加工性とのバランスをNb、Al、Tiの含有量によって調整しようとする新規なNi基超耐熱合金について、上記したInconel(登録商標)718等と同様の製造方法を適用しようとしたときに、特に、二次溶解時に消耗電極に割れが生じやすい。   By the way, with respect to a novel Ni-based superalloy for adjusting the balance between the precipitation amount of γ ′ and the hot workability by the contents of Nb, Al, and Ti, the same as in Inconel (registered trademark) 718 and the like described above. When trying to apply the manufacturing method, the consumable electrode is likely to be cracked particularly during secondary melting.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、所定の成分組成のNi基超耐熱合金の二次溶解において、均質な鋳塊を得るための消耗電極の製造方法を提供することにある。   The present invention has been made in view of the situation as described above, and an object thereof is to obtain a homogeneous ingot in secondary melting of a Ni-base superalloy having a predetermined component composition. The object is to provide a method for manufacturing a consumable electrode.

本発明者らは、少なくとも質量%で、Nb:0.3%以上〜2.0%未満、Al:3.00%超〜6.50%未満、Ti:0.20%以上〜2.49%未満を含有し、Ti量を少なく一方でAl量を多くして従来と同程度のγ’の析出量を確保し、熱間鍛造加工性と高温強度特性との両立を図ったNi基超耐熱合金を開発した。ここで、二次溶解中の消耗電極の割れ及び欠落について調査したところ、Inconel(登録商標)718のようなラーベス相などの金属間化合物の析出を原因とするものではないことが観察された。その1つの原因としては、かかるNi基超耐熱合金はラーベス相の析出を抑えるように成分組成設計を与えられていることがあるが、二次溶解中の消耗電極の割れ等の原因は、主として粒界に析出した粗大な炭化物によるものである。すなわち、一次溶解にて析出した炭化物が二次溶解において優先的に溶融し、これを起点として割れを発生させ及び欠落を生じさせると考えられる。   The present inventors have at least mass%, Nb: 0.3% to less than 2.0%, Al: more than 3.00% to less than 6.50%, Ti: 0.20% to 2.49. Ni-based ultra-compact that contains less than 1%, Ti content is reduced while Al content is increased to ensure the same amount of precipitation of γ 'as before, achieving both hot forging processability and high-temperature strength characteristics. A heat-resistant alloy was developed. Here, when the cracking and missing of the consumable electrode during the secondary dissolution were investigated, it was observed that it was not caused by the precipitation of an intermetallic compound such as Laves phase like Inconel (registered trademark) 718. One of the causes is that such a Ni-based superalloy has been given a component composition design so as to suppress the precipitation of Laves phase, but the cause of cracking of the consumable electrode during secondary melting is mainly This is due to coarse carbides precipitated at the grain boundaries. That is, it is considered that the carbide precipitated in the primary melting is preferentially melted in the secondary melting, and cracks are generated and missing from this.

そこで、本発明による消耗電極の製造方法は、質量%で、C:0.001%超〜0.100%未満、Cr:11.0%以上〜19.0%未満、Co:0.5%以上〜22.0%未満、Fe:0.5%以上〜10.0%未満、Si:0.1%未満、Mo:2.0%超〜5.0%未満、W:1.0%超〜5.0%未満、Mo+1/2W:2.5%以上〜5.5%未満、S:0.010%以下、Nb:0.3%以上〜2.0%未満、Al:3.00%超〜6.50%未満、Ti:0.20%以上〜2.49%未満、残部Ni及び不可避的不純物からなり、且つ、原子%で、Ti/Al×10:0.2以上〜4.0未満、Al+Ti+Nb:8.5%以上〜13.0%未満、を満たす成分組成の二次溶解インゴットを与えるための消耗電極の製造方法であって、前記成分組成を有する一次溶解バルク材について、炭化物を固溶させ得る温度に加熱後、360HV以下の硬さとなるように粒界炭化物の析出を抑制した冷却速度で炉冷する熱処理ステップを含むことを特徴とする。   Therefore, the manufacturing method of the consumable electrode according to the present invention is, in mass%, C: more than 0.001% to less than 0.100%, Cr: 11.0% to less than 19.0%, Co: 0.5% Or more to less than 22.0%, Fe: 0.5% or more to less than 10.0%, Si: less than 0.1%, Mo: more than 2.0% to less than 5.0%, W: 1.0% Excessive to less than 5.0%, Mo + 1 / 2W: 2.5% to less than 5.5%, S: 0.010% or less, Nb: 0.3% to less than 2.0%, Al: 3. More than 00% to less than 6.50%, Ti: 0.20% or more to less than 2.49%, balance Ni and inevitable impurities, and in atomic%, Ti / Al × 10: 0.2 or more Consumable electrode manufacturing method for providing a secondary melting ingot having a composition of less than 4.0 and Al + Ti + Nb: 8.5% to less than 13.0% A heat treatment step of furnace-cooling the primary melting bulk material having the above-described component composition at a cooling rate that suppresses precipitation of grain boundary carbides so as to have a hardness of 360 HV or less after heating to a temperature at which carbides can be dissolved. It is characterized by including.

かかる発明によれば、炭化物の粒界への析出を抑えて二次溶解における割れや欠落を生じづらい消耗電極、すなわち二次溶解によって均質な鋳塊を得るための消耗電極を製造することができる。   According to this invention, it is possible to manufacture a consumable electrode that suppresses the precipitation of carbides at grain boundaries and does not easily cause cracking or missing in secondary melting, that is, a consumable electrode for obtaining a homogeneous ingot by secondary melting. .

上記した発明において、前記冷却速度は80℃/hr以下であることを特徴としてもよい。かかる発明によれば、消耗電極の硬さを確実に360HV以下とできて炭化物の粒界への析出を抑制できる。   In the above-described invention, the cooling rate may be 80 ° C./hr or less. According to this invention, the hardness of the consumable electrode can be reliably set to 360 HV or less, and precipitation of carbides at grain boundaries can be suppressed.

本発明による製造方法のフロー図である。It is a flowchart of the manufacturing method by this invention. 本発明の製造方法における対象合金の成分組成を示す図である。It is a figure which shows the component composition of the object alloy in the manufacturing method of this invention. 本発明の製造方法における対象合金の熱処理後の組織写真である。It is the structure | tissue photograph after the heat processing of the object alloy in the manufacturing method of this invention. 比較例としての熱処理後の組織写真である。It is the structure | tissue photograph after the heat processing as a comparative example. 他の比較例としての断面組織写真である。It is a cross-sectional structure | tissue photograph as another comparative example.

まず、本発明による1つの実施例である消耗電極の製造方法について、図1に沿って図2を参照しつつ詳細に説明する。   First, a method of manufacturing a consumable electrode according to one embodiment of the present invention will be described in detail along FIG. 1 with reference to FIG.

図1に図2を併せて参照すると、まず図2に示す成分組成の範囲内、且つ、原子%で、Ti/Al×10=0.2以上〜4.0未満、Al+Ti+Nb=8.5%以上〜13.0%未満、を満たす成分組成の二次溶解インゴットを得るべく、同成分組成の合金の一次溶解バルク材を得る(S1)。かかるバルク材は、鋳造により消耗電極形状とし得るが、必要に応じて鍛造などの加工を施してもよい。ここでは、目標値A及び目標値Bに示す成分組成の範囲内でそれぞれ製造を行った実施例を示す。   Referring to FIG. 1 together with FIG. 2, first, Ti / Al × 10 = 0.2 or more and less than 4.0 in the range of the component composition shown in FIG. 2 and Al + Ti + Nb = 8.5%. In order to obtain a secondary melting ingot having a component composition satisfying the above range of less than 13.0%, an alloy primary melting bulk material having the same component composition is obtained (S1). Such a bulk material may be formed into a consumable electrode shape by casting, but may be subjected to processing such as forging as necessary. Here, the Example which each manufactured within the range of the component composition shown to the target value A and the target value B is shown.

次いで、かかるバルク材に熱処理を施す(S2)。この熱処理においては、炭化物を固溶させるため、例えば1200℃に加熱して3時間保持し(S3)、炉冷する(S4)。炉冷においては、結晶粒界への炭化物の析出を抑制するよう、冷却速度は80℃/hr以下とし、好ましくは50℃/hr以下とする。かかる冷却によって得た消耗電極は、炭化物の析出を抑制できて360HV以下の硬さの組織を得ることができる。   Next, the bulk material is subjected to heat treatment (S2). In this heat treatment, in order to dissolve the carbide, for example, it is heated to 1200 ° C. and held for 3 hours (S3), and then cooled in the furnace (S4). In the furnace cooling, the cooling rate is set to 80 ° C./hr or less, preferably 50 ° C./hr or less so as to suppress the precipitation of carbides on the grain boundaries. The consumable electrode obtained by such cooling can suppress the precipitation of carbides and can obtain a structure having a hardness of 360 HV or less.

上記したように、炭化物の析出を抑制させた消耗電極によれば、特定の成分組成のNi基超耐熱合金において、二次溶解における消耗電極の割れ及びその欠落を抑制できて、均質なインゴットを得ることが出来るのである。   As described above, according to the consumable electrode in which the precipitation of carbide is suppressed, in the Ni-base superalloy having a specific component composition, cracking of the consumable electrode and its lack in secondary melting can be suppressed, and a homogeneous ingot can be obtained. You can get it.

次に、上記した成分組成のNi基超耐熱合金を用いて、熱処理条件と炭化物の析出状況の関係について調査した結果について、図2乃至図4を用いて説明する。   Next, the results of investigating the relationship between the heat treatment conditions and the precipitation state of carbides using the Ni-base superalloy having the component composition described above will be described with reference to FIGS.

図2の目標値Aに示す成分組成の合金について、試験片を複数作成し、熱処理条件を変えて熱処理を行い、そのミクロ組織を観察した。   About the alloy of the component composition shown to the target value A of FIG. 2, several test pieces were created, the heat processing was changed, the heat processing was performed, and the microstructure was observed.

図3に示すように、1180℃×3hr及び1200℃×3hrの等温保持から空冷(AC)を行うと、どちらも結晶粒界に炭化物の析出が観察される。これに対し、炉冷(FC)を模して50℃/hrで冷却すると、どちらも結晶粒界の炭化物の析出が空冷の場合と比較して抑制されていることがわかる。   As shown in FIG. 3, when air cooling (AC) is performed from isothermal holding at 1180 ° C. × 3 hr and 1200 ° C. × 3 hr, precipitation of carbides is observed at the grain boundaries. On the other hand, when cooling at 50 ° C./hr, imitating furnace cooling (FC), it can be seen that precipitation of carbides at the grain boundaries is suppressed as compared with the case of air cooling.

また、硬さは、1180℃×3hr及び1200℃×3hrの等温保持の順に、それぞれ、空冷では385HV及び396HVの硬さであったのに対し、50℃/hrの冷却速度の冷却では349HV及び319HVの硬さであった。つまり、空冷に比べて炉冷とすることで硬さが低くなり、360HV以下となる。   In addition, the hardness was 385 HV and 396 HV in the order of isothermal holding at 1180 ° C. × 3 hr and 1200 ° C. × 3 hr, respectively, while the hardness was 385 HV and 396 HV in air cooling, and 349 HV in cooling at a cooling rate of 50 ° C./hr. The hardness was 319 HV. That is, the hardness is reduced by furnace cooling compared to air cooling, and is 360 HV or less.

ここで、50℃/hrの空冷によって結晶粒界の炭化物の析出を抑制できたが、γ’の析出温度域を空冷に比べてゆるやかな冷却速度で通過しており、γ’も析出していると考えられる。しかし、少なくとも室温での硬さは炉冷で低くなっていることから、室温での硬さについては炭化物の析出量が支配的であると言える。   Here, precipitation of carbides at grain boundaries could be suppressed by air cooling at 50 ° C./hr, but it passed through the precipitation temperature region of γ ′ at a slower cooling rate than air cooling, and γ ′ was also precipitated. It is thought that there is. However, since the hardness at least at room temperature is low due to furnace cooling, it can be said that the amount of precipitated carbide is dominant in the hardness at room temperature.

さらにいくつかの追加試験を行い、冷却速度を80℃/hr以下とすることで、上記と同様に結晶粒界の炭化物の析出を抑制できることを確認した。   Furthermore, several additional tests were conducted, and it was confirmed that precipitation of carbides at grain boundaries could be suppressed in the same manner as described above by setting the cooling rate to 80 ° C./hr or less.

また、図2の目標値Bに示す成分組成の合金についても試験を行い、冷却速度を80℃/hr以下とすることで同様に結晶粒界における炭化物の析出を抑制できることを確認できた。   Further, the alloy having the component composition indicated by the target value B in FIG. 2 was also tested, and it was confirmed that the precipitation of carbides at the grain boundaries could be similarly suppressed by setting the cooling rate to 80 ° C./hr or less.

さらに、図4に示すように、比較例として、Inconel(登録商標)718の試験片について、1160℃×6.5hrの等温保持後に空冷する熱処理を行い、組織観察を行った。結晶粒界の炭化物の析出はほとんど観察されず、図2に示す成分組成の合金における挙動とは異なることが判る。すなわち、図2に示す成分組成の合金は、Inconel(登録商標)718と同様な加熱保持後に空冷を行う熱処理では、粒界炭化物を析出させてしまうので、炭化物を固溶させてから炉冷を行って炭化物の析出を抑制するのである。   Furthermore, as shown in FIG. 4, as a comparative example, a test piece of Inconel (registered trademark) 718 was subjected to a heat treatment that was air-cooled after being kept isothermal at 1160 ° C. × 6.5 hr, and the structure was observed. Precipitation of carbides at the grain boundaries is hardly observed, and it can be seen that the behavior of the alloy having the component composition shown in FIG. 2 is different. That is, the alloy having the component composition shown in FIG. 2 causes grain boundary carbides to precipitate in the heat treatment in which air cooling is performed after heating and holding in the same manner as Inconel (registered trademark) 718, so that the furnace cooling is performed after solidifying the carbides. To suppress the precipitation of carbides.

図5に示すように、他の比較例として、図2の合金について熱処理後に空冷して得た消耗電極について、二次溶解を行った場合の電極下端部のミクロ組織を調査した。ミクロ組織は、二次溶解を中断し、消耗電極の下端部の表層近傍の断面組織を観察して行った。これによれば、消耗電極の先端では、二次溶解中に粒界近傍が優先的に溶出していることが観察された。すなわち、粒界炭化物が優先的に溶融していると考えられ、これによって生じた粒界近傍の溶出部分を起点として、二次溶解中の温度勾配による熱応力で粒界割れが生じ、これが結晶粒界に沿って伝播して大きな割れや電極の欠落に至ると考えられる。上記した実施例では、優先的に溶融する粒界炭化物の析出が抑制されているため、このような粒界近傍の溶出は生じない。   As shown in FIG. 5, as another comparative example, the microstructure of the lower end portion of the electrode when the secondary melting was performed on the consumable electrode obtained by air-cooling the alloy of FIG. 2 after heat treatment was investigated. The microstructure was obtained by interrupting secondary dissolution and observing the cross-sectional structure near the surface layer at the lower end of the consumable electrode. According to this, at the tip of the consumable electrode, it was observed that the vicinity of the grain boundary eluted preferentially during secondary dissolution. In other words, it is considered that the grain boundary carbide is preferentially melted, and starting from the elution part near the grain boundary, the grain boundary cracking occurs due to the thermal stress due to the temperature gradient during secondary melting, Propagation along the grain boundary is thought to lead to large cracks and missing electrodes. In the above-described embodiments, precipitation of grain boundary carbides that preferentially melt is suppressed, so that such elution near the grain boundary does not occur.

なお、本発明で対象とする合金は、質量%で、C:0.001%超〜0.100%未満、Cr:11.0%以上〜19.0%未満、Co:0.5%以上〜22.0%未満、Fe:0.5%以上〜10.0%未満、Si:0.1%未満、Mo:2.0%超〜5.0%未満、W:1.0%超〜5.0%未満、Mo+1/2W:2.5%以上〜5.5%未満、S:0.010%以下、Nb:0.3%以上〜2.0%未満、Al:3.00%超〜6.50%未満、Ti:0.20%以上〜2.49%未満、残部Ni及び不可避的不純物からなり、且つ、原子%で、Ti/Al×10:0.2以上〜4.0未満、Al+Ti+Nb:8.5%以上〜13.0%未満、を満たす成分組成を有する。かかる合金は、例えばInconel(登録商標)718と比較して、γ’の析出量を増加し700℃以上での高温機械強度を向上させながら、γ’の固溶温度の上昇を防いで高い熱間加工性を維持することを考慮して開発されたものである。   In addition, the alloy made into object by this invention is the mass%, C: more than 0.001%-less than 0.100%, Cr: 11.0% or more-less than 19.0%, Co: 0.5% or more ~ 22.0%, Fe: 0.5% or more to less than 10.0%, Si: less than 0.1%, Mo: more than 2.0% to less than 5.0%, W: more than 1.0% -5.0% or less, Mo + 1 / 2W: 2.5% or more to less than 5.5%, S: 0.010% or less, Nb: 0.3% or more to less than 2.0%, Al: 3.00 More than% to less than 6.50%, Ti: 0.20% or more to less than 2.49%, balance Ni and inevitable impurities, and in atomic%, Ti / Al × 10: 0.2 or more to 4 Less than 0.0, Al + Ti + Nb: 8.5% or more and less than 13.0%. Such an alloy, for example, compared with Inconel (registered trademark) 718, increases the precipitation amount of γ ′ and improves the high-temperature mechanical strength at 700 ° C. or higher, while preventing an increase in the solid solution temperature of γ ′. It was developed in consideration of maintaining inter-workability.

また、上記した本発明で対象とする合金は、任意添加元素として、質量%で、B:0.0001%以上〜0.03%未満、Zr:0.0001%以上〜0.1%未満、Mg:0.0001%以上〜0.030%未満、Ca:0.0001%以上〜0.030%未満、REM:0.0001%以上〜0.200%以下を含み得て、不純物元素としてP:0.020%未満、N:0.020%未満を含み得る。   In addition, the above-described alloy targeted by the present invention is, as an optional additive element, in mass%, B: 0.0001% to less than 0.03%, Zr: 0.0001% to less than 0.1%, Mg: 0.0001% or more and less than 0.030%, Ca: 0.0001% or more and less than 0.030%, REM: 0.0001% or more and 0.200% or less. : Less than 0.020%, N: less than 0.020%.

ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるだろう。   So far, representative examples and modified examples based on the examples have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments without departing from the scope of the appended claims.

Claims (2)

質量%で、
C:0.001%超〜0.100%未満、
Cr:11.0%以上〜19.0%未満、
Co:0.5%以上〜22.0%未満、
Fe:0.5%以上〜10.0%未満、
Si:0.1%未満、
Mo:2.0%超〜5.0%未満、
W:1.0%超〜5.0%未満、
Mo+1/2W:2.5%以上〜5.5%未満、
S:0.010%以下、
Nb:0.3%以上〜2.0%未満、
Al:3.00%超〜6.50%未満、
Ti:0.20%以上〜2.49%未満、
残部Ni及び不可避的不純物からなり、且つ、原子%で、
Ti/Al×10:0.2以上〜4.0未満、
Al+Ti+Nb:8.5%以上〜13.0%未満、を満たす成分組成の二次溶解インゴットを与えるための消耗電極の製造方法であって、
前記成分組成を有する一次溶解バルク材について、炭化物を固溶させ得る温度に加熱後、360HV以下の硬さとなるように粒界炭化物の析出を抑制した冷却速度で炉冷する熱処理ステップを含むことを特徴とする消耗電極の製造方法。
% By mass
C: more than 0.001% to less than 0.100%,
Cr: 11.0% or more to less than 19.0%,
Co: 0.5% or more to less than 22.0%,
Fe: 0.5% to less than 10.0%,
Si: less than 0.1%,
Mo: more than 2.0% to less than 5.0%,
W: more than 1.0% to less than 5.0%,
Mo + 1 / 2W: 2.5% to less than 5.5%,
S: 0.010% or less,
Nb: 0.3% or more and less than 2.0%,
Al: more than 3.00% to less than 6.50%,
Ti: 0.20% or more to less than 2.49%,
It consists of the balance Ni and inevitable impurities, and in atomic%,
Ti / Al × 10: 0.2 or more and less than 4.0,
A method for producing a consumable electrode for providing a secondary dissolution ingot having a composition that satisfies Al + Ti + Nb: 8.5% to less than 13.0%,
The primary melting bulk material having the above component composition includes a heat treatment step of furnace cooling at a cooling rate in which precipitation of grain boundary carbides is suppressed so that the hardness is 360 HV or less after heating to a temperature at which carbides can be dissolved. A method for producing a consumable electrode.
前記冷却速度は80℃/hr以下であることを特徴とする請求項1記載の消耗電極の製造方法。   The method for manufacturing a consumable electrode according to claim 1, wherein the cooling rate is 80 ° C./hr or less.
JP2014138662A 2014-05-28 2014-07-04 Consumable electrode manufacturing method Active JP6358503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014138662A JP6358503B2 (en) 2014-05-28 2014-07-04 Consumable electrode manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014109804 2014-05-28
JP2014109804 2014-05-28
JP2014138662A JP6358503B2 (en) 2014-05-28 2014-07-04 Consumable electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2016006217A JP2016006217A (en) 2016-01-14
JP6358503B2 true JP6358503B2 (en) 2018-07-18

Family

ID=55224791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014138662A Active JP6358503B2 (en) 2014-05-28 2014-07-04 Consumable electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP6358503B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6620924B2 (en) * 2014-09-29 2019-12-18 日立金属株式会社 Method for producing Fe-Ni base superalloy
GB2554898B (en) 2016-10-12 2018-10-03 Univ Oxford Innovation Ltd A Nickel-based alloy
CN109881048B (en) * 2019-02-28 2021-09-21 北京理工大学 Preparation method of high-strength high-plasticity Ni-W-X alloy
CN110918919B (en) * 2019-12-13 2021-08-24 中南大学 Method for controlling uniform crystallization of casting powder and eliminating needle-shaped crystals
CN112226651B (en) * 2020-10-16 2022-04-19 中国航发北京航空材料研究院 Alloy material for deformed turbine disc at 850 ℃ and preparation process
CN112708788B (en) * 2020-11-18 2022-06-17 北京钢研高纳科技股份有限公司 Method for improving plasticity of K403 alloy, die material and product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179742A (en) * 1984-09-26 1986-04-23 Mitsubishi Heavy Ind Ltd Heat resistant alloy
JP3606404B2 (en) * 1996-03-08 2005-01-05 日立金属株式会社 Consumable electrode type remelting method of super heat-resistant alloy
JP4164780B2 (en) * 1998-08-28 2008-10-15 大同特殊鋼株式会社 Consumable electrode type remelting method of super heat-resistant alloy
JP3842717B2 (en) * 2002-10-16 2006-11-08 株式会社日立製作所 Welding material, welded structure, gas turbine rotor blade, and gas turbine rotor blade or stationary blade repair method
DE10302989B4 (en) * 2003-01-25 2005-03-03 Schmidt + Clemens Gmbh & Co. Kg Use of a heat and corrosion resistant nickel-chromium steel alloy
JP4430974B2 (en) * 2004-04-27 2010-03-10 大同特殊鋼株式会社 Method for producing low thermal expansion Ni-base superalloy

Also Published As

Publication number Publication date
JP2016006217A (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP5478601B2 (en) Ni-based forged alloy and gas turbine using the same
JP6057363B1 (en) Method for producing Ni-base superalloy
JP6358503B2 (en) Consumable electrode manufacturing method
JP5299610B2 (en) Method for producing Ni-Cr-Fe ternary alloy material
AU2017232119C1 (en) Method for producing Ni-based superalloy material
US10344367B2 (en) Method for producing Ni-based superalloy material
TWI557233B (en) Nilr-based heat-resistant alloy and method of manufacturing the same
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP7310978B2 (en) Manufacturing method of precipitation hardening Ni alloy
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
US20170002449A1 (en) Precipitation hardening nickel-base alloy, part made of said alloy, and manufacturing method thereof
KR20190068587A (en) Process for manufacturing articles and alloys made from high-temperature, high-damage superalloys, superalloys
JP6620924B2 (en) Method for producing Fe-Ni base superalloy
JP6293682B2 (en) High strength Ni-base superalloy
JP2010275597A (en) Nickel-based alloy for turbine rotor of steam turbine, and the turbine rotor of steam turbine
TWI540211B (en) Equiaxed grain nickel-base casting alloy for high stress application
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
TWI657147B (en) A HIGH STRENGH Ni-BASE ALLOY
TWI585212B (en) Nickel-based alloy and method of producing thereof
KR102170287B1 (en) Method of processing treatment of austenitic heat-resistant stainless steel containing aluminium oxide scale and austenitic heat-resistant stainless steel the same
JP7009928B2 (en) Fe—Ni based alloy
JP6861363B2 (en) Ni-based intermetallic compound alloy and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6358503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150