JP5286205B2 - Watering method to soil - Google Patents

Watering method to soil Download PDF

Info

Publication number
JP5286205B2
JP5286205B2 JP2009205811A JP2009205811A JP5286205B2 JP 5286205 B2 JP5286205 B2 JP 5286205B2 JP 2009205811 A JP2009205811 A JP 2009205811A JP 2009205811 A JP2009205811 A JP 2009205811A JP 5286205 B2 JP5286205 B2 JP 5286205B2
Authority
JP
Japan
Prior art keywords
water
soil
porous
pipe
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009205811A
Other languages
Japanese (ja)
Other versions
JP2011055713A (en
Inventor
信彦 古川
Original Assignee
有限会社ジーアンドエフコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ジーアンドエフコーポレーション filed Critical 有限会社ジーアンドエフコーポレーション
Priority to JP2009205811A priority Critical patent/JP5286205B2/en
Priority to US12/877,020 priority patent/US20110058900A1/en
Publication of JP2011055713A publication Critical patent/JP2011055713A/en
Application granted granted Critical
Publication of JP5286205B2 publication Critical patent/JP5286205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/06Watering arrangements making use of perforated pipe-lines located in the soil

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Description

本発明は、土壌への潅水方法に関する。さらに詳しくは、水圧差を利用した土壌への潅水方法に関する。   The present invention relates to a method for irrigating soil. More specifically, the present invention relates to a method for irrigating soil using a water pressure difference.

植物を栽培している土壌に潅水する方法は従来から多数提案され、実用化されている。その一つに、1934年、ビー・イー・リビングストン(B.E.Livingston)によって紹介された節水灌漑方法である。その原理は、植物を栽培する土壌中に多孔質管を埋設し、この多孔質管に水を飽和させ、土壌の水分圧が低いときは土壌に潅水し、土壌中の水分圧が高いときは余分の水分を多孔質管内に取込む(吸込む)という、水圧差を利用した土壌への潅水方法であり、使用する水量が少ないという特色がある。   Many methods for irrigating soil where plants are cultivated have been proposed and put into practical use. One of them is the water-saving irrigation method introduced in 1934 by BE Livingston. The principle is that a porous tube is buried in the soil where plants are cultivated, water is saturated in this porous tube, and when the water pressure of the soil is low, the soil is irrigated, and when the water pressure in the soil is high This is a method of irrigating the soil using a water pressure difference, in which extra water is taken into (sucked into) the porous tube, and has a feature that the amount of water used is small.

上記の水圧差を利用した土壌への潅水方法を実用化した例として、特開平9−9802号公報、特開平9−308396号公報などに記載の技術が提案されている。これら提案されている方法によると、多孔質管と導管を含む送水系(または通水系)に満たされている水の中に溶存している空気などの気体が、温度などの環境変化によって気泡となり、多孔質管の内面に付着し細孔を塞ぐことがあり、多孔質管に内外に圧力差があっても、土壌への水分供給ができなくなるという問題があることが分かった。この問題については、本発明者らが鋭意検討し、特許第4173228号公報に記載の方法を提案した。この特許公報に記載の方法によれば、通水系内に2〜3kg/cmの水圧で素早く通水することによって、残存する気泡をほぼ完全に除去することができ、多孔質管の内外に圧力差が生じ多孔質管の水圧が高いときは、土壌に水分の供給ができるようになった。 Techniques described in Japanese Patent Application Laid-Open Nos. 9-9802, 9-308396, and the like have been proposed as examples of practical application of the water irrigation method using the water pressure difference. According to these proposed methods, gas such as air dissolved in water filled in the water supply system (or water flow system) including porous tubes and conduits becomes bubbles due to environmental changes such as temperature. It has been found that there is a problem that it adheres to the inner surface of the porous tube and closes the pores, and even if there is a pressure difference between the inside and the outside of the porous tube, moisture cannot be supplied to the soil. The present inventors diligently investigated this problem and proposed a method described in Japanese Patent No. 4173228. According to the method described in this patent publication, the remaining bubbles can be almost completely removed by quickly passing water through the water passage system at a water pressure of 2 to 3 kg / cm 2 , and the inside and outside of the porous tube can be removed. When the pressure difference occurred and the water pressure in the porous tube was high, water could be supplied to the soil.

しかし、その後さらに検討した結果、送水系内に残存する気泡をほぼ完全に除去しても、多孔質管の内外に圧力差が生じないことがあった。その原因を追究した結果、次のことが分かった。すなわち、外部環境の急激な変化、例えば、外気温度の急激な上昇、空気の乾燥(低湿度)化による土壌水の急激な蒸発、生育最盛期にある植物による土壌水の急激な吸収などにより土壌が乾燥・収縮し、多孔質管の表面と接触している土壌が多孔質管の表面から剥がれることに原因があることが分かった。水圧差を利用した土壌への潅水は、多孔質管の表面に土壌が接触し、かつ、土壌が毛管現象を維持できる状態にあることが必須であるので、多孔質管の表面と接触している土壌が多孔質管の表面から剥がれると、水圧差を利用した土壌への潅水は不可能となる。   However, as a result of further investigations after that, even if the bubbles remaining in the water supply system were almost completely removed, there was a case where a pressure difference did not occur inside and outside the porous tube. As a result of investigating the cause, the following was found. That is, the soil changes due to a sudden change in the external environment, for example, a rapid increase in the outside air temperature, a rapid evaporation of soil water due to air drying (low humidity), and a rapid absorption of soil water by plants in the growing season. It was found that the soil was dried and contracted, and the soil in contact with the surface of the porous tube was peeled off from the surface of the porous tube. Irrigation to the soil using the water pressure difference requires that the soil is in contact with the surface of the porous tube and that the soil is in a state capable of maintaining capillary action. If the soil is peeled off from the surface of the porous tube, irrigation to the soil using the water pressure difference becomes impossible.

特開平9−9802号公報JP-A-9-9802 特開平9−308396号公報Japanese Patent Laid-Open No. 9-308396 特許第4173228号公報Japanese Patent No. 4173228

本発明者は、上記従来技術に存在していた問題、すなわち、外気温度の急激な上昇、空気の乾燥(低湿度)化による土壌水の急激な蒸発、生育最盛期にある植物による土壌水の急激な吸収などの外部環境に急激な変化が生じても、水圧差を利用した土壌への安定した潅水が可能な潅水技術を提供すべく鋭意検討した結果、本発明を完成するに至った。   The inventor of the present invention has problems that existed in the above-mentioned prior art, that is, rapid increase in outside air temperature, rapid evaporation of soil water due to air drying (low humidity), soil water caused by plants in the growing season. As a result of diligent research to provide a irrigation technique that enables stable irrigation of soil using a water pressure difference even when a sudden change occurs in the external environment such as rapid absorption, the present invention has been completed.

上記課題を解決するために、本発明では、壁面に細孔が設けられていない通水可能な導管の適所に、壁面に細孔が設けられている多孔質管を複数個配置し接続された送水管を土壌中に埋設し、この送水管の両端を多孔質管の位置よりも下方において貯水槽に接続し、通常は貯水槽の水面は多孔質管と同位置(水平位置)ないし低位置に維持され、送水管を貯水槽からの水によって飽和させ、多孔質管内の水分圧を(a)とし、この多孔質管表面に接触する土壌に含まれる水分圧を(b)とするとき、(a)>(b)のときは多孔質管内の水分を土壌側に滲出させ、(a)<(b)のときは土壌に含まれる水分を多孔質管内に取込む(吸込む)ようにされてなる水圧差を利用した潅水方法において、間歇的に貯水槽内に水を供給し貯水槽内の水面の位置を土壌中に埋設した多孔質管の位置よりも若干高位置とし、貯水槽内の水分圧を微正圧にすることを特徴とする、水圧差を利用した土壌への潅水方法を提供する。   In order to solve the above-mentioned problem, in the present invention, a plurality of porous tubes having pores provided on the wall surface are arranged and connected at appropriate positions of a water-permeable conduit not provided with pores on the wall surface. A water pipe is buried in the soil, and both ends of this water pipe are connected to the water tank below the position of the porous pipe. Normally, the water surface of the water tank is the same position (horizontal position) or lower position as the porous pipe. The water pipe is saturated with water from the water tank, the water pressure in the porous pipe is (a), and the water pressure contained in the soil in contact with the porous pipe surface is (b), When (a)> (b), the moisture in the porous tube is exuded to the soil side, and when (a) <(b), the moisture contained in the soil is taken into (sucked into) the porous tube. In the irrigation method using the water pressure difference, the water in the reservoir is intermittently supplied to the reservoir. A method for irrigating soil using water pressure difference, characterized in that the position of the water is slightly higher than the position of the porous tube embedded in the soil and the water pressure in the water tank is made slightly positive To do.

本発明は、次のようは特別に顕著な効果を奏し、その産業上の利用価値は極めて大である。
1.本発明に係る水圧差を利用した土壌への潅水方法によれば、外気温度の急激な上昇、空気の乾燥(低湿度)化によるによる土壌水の急激な蒸発、生育最盛期にある植物による土壌水の急激な吸収などによる外部環境に急激な変化が生じても、土壌へ安定して継続的な潅水ができる。
2.本発明に係る水圧差を利用した土壌への潅水方法によれば、常時貯水槽の水位を監視する必要がなく、潅水作業が簡単で、過潅水の心配もない。
The present invention has a particularly remarkable effect as follows, and its industrial utility value is extremely large.
1. According to the irrigation method to the soil using the water pressure difference according to the present invention, the rapid increase of the outside air temperature, the rapid evaporation of the soil water due to the drying (low humidity) of the air, the soil by the plant in the growing season Even if a sudden change occurs in the external environment due to sudden absorption of water, the soil can be irrigated stably and continuously.
2. According to the irrigation method to the soil using the water pressure difference according to the present invention, it is not necessary to constantly monitor the water level of the water tank, the irrigation work is simple, and there is no concern about excessive irrigation.

本発明方法を実施している一例を示す概略図である。It is the schematic which shows an example which is implementing the method of this invention. 本発明方法を実施している他の例を示す概略図である。It is the schematic which shows the other example which is implementing the method of this invention.

以下、本発明を詳細に説明する。本発明は、土壌で栽培する植物に水を潅水する方法に関する。壁面に細孔が設けられていない導管(以下、単に導管(A)と記載することがある)の適所に、壁面に壁面を貫通した細孔が設けられている多孔質管(以下、単に導管(B)と記載することがある)を複数個配置して接続された送水管を土壌中に埋設し、この送水管を水で飽和させることによって水を多孔質管の細孔から外側に滲透させ、この滲透水を植物の生育・栽培に活用する潅水方法である。   Hereinafter, the present invention will be described in detail. The present invention relates to a method of irrigating water to a plant cultivated in soil. A porous tube (hereinafter simply referred to as a conduit) in which pores penetrating the wall surface are provided at appropriate positions of a conduit (which may be simply referred to as a conduit (A) hereinafter) in which pores are not provided on the wall surface. (It may be described as (B)). A plurality of connected water pipes are buried in the soil, and the water pipe is saturated with water so that water penetrates from the pores of the porous pipe to the outside. The irrigation method uses the permeated water for plant growth and cultivation.

本発明方法において使用される土壌は、通常、粒子間に水分を保持でき、植物を栽培することができる土壌であれば特に制限がなく、天然土壌でも人工的に粉砕・混合したものであってもよく、人工土壌と天然土壌との混合物であってもよい。土壌は、「日本統一土質分類法」の分類に基づく土壌の総てが挙げられる。すなわち、土壌は土質材料によって租粒子(レキ粒子、砂粒子)、細粒子、高有機質粒子(ピート、黒泥)と分類されるが、いずれでもよい。粒子径の大きい粒子は、単独ではなく砂粒子、細粒子(シルト、粘性土、有機質土、火山灰質粘性土)などを混合したものが好ましい。レキ粒子の多い土壌は、細粒子や高有機質粒子を客土する方法によって、植物の生育に適した土壌に改良することができる。本発明方法が適用できる土壌は、傾斜がなく平坦な土壌が好ましい。土壌は面積が多様に亘る田畑、温室のほか、面積の狭い鉢植の土壌、プランターの土壌などが挙げられる。   The soil used in the method of the present invention is usually not particularly limited as long as it can retain moisture between particles and can grow plants, and even natural soil is artificially crushed and mixed. Alternatively, it may be a mixture of artificial soil and natural soil. The soil includes all the soils based on the classification of the “Japan Unified Soil Classification Method”. That is, the soil is classified into soil particles (leki particles, sand particles), fine particles, and high organic particles (peat, black mud) depending on the soil material, but any of them may be used. The particles having a large particle diameter are not limited to single particles but are preferably mixed with sand particles, fine particles (silt, viscous soil, organic soil, volcanic ash clay) and the like. The soil with a lot of lexic particles can be improved to a soil suitable for plant growth by a method of obtaining fine particles and highly organic particles. The soil to which the method of the present invention can be applied is preferably a flat soil having no slope. The soil includes fields and greenhouses with various areas, potted soil with a small area, and planter soil.

送水管を構成する壁面に細孔が設けられていない導管(A)は、送水管の土壌に埋設されない部分を構成し、土壌中に埋設される部分に一定または任意の間隔で多孔質管(B)と接続される。導管(A)は、熱可塑性樹脂を原料とし押出成形法で製造された導管(チューブ)が好適である。樹脂はポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリブテン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアセタール、ポリカーボネート、ポリアミド類などが挙げられる。中でも、ポリ塩化ビニル、ポリエチレン、ポリプロピレンが好適である。この導管の内径、肉厚、長さなどに制約はないが、内径が小さ過ぎると、送水する際の水の抵抗が大きく、大き過ぎると送水管の内部に発生した気泡や、送水管の外部から混入した気泡を流しだすために多量の水を循環させる必要がある。導管の内径や肉厚は、送水管が埋設される土壌環境(地域、田畑か温室か、土壌の種類、栽培する植物の種類など)によって変るが、通常は内径は1〜50mm、好ましくは3〜30mmの範囲で選ばれる。肉厚は導管の内径に比例させて0.5〜20mm、好ましくは1〜10mmの範囲で選ばれる。   The conduit (A) in which pores are not provided on the wall surface constituting the water pipe constitutes a portion of the water pipe that is not embedded in the soil, and a porous pipe (at a fixed or arbitrary interval in the portion embedded in the soil) B). The conduit (A) is preferably a conduit (tube) manufactured by an extrusion method using a thermoplastic resin as a raw material. Examples of the resin include polyethylene, polypropylene, polyvinyl chloride, polybutene, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polycarbonate, and polyamides. Among these, polyvinyl chloride, polyethylene, and polypropylene are preferable. There are no restrictions on the inner diameter, wall thickness, length, etc. of this conduit, but if the inner diameter is too small, the resistance of the water during water feeding is large, and if it is too large, bubbles generated inside the water pipe or the outside of the water pipe It is necessary to circulate a large amount of water in order to discharge air bubbles mixed from the water. The inner diameter and thickness of the conduit vary depending on the soil environment (area, field or greenhouse, soil type, plant type to be cultivated, etc.), but the inner diameter is usually 1 to 50 mm, preferably 3 It is selected in a range of ˜30 mm. The wall thickness is selected in the range of 0.5 to 20 mm, preferably 1 to 10 mm in proportion to the inner diameter of the conduit.

導管(B)の壁面に設けられた細孔は、水や水蒸気を多孔質管の内側から多孔質管の外側に、または多孔質管の外側から多孔質管の内側に通過させるように機能する。多孔質管の材質は、陶磁器、コンクリート、多孔質ガラス、金属焼結体、ポリエチレン、ポリプロピレン、ゴムなどの熱可塑性樹脂を原料とした多孔質導管などのほか、金属焼結体、フィルター材料として利用できる素材を筒状に成形したものなどが挙げられる。中でも、石英質の多い陶土を成形し、焼成して得られたものが好ましい。   The pores provided in the wall surface of the conduit (B) function to pass water or water vapor from the inside of the porous tube to the outside of the porous tube or from the outside of the porous tube to the inside of the porous tube. . The material of the porous tube is ceramic, concrete, porous glass, metal sintered body, porous conduit made of thermoplastic resin such as polyethylene, polypropylene, rubber, etc., as well as metal sintered body and filter material Examples of the material that can be formed into a cylindrical shape. Among them, those obtained by molding and firing ceramic clay with a lot of quartz are preferable.

導管(B)の細孔は、孔径0.01〜200μmの範囲で選ばれる。下限より小さいときは、使用中に目詰まりが起こり易いほか、送水する際の水の抵抗が大きく、上限より大きいときは貯水槽内の水位が多孔質導管の水平位置より著しく低くなった場合に、土壌中に含まれる空気を吸引して送水管内の水を貯水槽に落とし易く、水を送水管内に飽和させた状態を維持できなくなる。孔径のより好ましい範囲は、0.1〜50μmである。導管(B)の内径、肉厚などは、上記導管(A)と同等とするのが好ましいが、同一でなくてもよい。細孔に親水性物質によって処理すると、水や水蒸気が通過し易くなり好ましい。導管(B)は、短かすぎると導管(A)と接続して送水管とする際の作業が煩雑となり、長すぎるとコストが嵩みいずれも好ましくない。通常は、30〜200mmの範囲で選ばれる。   The pores of the conduit (B) are selected in the range of pore diameters of 0.01 to 200 μm. If it is smaller than the lower limit, clogging is likely to occur during use, and the resistance of the water to be fed is large.If it is larger than the upper limit, the water level in the water tank is significantly lower than the horizontal position of the porous conduit. The air contained in the soil is sucked to easily drop the water in the water pipe into the water storage tank, and the saturated state of the water in the water pipe cannot be maintained. A more preferable range of the pore diameter is 0.1 to 50 μm. The inner diameter, thickness, etc. of the conduit (B) are preferably the same as those of the conduit (A), but they may not be the same. It is preferable to treat the pores with a hydrophilic substance because water and water vapor easily pass through. If the conduit (B) is too short, the operation for connecting to the conduit (A) to form a water pipe becomes complicated, and if it is too long, the cost increases and neither is desirable. Usually, it is selected in the range of 30 to 200 mm.

送水管を調製し土壌に埋設する手順は、まず、送水管を埋設する土壌の種類、土壌で栽培する植物の種類などに応じて、導管(A)の素材の種類、直径、内径、肉厚などを選び、同時に導管(B)の素材の種類、直径、内径、肉厚、孔径などを選ぶ。ついで、送水管の土壌中に埋設されない部分は導管(A)のみとし、土壌中に埋設される部分には導管(A)に一定または任意の間隔で導管(B)を導管(A)と交互に接続し、送水可能とする。導管(A)に接続する導管(B)の数は複数個とするが、その数や間隔は、土壌環境(地域、田畑か温室か、土壌の種類、栽培する植物の種類など)に応じて、適宜選ぶことができる。導管(A)と導管(B)との繋ぎ目には、接続具を使用するのが好ましい。接続具は、導管(A)と導管(B)とを接続するほか、両者間で直径、内径、肉厚などが相違するときに両者を調節するように機能する。接続具は、熱可塑性樹脂製、金属製などであってよい。   The procedure for preparing the water pipe and burying it in the soil is as follows. First, depending on the type of soil in which the water pipe is buried, the type of plant cultivated in the soil, the type, diameter, inner diameter and thickness of the conduit (A) At the same time, the material type, diameter, inner diameter, wall thickness, hole diameter, etc. of the conduit (B) are selected. Next, the only portion of the water pipe that is not embedded in the soil is the conduit (A), and the portion embedded in the soil is the conduit (A) that is alternately or regularly spaced from the conduit (B) with the conduit (A). To be connected to the water. The number of pipes (B) connected to the pipe (A) shall be plural, but the number and interval will depend on the soil environment (area, field or greenhouse, soil type, plant type to be cultivated, etc.) Can be selected as appropriate. It is preferable to use a connection tool at the joint between the conduit (A) and the conduit (B). In addition to connecting the conduit (A) and the conduit (B), the connector functions to adjust both when the diameter, the inner diameter, the wall thickness, and the like are different. The connection tool may be made of thermoplastic resin, metal, or the like.

こうして接続して長尺にしたものを、土壌中に埋設して送水管とする。なお、あらかじめ長尺に組立てた送水管を土壌中に埋設する方法のほか、土壌の状況(平面か畝立てされていあるか、全体の面積、畝立てされている場合は畝の幅、長さなど)に応じて、導管(A)の長さや導管(B)の長さや数を調整しつつ接続し、順次土壌中に埋設する方法であってもよい。送水管を土壌に埋設する際の深さは、土壌環境(地域、田畑か温室か、土壌の種類、栽培する植物の種類など)に応じて、適宜選ぶことができるが、通常、土壌面から50〜200mmの範囲で選ばれる。   What is connected and made long in this way is buried in soil to form a water pipe. In addition to the method of embedding a long water pipe in advance in the soil, the condition of the soil (whether it is flat or erected, the whole area, and if erected, the width and length of the ridge) Etc.) may be connected while adjusting the length of the conduit (A) and the length and number of the conduit (B), and may be sequentially embedded in the soil. The depth at which the water pipe is buried in the soil can be selected as appropriate according to the soil environment (region, field or greenhouse, type of soil, type of plant to be cultivated, etc.). It is selected in the range of 50 to 200 mm.

貯水槽は、土壌に潅水する水を貯える機能を果たす。送水管の両端は多孔質管の位置よりも下方において貯水槽に接続され、送水管内は水によって飽和されて貯水槽に接続される(図1、図2参照)。貯水槽の水面は、多孔質管と同位置(水平位置)ないし若干低位置に維持される。貯水槽の水面が多孔質管の水平位置より低位置にあっても、送水管内を飽和した水はサイホン効果により飽和状態を維持できる。   The water tank functions to store water for irrigating the soil. Both ends of the water pipe are connected to the water tank below the position of the porous pipe, and the water pipe is saturated with water and connected to the water tank (see FIGS. 1 and 2). The water surface of the water storage tank is maintained at the same position (horizontal position) as the porous pipe or at a slightly lower position. Even if the water level of the water storage tank is lower than the horizontal position of the porous tube, the water saturated in the water supply tube can maintain a saturated state due to the siphon effect.

本発明に係る潅水方法では、多孔質管内の水分圧を(a)とし、この多孔質管表面に接触する土壌に含まれる水分圧を(b)とするとき、(a)>(b)のときは多孔質管内の水分を土壌側に滲出させ、(a)<(b)のときは土壌に含まれる水分を多孔質管内に取込む(吸込む)ようにされてなる水圧差を利用した灌水方法である。水分圧が前者の関係にあるときは、貯水槽の水面は多孔質管よりも低位置にあっても、水が送水管内に飽和し導管(B)の外側表面が湿気を含む土壌によって被覆されている状態にあると、水は毛管現象によって土壌に滲出して継続して植物の根に水が供給される。水分圧が後者の関係にあるときは、水が送水管内に飽和し導管(B)の外側表面が湿気を含む土壌によって被覆されている状態で、貯水槽の水面は多孔質管よりも低位置にあるときは、土壌に含まれる余分の水分を多孔質管内に取込み(吸込み)、貯水槽に送ることができる。   In the irrigation method according to the present invention, when the water pressure in the porous tube is (a) and the water pressure contained in the soil in contact with the porous tube surface is (b), (a)> (b) Sometimes, water in the porous tube is leached to the soil side, and when (a) <(b), irrigation using a water pressure difference is made so that the moisture contained in the soil is taken into (sucked into) the porous tube. Is the method. When the water pressure is in the former relationship, water is saturated in the water pipe and the outer surface of the pipe (B) is covered with soil containing moisture even if the water surface of the water tank is lower than the porous pipe. In this state, water oozes into the soil by capillary action and continues to be supplied to the plant roots. When the water pressure is in the latter relationship, the water surface is lower than the porous tube in a state where water is saturated in the water pipe and the outer surface of the conduit (B) is covered with soil containing moisture. When it is, the extra water contained in the soil can be taken into the porous tube (suction) and sent to the water storage tank.

本発明に係る潅水方法では、上記のとおり、水が送水管内に飽和し導管(B)の外側表面が湿気を含む土壌によって被覆されている状態では、水は毛管現象によって土壌側に滲出して植物の根に水が供給される。通常は、貯水槽内の水面の位置は、多孔質管の位置と同一(水平位置)ないし低位置に維持される。この場合の低位置とは、潅水する土壌の面積、土壌で生育・栽培している植物の種類、生育の時期(発芽期か成長期かなど)、貯水槽の大きさなどに依存するので、状況に応じて適宜変更できるが、通常は10〜300mmの範囲で選ばれる。水は雨水、河川水、地下水、水道水など植物育成に適したものであれば、その種類を問わない。この場合、必要に応じて肥料などの植物の生育に必要な養分を溶解させておくこともできる。土壌で生育・栽培できる植物は特に制限がなく、各種野菜、草花、果物、樹木などが挙げられる。   In the irrigation method according to the present invention, as described above, in a state where water is saturated in the water pipe and the outer surface of the conduit (B) is covered with soil containing moisture, the water oozes to the soil side by capillary action. Water is supplied to the plant roots. Usually, the position of the water surface in the water tank is maintained at the same position (horizontal position) as the position of the porous tube or at a low position. The low position in this case depends on the area of the soil to be irrigated, the type of plant grown and cultivated in the soil, the time of growth (eg, germination or growth period), the size of the water tank, etc. Although it can change suitably according to a condition, it is usually chosen in the range of 10-300 mm. The type of water is not limited as long as it is suitable for plant growth, such as rainwater, river water, groundwater, and tap water. In this case, nutrients necessary for the growth of plants such as fertilizer can be dissolved as necessary. Plants that can be grown and cultivated in soil are not particularly limited, and examples include various vegetables, flowers, fruits, and trees.

導管(B)の外側表面を被覆している土壌の水分がなくなると、土壌は乾燥・収縮し導管(B)の外側表面から剥離し、剥離したあとは毛管現象が起らず土壌に水を供給することができなくなる。本発明に係る潅水方法では、土壌が導管(B)の外側表面からの剥離するのを防止する目的で、土壌が導管(B)の外側表面から剥離する若干前(例えば半日〜2日程度)に、貯水槽内の水面の位置を間歇的に、土壌中に埋設した導管(B)の位置(水平位置)よりも若干高位置にし、積極的に水を導管(B)表面から土壌側に滲出させる。このようにすることにより、導管(B)の外側表面から土壌が剥離するのを防止でき、毛管現象を維持することができる。若干高位置とは、土壌環境(地域、田畑か温室か、土壌の種類など)、潅水する土壌の面積、土壌で生育・栽培している植物の種類、生育の時期(発芽期か成長期かなど)、貯水槽の大きさなどに依存するので、状況に応じて適宜変更できるが、例えば10〜50mmの範囲で選ばれる。若干高位置にすることにより、0.003〜0.005kg/cm程度の微正圧とすることができる。 When the soil covering the outer surface of the conduit (B) runs out of water, the soil dries and shrinks and delaminates from the outer surface of the conduit (B). It becomes impossible to supply. In the irrigation method according to the present invention, for the purpose of preventing the soil from peeling from the outer surface of the conduit (B), slightly before the soil is detached from the outer surface of the conduit (B) (for example, about half a day to about 2 days). In addition, the position of the water surface in the water tank is intermittently slightly higher than the position (horizontal position) of the conduit (B) buried in the soil, and water is actively moved from the surface of the conduit (B) to the soil side. Let it exude. By doing in this way, it can prevent that a soil peels from the outer surface of a conduit | pipe (B), and can maintain a capillary phenomenon. Slightly higher refers to the soil environment (region, field or greenhouse, soil type, etc.), the area of the soil to be irrigated, the type of plants grown and cultivated in the soil, and the time of growth (emergence or growth phase) Etc.), depending on the size of the water storage tank, etc., and can be changed as appropriate depending on the situation. By making the position slightly higher, a slight positive pressure of about 0.003 to 0.005 kg / cm 2 can be obtained.

間歇的に貯水槽内に水を供給し、貯水槽内の水面の位置を土壌中に埋設した多孔質管の位置よりも若干高位置にする具体的方法としては、(1)貯水槽内の水面の位置を水位検知装置によって検知し給水する方法、(2)タイマーによって一定時間ごとに給水する方法、(3)多孔質管の外側表面の土壌水分濃度を検知装置によって検知し給水する方法、などが挙げられる。   As a specific method of intermittently supplying water into the water tank and setting the position of the water surface in the water tank slightly higher than the position of the porous pipe embedded in the soil, (1) In the water tank (2) A method for supplying water at regular intervals by a timer, (3) A method for detecting the soil moisture concentration on the outer surface of the porous tube with a detection device, and supplying water. Etc.

上記(1)の方法では、貯水槽内に水位検知装置を設置する。水位検知装置としては、水面の高低を水面感知センサーで検知し、高低いずれかの設定位置に達した際に水供給用の電磁弁のスイッチに信号を送り、電磁弁を開閉する機構により構成されたものが好適である。水面感知センサーとしては、低水位と高水位とを感知する一対のセンサーで構成したものとすることができる(後記、図1参照)。貯水槽の水位が設定位置より低くなったときは、水供給弁が開いて貯水槽に水を補給し、水位が設定位置に達したときは、水供給弁が閉じるように設定する。水面感知センサーは、各種の市販されているフロートスイッチの中から適切なものを選び使用することができる。上記(1)の他の方法では、貯水槽内に配置した浮玉により低水位と高水位を検知し、ボールタップ弁を開閉させて貯水槽に給水する方法も挙げられる。   In the method (1), a water level detector is installed in the water tank. The water level detection device consists of a mechanism that detects the level of the water surface with a water surface sensor and sends a signal to the switch of the electromagnetic valve for water supply when it reaches any of the set positions. Are preferred. The water surface detection sensor may be composed of a pair of sensors that detect a low water level and a high water level (see FIG. 1 described later). When the water level of the water storage tank becomes lower than the set position, the water supply valve is opened to supply water to the water storage tank, and when the water level reaches the set position, the water supply valve is set to close. As the water surface detection sensor, an appropriate sensor can be selected from various commercially available float switches. Another method of the above (1) includes a method of detecting a low water level and a high water level with a floating ball arranged in the water tank, and opening and closing a ball tap valve to supply water to the water tank.

上記(2)のタイマーによって一定時間ごとに給水する方法は、上記(1)の他の方法でのボールタップ弁からの給水で不十分な場合は、さらに自動潅水タイマーを併設して、設定した時刻に、設定した時間、設定した水量を給水することもできる。適切な水の供給時刻、一回当たりの供給時間と供給量などは、土壌がある地域、土壌の性質、潅水する土壌の面積、土壌で生育・栽培している植物の種類、生育の時期(発芽期か成長期)などの土壌環境、貯水槽の大きさなどに依存するので、状況に応じて、経験および事前の実験などによって決定することができる。自動潅水タイマーとしては、各種の市販されている製品の中から適切なものを選び使用することができる。   When the water supply from the ball tap valve in the other method of (1) above is insufficient for the method of supplying water at regular intervals by the timer of (2) above, an automatic irrigation timer is additionally provided to set the time In addition, the set amount of water can be supplied for a set time. Appropriate water supply time, supply time and supply amount, etc. are determined by the area where the soil is located, the nature of the soil, the area of the soil to be irrigated, the type of plants grown and cultivated in the soil, and the time of growth ( It depends on the soil environment such as germination period or growth period), the size of the water tank, etc., and can be determined by experience and prior experiments depending on the situation. As the automatic irrigation timer, an appropriate one can be selected from various commercially available products.

上記(3)は、土壌に埋設された多孔質管の外側表面被覆土壌に、この被覆土壌の水分濃度を検知する水分濃度検知センサーを埋設し、これによって土壌水分濃度を検知し、設定濃度以下になったときに水供給用の電磁弁のスイッチに信号を送り、電磁弁を開き一定時間水を供給する機構とするのが好適である。スイッチを作動させる際の水分濃度と、水の供給時間は、事前の実験および経験によって決定することができる。土壌の水分濃度検知センサーは、各種の市販されている水分濃度検知センサー中から、適切なものを選び使用することができる。   In the above (3), a moisture concentration detection sensor for detecting the moisture concentration of the coated soil is buried in the outer surface covered soil of the porous tube buried in the soil, thereby detecting the soil moisture concentration, and below the set concentration It is preferable to use a mechanism that sends a signal to the switch of the electromagnetic valve for water supply when it becomes, and opens the electromagnetic valve to supply water for a certain time. The moisture concentration at which the switch is activated and the water supply time can be determined by prior experimentation and experience. As the soil moisture concentration detection sensor, an appropriate sensor can be selected from various commercially available moisture concentration detection sensors.

以下、本発明を図面に基づいて詳細に説明するが、本発明方法は以下に記載した例に限定されるものではない。図1は、本発明方法を実施している一例を示す概略図である。図1において、1は 水道管、2は貯水槽、3は植物栽培土壌、4は植物、5、6は導管、7は多孔質管、8は水、9は多孔質管の水平位置、10、11は水面感知センサー、10’は下限センサーの先端位置、11’は上限センサーの先端位置、12は電磁弁のスイッチ、13は電磁弁である。図1では壁面に細孔が設けられていない通水可能な導管5の適所に壁面に細孔が設けられている多孔質管7が接続されて送水管を構成し、植物栽培土壌4の中に埋設されている。送水管の両端は、導管5と6によって貯水槽2に多孔質管7の水平位置9よりも低い位置で貯水槽2に接続されている。貯水槽2には水8が、多孔質管7の水平位置9と同位置ないし低位置に維持され、送水管を貯水槽2からの水8によって飽和させた状態にされている。送水管内に水8を飽和させるには、送水管内に水を2〜3kg/cm程度の圧力で送水し、空気を強制的に除去しながら満たせばよい。 Hereinafter, the present invention will be described in detail with reference to the drawings. However, the method of the present invention is not limited to the examples described below. FIG. 1 is a schematic view showing an example of carrying out the method of the present invention. In FIG. 1, 1 is a water pipe, 2 is a water storage tank, 3 is plant cultivation soil, 4 is a plant, 5 and 6 are conduits, 7 is a porous pipe, 8 is water, 9 is a horizontal position of the porous pipe, 10 , 11 is a water surface sensor, 10 ′ is the tip position of the lower limit sensor, 11 ′ is the tip position of the upper limit sensor, 12 is a switch of the solenoid valve, and 13 is a solenoid valve. In FIG. 1, a water pipe is formed by connecting a porous pipe 7 having a pore on the wall surface to an appropriate position of a water-permeable conduit 5 having no pore on the wall surface. It is buried in. Both ends of the water supply pipe are connected to the water storage tank 2 by conduits 5 and 6 at a position lower than the horizontal position 9 of the porous pipe 7. In the water tank 2, water 8 is maintained at the same position or a low position as the horizontal position 9 of the porous pipe 7, and the water supply pipe is saturated with the water 8 from the water tank 2. In order to saturate the water 8 in the water pipe, water may be supplied into the water pipe at a pressure of about 2 to 3 kg / cm 2 and filled while forcibly removing the air.

貯水槽2内の水面が多孔質管7の水平位置9より低位置にあっても、送水管内を飽和した水8は、前記したとおり、サイホン効果によって送水管に留まり貯水槽2に落ちることがなく、送水管内の飽和状態が維持される。多孔質管7の表面に接触している土壌4の水分圧(b)とし、多孔質管7の水分圧を(a)とするとき、(a)>(b)のときは、多孔質管7内の水分を細孔から土壌4側に滲出させ、土壌4で生育・栽培している植物に水を供給することができる。(a)<(b)のときは、土壌4に含まれる水分を多孔質管7内に取込み(吸込み)、土壌4中の水分・湿気を調節することができる。   Even if the water level in the water tank 2 is lower than the horizontal position 9 of the porous tube 7, the water 8 saturated in the water pipe may remain in the water pipe due to the siphon effect and fall into the water tank 2 as described above. And the saturated state in the water pipe is maintained. When the moisture pressure of the soil 4 in contact with the surface of the porous tube 7 is (b) and the moisture pressure of the porous tube 7 is (a), when (a)> (b), the porous tube 7 7 can be exuded to the soil 4 side from the pores, and water can be supplied to the plants grown and cultivated in the soil 4. When (a) <(b), moisture contained in the soil 4 can be taken into the porous tube 7 (suction), and moisture / humidity in the soil 4 can be adjusted.

貯水槽2の水面が下がった場合は、図1に示した例では、水面の高低を一対の水面感知センサー10、11で検知する。水面の下限位置10’は下限センサー10の先端で検知し、スイッチ12からオンの信号を電磁弁13に送り、電磁弁13を開き、水を貯水槽2に供給する。水面の上限位置11’は上限センサー11の先端によって検知し、スイッチ12からオフの信号を電磁弁13に送り、電磁弁13を閉じ、水の貯水槽2への供給を中止する。このようにすることによって、貯水槽2内の水8の水面を多孔質管7の水平位置9を挟んで狭い範囲に調節することができる。下限センサーの下限位置10’、上限センサーの上限位置11’は、事前の実験および経験によって決定することができること、貯水槽2の大きさにもよるが、多孔質管7の水平位置9を挟んで+50mmから−300mmの範囲で選ばれることは、前記のとおりである。水面感知センサーは、上記したとおりフロートスイッチであってもよい。   When the water level of the water storage tank 2 falls, in the example shown in FIG. 1, the level of the water level is detected by the pair of water level detection sensors 10 and 11. The lower limit position 10 ′ of the water surface is detected at the tip of the lower limit sensor 10, an ON signal is sent from the switch 12 to the electromagnetic valve 13, the electromagnetic valve 13 is opened, and water is supplied to the water storage tank 2. The upper limit position 11 ′ of the water surface is detected by the tip of the upper limit sensor 11, an OFF signal is sent from the switch 12 to the electromagnetic valve 13, the electromagnetic valve 13 is closed, and the supply of water to the water storage tank 2 is stopped. By doing in this way, the water surface of the water 8 in the water tank 2 can be adjusted to a narrow range across the horizontal position 9 of the porous tube 7. The lower limit position 10 ′ of the lower limit sensor and the upper limit position 11 ′ of the upper limit sensor can be determined by prior experiments and experience, and the horizontal position 9 of the porous tube 7 is sandwiched depending on the size of the water tank 2. Is selected in the range of +50 mm to −300 mm. The water surface sensor may be a float switch as described above.

図2は、本発明方法を実施している他の例を示す概略図である。図2において、21は水道管、22は貯水槽、23は植物栽培土壌、24は植物、25、26は導管、27は多孔質管、28は水、30は浮玉、31はボールタップ弁、32はボールタップ弁支持部、33は自動潅水タイマーである。図2では、壁面に細孔が設けられていない通水可能な導管25の適所に壁面に細孔が設けられている多孔質管27が接続されて送水管を構成し、植物栽培土壌23の中に埋設されている。送水管の両端は、導管25と26によって貯水槽22に多孔質管27よりも低い位置で接続されている。貯水槽22には水28が、多孔質管27の水平位置と同位置ないし低位置に維持され、送水管を貯水槽22からの水28によって飽和させた状態にされている。送水管内に水28を飽和させるには、送水管内に水を2〜3kg/cm程度の圧力で送水し、空気を強制的に除去しながら満たせばよい。 FIG. 2 is a schematic view showing another example of carrying out the method of the present invention. In FIG. 2, 21 is a water pipe, 22 is a water storage tank, 23 is plant cultivation soil, 24 is a plant, 25 and 26 are conduits, 27 is a porous pipe, 28 is water, 30 is a floating ball, 31 is a ball tap valve, 32 is a ball tap valve support, and 33 is an automatic irrigation timer. In FIG. 2, a water pipe is formed by connecting a porous pipe 27 having a pore on the wall surface to an appropriate location of a conduit 25 that has no pores on the wall surface. It is buried inside. Both ends of the water supply pipe are connected to the water storage tank 22 at lower positions than the porous pipe 27 by conduits 25 and 26. Water 28 is maintained in the water tank 22 at the same position as the horizontal position of the porous tube 27 or at a low position, and the water supply pipe is saturated with the water 28 from the water tank 22. In order to saturate the water 28 in the water pipe, water may be supplied into the water pipe at a pressure of about 2 to 3 kg / cm 2 and filled while forcibly removing the air.

図2に示した例では、貯水槽22内の水位は、通常は、浮玉30とボールタップ弁31とが連動して、常に一定に維持されるように設定されている。しかし外部環境(外気温度、湿度など)が急激に変化して土壌乾燥、土壌収縮が起る恐れがあるので、このような急激な外部環境の変化に対応する目的で、自動潅水タイマー33を併設するのが好ましい。自動潅水タイマー33は水道管21に接続し、設定した時刻に、設定した回数、設定した時間に亘って、設定した水量を給水することができる。自動潅水タイマー33による潅水時刻、一日当たりの潅水回数、一回当たりの潅水時間、潅水量などは、前記したとおり、経験や事前の実験などにより決定することができる。   In the example shown in FIG. 2, the water level in the water storage tank 22 is normally set so that the floating ball 30 and the ball tap valve 31 are always kept constant in conjunction with each other. However, since the external environment (outside air temperature, humidity, etc.) may change drastically, soil drying and soil shrinkage may occur, so an automatic irrigation timer 33 is provided for the purpose of responding to such a sudden change in the external environment. It is preferable to do this. The automatic irrigation timer 33 is connected to the water pipe 21 and can supply the set amount of water at the set time for the set number of times and the set time. As described above, the irrigation time by the automatic irrigation timer 33, the number of irrigation per day, the irrigation time per time, the irrigation amount, etc. can be determined by experience or prior experiments.

本発明方法は、以上詳細に説明したとおりであり、面積が多様に亘る畑、温室のほか、建造物の屋上の土壌、面積の狭い鉢植(建造物壁面を緑化するための植物栽培用の鉢植を含む)の土壌、植物を生育・栽培するプランターの土壌などに適用できる。   The method of the present invention is as described above in detail, in addition to fields and greenhouses with various areas, soil on the roof of buildings, pot plants with a small area (pot plants for plant cultivation for greening the walls of buildings) And soil of planters that grow and cultivate plants.

1、21: 水道管
2、22:貯水槽
3、23:植物栽培土壌
4、24:植物
5、6、25、26:導管
7、27:多孔質管
8、28:水
9:多孔質管の水平位置
10、11:水面下限感知センサー
10’:水面下限位置
11’:水面上限位置
12:電磁弁のスイッチ
13:電磁弁
30:浮玉
31:ボールタップ弁
32:ボールタップ弁支持部
33:自動潅水タイマー
1, 2: 1: Water pipe 2, 22: Water tank 3, 23: Plant cultivation soil 4, 24: Plant 5, 6, 25, 26: Conduit 7, 27: Porous pipe
8, 28: Water 9: Horizontal position of porous tube 10, 11: Water surface lower limit sensor 10 ': Water surface lower limit position 11': Water surface upper limit position 12: Switch of solenoid valve 13: Solenoid valve 30: Floating ball 31: Ball tap Valve 32: Ball tap valve support 33: Automatic watering timer

Claims (5)

壁面に細孔が設けられていない通水可能な導管の適所に、壁面に細孔が設けられている多孔質管を複数個配置し接続された送水管を土壌中に埋設し、この送水管の両端を多孔質管の位置よりも下方において貯水槽に接続し、通常は貯水槽の水面は多孔質管と同位置(水平位置)ないし低位置に維持され、送水管を貯水槽からの水によって飽和させ、多孔質管内の水分圧を(a)とし、この多孔質管表面に接触する土壌に含まれる水分圧を(b)とするとき、(a)>(b)のときは多孔質管内の水分を土壌側に滲出させ、(a)<(b)のときは土壌に含まれる水分を多孔質管内に取込む(吸込む)ようにされてなる水圧差を利用した潅水方法において、間歇的に貯水槽内に水を供給し貯水槽内の水面の位置を土壌中に埋設した多孔質管の位置よりも若干高位置とし、貯水槽内の水分圧を微正圧にすることを特徴とする、水圧差を利用した土壌への潅水方法。   A plurality of porous pipes with pores on the wall surface are placed at appropriate locations on a conduit that does not have pores on the wall surface, and a connected water pipe is buried in the soil. Both ends of the water tank are connected to the water storage tank below the position of the porous pipe, and the water surface of the water storage tank is normally maintained at the same position (horizontal position) or low as the porous pipe. When the water pressure in the porous tube is (a) and the water pressure contained in the soil in contact with the surface of the porous tube is (b), when (a)> (b) In the irrigation method using the water pressure difference in which the moisture in the tube is leached to the soil side, and when (a) <(b), the moisture contained in the soil is taken into (sucked into) the porous tube, The position of a porous tube that supplies water into the reservoir and places the surface of the water in the reservoir in the soil It was slightly higher position than, characterized in that the water pressure in the water tank into a fine positive pressure, irrigation method into the soil using a pressure difference. 導管は、熱可塑性合成樹脂より構成され、内径が1〜50mm、肉厚が0.5〜20mmのものである、請求項1に記載の水圧差を利用した土壌への潅水方法。   The method for irrigating soil using a water pressure difference according to claim 1, wherein the conduit is made of a thermoplastic synthetic resin and has an inner diameter of 1 to 50 mm and a wall thickness of 0.5 to 20 mm. 多孔質管は、孔径が0.01〜200μm、内径が5〜50mm、肉厚が0.5〜30mmのものである、請求項1または請求項2に記載の水圧差を利用した土壌への潅水方法。   The porous tube has a pore diameter of 0.01 to 200 µm, an inner diameter of 5 to 50 mm, and a wall thickness of 0.5 to 30 mm, and is applied to the soil using the water pressure difference according to claim 1 or 2. Irrigation method. 貯水槽内の水面の位置を、水位検知装置によって検知する、請求項1ないし請求項3のいずれか一項に記載の水圧差を利用した土壌への潅水方法。   The method of irrigating soil using the water pressure difference according to any one of claims 1 to 3, wherein the position of the water surface in the water tank is detected by a water level detection device. 水位検知装置が、水面の高低を水面感知センサーで検知し、水供給用の電磁弁のスイッチに指令して水を供給する電磁弁を開閉する機構により構成されてなる、請求項4に記載の水圧差を利用した土壌への潅水方法   5. The water level detection device according to claim 4, wherein the water level detection device is configured by a mechanism that detects a level of a water surface with a water surface detection sensor and instructs a switch of an electromagnetic valve for water supply to open and close the electromagnetic valve that supplies water. Irrigation method to soil using water pressure difference
JP2009205811A 2009-09-07 2009-09-07 Watering method to soil Expired - Fee Related JP5286205B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009205811A JP5286205B2 (en) 2009-09-07 2009-09-07 Watering method to soil
US12/877,020 US20110058900A1 (en) 2009-09-07 2010-09-07 Apparatus for and method of irrigating soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205811A JP5286205B2 (en) 2009-09-07 2009-09-07 Watering method to soil

Publications (2)

Publication Number Publication Date
JP2011055713A JP2011055713A (en) 2011-03-24
JP5286205B2 true JP5286205B2 (en) 2013-09-11

Family

ID=43647901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205811A Expired - Fee Related JP5286205B2 (en) 2009-09-07 2009-09-07 Watering method to soil

Country Status (2)

Country Link
US (1) US20110058900A1 (en)
JP (1) JP5286205B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120216457A1 (en) * 2011-02-24 2012-08-30 Robenn Robb Gravity feed precision irrigation system
MX2016013215A (en) * 2014-04-09 2017-05-03 Roots Sustainable Agricultural Tech Ltd Heat delivery system and method.
AU2015393664B2 (en) * 2015-05-07 2020-06-25 Wiseconn Ip Gmbh System and method for managing water or other type of fluid
WO2016161992A2 (en) * 2015-10-13 2016-10-13 中国农业科学院农田灌溉研究所 Novel pressure-less irrigation device
CN107255611A (en) * 2017-06-06 2017-10-17 中国农业大学 A kind of indoor native case water infiltration is from dynamic test measurement system
US10159203B1 (en) * 2017-11-16 2018-12-25 Mark E. Ogram Irrigation system
JP7112861B2 (en) * 2018-03-19 2022-08-04 鹿島建設株式会社 Irrigation system
CN109392343B (en) * 2018-09-21 2021-08-31 兴安盟隆华农业科技有限公司 A plumbing installation for saline and alkaline land soil improvement
US12022782B2 (en) * 2021-02-22 2024-07-02 John Mote, JR. System for warning of excess water saturation of a root ball

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650868A (en) * 1968-03-27 1972-03-21 Furukawa Electric Co Ltd Methods and apparatus for manufacturing pipe-shaped articles from foamed thermoplastic resin
IL55712A0 (en) * 1977-10-19 1978-12-17 World Seiko Kk Method and system for underground irrigation
US5120157A (en) * 1990-02-21 1992-06-09 Todd Sr George K Tennis court irrigation
JPH0515267A (en) * 1991-07-11 1993-01-26 Shoji Hanaoka Sprinkler for plant raising
JPH0823800A (en) * 1994-07-12 1996-01-30 Minoru Kubota Watering system by difference in negative pressure
JP3426416B2 (en) * 1995-07-03 2003-07-14 三菱化学エンジニアリング株式会社 Negative pressure differential irrigation system
US5811164A (en) * 1996-09-27 1998-09-22 Plastic Specialties And Technologies Investments, Inc. Aeration pipe and method of making same
JP2000106770A (en) * 1998-10-05 2000-04-18 Mitsubishi Chemical Engineering Corp Negative pressure difference irrigation system
JP4173228B2 (en) * 1998-10-05 2008-10-29 有限会社ジーアンドエフコーポレーション Negative pressure differential irrigation system
JP3787628B2 (en) * 2002-12-25 2006-06-21 独立行政法人農業・食品産業技術総合研究機構 Intermittent automatic irrigation system
JP2007222149A (en) * 2006-02-23 2007-09-06 G & F Corporation:Kk Negative pressure difference irrigation system

Also Published As

Publication number Publication date
US20110058900A1 (en) 2011-03-10
JP2011055713A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5286205B2 (en) Watering method to soil
US10548268B1 (en) Soil moisture autocontrol system and its applications in subsurface irrigation, outer space agricultural farm, and converting of deserts into arable farms
US4651468A (en) Method and apparatus for natural fertilization and irrigation of plants
JP5731791B2 (en) Irrigation system and method
CN103503741B (en) Irrigation system and method for utilizing irrigation system to irrigate nyssa aquatica seedlings
WO2005058016A1 (en) Root and water management system for potted plants
US20180014476A1 (en) Reducing water evaporation and enhancing plant growth using a hydrophbic capillary layer formed with hydrophobic soil
Kanda et al. Moistube irrigation technology: a review
WO2000062596A1 (en) Plant cultivation container and plant cultivation method
JP2010099062A (en) Subsurface environment controller and subsurface environment control method for plant planted in vessel
JP5970675B2 (en) Underground irrigation system
US4928427A (en) Irrigation system
EA009329B1 (en) Method and apparatus for growing plants
EP0136476A2 (en) Method and apparatus for natural fertilization and irrigation of plants
GB2249463A (en) Device and method for irrigating plant roots
KR20160090862A (en) Method and system for surface and subsurface water retention
CN103262779A (en) Capillary irrigator consisting of tightly stacked flat plates and tube body
UA80597C2 (en) Method for growing plants in growing substrate and apoparatus suitable for growing plants
JP5187752B2 (en) Underground irrigation system and double pipe unit used therefor
JP7074971B2 (en) Plant cultivation equipment
CN203860115U (en) Plant container
JP2007222149A (en) Negative pressure difference irrigation system
EP0206708A2 (en) Automatic water feeding device
CN202178994U (en) Ventilating flower pot
CN206651105U (en) The pot culture structure of ventilative water conservation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

LAPS Cancellation because of no payment of annual fees