JP5970675B2 - Underground irrigation system - Google Patents

Underground irrigation system Download PDF

Info

Publication number
JP5970675B2
JP5970675B2 JP2013082022A JP2013082022A JP5970675B2 JP 5970675 B2 JP5970675 B2 JP 5970675B2 JP 2013082022 A JP2013082022 A JP 2013082022A JP 2013082022 A JP2013082022 A JP 2013082022A JP 5970675 B2 JP5970675 B2 JP 5970675B2
Authority
JP
Japan
Prior art keywords
water
water level
soil
level
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013082022A
Other languages
Japanese (ja)
Other versions
JP2013135700A (en
Inventor
小野 直樹
直樹 小野
宏昭 坂本
宏昭 坂本
平尾 和弘
和弘 平尾
明伸 柿田
明伸 柿田
小野寺 恒雄
恒雄 小野寺
Original Assignee
株式会社クボタケミックス
株式会社パディ研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタケミックス, 株式会社パディ研究所 filed Critical 株式会社クボタケミックス
Priority to JP2013082022A priority Critical patent/JP5970675B2/en
Publication of JP2013135700A publication Critical patent/JP2013135700A/en
Application granted granted Critical
Publication of JP5970675B2 publication Critical patent/JP5970675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は地下灌漑システムに関し、特にたとえば、地下から水を供給して土壌の水分量を適切に保つ、地下灌漑システムに関する。   The present invention relates to an underground irrigation system, and more particularly to, for example, an underground irrigation system that supplies water from the underground to keep the moisture content of the soil appropriate.

従来技術の一例が特許文献1に開示される。特許文献1の技術は、種々の植物を家庭内で栽培する際に用いられる植物栽培装置であって、栽培用水を収容する水槽を含む。水槽内の上部には、植生土壌を収容する栽培容器が設けられ、この栽培容器の下部から、水槽内の栽培用水に浸漬される吸水体が垂下している。栽培用水は、吸水体の毛細管現象によって吸い上げられ、植生土壌に供給される。   An example of the prior art is disclosed in Patent Document 1. The technique of patent document 1 is a plant cultivation apparatus used when cultivating various plants in a home, and includes a water tank that accommodates cultivation water. The cultivation container which accommodates vegetation soil is provided in the upper part in an aquarium, and the water absorption body immersed in the cultivation water in an aquarium hangs down from the lower part of this cultivation container. Cultivation water is sucked up by the capillary action of the water-absorbing body and supplied to the vegetation soil.

また、従来技術の他の一例が特許文献2に開示される。特許文献2の技術は、水位調整機能を持つ貯水型土壌システムである。特許文献2の技術では、芝生舗装帯などを遮水シートにより貯水型とし、遮水シートの上に敷設した暗渠管によって、降雨や散水による水を地下浸透させずに集水する。そして、集水した水をブロック毎に水位調整機能を持つ水位調整枡に導入し、地下水位の調整を行うことによって、目的別に土壌水分の調整を行っている。   Another example of the prior art is disclosed in Patent Document 2. The technology of Patent Document 2 is a water storage type soil system having a water level adjustment function. In the technique of Patent Document 2, a lawn pavement or the like is made into a water storage type by a water shielding sheet, and water from rain or water spray is collected without permeating underground by a culvert pipe laid on the water shielding sheet. The collected water is introduced into a water level adjusting tub having a water level adjusting function for each block, and the soil water is adjusted for each purpose by adjusting the groundwater level.

特開2002−272275号公報 [A01G 9/02]JP 2002-272275 A [A01G 9/02] 特開平8−302800号公報 [E03F 1/00]JP-A-8-302800 [E03F 1/00]

特許文献1の技術では、栽培用水中の不純物が吸水体表面に固着し、吸水体に目詰まりが生じるため、時間が経つと吸水体の浸透機能が大幅に低下してしまう。したがって、特許文献1の技術では、吸水体を洗浄したり、交換したりする必要が生じるので、維持管理に手間がかかる。また、特許文献1の技術は、草花などを家庭内で栽培するプランタ等の小規模なものに適用される技術であり、大規模な畑作などへの適用は事実上不可能である。   In the technique of Patent Document 1, impurities in cultivation water adhere to the surface of the water absorbent body, and the water absorbent body is clogged, so that the permeation function of the water absorbent body is significantly reduced over time. Therefore, in the technique of Patent Document 1, it is necessary to clean or replace the water absorbing body, which requires time and effort for maintenance. Moreover, the technique of patent document 1 is a technique applied to small things, such as a planter which grows a flower etc. in a household, and application to a large-scale field crop etc. is practically impossible.

また、特許文献2の技術では、暗渠管を用いて集水しているため、暗渠管の孔に土粒子などが集積し易く、目詰まりを起こし易い。暗渠管の孔に目詰まりが生じると、集水機能が大幅に低下するため、特許文献2の技術では、定期的に暗渠管を洗浄する必要があり、維持管理に手間がかかる。なお、暗渠管の周囲には、暗渠用フィルタ材が充填されているが、その具体的な構成が何ら記載されていないため、その効果は不明である。たとえば、暗渠用フィルタ材として砕石や砂利などを用いると、土粒子がこれらの間隙を通過して暗渠管の孔が目詰まりしてしまう。また、繊維などで形成される目の細かい暗渠用フィルタ材を用いると、暗渠用フィルタ材自体が目詰まりする可能性もある。   Moreover, in the technique of patent document 2, since water is collected using a culvert tube, soil particles and the like are easily accumulated in the hole of the culvert tube, and clogging is likely to occur. If the hole in the culvert tube is clogged, the water collecting function is greatly reduced. Therefore, in the technique of Patent Document 2, it is necessary to periodically clean the culvert tube, and maintenance is troublesome. The culvert tube is filled with a culvert filter material, but its specific configuration is not described at all, and its effect is unknown. For example, when crushed stone or gravel is used as a filter material for a culvert, soil particles pass through these gaps and the holes in the culvert tube are clogged. In addition, if a fine filter material for a culvert formed of fibers or the like is used, the culvert filter material itself may be clogged.

さらに、特許文献2の技術では、自然降雨や散水によって土壌に水を供給し、水位調整枡によって排水側で地下水位を調整している。自然降雨が不足しがちな地域などでは、散水によって土壌に水を供給することになるが、土壌への水の供給が不足すると地下水位を目的の水位に保つことができないので、特許文献2の技術では、余剰に水を供給してしまいがちになる。余剰に供給された水は、排水管に排出されるだけであり、水資源の無駄使いが生じる。   Furthermore, in the technique of Patent Document 2, water is supplied to the soil by natural rainfall or watering, and the groundwater level is adjusted on the drainage side by a water level adjuster. In areas where natural rainfall tends to be insufficient, water is supplied to the soil by watering. However, if the supply of water to the soil is insufficient, the groundwater level cannot be maintained at the target water level. Technology tends to supply excess water. Excess water supplied is only discharged to the drain pipe, resulting in wasteful use of water resources.

それゆえに、この発明の主たる目的は、新規な、地下灌漑システムを提供することである。   Therefore, the main object of the present invention is to provide a novel underground irrigation system.

この発明の他の目的は、維持管理が容易な、地下灌漑システムを提供することである。   Another object of the present invention is to provide an underground irrigation system that is easy to maintain.

この発明のさらに他の目的は、水資源を効率的に利用できる、地下灌漑システムを提供することである。   Still another object of the present invention is to provide an underground irrigation system that can efficiently use water resources.

この発明は、上記の課題を解決するために、以下の構成を採用した。なお、括弧内の参照符号および補足説明などは、この発明の理解を助けるために後述する実施の形態との対応関係を示したものであって、この発明を何ら限定するものではない。The present invention employs the following configuration in order to solve the above problems. Note that reference numerals in parentheses and supplementary explanations indicate correspondence with embodiments described later in order to help understanding of the present invention, and do not limit the present invention.

第1の発明は、所定の第1高さを有しかつ上面に開口を有する横管状に形成され、その上端が地表面まで所定の距離を有した状態で耕作地の地中に埋設され、さらに内部に重力水状態の土壌部が形成される遮水部材、第1高さより低い所定の第2高さを有しかつ遮水部材内を通る水路を形成する給水部材を含み、遮水部材の上側に給水して重力水状態の土壌部を形成する給水手段、および給水部材に接続され、給水口から水が供給されかつ内部の水位が重力水状態の土壌部の重力水の水位と連動する縦管と、縦管内の水位変動に連動して上下動するフロートとを有し、所定の水位設定値に基づいて重力水状態の土壌部の重力水の水位を管理する水位管理手段を備え、フロートの上下動に応じて給水口が開閉する高さ位置を調整することによって、水位設定値が遮水部材の第1高さの範囲内で設定され、水位管理手段は、フロートの上下動に応じて、縦管内の水位が水位設定値以上のときに給水口を閉じて給水部材への水の供給を停止し、かつ縦管内の水位が水位設定値未満のときに給水口を開いて給水部材への水の供給を行うものであり、遮水部材を、一定に保つべき重力水の水位が第1高さの範囲の中で調整できる高さで形成しかつそのような深さで埋設することによって、重力水状態の土壌部の重力水の水位を範囲内の一定の位置に保つことで、重力水状態の土壌部の上方に形成される毛管水状態の土壌部の水分量を管理する、地下灌漑システムである。 The first invention is formed in a horizontal tube having a predetermined first height and having an opening on the upper surface, the upper end of which is embedded in the ground of the cultivated land with a predetermined distance to the ground surface, A water impervious member in which a soil portion in a gravitational water state is formed; and a water supply member having a predetermined second height lower than the first height and forming a water channel passing through the water impervious member, The water supply means that forms the soil part in the gravity water state by supplying water to the upper side of the water, and is connected to the water supply member, water is supplied from the water supply port, and the internal water level is linked with the gravity water level of the soil part in the gravity water state And a water level management means for managing the gravity water level of the soil portion in the gravity water state based on a predetermined water level setting value, and a float that moves up and down in conjunction with fluctuations in the water level in the vertical pipe By adjusting the height position at which the water inlet opens and closes according to the vertical movement of the float The water level setting value is set within the range of the first height of the water shielding member, and the water level management means closes the water inlet when the water level in the vertical pipe is equal to or higher than the water level setting value according to the vertical movement of the float. Water supply to the water supply member is stopped, and when the water level in the vertical pipe is below the water level setting value, the water supply port is opened to supply water to the water supply member, and the water shielding member is kept constant. The water level of the gravity water should be adjusted within the range of the first height, and buried at such depth, the gravity water level of the soil part in the gravity water state should be constant within the range This is an underground irrigation system that manages the amount of water in the capillary water soil formed above the gravity water soil by maintaining the position of

第1の発明では、地下灌漑システム(10)は、遮水部材(16)を備え、耕作地(100)などに適用されて、土壌の水分量を植物の生育にとって適切な状態に保つ。給水手段(12,14)は、遮水部材の上側に水を供給する。この水は、土壌中を浸透していき、重力水となって重力水状態の土壌部(26)を形成する。また、水位管理手段(18)は、給水手段による給水を管理することによって、重力水状態の土壌部の重力水の水位(28)を所望の水位に保つ。   In the first invention, the underground irrigation system (10) includes a water-impervious member (16) and is applied to the cultivated land (100) or the like to keep the moisture content of the soil in an appropriate state for plant growth. The water supply means (12, 14) supplies water to the upper side of the water shielding member. This water permeates through the soil and becomes gravity water to form a soil portion (26) in a gravity water state. Moreover, a water level management means (18) manages the water supply by a water supply means, and maintains the water level (28) of the gravity water of the soil part of a gravity water state to a desired water level.

重力水状態の土壌部の重力水は、その上方の土壌に毛細管現象によって吸い上げられる。この上方の土壌の水分量は、重力水の水位の高低によって変動するため、重力水の水位を適切な位置に保つことによって、適切な水分量を有する毛管水状態の土壌部(30)が耕作地などに形成される。   Gravity water in the soil portion in the gravitational water state is sucked up by the capillarity into the soil above it. The amount of water in the upper soil fluctuates depending on the level of gravity water. Therefore, by keeping the gravity water level at an appropriate position, the soil water portion (30) having an appropriate amount of moisture is cultivated. Formed on the ground.

第1の発明によれば、土壌自体の浸透機能を利用するので、目詰まりによる浸透機能の低下が発生せず、維持管理が容易となる。また、給水側で重力水の水位管理を行うので、無駄な水が供給されることが無く、水資源を効率的に利用できる。According to the first invention, since the permeation function of the soil itself is used, the permeation function is not deteriorated due to clogging, and maintenance is facilitated. Moreover, since the water level management of gravity water is performed on the water supply side, useless water is not supplied and water resources can be used efficiently.

第2の発明は、各々が所定の第1高さを有しかつ上面に開口を有する横管状に形成され、その上端が地表面まで所定の距離を有した状態で耕作地の地中に埋設され、さらに内部に重力水状態の土壌部が形成される複数の遮水部材を備え各遮水部材は隣り合う遮水部材との間隔を各遮水部材の幅以上の間隔に保った状態で地中に埋設され、さらに複数の遮水部材のそれぞれの上側に給水して重力水状態の土壌部を形成する給水手段、および給水手段に接続され、給水口から水が供給されかつ内部の水位が重力水状態の土壌部の重力水の水位と連動する縦管と、縦管内の水位変動に連動して上下動するフロートとを有し、所定の水位設定値に基づいて複数の遮水部材の重力水状態の土壌部の重力水の水位を管理する1つまたは複数の水位管理手段を備え、フロートの上下動に応じて給水口が開閉する高さを調整することによって、水位設定値が遮水部材の第1高さの範囲内で設定され、水位管理手段は、フロートの上下動に応じて、縦管内の水位が水位設定値以上のときに給水口を閉じて給水手段への水の供給を停止し、かつ縦管内の水位が水位設定値未満のときに給水口を開いて給水手段への水の供給を行うものであり、遮水部材を、一定に保つべき重力水の水位が第1高さの範囲の中で調整できる高さで形成しかつそのような深さで埋設することによって、重力水状態の土壌部の重力水の水位を範囲内の一定の位置に保つことで、重力水状態の土壌部の上方に形成される毛管水状態の土壌部の水分量を管理する、地下灌漑システムである。 According to a second aspect of the present invention, each is formed in a horizontal tubular shape having a predetermined first height and having an opening on the upper surface, and the upper end thereof is embedded in the ground of the cultivated land with a predetermined distance from the ground surface. And a plurality of water-impervious members in which a soil portion in a gravitational water state is formed, and each water-impervious member is kept at an interval greater than the width of each water-impervious member. Embedded in the ground, and further connected to the water supply means for supplying water to the upper side of each of the plurality of water-impervious members to form a soil part in a gravity water state . A vertical pipe linked to the level of gravity water in the soil part where the water level is gravitational water, and a float that moves up and down in conjunction with the fluctuation of the water level in the vertical pipe, and a plurality of water shielding based on a predetermined water level set value one or more water level management hand to manage the level of gravitational water the soil of the gravitational water state of the member The water level setting value is set within the range of the first height of the water shielding member by adjusting the height at which the water supply opening and closing is adjusted according to the vertical movement of the float, and the water level management means Depending on the movement, when the water level in the vertical pipe is higher than the water level set value, the water supply port is closed to stop water supply to the water supply means, and when the water level in the vertical pipe is lower than the water level set value, the water supply port is opened. Water is supplied to the water supply means, and the water shielding member is formed at such a depth that the level of gravity water to be kept constant can be adjusted within the range of the first height. The amount of water in the capillary water state soil part formed above the gravity water state soil part by keeping the gravity water level of the gravity water state soil part at a certain position within the range Is an underground irrigation system.

第3の発明は、所定の第1高さを有しかつ上面に開口を有する横管状に形成され、その上端が地表面まで所定の距離を有した状態で耕作地の地中に埋設され、さらに内部に重力水状態の土壌部が形成される遮水部材、第1高さより低い所定の第2高さを有しかつ遮水部材内を通る水路を形成する給水部材を含み、遮水部材の上側に給水して重力水状態の土壌部を形成する給水手段、および給水部材に接続され、給水口から水が供給されかつ内部の水位が重力水状態の土壌部の重力水の水位と連動する縦管と、縦管内の水位変動に連動し、内部に設けられた給水管を軸として上下動するフロートとを有し、所定の水位設定値に基づいて重力水状態の土壌部の重力水の水位を管理する水位管理手段を備え、フロートの上下動に応じて給水口が開閉する高さ位置を調整することによって、水位設定値が遮水部材の第1高さの範囲内であってかつ給水部材の第2高さよりも高くなるように設定され、水位管理手段は、フロートの上下動に応じて、縦管内の水位が水位設定値以上のときに給水口を閉じて給水部材への水の供給を停止し、かつ縦管内の水位が水位設定値未満のときに給水口を開いて給水部材への水の供給を行うものであり、遮水部材を、一定に保つべき重力水の水位が第1高さの範囲の中で調整できる高さで形成しかつそのような深さで埋設することによって、重力水状態の土壌部の重力水の水位を範囲内の一定の位置に保つことで、重力水状態の土壌部の上方に形成される毛管水状態の土壌部の水分量を管理する、地下灌漑システムである。 The third invention is formed in a horizontal tube having a predetermined first height and having an opening on the upper surface, the upper end of which is embedded in the ground of the cultivated land with a predetermined distance to the ground surface, A water impervious member in which a soil portion in a gravitational water state is formed; and a water supply member having a predetermined second height lower than the first height and forming a water channel passing through the water impervious member, The water supply means that forms the soil part in the gravity water state by supplying water to the upper side of the water, and is connected to the water supply member, water is supplied from the water supply port, and the internal water level is linked with the gravity water level of the soil part in the gravity water state And a float that moves up and down around the water supply pipe provided in the vertical pipe in conjunction with fluctuations in the water level in the vertical pipe, and the gravity water of the soil portion in the gravity water state based on a predetermined water level setting value. Water level management means to manage the water level of the water, and the water inlet opens and closes according to the vertical movement of the float By adjusting the height position, the water level set value is set to be within the first height range of the water shielding member and higher than the second height of the water supply member. When the water level in the vertical pipe is equal to or higher than the water level set value, the water supply port is closed to stop the water supply to the water supply member, and the water level in the vertical pipe is lower than the water level set value. And the water supply member is formed with a height at which the water level of gravity water to be kept constant can be adjusted within the range of the first height. By burying at a depth, the gravitational water level of the gravitational water state soil part is kept at a certain position within the range, so that the capillary water state soil part formed above the gravitational water state soil part It is an underground irrigation system that manages the amount of water .

第4の発明は、耕作地の傾斜地の地中に埋設され、分散配置される複数の遮水部材であって、各々が上面に開口を有する横管状に形成され、その上端が耕作地の地表面まで所定の距離を有し、さらに各々の内部に重力水状態の土壌部が形成される遮水部材、複数の遮水部材のそれぞれの上側に給水して重力水状態の土壌部を形成する給水手段、および給水手段に接続され、複数の遮水部材をその傾斜高さに応じてグループ分けし、各グループに異なった水位設定値を設定して、その水位設定値に基づいて各グループの遮水部材内の重力水状態の土壌部の重力水の水位を個別に遮水部材の高さの範囲で一定に保つ複数の水位管理手段を備え、複数の水位管理手段はそれぞれ、対応するグループの遮水部材内の重力水状態の土壌部の重力水の水位が当該グループに設定された水位設定値以上のときに給水手段への水の供給を停止し、かつ対応するグループの遮水部材の重力水状態の土壌部の重力水の水位が当該グループに設定された水位設定値未満のときに給水手段への水の供給を行うものであり、遮水部材を、一定に保つべき重力水の水位が遮水部材の高さの範囲の中で調整できる高さで形成しかつそのような深さで埋設することによって、対応するグループの遮水部材の重力水状態の土壌部の重力水の水位を範囲内の一定の位置に保つことで、当該グループの遮水部材の重力水状態の土壌部の上方に形成される毛管水状態の土壌部の水分量を管理する、地下灌漑システムである。 A fourth invention is a plurality of water-impervious members embedded and distributed in an inclined land of a cultivated land, each of which is formed in a horizontal tube having an opening on the upper surface, the upper end of which is the land of the cultivated land A water-impervious member having a predetermined distance to the surface and further having a gravitational water-state soil part formed therein, and supplying water to each upper side of the plurality of water-impervious members to form a gravitational water-state soil part Water supply means and a plurality of water shielding members connected to the water supply means are grouped according to the inclination height, different water level set values are set for each group, and each group is set based on the water level set value. A plurality of water level management means are provided to maintain the gravitational water level of the soil portion in the gravitational water state within the water shielding member individually within the range of the height of the water shielding member, and each of the plurality of water level management means corresponds to a corresponding group. the water level of the gravitational water state of the water-impervious in members of the soil of the gravitational water The supply of water to the water supply means stops when the higher water level setting value set in the group, and the water level of the gravitational water the soil of the gravitational water state of the water-impervious member of the corresponding group is set to the group When the water level is less than the set value, water is supplied to the water supply means, and the water level of the gravitational water that should keep the water shielding member constant can be adjusted within the range of the height of the water shielding member. And embedded at such a depth, the gravitational water level of the soil part of the gravitational water state of the water shielding member of the corresponding group is maintained at a certain position within the range, thereby blocking the group. It is an underground irrigation system which manages the moisture content of the soil part of the capillary water state formed above the soil part of the gravity water state of a water member .

この発明によれば、土壌自体の浸透機能を利用するので、目詰まりによる浸透機能の低下が発生せず、維持管理が容易となる。   According to this invention, since the permeation function of the soil itself is used, the permeation function is not lowered due to clogging, and maintenance is facilitated.

また、給水側で重力水の水位管理を行うので、無駄な水が供給されることが無く、水資源を効率的に利用できる。   Moreover, since the water level management of gravity water is performed on the water supply side, useless water is not supplied and water resources can be used efficiently.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。   The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

この発明の地下灌漑システムの一実施例を示す図解図である。It is an illustration figure which shows one Example of the underground irrigation system of this invention. 図1の地下灌漑システムの遮水部材周辺の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of the impermeable member periphery of the underground irrigation system of FIG. 図1の地下灌漑システムの水位管理器周辺の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of the water level management device periphery of the underground irrigation system of FIG. この発明の地下灌漑システムの他の実施例を示す図解図である。It is an illustration figure which shows the other Example of the underground irrigation system of this invention. 図4の地下灌漑システムの遮水部材周辺の様子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the mode of the impermeable member periphery of the underground irrigation system of FIG. 図4の地下灌漑システムの遮水部材周辺の様子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the mode of the impermeable member periphery of the underground irrigation system of FIG. この発明の地下灌漑システムのさらに他の実施例を示す図解図である。It is an illustration figure which shows the further another Example of the underground irrigation system of this invention. 図7の地下灌漑システムの遮水部材周辺の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of the water-impervious member periphery of the underground irrigation system of FIG. 図7の水位管理器の動作を示す概略断面図であり、(A)は給水口が開いた状態を示し、(B)は給水口が閉じた状態を示す。It is a schematic sectional drawing which shows operation | movement of the water level management device of FIG. 7, (A) shows the state which the water supply opening opened, (B) shows the state which the water supply opening closed. 図7の地下灌漑システムにおいて、各遮水部材ごとに重力水の水位を変えた様子を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing a state in which the water level of gravity water is changed for each water shielding member in the underground irrigation system of FIG. 7. 図7の地下灌漑システムを、起伏の多い土地に適用した様子を示す概略断面図である。It is a schematic sectional drawing which shows a mode that the underground irrigation system of FIG. 7 was applied to land with many undulations. この発明の地下灌漑システムに用いる遮水部材に鍔状部材を設けた様子を例示する概略断面図である。It is a schematic sectional drawing which illustrates a mode that a gutter-like member was provided in a water-impervious member used for an underground irrigation system of this invention. この発明の地下灌漑システムのさらに他の実施例を示す図解図である。It is an illustration figure which shows the further another Example of the underground irrigation system of this invention. この発明の地下灌漑システムのさらに他の実施例を示す図解図である。It is an illustration figure which shows the further another Example of the underground irrigation system of this invention. 図14の地下灌漑システムの遮水部材周辺の様子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the mode of the impermeable member periphery of the underground irrigation system of FIG. 図14の地下灌漑システムの遮水部材周辺の様子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the state of the impermeable member periphery of the underground irrigation system of FIG. 図14の地下灌漑システムの遮水部材周辺の様子のさらに他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the mode of the water-impervious member periphery of the underground irrigation system of FIG. 図14の地下灌漑システムの遮水部材周辺の様子のさらに他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the mode of the water-impervious member periphery of the underground irrigation system of FIG. この発明の地下灌漑システムのさらに他の実施例を示す図解図である。It is an illustration figure which shows the further another Example of the underground irrigation system of this invention. 図19の地下灌漑システムを示す概略断面図である。It is a schematic sectional drawing which shows the underground irrigation system of FIG. この発明の地下灌漑システムのさらに他の実施例を示す概略断面図である。It is a schematic sectional drawing which shows the further another Example of the underground irrigation system of this invention. この発明の地下灌漑システムのさらに他の実施例を示す概略断面図である。It is a schematic sectional drawing which shows the further another Example of the underground irrigation system of this invention.

図1を参照して、この発明の一実施例である地下灌漑システム10(以下、単に「システム10」という。)は、水タンク12、給水管14、遮水部材16および水位管理器18を備え、耕作地100などに適用され、地下から水を供給して土壌中の水分を植物の生育にとって適切な状態に保つ。   Referring to FIG. 1, an underground irrigation system 10 (hereinafter simply referred to as “system 10”) according to an embodiment of the present invention includes a water tank 12, a water supply pipe 14, a water shielding member 16, and a water level controller 18. It is applied to cultivated land 100 and the like, and water is supplied from the underground to keep moisture in the soil in an appropriate state for plant growth.

水タンク12は、地上に設置されて、耕作地100に供給するための水を貯留する。水タンク12は、たとえば、農業用水配管(図示せず)などと接続されて、農業用水配管から送られてくる水をその内部に貯留する。水タンク12に貯留される水量は、耕作地100の面積などによって適宜設定され、水タンク12内には、常に一定量以上の水が貯留される。たとえば、水タンク12内の水位が一定水位を下回ると、農業用水配管から自動的に水が補給されるようにしてもよいし、手動で栓を開け閉めすること等によって水を適宜補給するようにしてもよい。   The water tank 12 is installed on the ground and stores water to be supplied to the cultivated land 100. The water tank 12 is connected to, for example, an agricultural water pipe (not shown), and stores water sent from the agricultural water pipe therein. The amount of water stored in the water tank 12 is appropriately set depending on the area of the cultivated land 100 and the like, and a certain amount or more of water is always stored in the water tank 12. For example, when the water level in the water tank 12 falls below a certain water level, water may be automatically replenished from the agricultural water pipe, or water may be replenished appropriately by manually opening and closing the plug, etc. It may be.

給水管14は、水タンク12内の水を遮水部材16の内部まで送る管路であって、水タンク12と接続される本管20、および本管20から分岐する分岐管22を含む。また、分岐管22は、本管20と接続される第1分岐管22a、および第1分岐管22aからさらに分岐して遮水部材16まで延び、遮水部材16の内部に給水する第2分岐管22bを含む。給水管14は、塩化ビニル等の合成樹脂およびSUS等の金属などによって形成され、複数の直管、可撓管および継手などを適宜連結して形成される。   The water supply pipe 14 is a pipe line that sends water in the water tank 12 to the inside of the water shielding member 16, and includes a main pipe 20 connected to the water tank 12 and a branch pipe 22 branched from the main pipe 20. The branch pipe 22 further extends from the first branch pipe 22 a connected to the main pipe 20 and the first branch pipe 22 a to the water shielding member 16 and supplies water to the inside of the water shielding member 16. Includes tube 22b. The water supply pipe 14 is formed of a synthetic resin such as vinyl chloride and a metal such as SUS, and is formed by appropriately connecting a plurality of straight pipes, flexible pipes, joints, and the like.

遮水部材16は、図2に示すように、合成樹脂および金属などの遮水性を有する材質によって、上側開口の容器状に形成され、地中に埋設される。この実施例では、遮水部材16は、有底円筒状に形成され、複数(たとえば16個)の遮水部材16が耕作地100の地中に分散配置される。遮水部材16としては、たとえば、汎用の塩化ビニル製のVU管
にキャップ等で底をつけたものを用いるとよい。遮水部材16の内径は、たとえば50mm−500mmであり、その高さは、たとえば50mm−300mmである。また、遮水部材16の底面16aから地表面102までの距離は、たとえば100mm−500mmであり、各遮水部材16の間の間隔は、たとえば0.5m−2.0mである。ただし、遮水部材16の大きさ、配置個数、配置深さおよび配置間隔などは、これらの数値に限定されず、このシステム10を適用する耕作地100の面積、土壌成分および気候条件などに応じて、適宜設定される。このことは、後述する他の各実施例においても同様である。たとえば、樹木等の植え付け後に耕起する必要が無い場合には、遮水部材16を植穴の直近に浅く埋設することもできる。
As shown in FIG. 2, the water-impervious member 16 is formed in a container shape having an upper opening and embedded in the ground by a material having water-impervious properties such as synthetic resin and metal. In this embodiment, the water shielding member 16 is formed in a bottomed cylindrical shape, and a plurality of (for example, 16) water shielding members 16 are distributed and arranged in the ground of the cultivated land 100. As the water-impervious member 16, for example, a general-purpose vinyl chloride VU pipe with a bottom attached with a cap or the like may be used. The inner diameter of the water shielding member 16 is, for example, 50 mm-500 mm, and the height thereof is, for example, 50 mm-300 mm. Moreover, the distance from the bottom face 16a of the water-impervious member 16 to the ground surface 102 is, for example, 100 mm-500 mm, and the interval between the respective water-impervious members 16 is, for example, 0.5 m-2.0 m. However, the size, arrangement number, arrangement depth, arrangement interval, and the like of the water shielding member 16 are not limited to these numerical values, and depend on the area of the cultivated land 100 to which the system 10 is applied, soil components, climatic conditions, and the like. Is set as appropriate. This is the same in other embodiments described later. For example, when it is not necessary to plow after planting trees or the like, the water-impervious member 16 can also be buried shallowly near the planting hole.

また、遮水部材16の側面下部には、接続口24が形成され、この接続口24に第2分岐管22bが接続される。さらに、遮水部材16の内部には、周囲の土壌と同様の成分によって構成される土が充填される。詳細は後述するように、第2分岐管22bから遮水部材16の内部に水が供給されると、そこに重力水状態の土壌部26が形成される。   Further, a connection port 24 is formed in the lower part of the side surface of the water shielding member 16, and the second branch pipe 22 b is connected to the connection port 24. Further, the water shielding member 16 is filled with soil composed of the same components as the surrounding soil. As will be described in detail later, when water is supplied from the second branch pipe 22b to the inside of the water shielding member 16, a soil portion 26 in a gravity water state is formed there.

なお、上述のように、遮水部材16は上側開口の容器状に形成されるため、この場合の遮水部材16の内部とは、遮水部材16の上側に含まれる概念となる。また、遮水部材16は、地中に埋設されることによって、その上側に土壌を有することになるのはもちろんのこと、遮水部材16の内部に土が充填されることによっても、その上側に土壌を有することになる。   As described above, since the water shielding member 16 is formed in a container shape having an upper opening, the inside of the water shielding member 16 in this case is a concept included above the water shielding member 16. Moreover, the water-impervious member 16 is buried in the ground, so that it has soil on the upper side thereof, and also when the water-impervious member 16 is filled with soil, the upper side is also provided. Will have soil.

また、給水管14には、水位管理器18が設けられる。水位管理器18は、図3に示すように、貯水機能を有する縦管40、および縦管40の内部に収容される管理器本体42を含み、縦管40内の水位に応じて水の供給を調整するものである。この実施例では、水位管理器18は、本管20(つまり給水側)に設けられ、詳細は後述するように、本管20から分岐管22への水の供給を調整することによって、遮水部材16の内部に形成される重力水状態の土壌部26の重力水の水位28を管理する。   The water supply pipe 14 is provided with a water level manager 18. As shown in FIG. 3, the water level manager 18 includes a vertical pipe 40 having a water storage function, and a management body 42 accommodated in the vertical pipe 40, and supplies water according to the water level in the vertical pipe 40. Is to adjust. In this embodiment, the water level controller 18 is provided on the main pipe 20 (that is, the water supply side), and as described in detail later, by adjusting the supply of water from the main pipe 20 to the branch pipe 22, The gravity water level 28 of the soil portion 26 in the gravity water state formed inside the member 16 is managed.

縦管40は、塩化ビニルなどの合成樹脂によって、有底円筒状に形成される。縦管40の上部は開口しており、その開口から上流側の本管20が挿入されて、本管20と管理器本体42とが接続される。また、縦管40の側壁下部には管接続部44が形成され、この管接続部44に下流側の本管20が接続される。したがって、本管20は、水位管理器18の前後でその敷設高さが変わる。   The vertical tube 40 is formed in a bottomed cylindrical shape by a synthetic resin such as vinyl chloride. The upper part of the vertical pipe 40 is opened, and the main pipe 20 on the upstream side is inserted from the opening, and the main pipe 20 and the management device main body 42 are connected. In addition, a pipe connecting portion 44 is formed in the lower portion of the side wall of the vertical pipe 40, and the main pipe 20 on the downstream side is connected to the pipe connecting portion 44. Therefore, the laying height of the main pipe 20 changes before and after the water level controller 18.

管理器本体42としては、本願出願人が先に出願した特願2007−83825号において提案したものを使用することができる。   As the management device main body 42, the one proposed in Japanese Patent Application No. 2007-83825 filed earlier by the present applicant can be used.

具体的には、管理器本体42は、軸部46を含み、軸部46は、金属または合成樹脂などによって直管状に形成される。軸部46の一端部分は、上流側の本管20と管理器本体42とを接続するための接続部分である。また、軸部46の他端は、後述する弁体60を受ける弁座48として用いられ、その他端の開口は、縦管40内に水を供給する給水口50として用いられる。   Specifically, the management device main body 42 includes a shaft portion 46, and the shaft portion 46 is formed in a straight tube shape by metal or synthetic resin. One end portion of the shaft portion 46 is a connection portion for connecting the main pipe 20 on the upstream side and the management device main body 42. The other end of the shaft portion 46 is used as a valve seat 48 that receives a valve body 60 described later, and the opening at the other end is used as a water supply port 50 that supplies water into the vertical tube 40.

また、管理器本体42は、軸固定具52およびフロート54を備え、これらは軸部46の周囲に配置される。軸固定具52は、合成樹脂などによって平板状に形成されて、軸部46の上部および下部のそれぞれに取り付けられる。2つの軸固定部52は、互いが直交する方向に延びるように配置され、それらの両端部が縦管40の内面に沿うように当接することによって、軸部46が傾くことを防止する。また、上側の軸固定部52には、その長さを微調整するための長さ調整部56が設けられる。   The management device main body 42 includes a shaft fixing tool 52 and a float 54, which are arranged around the shaft portion 46. The shaft fixing member 52 is formed in a flat plate shape using a synthetic resin or the like, and is attached to each of the upper portion and the lower portion of the shaft portion 46. The two shaft fixing portions 52 are arranged so as to extend in directions orthogonal to each other, and the shaft portions 46 are prevented from being inclined by abutting both end portions thereof along the inner surface of the vertical tube 40. Further, the upper shaft fixing portion 52 is provided with a length adjusting portion 56 for finely adjusting the length thereof.

フロート54は、給水口50の上方に配置されて、縦管40内の水位変動に応じて上昇および下降する浮標であり、塩化ビニル等の合成樹脂によって中空リング状に形成される。フロート54の中心部を貫通するように形成される孔には、軸部46が挿通され、フロート54は、軸部46に沿って移動(上昇および下降)する。   The float 54 is a buoy that is arranged above the water supply port 50 and rises and falls according to the fluctuation of the water level in the vertical tube 40, and is formed in a hollow ring shape by a synthetic resin such as vinyl chloride. The shaft portion 46 is inserted into the hole formed so as to penetrate the center portion of the float 54, and the float 54 moves (ascends and descends) along the shaft portion 46.

また、フロート54には、リンク機構58を介して弁体60が連結される。弁体60は、給水口50の下方に配置されて、フロート54が上昇すると、弁座48と当接して給水口50を閉じ、フロート54が下降すると、弁座48から離れて給水口50を開く。弁体60は、金属および合成樹脂などによって円盤状に形成され、その上面は、弁座48と隙間無く当接できるように、エチレンプロピレンゴム等の弾性材によって覆われている。   In addition, a valve body 60 is connected to the float 54 via a link mechanism 58. The valve body 60 is disposed below the water supply port 50. When the float 54 rises, the valve body 60 comes into contact with the valve seat 48 to close the water supply port 50. When the float 54 descends, the valve body 60 moves away from the valve seat 48 and opens the water supply port 50. open. The valve body 60 is formed in a disc shape from a metal, a synthetic resin, or the like, and its upper surface is covered with an elastic material such as ethylene propylene rubber so that it can contact the valve seat 48 without a gap.

リンク機構58は、フロート54の動きを弁体60に伝え、フロート54の動きと、弁体60が給水口50を開閉する動きとを連動させるものである。リンク機構58は、金属および合成樹脂などによって平棒状に形成される複数のアーム等を組み合わせて形成され、てこの原理を利用して、フロート54が移動する力を増幅して弁体60に伝える。つまり、リンク機構58を用いることによって、弁体60と弁座48とを強い力で押し付けることができ、給水口50を適切に閉じることができる。   The link mechanism 58 transmits the movement of the float 54 to the valve body 60, and links the movement of the float 54 and the movement of the valve body 60 opening and closing the water supply port 50. The link mechanism 58 is formed by combining a plurality of arms formed in the shape of a flat bar made of metal, synthetic resin, etc., and utilizes the principle of lever to amplify the force that the float 54 moves and transmit it to the valve body 60. . That is, by using the link mechanism 58, the valve body 60 and the valve seat 48 can be pressed with a strong force, and the water supply port 50 can be appropriately closed.

このような水位管理器18を本管20に設けるときには、先ず、縦管40を地中に配置し、縦管40の管接続部44に下流側の本管20を接続する。次に、管理器本体42を縦管40内に入れ、管理器本体42の位置を縦管40内の所望の位置(高さ)に調整する。つまり、縦管40内の水位が所定の水位設定値になったときに、フロート54が上昇して弁体60が弁座48に当接し、給水口50が閉じられるような位置に、管理器本体42の位置を調整する。そして、その状態で、長さ調整部56を調整して上側の軸固定部52の長さを長くし、軸固定部52を縦管40の内面に突っ張らせて、軸部46を縦管40内に固定することによって、管理器本体42を縦管40内の所望の位置に固定する。また、縦管40の一端部分に上流側の本管20を接続する。   When such a water level management device 18 is provided in the main pipe 20, first, the vertical pipe 40 is disposed in the ground, and the main pipe 20 on the downstream side is connected to the pipe connection portion 44 of the vertical pipe 40. Next, the management device main body 42 is placed in the vertical tube 40, and the position of the management device main body 42 is adjusted to a desired position (height) in the vertical tube 40. That is, when the water level in the vertical pipe 40 reaches a predetermined water level set value, the float 54 rises so that the valve body 60 contacts the valve seat 48 and the water supply port 50 is closed. The position of the main body 42 is adjusted. In this state, the length adjusting portion 56 is adjusted to increase the length of the upper shaft fixing portion 52, the shaft fixing portion 52 is stretched on the inner surface of the vertical tube 40, and the shaft portion 46 is extended to the vertical tube 40. By fixing it inside, the management device main body 42 is fixed at a desired position in the vertical tube 40. Further, the upstream main pipe 20 is connected to one end portion of the vertical pipe 40.

このようなシステム10では、水タンク12内の水は、水タンク12内の水位と縦管40内の水位との水位差(たとえば、1m程度の水位差)を利用した自然流下によって、本管20および軸部46を介して、縦管40内に供給される。縦管40内に供給された水は、さらに本管20および分岐管22を介して、遮水部材16の内部に供給される。遮水部材16は、上側開口の容器状に形成される、つまり貯水機能を有するので、遮水部材16の内部に供給された水は、その内部の土中に浸透していき、重力水となって遮水部材16の内部に留まる。これによって、遮水部材16の内部には、重力水状態の土壌部26が形成される。   In such a system 10, the water in the water tank 12 flows through the main pipe by natural flow using a water level difference between the water level in the water tank 12 and the water level in the vertical pipe 40 (for example, a water level difference of about 1 m). 20 and the shaft portion 46 are supplied into the vertical tube 40. The water supplied into the vertical pipe 40 is further supplied into the water shielding member 16 through the main pipe 20 and the branch pipe 22. Since the water-impervious member 16 is formed in a container shape having an upper opening, that is, has a water storage function, the water supplied to the inside of the water-impervious member 16 permeates into the soil inside the water-impervious member 16 and the gravity water. And stays inside the water shielding member 16. As a result, a soil portion 26 in a gravity water state is formed inside the water shielding member 16.

この土壌部26の重力水の水位28、すなわち遮水部材16内の重力水の水位28は、縦管40内の水位と連動しており、重力水の水位28の上昇に伴い、縦管40内の水位も上昇する。そして、縦管40内の水位が所定の水位設定値になると、給水口50が閉じられて、軸部46から縦管40内への給水が停止される。これによって、遮水部材16内への給水が停止され、重力水の水位28は、縦管40内の水位と同じ水位、つまり所定の水位設定値で止まる。また、後述するように、遮水部材16内の重力水が上側の土壌に吸い上げられて、重力水の水位28が低下すると、縦管40内の水位も低下し、給水口50が開かれて、軸部46から縦管40内への給水が行われ、遮水部材16内への給水が行われる。   The gravitational water level 28 in the soil portion 26, that is, the gravitational water level 28 in the water shielding member 16 is linked to the water level in the vertical pipe 40, and as the gravitational water level 28 rises, the vertical pipe 40. The water level inside rises. When the water level in the vertical pipe 40 reaches a predetermined water level set value, the water supply port 50 is closed, and water supply from the shaft portion 46 into the vertical pipe 40 is stopped. Thereby, the water supply into the water shielding member 16 is stopped, and the water level 28 of the gravity water stops at the same water level as the water level in the vertical tube 40, that is, a predetermined water level set value. Further, as will be described later, when the gravity water in the water shielding member 16 is sucked up by the upper soil and the water level 28 of the gravity water is lowered, the water level in the vertical pipe 40 is also lowered and the water supply port 50 is opened. The water supply from the shaft portion 46 into the vertical pipe 40 is performed, and the water supply into the water shielding member 16 is performed.

言い換えると、水位管理器18は、遮水部材16内の重力水の水位28が設定値以上になると、給水口50を閉じて本管20から分岐管22への給水を停止し、遮水部材16内の重力水の水位28が設定値未満になると、給水口50を開いて本管20から分岐管22
への給水を行う。これによって、水位管理器18は、遮水部材16内への給水を管理し、遮水部材16内の重力水の水位28を設定水位に保つ。
In other words, the water level manager 18 closes the water supply port 50 and stops the water supply from the main pipe 20 to the branch pipe 22 when the gravity water level 28 in the water shielding member 16 becomes equal to or higher than the set value. When the water level 28 of the gravity water in 16 becomes less than the set value, the water supply port 50 is opened and the main pipe 20 is connected to the branch pipe 22.
Supply water to Thus, the water level manager 18 manages the water supply into the water shielding member 16 and keeps the gravity water level 28 in the water shielding member 16 at the set water level.

遮水部材16内の重力水、つまり土壌部26の水分は、その上側の土壌に毛細管現象によって吸い上げられて浸透していき、上側の土壌に毛管水状態の土壌部30を形成する(図2参照)。毛管水状態の土壌部30の水分量は、遮水部材16内の重力水の水位28の高低によって変動するため、重力水の水位28を適切な位置に保てば、毛管水状態の土壌部30の水分量を適切に保つことができる。たとえば、耕作地100で栽培する植物に合わせて、重力水の水位28を調整すれば、その植物にとって最適な水分量を有する作土層が耕作地100に形成される。   Gravity water in the water-impervious member 16, that is, moisture in the soil portion 26 is sucked and penetrated into the upper soil by capillary action to form the soil portion 30 in the capillary water state in the upper soil (FIG. 2). reference). The amount of water in the soil portion 30 in the capillary water state varies depending on the level of the gravitational water level 28 in the water shielding member 16. Therefore, if the gravitational water level 28 is maintained at an appropriate position, the soil portion in the capillary water state The water content of 30 can be kept appropriate. For example, if the water level 28 of gravity water is adjusted according to the plant cultivated on the cultivated land 100, a soil layer having an optimal amount of water for the plant is formed on the cultivated land 100.

なお、遮水部材16の上端16bと重力水の上面(つまり水位28の位置)との距離が短いと、重力水がサイフォン現象によって遮水部材16の外部に流出し続けてしまう可能性がある。本願発明者等による実験によると、毛管水状態の土壌部30の形成に遮水部材16内の重力水を有効に利用するためには、遮水部材16の上端16bと重力水の上面との距離は、3cm以上であることが望ましく、好ましくは6cm以上、より好ましくは16cm〜20cmであることが望ましい。したがって、遮水部材16の形状は、3cm〜20cmの間で自由に水位が設定できる構造が望ましい。   If the distance between the upper end 16b of the water shielding member 16 and the upper surface of the gravity water (that is, the position of the water level 28) is short, the gravity water may continue to flow out of the water shielding member 16 due to the siphon phenomenon. . According to experiments by the inventors of the present application, in order to effectively use the gravity water in the water shielding member 16 for the formation of the soil portion 30 in the capillary water state, the upper end 16b of the water shielding member 16 and the upper surface of the gravity water are The distance is desirably 3 cm or more, preferably 6 cm or more, and more preferably 16 cm to 20 cm. Therefore, the shape of the water shielding member 16 is preferably a structure in which the water level can be freely set between 3 cm and 20 cm.

この実施例では、吸水体などの浸透材を用いずに、土壌部26,30自体の浸透機能を利用して、土壌中の水分を植物の生育にとって適切な状態に保つ。土壌部26,30自体は、干ばつ等の水不足によって乾燥状態になったとしても、目詰まりするということは無いので、目詰まりによる浸透機能の低下が発生せず、遮水部材16内の土を洗浄したり、交換したりする必要が生じない。したがって、この実施例によれば、維持管理が容易となる。   In this embodiment, the water content in the soil is maintained in an appropriate state for the growth of the plant by using the permeation function of the soil portions 26 and 30 themselves without using a permeation material such as a water absorbent. Since the soil portions 26 and 30 themselves are not clogged even if they become dry due to water shortage such as drought, the permeation function does not deteriorate due to clogging, and the soil in the water shielding member 16 is not clogged. There is no need to clean or replace. Therefore, according to this embodiment, maintenance management becomes easy.

また、スプリンクラー等による一般的な散水、つまり表面灌漑によって耕作地100に水を供給すると、供給された水は、土壌表面や植物表面も潤すことになるが、これらは植物の生育には関係無く、大気中に蒸発(つまり表面蒸発)してしまうだけであるので、水の無駄遣いが生じる。また、土壌がぬかるんでしまうため作業に支障が出たり、泥跳ねや土壌表面の凝固などの不具合を招いてしまう。さらに、ハウス栽培の場合には、表面蒸発した水分によってハウス内の湿度が過剰に高くなり、植物の病気発生の原因となる場合もある。   In addition, when water is supplied to the cultivated land 100 by general watering using a sprinkler or the like, that is, surface irrigation, the supplied water will also moisten the soil surface and the plant surface, but these are not related to the growth of the plant. Since it only evaporates in the atmosphere (that is, surface evaporation), water is wasted. Moreover, since the soil becomes muddy, the work is hindered, and problems such as mud splashing and solidification of the soil surface are caused. Furthermore, in the case of house cultivation, the humidity in the house becomes excessively high due to moisture evaporated on the surface, which may cause plant diseases.

これに対して、この実施例のように、地下から浸透させて耕作地100に水を供給すれば、つまり地下灌漑を行えば、供給した水が表面蒸発することが無いので、水の無駄遣いを低減でき、水資源を効率的に利用できる。その上、上述のような、土壌がぬかるんだり、ハウス内の湿度が過度に上昇したりする等の、表面灌漑に起因する不具合も生じない。   In contrast, if water is supplied to the cultivated land 100 by infiltrating from the ground as in this embodiment, that is, if underground irrigation is performed, the surface of the supplied water will not evaporate. It can be reduced and water resources can be used efficiently. In addition, problems such as those described above caused by surface irrigation such as soil becoming muddy and excessive humidity in the house will not occur.

さらに、この実施例では、給水側で遮水部材16内への給水を管理し、遮水部材16内の重力水が毛細管現象によってその上層に吸い上げられて減少した分の水のみを供給するので、余剰に水が供給されることは無く、水資源をより効率的に利用できる。また、このように水資源を効率的に利用することによって、温暖化対策としても貢献できる。   Furthermore, in this embodiment, the water supply into the water shielding member 16 is managed on the water supply side, and only the amount of water that has been reduced due to the gravity water in the water shielding member 16 being sucked up by capillarity is supplied. In addition, excessive water is not supplied, and water resources can be used more efficiently. In addition, the efficient use of water resources in this way can also contribute to global warming countermeasures.

また、水位管理器18によって遮水部材16内への給水を管理し、毛細管現象によって土壌に水を供給するため、動力が不要である。また、降雨などによって耕作地100に過剰の水が供給された場合、その余剰水は地下深くに浸透していくので、余剰水を排出する設備を別途設ける必要が無い。したがって、システム10を簡素化できる。ただし、降雨などによって直ぐに冠水してしまう耕作地100にシステム10を適用する場合には、注意が必要であり、別途排水設備を設ける必要がある場合もある。   Moreover, since the water supply to the impermeable member 16 is managed by the water level manager 18 and water is supplied to the soil by capillary action, no power is required. In addition, when excess water is supplied to the cultivated land 100 due to rain or the like, the excess water penetrates deep into the ground, so that it is not necessary to separately provide a facility for discharging the excess water. Therefore, the system 10 can be simplified. However, when the system 10 is applied to the cultivated land 100 that is immediately submerged due to rain or the like, care must be taken and a separate drainage facility may need to be provided.

なお、土壌が非常に乾燥している場合は、毛細管現象が生じにくいので、栽培開始時などは、土壌に十分灌水して、毛細管がつながる状態を予め作ってやるとよい。   It should be noted that when the soil is very dry, the capillary phenomenon is unlikely to occur. Therefore, at the start of cultivation, the soil should be sufficiently irrigated to create a state in which the capillaries are connected in advance.

また、給水管14および遮水部材16を敷設する際には、その敷設部分のみを掘削するだけでよいので、耕作地100全面を掘削することと比較して、掘削および埋戻しなどの土工費を低減できる。また、耕作地100全面を掘削する必要が無いので、たとえば、既に樹木の植えられた土地にこのシステム10を適用する場合には、樹木の間に給水管14および遮水部材16を敷設するようにすれば、樹木を植えかえずにそのままシステム10を導入することができ、樹木を傷つけることがない。   Moreover, when laying the water supply pipe 14 and the water-impervious member 16, it is only necessary to excavate only the laying portion, so that earthwork costs such as excavation and backfilling are compared with excavating the entire cultivated land 100. Can be reduced. Further, since it is not necessary to excavate the entire cultivated land 100, for example, when the system 10 is applied to land where trees are already planted, the water supply pipe 14 and the water shielding member 16 are laid between the trees. If so, the system 10 can be introduced as it is without planting trees, and the trees are not damaged.

また、植物は、背丈が高くなるに伴い、その根を深く張って安定性を保とうとするが、重力水の水位28を適宜調整することによって、その植物にとって必要な深さ(厚さ)まで毛管水状態の土壌部30を耕作地100に形成することができるので、耕作地100では様々な植物を好適に栽培することができる。   In addition, as plants become taller, they try to maintain their stability by stretching their roots deeply, but by adjusting the water level 28 of gravity water as appropriate, the depth (thickness) necessary for the plant is reached. Since the soil portion 30 in the capillary water state can be formed on the cultivated land 100, various plants can be suitably cultivated on the cultivated land 100.

また、特許文献2の技術のように、遮水シートによって地下全面を覆ってしまうと、大きな木は、根を深く張ることができず、倒木したり、その生育に悪影響を受けたりする等の問題が生じる。しかし、この実施例のように、遮水部材16を分散配置しておけば、そのような問題が解消され、根を地中深くまで張るような大きな木でも好適に栽培できる。   Moreover, if the whole underground surface is covered with a water-impervious sheet as in the technique of Patent Document 2, a large tree cannot stretch its roots deeply, and falls down or is adversely affected by its growth. Problems arise. However, if the water-impervious members 16 are arranged in a distributed manner as in this embodiment, such a problem is solved, and even a large tree whose roots are stretched deep into the ground can be cultivated suitably.

また、重力水状態の土壌部26より上側の土壌を毛管水状態に適切に保つことができるので、保水力が弱く、雨水などが直ぐに地下深くに浸透してしまう、所謂ざる田や砂地などにも好適に適用できる。また、田畑の輪換も容易に行うことができる。   Moreover, since the soil above the soil portion 26 in the gravitational water state can be appropriately maintained in the capillary water state, the water retention capacity is weak, so that rainwater or the like immediately penetrates deeply into the ground, so-called zaru rice fields or sandy land. Can also be suitably applied. In addition, it is possible to easily change the fields.

また、耕作地100の面積などに応じて、遮水部材16の大きさや設置個数などを適宜変更することによって、システム10は、個人用から大規模なものまで幅広く適用できる。たとえば、庭の花壇に用いることもできるし、ベランダや屋上などの緑化に用いることもできるし、大規模な畑作や稲作などに用いることもできる。   In addition, the system 10 can be widely applied from a personal use to a large scale by appropriately changing the size and the number of the water shielding members 16 according to the area of the cultivated land 100 or the like. For example, it can be used for garden flower beds, can be used for greening verandas, rooftops, etc., and can also be used for large-scale field and rice farming.

なお、上述の実施例では、遮水部材16を給水管14(具体的には第2分岐管22b)に対して並列的に接続するようにしたが、図4に示すように、遮水部材16を直列的に接続することもできる。   In the above-described embodiment, the water shielding member 16 is connected in parallel to the water supply pipe 14 (specifically, the second branch pipe 22b). However, as shown in FIG. 16 can also be connected in series.

この場合の遮水部材16としては、図5に示すように、たとえば、汎用の塩化ビニル製のVU管の下端部にT型の管継手(具体的には90°Tや90°Yなど)を接続したものを用いるとよい。これによって、遮水部材16の側面下部に2つの接続口24が形成されるので、各接続口24に第2分岐管22bを接続することにより、簡単に遮水部材14を直列的に接続することができる。   As the water shielding member 16 in this case, as shown in FIG. 5, for example, a T-type pipe joint (specifically, 90 ° T, 90 ° Y, etc.) is provided at the lower end of a general-purpose vinyl chloride VU pipe. It is good to use what connected. As a result, the two connection ports 24 are formed in the lower part of the side surface of the water-impervious member 16, and thus the water-impervious member 14 is simply connected in series by connecting the second branch pipe 22 b to each connection port 24. be able to.

ただし、この遮水部材16の内部に土を充填すると、第2分岐管22b内の水の流れがそこで遮断され、後続する遮水部材16に対して適切に水を供給できない恐れがある。そこで、図4に示す実施例では、各遮水部材16を給水管14で接続することもできるが、図5に示すように、第2分岐管22bおよび遮水部材16の内部を通る有孔管90を設けるようにすることもできる。有孔管90は、遮水部材16内を通る水路92を形成し、その内部に流れる水をその管壁に形成される多数の細孔を介して遮水部材16内に供給し、遮水部材16内に重力水状態の土壌部26を形成する。つまり、有孔管90は、遮水部材16内を通る水路92を形成するための給水部材として機能する。この際、重力水の水位28は、有孔管90の細孔より高い位置になるように管理される。   However, if soil is filled in the water shielding member 16, the flow of water in the second branch pipe 22 b is blocked there, and there is a possibility that water cannot be supplied appropriately to the subsequent water shielding member 16. Therefore, in the embodiment shown in FIG. 4, each water shielding member 16 can be connected by the water supply pipe 14, but as shown in FIG. 5, the second branch pipe 22 b and the hole passing through the inside of the water shielding member 16. A tube 90 can also be provided. The perforated pipe 90 forms a water channel 92 that passes through the water-impervious member 16, and supplies the water flowing inside the water-impervious member 16 through a large number of pores formed in the pipe wall. A soil portion 26 in a gravity water state is formed in the member 16. That is, the perforated pipe 90 functions as a water supply member for forming the water channel 92 that passes through the water shielding member 16. At this time, the water level 28 of gravity water is managed so as to be higher than the pores of the perforated tube 90.

なお、重力水の水位28を有孔管90より上方になるように適宜管理すれば、有孔管90は常に満水状態となり、空気に触れないため、酸化鉄などが付着し難い。また、水の流れは有孔管90の内部から外部へ向かう。したがって、図5に示す実施例においては、特許文献2の技術と比較して、有孔管90が目詰まりし難い。つまり、有孔管90を用いても、維持管理の負担はあまり大きくならない。   In addition, if the water level 28 of gravity water is appropriately managed so as to be above the perforated tube 90, the perforated tube 90 is always filled with water and does not come into contact with air, so that iron oxide or the like hardly adheres. Further, the water flow goes from the inside of the perforated tube 90 to the outside. Therefore, in the embodiment shown in FIG. 5, the perforated tube 90 is less likely to be clogged as compared with the technique of Patent Document 2. That is, even if the perforated tube 90 is used, the maintenance burden is not so great.

ただし、有孔管90の上端まで水がなくても、有孔管90内に一定の水位があれば、有孔管90円周面から給水されるので、必ずしも有孔管90を満水状態にする必要はない。   However, even if there is no water up to the upper end of the perforated pipe 90, if there is a certain water level in the perforated pipe 90, water is supplied from the circumferential surface of the perforated pipe 90. do not have to.

また、図5に示す実施例では、有孔管90を用いることによって水路92を形成したが、これに限定されない。たとえば、図6に示すように、有孔板94を用いることによって、遮水部材16の内部を通り、隣り合う第2分岐管22bの内部同士を連通する水路92を形成することもできる。この場合には、たとえば、VU管の下端部にT型の管継手を接続して遮水部材16を形成する際に、VU管と管継手との間に挟み込むようにして有孔板94を設けるとよい。この遮水部材16では、有孔板94の上に土が充填される。そして、水路92を流れる水が、有孔板94に形成される多数の細孔を介して遮水部材16内の土に供給されることにより、遮水部材16内に重力水状態の土壌部26が形成される。言い換えると、この場合のT型の管継手は、縦管状の遮水部材16の下端に接続される給水管14を形成する部材としても機能する。また、有孔板94は、上述の水路92を形成するための給水部材として機能する他に、縦管状の遮水部材16内に土壌部26を保持するための透水部材としても機能する。   Moreover, in the Example shown in FIG. 5, although the water channel 92 was formed by using the perforated pipe | tube 90, it is not limited to this. For example, as shown in FIG. 6, by using a perforated plate 94, a water channel 92 that passes through the inside of the water shielding member 16 and communicates with the inside of the adjacent second branch pipes 22 b can be formed. In this case, for example, when the T-type pipe joint is connected to the lower end portion of the VU pipe to form the water shielding member 16, the perforated plate 94 is sandwiched between the VU pipe and the pipe joint. It is good to provide. In the water shielding member 16, soil is filled on the perforated plate 94. And the water which flows through the water channel 92 is supplied to the soil in the water-impervious member 16 through a large number of pores formed in the perforated plate 94, so that the soil portion in the gravitational water state in the water-impervious member 16. 26 is formed. In other words, the T-shaped pipe joint in this case also functions as a member that forms the water supply pipe 14 connected to the lower end of the vertical tubular water shielding member 16. In addition to functioning as a water supply member for forming the water channel 92 described above, the perforated plate 94 also functions as a water permeable member for holding the soil portion 26 in the vertical tubular water shielding member 16.

図6に示す実施例においても、重力水の水位28を有孔板94より上方になるように適宜管理すれば、つまり遮水部材16内に重力水状態の土壌部26が常に形成されている状態を維持すれば、図5に示す実施例と同様に、有孔板94は目詰まりし難く、維持管理の負担はあまり大きくならない。   Also in the embodiment shown in FIG. 6, if the gravity water level 28 is appropriately managed so as to be above the perforated plate 94, that is, the soil portion 26 in the gravity water state is always formed in the water shielding member 16. If the state is maintained, similarly to the embodiment shown in FIG. 5, the perforated plate 94 is not easily clogged, and the maintenance burden is not so great.

また、上述の各実施例では、1つの水位管理器18を給水管14の本管20に設けるようにし、全ての遮水部材16内の重力水の水位28を一括して管理するようにしたが、これに限定されない。たとえば、第1分岐管22aのそれぞれに水位管理器18を設けて、複数の遮水部材16ごとに、重力水の水位28を管理することもできる。各水位管理器18と各第1分岐管22aとの接続方法は、図3における本管20を、各第1分岐管22aに変えればよいだけであるので、詳しい説明は省略する。この場合には、各第1分岐管22aの敷設高さが、各水位管理器18の前後で変わり、各水位管理器18によって、それより下流側に設けられる複数の遮水部材16内の重力水の水位28が、一括して管理される。   Further, in each of the above-described embodiments, one water level manager 18 is provided in the main pipe 20 of the water supply pipe 14, and the water level 28 of gravity water in all the water shielding members 16 is collectively managed. However, it is not limited to this. For example, the water level manager 18 may be provided in each of the first branch pipes 22a, and the water level 28 of gravity water may be managed for each of the plurality of water shielding members 16. The connecting method between each water level manager 18 and each first branch pipe 22a is only required to change the main pipe 20 in FIG. 3 to each first branch pipe 22a, and thus detailed description thereof is omitted. In this case, the laying height of each first branch pipe 22a changes before and after each water level manager 18, and the gravity in a plurality of water shielding members 16 provided downstream by each water level manager 18 is obtained. The water level 28 is managed collectively.

また、図7に示すように、第2分岐管22bごとに、つまり遮水部材16ごとに水位管理器18を設け、各遮水部材16内の重力水の水位28を個別に管理することもできる。この場合には、図8および図9に示すような簡易型の水位管理器18を用いるとよい。なお、上述したことと説明が重複する部分については、説明を省略または簡略化して行う。このことは、後述する他の各実施例においても同様である。   In addition, as shown in FIG. 7, a water level manager 18 is provided for each second branch pipe 22 b, that is, for each water shielding member 16, and the water level 28 of gravity water in each water shielding member 16 can be individually managed. it can. In this case, a simple water level manager 18 as shown in FIGS. 8 and 9 may be used. In addition, about the part which overlaps with what was mentioned above, description is abbreviate | omitted or simplified. This is the same in other embodiments described later.

簡易型の水位管理器18は、縦管70を含み、給水管14(この実施例では第2分岐管22b)の端部分に設けられて、縦管70内の水位に応じて水の供給を調整するものである。縦管70は、塩化ビニルなどの合成樹脂によって両端開口の円筒状に形成され、その内径は、たとえば40mmである。縦管70としては、汎用の塩化ビニル製のVU管などを用いるとよい。また、縦管70の内部には、水位設定具72およびフロート74が設けられる。   The simplified water level management device 18 includes a vertical pipe 70 and is provided at an end portion of the water supply pipe 14 (second branch pipe 22b in this embodiment) to supply water according to the water level in the vertical pipe 70. To be adjusted. The vertical tube 70 is formed in a cylindrical shape with openings at both ends by a synthetic resin such as vinyl chloride, and its inner diameter is, for example, 40 mm. As the vertical tube 70, a general-purpose vinyl chloride VU tube may be used. Further, a water level setting tool 72 and a float 74 are provided inside the vertical pipe 70.

水位設定具72は、縦管70内に配置されて、その配置高さに基づいて縦管70内の水位設定値を規定するものである。水位設定具72は、有底円筒状に形成され、その外径は、縦管70内の所望の位置(高さ)に配置可能な程度に、縦管70の内径とほぼ同じに設定される。また、水位設定具70の底面には、貫通孔76が形成される。水位設定具72としては、汎用の塩化ビニル製のキャップを用いることができる。   The water level setting tool 72 is arranged in the vertical pipe 70 and defines the water level setting value in the vertical pipe 70 based on the arrangement height. The water level setting tool 72 is formed in a bottomed cylindrical shape, and its outer diameter is set to be substantially the same as the inner diameter of the vertical tube 70 to such an extent that it can be placed at a desired position (height) in the vertical tube 70. . A through hole 76 is formed on the bottom surface of the water level setting tool 70. As the water level setting tool 72, a general-purpose vinyl chloride cap can be used.

また、縦管70の側壁には、水位設定具72よりも高い位置において、貫通孔78が形成される。その貫通孔78から地下を通る第2分岐管22bの端部分が縦管70内に挿入され、第2分岐管22bの端部分は、さらに水位設定具72の貫通孔76に挿通されて、水位設定具72から下方に向かって突出するように固定される。第2分岐管22bの端は、後述するフロート74の上面80と当接する弁座82として機能し、その開口は、縦管70内に水を供給する給水口84となる。   Further, a through hole 78 is formed in the side wall of the vertical pipe 70 at a position higher than the water level setting tool 72. The end portion of the second branch pipe 22b passing through the underground from the through hole 78 is inserted into the vertical pipe 70, and the end portion of the second branch pipe 22b is further inserted into the through hole 76 of the water level setting tool 72 to It is fixed so as to protrude downward from the setting tool 72. The end of the second branch pipe 22 b functions as a valve seat 82 that comes into contact with the upper surface 80 of the float 74 described later, and the opening serves as a water supply port 84 for supplying water into the vertical pipe 70.

フロート74は、水位設定具72の下方に配置されて、縦管70内の水位変動に応じて上昇および下降し、その上面80は、弁座82と当接して給水口84を閉じる弁体としても機能する。フロート74は、ゴム等の弾性材および合成樹脂などによって中空円柱状に形成され、その外周面は、縦管70の内周面と若干の隙間を空けて沿う。つまり、フロート74は、給水口84(給水管14の端)より下の位置において、縦管70内に単に入れられた状態で配置され、縦管70にガイドされて動く。ただし、弁体として機能するフロートの上面80において、少なくとも弁座82と当接する部位は、ゴム等の弾性材によって形成する必要がある。これは、フロート74の上昇する力が弱い場合でも、フロート74の上面80(弁体)と第2分岐管22bの端(弁座82)とが隙間無く接触して、給水口84を適切に閉じることができるようにするためである。フロート74としては、乳酸菌飲料用のポリスチレン製の容器、或いはペットボトル等を利用することができ、その上部の開口をゴムシート等の弾性材で封止することによって、弁体として機能する上面80を形成するとよい。   The float 74 is disposed below the water level setting tool 72 and rises and falls according to the fluctuation of the water level in the vertical pipe 70, and its upper surface 80 is a valve body that abuts the valve seat 82 and closes the water supply port 84. Also works. The float 74 is formed in a hollow cylindrical shape by an elastic material such as rubber and a synthetic resin, and the outer peripheral surface thereof extends along the inner peripheral surface of the vertical tube 70 with a slight gap. That is, the float 74 is arranged in a state of being simply put in the vertical pipe 70 at a position below the water supply port 84 (the end of the water supply pipe 14), and moves while being guided by the vertical pipe 70. However, at least a portion that contacts the valve seat 82 on the upper surface 80 of the float that functions as a valve body needs to be formed of an elastic material such as rubber. This is because even when the rising force of the float 74 is weak, the upper surface 80 (valve element) of the float 74 and the end (valve seat 82) of the second branch pipe 22b are in contact with each other without gaps, so that the water supply port 84 is appropriately This is so that it can be closed. As the float 74, a polystyrene container for lactic acid bacteria beverages, a PET bottle or the like can be used, and an upper surface 80 which functions as a valve body by sealing the upper opening with an elastic material such as a rubber sheet. It is good to form.

このように、簡易型の水位管理器18は、汎用品のみを組み合わせて簡単にかつ安価に製作できる。なお、上述のように、水位設定具72の底面に形成した貫通孔76から第2分岐管22bの端を突出させて、第2分岐管22bの端自体を弁座82として機能させる代わりに、水位設定具72の底面に、その底面を連通して上方および下方に突出する両端開口の円筒状の軸部を形成しておき、その軸部の上部に第2分岐管22bの端を接続するようにしてもよい。この場合には、軸部の下端が給水管14の端に相当してフロート74の上面80と当接する弁座82として機能し、その下端開口が縦管70内に水を供給する給水口84として機能する。また、縦管70の側壁に貫通孔78を設け、そこから地下を通る第2分岐管22bを縦管70内に挿入する代わりに、第2分岐管22bを地表面102に沿わせて配置し、縦管70の上部開口から第2分岐管22bを縦管70内に挿入するようにしてもよい。さらに、縦管70の上部開口には、適宜な蓋を装着するようにしてもよい。   As described above, the simple water level manager 18 can be easily and inexpensively manufactured by combining only general-purpose products. As described above, instead of causing the end of the second branch pipe 22b to protrude from the through hole 76 formed in the bottom surface of the water level setting tool 72 and causing the end of the second branch pipe 22b itself to function as the valve seat 82, A cylindrical shaft portion having both end openings that project upward and downward is formed on the bottom surface of the water level setting tool 72, and the end of the second branch pipe 22b is connected to the upper portion of the shaft portion. You may do it. In this case, the lower end of the shaft portion corresponds to the end of the water supply pipe 14 and functions as a valve seat 82 that contacts the upper surface 80 of the float 74, and the lower end opening of the water supply port 84 supplies water into the vertical pipe 70. Function as. In addition, instead of providing a through hole 78 in the side wall of the vertical pipe 70 and inserting the second branch pipe 22b passing therethrough into the vertical pipe 70, the second branch pipe 22b is arranged along the ground surface 102. The second branch pipe 22b may be inserted into the vertical pipe 70 from the upper opening of the vertical pipe 70. Further, an appropriate lid may be attached to the upper opening of the vertical tube 70.

このような簡易型の水位管理器18を遮水部材16に設ける方法の一例について説明する。先ず、遮水部材16を地中に配置するときに、遮水部材16内の所定高さまで土を充填し、その土の上に縦管70を立て置きする。次に、縦管70内にフロート74を入れた後、水位設定具72を縦管70内の所望の位置(高さ)に固定する。つまり、縦管70内の水位が所定の水位設定値になったときに、フロート74が上昇してその上面80が弁座82に当接し、給水口84が閉じられるような位置に、水位設定具72を固定する。続いて、縦管70の貫通孔78および水位設定具72の貫通孔76に第2分岐管22bを挿通し、第2分岐管22bの端を縦管70の下方に突出させて固定する。最後に、遮水部材16の内部の残りおよびその周辺に土を充填し、縦管70を固定する。   An example of a method of providing such a simple water level manager 18 on the water shielding member 16 will be described. First, when the water-impervious member 16 is disposed in the ground, the soil is filled to a predetermined height in the water-impervious member 16, and the vertical pipe 70 is placed on the soil. Next, after putting the float 74 in the vertical tube 70, the water level setting tool 72 is fixed at a desired position (height) in the vertical tube 70. That is, when the water level in the vertical pipe 70 reaches a predetermined water level set value, the water level is set at such a position that the float 74 rises and its upper surface 80 comes into contact with the valve seat 82 and the water supply port 84 is closed. The tool 72 is fixed. Subsequently, the second branch pipe 22 b is inserted into the through hole 78 of the vertical pipe 70 and the through hole 76 of the water level setting tool 72, and the end of the second branch pipe 22 b is protruded below the vertical pipe 70 and fixed. Finally, the remainder inside the water shielding member 16 and the periphery thereof are filled with soil, and the vertical pipe 70 is fixed.

なお、設定水位は、縦管70内における水位設定具72の配置位置を変えることによって設定する代わりに、遮水部材16内における縦管70の埋設深さ(配置高さ)を変えることによって設定することもできる。たとえば、水位設定具72および給水管14の端部分(給水口84)を縦管70内の所定位置に予め固定しておき、遮水部材16内に縦管70を配置するときに、その配置高さを適宜調整することによって、設定水位を所望の位置に設定することができる。この場合には、水位設定具72を必ずしも設ける必要はなく、縦管70内の所定位置に給水口84を固定的に設けるための固定具があればよい。   The set water level is set by changing the embedment depth (arrangement height) of the vertical pipe 70 in the water shielding member 16 instead of changing the arrangement position of the water level setting tool 72 in the vertical pipe 70. You can also For example, when the water level setting tool 72 and the end portion of the water supply pipe 14 (water supply port 84) are fixed in advance in a predetermined position in the vertical pipe 70 and the vertical pipe 70 is arranged in the water shielding member 16, the arrangement is made. The set water level can be set to a desired position by appropriately adjusting the height. In this case, the water level setting tool 72 is not necessarily provided, and a fixing tool for fixing the water supply port 84 at a predetermined position in the vertical pipe 70 may be used.

このように簡易型の水位管理器18を各遮水部材16に設けると、図9(A)に示すように、第2分岐管22bを流れる水は、縦管70内に流入し、遮水部材16内に供給される。遮水部材16内に供給された水は、土中を浸透していき、重力水となって遮水部材16内に留まる。これによって、遮水部材16内に重力水状態の土壌部26が形成される。遮水部材16内の重力水の水位28と縦管70内の水位とは同じであり、重力水の水位28が設定水位に達すると、図9(B)に示すように、給水口84が閉じられて、第2分岐管22bから縦管70内への給水が停止される。また、遮水部材16内の重力水が上側の土壌に吸い上げられて、重力水の水位28が設定水位よりも低下すると、図9(A)に示すように、給水口84が開かれて、第2分岐管22bから縦管70内への給水が行われる。   When the simple water level management device 18 is provided in each water shielding member 16 as described above, the water flowing through the second branch pipe 22b flows into the vertical pipe 70 as shown in FIG. It is supplied into the member 16. The water supplied into the water-impervious member 16 permeates through the soil and becomes gravity water and remains in the water-impervious member 16. As a result, the soil portion 26 in the state of gravity water is formed in the water shielding member 16. The water level 28 in the water-impervious member 16 and the water level in the vertical pipe 70 are the same. When the water level 28 reaches the set water level, as shown in FIG. It is closed and the water supply from the second branch pipe 22b into the vertical pipe 70 is stopped. Further, when the gravity water in the water shielding member 16 is sucked up by the upper soil and the water level 28 of the gravity water is lower than the set water level, the water supply port 84 is opened as shown in FIG. Water is supplied from the second branch pipe 22b into the vertical pipe 70.

上述のように、図7に示す実施例によれば、各遮水部材16内の重力水の水位28を個別に調節することができるので、たとえば図10に示すように、遮水部材16ごと、或いは近くに配置される複数の遮水部材16ごとに、重力水の水位28を変えれば、場所ごとに水分量の異なる毛管水状態の土壌部30を耕作地100に形成することができる。したがって、同一のシステム10内で、生育に適する土壌水分量の異なる植物を、最適な状態で同時に栽培することができる。たとえば、同一システム10の耕作地100において、或る範囲ではキャベツを栽培し、他の或る範囲では大豆を栽培し、さらに他の或る範囲では樹木を栽培するというようなことができる。   As described above, according to the embodiment shown in FIG. 7, the water level 28 of the gravitational water in each of the water shielding members 16 can be individually adjusted. For example, as shown in FIG. Alternatively, if the water level 28 of gravity water is changed for each of the plurality of water shielding members 16 arranged in the vicinity, the soil portion 30 in a capillary water state having a different moisture content for each place can be formed on the cultivated land 100. Therefore, in the same system 10, plants having different soil water content suitable for growth can be cultivated simultaneously in an optimal state. For example, in the cultivated land 100 of the same system 10, cabbage is cultivated in a certain range, soybean is cultivated in another certain range, and trees are cultivated in another certain range.

なお、図10では、簡易型の水位管理器18の水位設定具72を設ける高さを変えることによって、重力水の水位28を個別に変えてあるが、この際には、遮水部材16自体の埋設深さも変えるようにしてもよい。   In FIG. 10, the water level 28 of the gravity water is individually changed by changing the height at which the water level setting tool 72 of the simplified water level management device 18 is provided. You may make it also change the embedment depth.

また、重力水の水位28を個別に調節可能にすることによって、地表面102に起伏や傾斜などを有する耕作地100にも好適にシステム10を適用できる。たとえば、図11に示すように、地表面102と各遮水部材16内の重力水の上面との距離を、最適な距離で一定にすれば、そこで栽培する植物にとって最適な水分量を有する土壌部30を、起伏や傾斜などを有する耕作地100に形成することができる。   In addition, the system 10 can be suitably applied to the cultivated land 100 having undulations, inclinations, etc. on the ground surface 102 by making it possible to individually adjust the water level 28 of the gravity water. For example, as shown in FIG. 11, if the distance between the ground surface 102 and the upper surface of the gravitational water in each of the water-impervious members 16 is made constant at an optimum distance, the soil having the optimum amount of water for the plants cultivated there. The part 30 can be formed on the cultivated land 100 having undulations, slopes, and the like.

また、上述の各実施例では、複数の遮水部材16を規則正しく並べて配置してあるが、遮水部材16は、不規則的な配置位置となっていてもよい。また、耕作地100全体に万遍なく遮水部材16を配置することによって、耕作地100の作土層全体を毛管水状態の土壌部30とすることもできるし、耕作地100の一部の範囲に遮水部材16を配置することによって、耕作地100の作土層の一部の範囲のみ、つまり耕作者が望む範囲のみを毛管水状態の土壌部30とすることもできる。   Further, in each of the above-described embodiments, the plurality of water shielding members 16 are regularly arranged, but the water shielding members 16 may be irregularly arranged. Moreover, by arranging the water shielding member 16 uniformly throughout the cultivated land 100, the entire soil layer of the cultivated land 100 can be used as the soil portion 30 in the capillary water state, and a part of the cultivated land 100 can be used. By disposing the water shielding member 16 in the range, only a partial range of the soil layer of the cultivated land 100, that is, only a range desired by the cultivator can be set as the soil portion 30 in the capillary water state.

さらに、地表面102まで毛管水状態の土壌部30を形成するだけでなく、地表面102は乾燥状態であるが、植物が水分を吸収する土壌深さにおいては、毛管水状態の土壌部30が形成されているというような状態にすることもできる。また、植物の成長に伴い、重力水の水位28を適宜調整することによって、その成長段階において必要な土壌深さに、毛管水状態の土壌部30が形成されているというような状態にすることもできる。   Further, not only the soil surface 30 in the capillary water state is formed up to the ground surface 102, but the ground surface 102 is in the dry state, but at the soil depth where the plant absorbs moisture, the soil water portion 30 in the capillary water state is It can also be in the state of being formed. In addition, as the plant grows, the water level 28 of gravity water is appropriately adjusted so that the soil water 30 in the capillary water state is formed at the necessary soil depth in the growth stage. You can also.

また、必ずしも重力水の水位28の上下に対応して給水する必要はない。土壌の条件など、場合によっては間欠的に水を供給し、土壌部30の水分を適宜コントロールしてもよい。   Further, it is not always necessary to supply water corresponding to the upper and lower levels of the gravity water level 28. In some cases, such as soil conditions, water may be intermittently supplied to control the moisture in the soil portion 30 as appropriate.

また、遮水部材16内の土の成分を周囲(外部)の土壌成分と同じにしたが、遮水部材16内の土壌成分は、特に限定されない。たとえば、遮水部材16内の土壌成分として、周囲の土壌成分より粒子径の大きい土粒子、或いは小さい土粒子を用いてもよい。また、たとえば、下層から順に、礫層、砂層、およびシルト層を形成するというように、遮水部材16内の土壌を複層状態にすることもできる。   Moreover, although the soil component in the water-impervious member 16 is the same as the surrounding (external) soil component, the soil component in the water-impervious member 16 is not particularly limited. For example, as the soil component in the water-impervious member 16, soil particles having a particle diameter larger than or smaller than the surrounding soil components may be used. Moreover, the soil in the water-impervious member 16 can also be made into a multi-layered state, for example, forming a gravel layer, a sand layer, and a silt layer in order from the lower layer.

また、図12に示すように、遮水部材16の開口には、鍔状部材96をさらに設けるようにしてもよい。鍔状部材96は、合成樹脂および金属などの遮水性を有する材質によって形成され、遮水部材16の側壁から鍔状に延びるように形成される。たとえば図12(
A)に示すように、鍔状部材96は、ビニルシート等を利用して、その内側面が遮水部材
16の外側面に沿うリング状に形成され、遮水部材16の側壁上部に配置される。
Further, as shown in FIG. 12, a hook-shaped member 96 may be further provided in the opening of the water shielding member 16. The eaves member 96 is formed of a material having a water shielding property such as a synthetic resin and a metal, and is formed so as to extend like a bowl from the side wall of the water shielding member 16. For example, FIG.
As shown in A), the flange-like member 96 is formed in a ring shape with the inner side surface along the outer side surface of the water-impervious member 16 using a vinyl sheet or the like, and is disposed on the upper side wall of the water-impervious member 16. The

上述のように、土壌部26の水分は、その上側の土壌に毛細管現象によって吸い上げられて、遮水部材16の上部およびその周辺の土壌へと浸透していき、毛管水状態の土壌部30を形成する。ここで、遮水部材16に鍔状部材96を設けておくと、鍔状部材96はその下方の土壌への水の浸透を遮断するので、浸透水は横方向に浸透していくことになる。これによって、横方向に広範囲に広がる毛管水状態の土壌部30を形成することができる。このように、鍔状部材96を用いて下方に向かって浸透していく水の量を低減することによって、より効率的に広範囲に広がる毛管水状態の土壌部30を形成することができ、使用する水の量を低減することができる。   As described above, the moisture of the soil portion 26 is sucked up by the capillarity to the upper soil and permeates into the upper portion of the water shielding member 16 and the surrounding soil, and the soil portion 30 in the capillary water state is absorbed. Form. Here, if the hook-shaped member 96 is provided in the water-impervious member 16, the hook-shaped member 96 blocks the penetration of water into the soil below it, so that the penetrating water penetrates in the lateral direction. . Thereby, the soil part 30 of the capillary water state which spreads widely in the horizontal direction can be formed. In this way, by reducing the amount of water that permeates downward using the bowl-shaped member 96, it is possible to form a capillary water state soil portion 30 that more efficiently spreads over a wide area. The amount of water to be reduced can be reduced.

なお、鍔状部材96は、平面視で遮水部材の側壁から鍔状に延びるように設けられて、その下方の土壌への水の浸透を遮断するものであればよく、たとえば図12(B)に示すように、その外周部を立ち上げるように形成することもできる。また、たとえば図12(C)に示すように、鍔状部材96を漏斗状に形成して、遮水部材16の上部開口に差し込むようにしてもよい。また、図12においてはいずれも、鍔状部材96を遮水部材16の側壁上部に設けてあるが、鍔状部材96の配置位置(深さ)はこれに限定されず、鍔状部材96を遮水部材16の側壁中部に配置してもよいし、遮水部材16の側壁下部に配置してもよい。さらには、鍔状部材96をたとえば皿状に形成し、遮水部材16の下に配置してもよい。このように鍔状部材96の配置位置を調整ことによって、所望の深さまで毛管水状態の土壌部30を形成することができる。また、遮水部材16と鍔状部材96とは一体的に形成されていてもよい。   Note that the hook-like member 96 is only required to be provided so as to extend like a hook from the side wall of the water-impervious member in a plan view, and blocks water penetration into the soil below the hook-like member 96, for example, FIG. ), The outer peripheral portion can be formed to rise. Further, for example, as shown in FIG. 12C, the bowl-shaped member 96 may be formed in a funnel shape and inserted into the upper opening of the water shielding member 16. In FIG. 12, the hook-shaped member 96 is provided on the upper side wall of the water-blocking member 16, but the arrangement position (depth) of the hook-shaped member 96 is not limited to this. You may arrange | position in the side wall center part of the water-impervious member 16, and may arrange | position in the side wall lower part of the water-impervious member 16. Furthermore, the bowl-shaped member 96 may be formed in a dish shape, for example, and disposed below the water-impervious member 16. Thus, the soil part 30 of a capillary water state can be formed to desired depth by adjusting the arrangement position of the bowl-shaped member 96. FIG. Moreover, the water-impervious member 16 and the bowl-shaped member 96 may be integrally formed.

また、上述の各実施例では、遮水部材16を有底円筒状に形成したが、遮水部材16の形状は、これに限定されず、たとえば有底角筒状に形成してもよい。また、たとえば、図13に示すように、遮水部材16を横長に形成することもできる。   Moreover, in each above-mentioned Example, although the water-impervious member 16 was formed in the bottomed cylindrical shape, the shape of the water-impervious member 16 is not limited to this, For example, you may form in a bottomed rectangular tube shape. For example, as shown in FIG. 13, the water-impervious member 16 can be formed horizontally long.

具体的に説明すると、図13に示す実施例では、耕作地100の両端付近まで延びる複数の遮水部材16が、所定の間隔を隔てて並ぶように分散配置される。遮水部材16は、その両端が堰によって封止された溝状、つまり上側開口の容器状に形成される。遮水部材16は、たとえば半円状の断面形状を有する半割り管を利用して形成するとよい。半割り管としては、たとえばその内径が200−500mmの汎用の塩化ビニル製のVU管を、軸方向に沿って2つに切断したものを利用することができる。   Specifically, in the embodiment shown in FIG. 13, a plurality of water shielding members 16 extending to the vicinity of both ends of the cultivated land 100 are distributed and arranged so as to be arranged at a predetermined interval. The water shielding member 16 is formed in a groove shape in which both ends are sealed by a weir, that is, a container shape having an upper opening. The water-impervious member 16 may be formed using, for example, a half pipe having a semicircular cross-sectional shape. As the half pipe, for example, a general-purpose vinyl chloride VU pipe having an inner diameter of 200-500 mm cut into two along the axial direction can be used.

このように、遮水部材16を横長に形成しても、その内部の重力水の水位28を水位管理器18によって適切に管理することによって、毛管水状態の土壌部30を適切に形成で
きる。たとえば、各遮水部材16の中央付近に水位管理器18を設け、図7に示す実施例と同様に、水位管理器18を介して第2分岐管22bから遮水部材16内に水を供給して、各遮水部材16内の重力水の水位28が、所望の水位になるように個別管理するとよい。このように各遮水部材16内の重力水の水位28を個別管理すれば、傾斜地に形成される段々畑などにも好適にシステム10を適用できる。なお、重力水の水位28は必ずしも個別管理する必要はなく、図1に示す実施例と同様に、本管20に水位管理器18を設けて全ての遮水部材16の重力水の水位28を一括管理してもよいし、第1分岐管22aに水位管理器18を設けて複数の遮水部材16ごとに重力水の水位28を管理してもよい。
Thus, even if the water-impervious member 16 is formed horizontally, the soil water 30 in the capillary water state can be appropriately formed by appropriately managing the water level 28 of the gravity water inside the water-blocking member 16. For example, a water level management device 18 is provided near the center of each water shielding member 16, and water is supplied into the water shielding member 16 from the second branch pipe 22b via the water level management device 18 as in the embodiment shown in FIG. And it is good to manage individually so that the water level 28 of the gravity water in each water-impervious member 16 may become a desired water level. Thus, if the water level 28 of the gravitational water in each water-impervious member 16 is individually managed, the system 10 can be suitably applied to terraced fields formed on slopes. It is not always necessary to individually manage the water level 28 of the gravitational water. Similar to the embodiment shown in FIG. 1, the water level manager 18 is provided in the main pipe 20 to control the water level 28 of all the water shielding members 16. The water level management device 18 may be provided in the first branch pipe 22a and the water level 28 of the gravity water may be managed for each of the plurality of water shielding members 16.

ただし、遮水部材16の形状を横方向に長くしすぎると、第2分岐管22bから供給される水が、遮水部材16内の端部まで適切に浸透せずにその上部から溢れ出してしまい、重力水状態の土壌部26を適切に形成できない可能性がある。そこで、横長の遮水部材16を用いる場合には、図14および図15に示すように、遮水部材16の内部に有孔管90を設け、遮水部材16の内部を通る水路92を形成してもよい。   However, if the shape of the water-impervious member 16 is made too long in the lateral direction, the water supplied from the second branch pipe 22b overflows from the upper part without properly penetrating the end part in the water-impervious member 16. Therefore, there is a possibility that the soil part 26 in the gravity water state cannot be properly formed. Therefore, when using the horizontally long water-impervious member 16, as shown in FIGS. 14 and 15, a perforated pipe 90 is provided inside the water-impervious member 16, and a water channel 92 passing through the inside of the water-impervious member 16 is formed. May be.

具体的には、図14および図15に示す実施例では、遮水部材16の内部に、遮水部材16の底面に沿うように軸方向に延びる有孔管90が設けられる。有孔管90は、遮水部材16の内部において第2分岐管22bと接続されて、第2分岐管22bから送られてくる水を、その管壁に形成される多数の細孔を介して遮水部材16内に供給する。このような有孔管90を用いることによって、遮水部材16を横長に形成した場合であっても、遮水部材16内の端部まで適切に水を浸透させることができ、遮水部材16内に重力水状態の土壌部26を適切に形成することができる。また、この場合には、たとえば第2分岐管22bの途中に水位管理器18を設けて、遮水部材16ごとに重力水の水位28を管理するとよい。   Specifically, in the embodiment shown in FIG. 14 and FIG. 15, a perforated pipe 90 extending in the axial direction along the bottom surface of the water shielding member 16 is provided inside the water shielding member 16. The perforated pipe 90 is connected to the second branch pipe 22b inside the water shielding member 16, and the water sent from the second branch pipe 22b is passed through a large number of pores formed in the pipe wall. The water is supplied into the water shielding member 16. By using such a perforated pipe 90, even when the water shielding member 16 is formed in a horizontally long shape, water can be appropriately permeated to the end in the water shielding member 16, and the water shielding member 16 The soil part 26 in a gravity water state can be appropriately formed therein. In this case, for example, the water level manager 18 may be provided in the middle of the second branch pipe 22b, and the water level 28 of the gravity water may be managed for each water shielding member 16.

なお、有孔管90は、遮水部材16内の底面付近に設けられるので、重力水の水位28を有孔管90より上方になるように適宜管理すれば、有孔管90は常に満水状態となり、空気に触れないため、酸化鉄などが付着し難い。また、水の流れは有孔管90の内部から外部へ向かう。したがって、図14および図15に示す実施例においては、特許文献2の技術と比較して、有孔管90が目詰まりし難い。つまり、有孔管90を用いても、維持管理の負担はあまり大きくならない。   Since the perforated pipe 90 is provided near the bottom surface in the water shielding member 16, the perforated pipe 90 is always full when the gravity water level 28 is appropriately controlled so as to be higher than the perforated pipe 90. Because it does not touch the air, iron oxide and the like are difficult to adhere. Further, the water flow goes from the inside of the perforated tube 90 to the outside. Therefore, in the embodiment shown in FIGS. 14 and 15, the perforated tube 90 is not easily clogged as compared with the technique of Patent Document 2. That is, even if the perforated tube 90 is used, the maintenance burden is not so great.

また、図13−図15に示す実施例では、横長の遮水部材16として半割り管を利用したが、これに限定されない。たとえば、図16に示すように、横長の遮水部材16として、汎用の塩化ビニル製のVU管の管壁上端部をその管軸方向の全長に亘って切り取って開口を形成したものを利用することもできる。また、この場合には、必ずしも管軸方向の全長に亘る開口を形成する必要は無く、VU管の管壁上端部を所定間隔ごとに切り取り、所定間隔ごとに複数の開口を形成して、上側開口の遮水部材16としてもよい。   Moreover, in the Example shown in FIGS. 13-15, although the half pipe was utilized as the horizontally long impermeable member 16, it is not limited to this. For example, as shown in FIG. 16, as the horizontally long water-impervious member 16, a general-purpose vinyl chloride VU pipe whose upper end is cut out over the entire length in the pipe axis direction to form an opening is used. You can also In this case, it is not always necessary to form an opening over the entire length in the tube axis direction. The upper end of the tube wall of the VU tube is cut out at predetermined intervals, and a plurality of openings are formed at predetermined intervals. It is good also as the water-impervious member 16 of an opening.

また、図17に示すように、半割り管の周方向両側縁に、長方形状の側板を垂直方向に接続したものを横長の遮水部材16として用いてもよい。また、所定間隔ごとに複数の開口を形成する遮水部材16の場合には、その開口から立設する管を設けるようにしてもよい。   Moreover, as shown in FIG. 17, you may use as a horizontally long water-impervious member 16 what connected the rectangular side board to the orthogonal | vertical direction at the circumferential direction both-sides edge of the half pipe. Moreover, in the case of the water shielding member 16 that forms a plurality of openings at predetermined intervals, a pipe standing from the openings may be provided.

なお、図16および図17に示す実施例においても、有孔管90を遮水部材16内に設ける場合には、重力水の水位28は有孔管90より上方になるように適宜管理される。   16 and 17, when the perforated pipe 90 is provided in the water shielding member 16, the gravity water level 28 is appropriately managed so as to be above the perforated pipe 90. .

また、図18に示すように、有孔管90の代わりに、遮水部材16内の下部に遮水板94を設けることによって、遮水部材16の底部に水路92を形成してもよい。たとえば、半割り管に側板を接続して遮水部材16を形成する場合には、半割り管と側板との間に挟
み込むように長方形状の有孔板94を設けるとよい。この場合にも、重力水の水位28は有孔板94より上方になるように適宜管理される。
In addition, as shown in FIG. 18, a water channel 92 may be formed at the bottom of the water shielding member 16 by providing a water shielding plate 94 in the lower part of the water shielding member 16 instead of the perforated pipe 90. For example, when the water shielding member 16 is formed by connecting a side plate to the half pipe, a rectangular perforated plate 94 may be provided so as to be sandwiched between the half pipe and the side plate. Also in this case, the gravity water level 28 is appropriately managed so as to be above the perforated plate 94.

なお、重力水の水位28を有孔管90より上方に維持したり、遮水部材16の上端16bと重力水の上面との距離を一定間隔以上に維持したりするためには、遮水部材16は或る程度の高さを有する必要がある。ここで、図15に示す実施例のような半割り管のみで形成される遮水部材16を用いると、遮水部材16自体の製作が容易であるという利点はあるが、その横幅は大きいものになってしまう。しかし、図16−図18に示す実施例の遮水部材16を用いれば、その横幅を抑えつつその高さを確保できる。   In order to maintain the gravity water level 28 above the perforated pipe 90 or to maintain the distance between the upper end 16b of the water shielding member 16 and the upper surface of the gravity water at a predetermined interval or more, the water shielding member 16 needs to have a certain height. Here, the use of the water shielding member 16 formed of only a half pipe as in the embodiment shown in FIG. 15 has an advantage that the water shielding member 16 itself is easy to manufacture, but its lateral width is large. Become. However, if the water-impervious member 16 of the embodiment shown in FIGS. 16 to 18 is used, the height can be secured while suppressing the lateral width.

また、図13−18に示す実施例においても、図12に示したような鍔状部材96を設けるようにしてよい。ただし、この場合の鍔状部材96は、遮水部材16の全周に亘るものである必要は無く、たとえば、長方形状のビニルシートを管軸方向に沿って遮水部材16の両側部に配置するようなものであってよい。   Also in the embodiment shown in FIGS. 13-18, a hook-like member 96 as shown in FIG. 12 may be provided. However, the hook-shaped member 96 in this case does not need to extend over the entire circumference of the water-impervious member 16. For example, a rectangular vinyl sheet is disposed on both sides of the water-impervious member 16 along the tube axis direction. It may be like that.

また、他の実施例として、図19および図20に示すように、ゴムおよび合成樹脂などによって形成される遮水シートを利用して遮水部材16を形成することもできる。   As another embodiment, as shown in FIGS. 19 and 20, the water shielding member 16 can be formed using a water shielding sheet formed of rubber, synthetic resin, or the like.

具体的には、図19および図20に示す実施例では、耕作地100の全面に広がるように、シート状の遮水部材16が耕作地100の地下に敷かれる。シート状の遮水部材16の端部は立ち上げられ、これによって遮水部材16は上側開口の容器状に形成される。ただし、耕作地100の周囲が別途の手段、たとえば粘土等によって不透水層となっている場合や、十分な大きさ(広さ)を有する遮水シートを用いる場合には、シート状の遮水部材16を水平方向に設けるだけでよい。水平方向の遮水部材16、つまり遮水部材16の底面の敷設深さは、たとえば300−500mmである。   Specifically, in the embodiment shown in FIGS. 19 and 20, the sheet-shaped water shielding member 16 is laid under the cultivated land 100 so as to spread over the entire surface of the cultivated land 100. The end of the sheet-like water-impervious member 16 is raised, whereby the water-impervious member 16 is formed in a container shape with an upper opening. However, if the periphery of the cultivated land 100 is a water-impermeable layer by another means such as clay, or if a water-impervious sheet having a sufficient size (width) is used, a sheet-like water-impervious sheet is used. It is only necessary to provide the member 16 in the horizontal direction. The laying depth of the horizontal water shielding member 16, that is, the bottom surface of the water shielding member 16, is, for example, 300 to 500 mm.

このような遮水部材16の内部(或いは上側)に、水タンク12から給水管14を介して水を供給しても、そこに重力水状態の土壌部26を形成できる。そして、水位管理器18によって重力水の水位28を適切に管理することで、毛管水状態の土壌部30を適切に形成できる。図19および図20に示す実施例においても、土壌自体の浸透機能を利用するので、目詰まりによる浸透機能の低下が発生せず、維持管理が容易となる。また、給水側で重力水の水位管理を行うので、無駄な水が供給されることが無く、水資源を効率的に利用できる。   Even if water is supplied from the water tank 12 through the water supply pipe 14 to the inside (or the upper side) of the water shielding member 16, the soil portion 26 in the state of gravity water can be formed there. And the soil part 30 of a capillary water state can be formed appropriately by managing the water level 28 of gravity water appropriately by the water level management device 18. 19 and 20 also uses the permeation function of the soil itself, so that the permeation function does not deteriorate due to clogging, and maintenance is easy. Moreover, since the water level management of gravity water is performed on the water supply side, useless water is not supplied and water resources can be used efficiently.

なお、シート状の遮水部材16は、必ずしも耕作地100の全面に設ける必要は無く、耕作地100の一部の範囲に形成することもできるし、図1などに示す実施例のように分散配置することもできる。ただし、遮水シートによって遮水部材16を形成する場合、遮水シートは老朽化し易いので、遮水部材16内の水が漏水してしまい、土壌部30の水分量の適切なコントロールが困難になる可能性がある。また、シート状の遮水部材16を耕作地100の全面に設ける場合には、降雨などによる余剰水分が地下深くに浸透できないので、別途排水設備を設ける必要があり、さらに、根を地中深くまで張るような大きな木を適切に栽培できない場合もある。   In addition, the sheet-like water-impervious member 16 is not necessarily provided on the entire surface of the cultivated land 100, and can be formed in a part of the cultivated land 100, or distributed as in the embodiment shown in FIG. It can also be arranged. However, when the water-impervious member 16 is formed by the water-impervious sheet, the water-impervious sheet is likely to be worn out, so that water in the water-impervious member 16 leaks, making it difficult to appropriately control the water content of the soil portion 30. There is a possibility. Further, when the sheet-shaped water shielding member 16 is provided on the entire surface of the cultivated land 100, excess water due to rainfall cannot penetrate deep underground, so it is necessary to provide a separate drainage facility. In some cases, it is not possible to properly cultivate large trees that stretch up to a maximum.

また、上述の各実施例では、水タンク12は、農業用水配管などと接続されて、そこから送られてくる水を貯留するようにしたが、これに限定されない。たとえば、個人用に使用する小規模なシステム10の場合には、耕作者(使用者)が、バケツ等を用いて水タンク12内に適宜水を補充するようにしてもよい。また、たとえば、水タンク12内に雨水が適宜貯留される構成にすることもできる。さらに、水タンク12は必ずしも設ける必要は無く、農業用配水管などから直接給水管14に水が供給されるようにすることもできる。   Further, in each of the above-described embodiments, the water tank 12 is connected to an agricultural water pipe or the like and stores water sent therefrom, but is not limited thereto. For example, in the case of a small-scale system 10 used for personal use, a farmer (user) may refill water in the water tank 12 as appropriate using a bucket or the like. Further, for example, a configuration in which rainwater is appropriately stored in the water tank 12 may be adopted. Furthermore, the water tank 12 is not necessarily provided, and water can be directly supplied to the water supply pipe 14 from an agricultural water distribution pipe or the like.

また、給水管14の配管構造は、遮水部材16の配置などに合わせて適宜変更され、たとえば、給水管14を本管20のみで形成するようにしてもよいし、第2分岐管22bから分岐する第3分岐管をさらに形成するようにしてもよい。   Further, the piping structure of the water supply pipe 14 is appropriately changed in accordance with the arrangement of the water shielding member 16 and the like. For example, the water supply pipe 14 may be formed only by the main pipe 20 or from the second branch pipe 22b. A third branch pipe that branches may be further formed.

また、図1に示す実施例では、図3に示すような水位管理器18を用い、図7に示す実施例では、図8に示すような簡易型の水位管理器18を用いたが、これに限定されない。図3或いは図8に示す水位管理器18は、どの実施例にも用いることができるし、図3或いは図8に示す水位管理器18以外の構成の水位管理器18を、システム10に適用することもできる。ただし、図3に示す水位管理器18と比較して、図8に示す簡易型の水位管理器18は、給水口84を閉じる力が弱いので、給水管14から送られてくる水が低圧水の場合にのみ、図8に示す簡易型の水位管理器18を用いることができる。   Further, in the embodiment shown in FIG. 1, a water level manager 18 as shown in FIG. 3 is used, and in the embodiment shown in FIG. 7, a simplified water level manager 18 as shown in FIG. 8 is used. It is not limited to. The water level management device 18 shown in FIG. 3 or FIG. 8 can be used in any embodiment, and the water level management device 18 other than the water level management device 18 shown in FIG. 3 or FIG. You can also However, compared with the water level controller 18 shown in FIG. 3, the simplified water level manager 18 shown in FIG. 8 has a weak force for closing the water supply port 84, so that the water sent from the water supply pipe 14 is low-pressure water. Only in this case, the simplified water level manager 18 shown in FIG. 8 can be used.

なお、図8に示す簡易型の水位管理器18は、簡単にかつ安価に製作できるので、小規模な耕作地100にシステム10を適用する際に用いると、最適である。たとえば、図21に示すように、屋外に配置するプランタ104にシステム10を適用する場合には、プランタ104内の耕作地100(つまりプランタ104内の土壌)に1つの遮水部材16を埋設し、その遮水部材16内に1つの簡易型の水位管理器18を設けるとよい。この水位管理器18には、水タンク12と繋がる給水管14が接続される。そして、上述の各実施例と同様に、遮水部材16内に重力水状態の土壌部26を形成し、その重力水の水位28を適切に保てば、プランタ104内の土壌の上層部に、毛管水状態の土壌部30を形成でき、適切に草花などの植物を育成できる。なお、この場合には、降雨などによってプランタ104内に余剰の水が与えられても、プランタ104の底面に予め形成されている孔106から水が抜ける。つまり、図1などに示す実施例における、地下深くに余剰水が浸透していくことと同様の作用が働く。   The simple water level manager 18 shown in FIG. 8 can be easily and inexpensively manufactured, and is optimal when used when the system 10 is applied to a small-scale cultivated land 100. For example, as shown in FIG. 21, when the system 10 is applied to a planter 104 disposed outdoors, one water shielding member 16 is embedded in the cultivated land 100 in the planter 104 (that is, the soil in the planter 104). One simple water level manager 18 may be provided in the water shielding member 16. A water supply pipe 14 connected to the water tank 12 is connected to the water level manager 18. Then, as in the above-described embodiments, if the soil portion 26 in the gravitational water state is formed in the water-impervious member 16 and the water level 28 of the gravitational water is appropriately maintained, the upper portion of the soil in the planter 104 is formed. The soil part 30 in a capillary water state can be formed, and plants such as flowers can be cultivated appropriately. In this case, even if surplus water is given to the planter 104 due to rain or the like, the water is discharged from the hole 106 formed in advance on the bottom surface of the planter 104. That is, in the embodiment shown in FIG. 1 and the like, the same action as that of surplus water permeating deep underground works.

また、上述の各実施例では、遮水部材16を地中(土壌中)に埋設するようにしたが、遮水部材16は、必ずしも地中に埋設される必要はない。たとえば、図22に示すように、プランタ104や鉢自体を、遮水部材16として利用し、遮水部材16内の土壌の上層部に形成される毛管水状態の土壌部30で草花などを育成するとよい。   Moreover, in each above-mentioned Example, although the water-impervious member 16 was embed | buried under the ground (in the soil), the water-impervious member 16 does not necessarily need to be embed | buried under the ground. For example, as shown in FIG. 22, the planter 104 or the pot itself is used as the water-impervious member 16, and flowers and the like are cultivated in the soil water 30 in the capillary water state formed in the upper layer of the soil in the water-impervious member 16. Good.

具体的には、屋内に配置するプランタ104等にシステム10を適用するとよく、この場合には、プランタ104自体が遮水部材16として機能する。ただし、プランタ104の底面に形成される孔106を、キャップ等の適宜な封止具108によって封止し、プランタ104が貯水機能を有するようにしておく必要がある。このプランタ104内、つまり遮水部材16内には、1つの水位管理器18が設けられ、図21に示す実施例と同様に、遮水部材16内に重力水状態の土壌部26が形成される。この場合には、重力水の水位28を、遮水部材16内の土壌の中程のところに保つとよく、これによって、遮水部材16内の土壌の上層部に毛管水状態の土壌部30が形成される。なお、図22に示す実施例は、屋内に配置するプランタ104に適用するものなので、降雨などによって余剰に水が供給される状態を考慮する必要はない。   Specifically, the system 10 may be applied to a planter 104 or the like disposed indoors. In this case, the planter 104 itself functions as the water shielding member 16. However, it is necessary to seal the hole 106 formed in the bottom surface of the planter 104 with an appropriate sealing tool 108 such as a cap so that the planter 104 has a water storage function. In this planter 104, that is, in the water shielding member 16, one water level manager 18 is provided, and a soil portion 26 in a gravity water state is formed in the water shielding member 16 as in the embodiment shown in FIG. The In this case, the water level 28 of the gravitational water may be kept at the middle of the soil in the water-impervious member 16, and thereby the soil portion 30 in the capillary water state is formed on the upper layer of the soil in the water-impervious member 16. Is formed. Note that the embodiment shown in FIG. 22 is applied to the planter 104 disposed indoors, and therefore it is not necessary to consider the state in which excess water is supplied due to rainfall or the like.

また、たとえば、屋上緑化にシステム10を適用する場合には、適宜な大きさの遮水部材16を屋上に配置し、図22に示す実施例と同様に、遮水部材16内の土壌の上層部に毛管水状態の土壌部30を形成し、その土壌部30で植物を育成するとよい。ただし、屋外に適用する場合には、適宜な排水設備を別途備える必要がある。   Further, for example, when the system 10 is applied to rooftop greening, a water shielding member 16 of an appropriate size is arranged on the roof, and the upper layer of soil in the water shielding member 16 is the same as the embodiment shown in FIG. The soil part 30 of a capillary water state is formed in a part, and it is good to grow a plant in the soil part 30. However, when applied outdoors, it is necessary to provide an appropriate drainage facility separately.

また、各実施例で示した遮水部材16を組み合わせてシステム10を構成することもできる。たとえば、図2に示す遮水部材16と図15に示す遮水部材16とを同一システム内で適用してもよい。また、たとえば、シート状の遮水部材16の上に図2に示す遮水部
材16を配置して、2層の毛管水状態の土壌部30を形成するようなこともできる。
Moreover, the system 10 can also be comprised combining the water-impervious member 16 shown in each Example. For example, the water shielding member 16 shown in FIG. 2 and the water shielding member 16 shown in FIG. 15 may be applied in the same system. Further, for example, the water-impervious member 16 shown in FIG. 2 may be disposed on the sheet-like impermeable member 16 to form the two-layered soil water portion 30 in the capillary water state.

10 …地下灌漑システム
12 …水タンク
14 …給水管
16 …遮水部材
18 …水位管理器
20 …本管
22 …分岐管
26 …重力水状態の土壌部
28 …重力水の水位
30 …毛管水状態の土壌部
90 …有孔管
92 …水路
94 …有孔板
96 …鍔状部材
100 …耕作地
DESCRIPTION OF SYMBOLS 10 ... Underground irrigation system 12 ... Water tank 14 ... Water supply pipe 16 ... Water shielding member 18 ... Water level controller 20 ... Main pipe 22 ... Branch pipe 26 ... Gravity water state soil part 28 ... Gravity water level 30 ... Capillary water state Soil part 90 ... perforated pipe 92 ... water channel 94 ... perforated plate 96 ... bowl-like member 100 ... cultivated land

Claims (4)

所定の第1高さを有しかつ上面に開口を有する横管状に形成され、その上端が地表面まで所定の距離を有した状態で耕作地の地中に埋設され、さらに内部に重力水状態の土壌部が形成される遮水部材、
前記第1高さより低い所定の第2高さを有しかつ前記遮水部材内を通る水路を形成する給水部材を含み、前記遮水部材の上側に給水して前記重力水状態の土壌部を形成する給水手段、および
前記給水部材に接続され、給水口から水が供給されかつ内部の水位が前記重力水状態の土壌部の重力水の水位と連動する縦管と、前記縦管内の水位変動に連動して上下動するフロートとを有し、所定の水位設定値に基づいて前記重力水状態の土壌部の重力水の水位を管理する水位管理手段を備え、
前記フロートの上下動に応じて前記給水口が開閉する高さ位置を調整することによって、前記水位設定値が前記遮水部材の前記第1高さの範囲内で設定され、
前記水位管理手段は、前記フロートの上下動に応じて、前記縦管内の水位が前記水位設定値以上のときに前記給水口を閉じて前記給水部材への水の供給を停止し、かつ前記縦管内の水位が前記水位設定値未満のときに前記給水口を開いて前記給水部材への水の供給を行うものであり、
前記遮水部材を、一定に保つべき重力水の水位が前記第1高さの範囲の中で調整できる高さで形成しかつそのような深さで埋設することによって、前記重力水状態の土壌部の重力水の水位を前記範囲内の一定の位置に保つことで、前記重力水状態の土壌部の上方に形成される毛管水状態の土壌部の水分量を管理する、地下灌漑システム。
Formed in a horizontal tube having a predetermined first height and having an opening on the upper surface, the upper end of which is embedded in the ground of the cultivated land with a predetermined distance to the ground surface, and further in the state of gravity water A water-blocking member in which the soil part is formed,
Includes a water supply member that forms a water passage through said first height from a lower predetermined second height and the water-impervious member, the soil portion of the gravitational water state by supplying water to the upper side of the water-impervious member A water supply means to be formed, a vertical pipe connected to the water supply member and supplied with water from a water supply port, and an internal water level interlocking with the water level of the gravitational water in the soil part in the gravity water state, and a water level fluctuation in the vertical pipe And a float that moves up and down in conjunction with water level management means for managing the level of gravity water in the soil portion in the gravity water state based on a predetermined water level setting value,
By adjusting the height position at which the water supply opening and closing according to the vertical movement of the float, the water level set value is set within the range of the first height of the water shielding member,
The water level management means closes the water supply port to stop the supply of water to the water supply member when the water level in the vertical pipe is equal to or higher than the water level set value according to the vertical movement of the float, and When the water level in the pipe is less than the water level set value, the water supply port is opened to supply water to the water supply member ,
By forming the water-impervious member at a height at which the level of gravity water to be kept constant can be adjusted within the range of the first height and burying at such a depth, the soil in the gravity water state An underground irrigation system that manages the amount of water in a capillary water state soil portion formed above the gravity water state soil portion by maintaining the gravitational water level of the portion at a constant position within the range .
各々が所定の第1高さを有しかつ上面に開口を有する横管状に形成され、その上端が地表面まで所定の距離を有した状態で耕作地の地中に埋設され、さらに内部に重力水状態の土壌部が形成される複数の遮水部材を備え各遮水部材は隣り合う遮水部材との間隔を各遮水部材の幅以上の間隔に保った状態で地中に埋設され、さらに
前記複数の遮水部材のそれぞれの上側に給水して前記重力水状態の土壌部を形成する給水手段、および
前記給水手段に接続され、給水口から水が供給されかつ内部の水位が前記重力水状態の土壌部の重力水の水位と連動する縦管と、前記縦管内の水位変動に連動して上下動するフロートとを有し、所定の水位設定値に基づいて前記複数の遮水部材の前記重力水状態の土壌部の重力水の水位を管理する1つまたは複数の水位管理手段を備え、
前記フロートの上下動に応じて前記給水口が開閉する高さを調整することによって、前記水位設定値が前記遮水部材の前記第1高さの範囲内で設定され、
前記水位管理手段は、前記フロートの上下動に応じて、前記縦管内の水位が前記水位設定値以上のときに前記給水口を閉じて前記給水手段への水の供給を停止し、かつ前記縦管内の水位が前記水位設定値未満のときに前記給水口を開いて前記給水手段への水の供給を行うものであり、
前記遮水部材を、一定に保つべき重力水の水位が前記第1高さの範囲の中で調整できる高さで形成しかつそのような深さで埋設することによって、前記重力水状態の土壌部の重力水の水位を前記範囲内の一定の位置に保つことで、前記重力水状態の土壌部の上方に形成される毛管水状態の土壌部の水分量を管理する、地下灌漑システム。
Each is formed in a horizontal tubular shape having a predetermined first height and having an opening on the upper surface, the upper end of which is embedded in the ground of the cultivated land with a predetermined distance to the ground surface, and further has gravity inside comprising a plurality of water-impervious members soil portion of water state is formed, the water-impervious member is buried in the ground the distance between adjacent water-impervious member while maintaining the width or spacing of the water-impervious member water supply means for forming a soil portion of the gravitational water state further water to the respective upper side of the plurality of water-impervious members, and connected to said water supply means is supplied with water from the water inlet and the water level inside said A vertical pipe linked to the gravity water level of the soil portion in the gravitational water state, and a float that moves up and down in conjunction with the fluctuation of the water level in the vertical pipe, and the plurality of water shielding based on a predetermined water level set value One or more for managing the level of gravity water in the soil portion of the member in the gravity water state A number of water level management means,
By adjusting the height at which the water supply port opens and closes according to the vertical movement of the float, the water level set value is set within the range of the first height of the water shielding member,
The water level management means closes the water supply port to stop the supply of water to the water supply means when the water level in the vertical pipe is equal to or higher than the water level set value according to the vertical movement of the float, and When the water level in the pipe is less than the water level set value, the water supply port is opened to supply water to the water supply means ,
By forming the water-impervious member at a height at which the level of gravity water to be kept constant can be adjusted within the range of the first height and burying at such a depth, the soil in the gravity water state An underground irrigation system that manages the amount of water in a capillary water state soil portion formed above the gravity water state soil portion by maintaining the gravitational water level of the portion at a constant position within the range .
所定の第1高さを有しかつ上面に開口を有する横管状に形成され、その上端が地表面まで所定の距離を有した状態で耕作地の地中に埋設され、さらに内部に重力水状態の土壌部が形成される遮水部材、
前記第1高さより低い所定の第2高さを有しかつ前記遮水部材内を通る水路を形成する給水部材を含み、前記遮水部材の上側に給水して前記重力水状態の土壌部を形成する給水手段、および
前記給水部材に接続され、給水口から水が供給されかつ内部の水位が前記重力水状態の土壌部の重力水の水位と連動する縦管と、前記縦管内の水位変動に連動し、内部に設けられた給水管を軸として上下動するフロートとを有し、所定の水位設定値に基づいて前記重力水状態の土壌部の重力水の水位を管理する水位管理手段を備え、
前記フロートの上下動に応じて前記給水口が開閉する高さ位置を調整することによって、前記水位設定値が前記遮水部材の前記第1高さの範囲内であってかつ前記給水部材の前記第2高さよりも高くなるように設定され、
前記水位管理手段は、前記フロートの上下動に応じて、前記縦管内の水位が前記水位設定値以上のときに前記給水口を閉じて前記給水部材への水の供給を停止し、かつ前記縦管内の水位が前記水位設定値未満のときに前記給水口を開いて前記給水部材への水の供給を行うものであり、
前記遮水部材を、一定に保つべき重力水の水位が前記第1高さの範囲の中で調整できる高さで形成しかつそのような深さで埋設することによって、前記重力水状態の土壌部の重力水の水位を前記範囲内の一定の位置に保つことで、前記重力水状態の土壌部の上方に形成される毛管水状態の土壌部の水分量を管理する、地下灌漑システム。
Formed in a horizontal tube having a predetermined first height and having an opening on the upper surface, the upper end of which is embedded in the ground of the cultivated land with a predetermined distance to the ground surface, and further in the state of gravity water A water-blocking member in which the soil part is formed,
Includes a water supply member that forms a water passage through said first height from a lower predetermined second height and the water-impervious member, the soil portion of the gravitational water state by supplying water to the upper side of the water-impervious member A water supply means to be formed, a vertical pipe connected to the water supply member and supplied with water from a water supply port, and an internal water level interlocking with the water level of the gravitational water in the soil part in the gravity water state, and a water level fluctuation in the vertical pipe in conjunction with, and a float which moves up and down the water supply pipe provided inside the shaft, the water level management means for managing the level of gravitational water the soil portion of the gravitational water state based on the predetermined water level setpoint Prepared,
By adjusting the height position at which the water supply port opens and closes according to the vertical movement of the float, the water level set value is within the range of the first height of the water shielding member and the water supply member Set to be higher than the second height,
The water level management means closes the water supply port to stop the supply of water to the water supply member when the water level in the vertical pipe is equal to or higher than the water level set value according to the vertical movement of the float, and When the water level in the pipe is less than the water level set value, the water supply port is opened to supply water to the water supply member ,
By forming the water-impervious member at a height at which the level of gravity water to be kept constant can be adjusted within the range of the first height and burying at such a depth, the soil in the gravity water state An underground irrigation system that manages the amount of water in a capillary water state soil portion formed above the gravity water state soil portion by maintaining the gravitational water level of the portion at a constant position within the range .
耕作地の傾斜地の地中に埋設され、分散配置される複数の遮水部材であって、各々が上面に開口を有する横管状に形成され、その上端が前記耕作地の地表面まで所定の距離を有し、さらに各々の内部に重力水状態の土壌部が形成される遮水部材、
複数の前記遮水部材のそれぞれの上側に給水して前記重力水状態の土壌部を形成する給水手段、および
前記給水手段に接続され、複数の前記遮水部材をその傾斜高さに応じてグループ分けし、各グループに異なった水位設定値を設定して、その水位設定値に基づいて各グループの遮水部材内の重力水状態の土壌部の重力水の水位を個別に一定に保つ複数の水位管理手段を備え、
複数の前記水位管理手段はそれぞれ、対応するグループの遮水部材内の重力水状態の土壌部の重力水の水位が当該グループに設定された水位設定値以上のときに前記給水手段への水の供給を停止し、かつ対応するグループの遮水部材の重力水状態の土壌部の重力水の水位が当該グループに設定された水位設定値未満のときに前記給水手段への水の供給を行うものであり、
前記遮水部材を、一定に保つべき重力水の水位が前記遮水部材の高さの範囲の中で調整できる高さで形成しかつそのような深さで埋設することによって、対応するグループの遮水部材の前記重力水状態の土壌部の重力水の水位を前記範囲内の一定の位置に保つことで、当該グループの遮水部材の重力水状態の土壌部の上方に形成される毛管水状態の土壌部の水分量を管理する、地下灌漑システム。
A plurality of water-impervious members embedded and distributed in the ground of an inclined land of a cultivated land, each formed in a horizontal tube having an opening on the upper surface, the upper end of which is a predetermined distance to the ground surface of the cultivated land And a water-impervious member in which a soil part in a gravitational water state is formed inside each,
Water supply means for supplying water to the upper side of each of the plurality of water-impervious members to form the gravitational water state soil portion, and connected to the water supply means, and the plurality of the water-impervious members are grouped according to their inclination heights Divide and set different water level setting values for each group, and based on the water level setting values , keep the water level of gravity water in the gravitational water state in the water shielding member of each group individually constant . With water level management means,
Each of the plurality of water level management means is configured to supply water to the water supply means when the gravitational water level of the soil portion in the gravitational water state in the water shielding member of the corresponding group is equal to or higher than the water level set value set for the group. stopping the supply, and those for supplying water to the corresponding group the water supply means when in the water-impervious member gravitational water state of the soil portion level of gravitational water is less than the set water level set value in the group And
By forming the water shielding member at a height at which the level of gravity water to be kept constant can be adjusted within the range of the height of the water shielding member and burying at such a depth, Capillary water formed above the gravitational water state soil portion of the water shielding member of the group by maintaining the gravitational water level of the gravitational water state soil portion of the water shielding member at a certain position within the range. Underground irrigation system that manages the amount of water in the soil area .
JP2013082022A 2007-08-27 2013-04-10 Underground irrigation system Active JP5970675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082022A JP5970675B2 (en) 2007-08-27 2013-04-10 Underground irrigation system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007219301 2007-08-27
JP2007219301 2007-08-27
JP2013082022A JP5970675B2 (en) 2007-08-27 2013-04-10 Underground irrigation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008022455A Division JP5274850B2 (en) 2007-08-27 2008-02-01 Underground irrigation system

Publications (2)

Publication Number Publication Date
JP2013135700A JP2013135700A (en) 2013-07-11
JP5970675B2 true JP5970675B2 (en) 2016-08-17

Family

ID=40607832

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008022455A Active JP5274850B2 (en) 2007-08-27 2008-02-01 Underground irrigation system
JP2013082022A Active JP5970675B2 (en) 2007-08-27 2013-04-10 Underground irrigation system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008022455A Active JP5274850B2 (en) 2007-08-27 2008-02-01 Underground irrigation system

Country Status (1)

Country Link
JP (2) JP5274850B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872195B2 (en) * 2011-06-23 2016-03-01 クボタシーアイ株式会社 Underground irrigation system
JP6094787B2 (en) * 2012-05-23 2017-03-15 株式会社パディ研究所 Underground irrigation member and underground irrigation system using the same
JP6404131B2 (en) * 2015-01-21 2018-10-10 株式会社クボタケミックス Sheet end sealing member and underground irrigation system including the same
KR102545384B1 (en) 2021-01-27 2023-06-20 서울대학교산학협력단 Man-made soil profiles system with complex functions

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180348A (en) * 1978-11-22 1979-12-25 Taylor Richard H Subsurface irrigation and drainage system
JPS59175830A (en) * 1983-03-28 1984-10-04 日揮株式会社 Plant culturing method
JPS62151121A (en) * 1985-09-12 1987-07-06 砂研株式会社 Plant culture method
JPS6336715A (en) * 1986-07-31 1988-02-17 有限会社 イデアリサ−チ Plant culture method
JPH03206823A (en) * 1990-01-09 1991-09-10 Kajima Corp Underground water sprinkler for lawn
AUPM743994A0 (en) * 1994-08-12 1994-09-08 Grain Security Foundation Ltd Root zone irrigation system
JP3468647B2 (en) * 1996-11-21 2003-11-17 正 森 Automatic flower bed water supply
AU1079400A (en) * 1999-06-28 2001-01-31 Masakazu Tanaka Planter based on automatic bottom water feed system
JP4220147B2 (en) * 2001-10-11 2009-02-04 三明電機株式会社 Plant cultivation container
JP3096586U (en) * 2003-03-20 2003-09-26 正 森 Automatic water supply linked flowerpot

Also Published As

Publication number Publication date
JP2009072178A (en) 2009-04-09
JP2013135700A (en) 2013-07-11
JP5274850B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
US6161776A (en) Multi-layered, porous mat turf irrigation apparatus and method
EP0774894B1 (en) Capillary root zone irrigation system
US7798746B2 (en) Modular, self contained, engineered irrigation landscape and flower bed panel
EP3355686B1 (en) Sub-surface irrigation system
JP5731791B2 (en) Irrigation system and method
US20220142065A1 (en) Liquid Containment and Focus for Subterranean Capillary Irrigation
CN104603363A (en) Plantsurface structure and modules and method for forming the same
JP6041190B2 (en) Underground irrigation system
JP5970675B2 (en) Underground irrigation system
JP2007267731A (en) Greening system
WO2009028702A1 (en) Subirrigation system
KR20140135441A (en) A Watering System using Air Conditioner Discharge Water
KR20110114438A (en) UNDERGROUND WATERING·DRAINING SYSTEM
CN106665322A (en) Three-dimensional sand culture planting system
JP2979209B2 (en) Hydroponic cultivation method and its structure
JP5187752B2 (en) Underground irrigation system and double pipe unit used therefor
CA2016375C (en) Portable watering & drainage system & combined heating system
JPH06319378A (en) Rainwater-storing vegetation ground
US8192109B2 (en) Subsurface irrigation system
WO1992004823A1 (en) Soil irrigation and drainage system
JP6094787B2 (en) Underground irrigation member and underground irrigation system using the same
CN1169422C (en) Sucking irrigation method with mulching under soil
US20200205334A1 (en) Aerification system
CN110249845B (en) High-steep rock slope greening and maintaining system
JP2005027608A (en) Planting base unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R150 Certificate of patent or registration of utility model

Ref document number: 5970675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250