JP5187752B2 - Underground irrigation system and double pipe unit used therefor - Google Patents

Underground irrigation system and double pipe unit used therefor Download PDF

Info

Publication number
JP5187752B2
JP5187752B2 JP2008192399A JP2008192399A JP5187752B2 JP 5187752 B2 JP5187752 B2 JP 5187752B2 JP 2008192399 A JP2008192399 A JP 2008192399A JP 2008192399 A JP2008192399 A JP 2008192399A JP 5187752 B2 JP5187752 B2 JP 5187752B2
Authority
JP
Japan
Prior art keywords
water
pipe
soil
impervious
shielding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008192399A
Other languages
Japanese (ja)
Other versions
JP2010029072A (en
Inventor
直樹 小野
宏昭 坂本
和弘 平尾
明伸 柿田
康 和田
嘉人 藤井
恒雄 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota CI Co Ltd
Original Assignee
Kubota CI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota CI Co Ltd filed Critical Kubota CI Co Ltd
Priority to JP2008192399A priority Critical patent/JP5187752B2/en
Priority to EP08828334.6A priority patent/EP2183962A4/en
Priority to US12/675,531 priority patent/US9011041B2/en
Priority to PCT/JP2008/065623 priority patent/WO2009028702A1/en
Publication of JP2010029072A publication Critical patent/JP2010029072A/en
Application granted granted Critical
Publication of JP5187752B2 publication Critical patent/JP5187752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は地下灌漑システムおよびそれに用いる二重管ユニットに関し、特にたとえば、地下から水を供給して土壌の水分量を適切に保つ、地下灌漑システムおよびそれに用いる二重管ユニットに関する。 The present invention relates to an underground irrigation system and a double-pipe unit used therefor, and more particularly to an underground irrigation system and a double-pipe unit used therefor that supply water from the underground to keep the moisture content of the soil appropriately.

従来技術の一例が特許文献1に開示される。特許文献1の技術は、種々の植物を家庭内で栽培する際に用いられる植物栽培装置であって、栽培用水を収容する水槽を含む。水槽内の上部には、植生土壌を収容する栽培容器が設けられ、この栽培容器の下部から、水槽内の栽培用水に浸漬される吸水体が垂下している。栽培用水は、吸水体の毛細管現象によって吸い上げられ、植生土壌に供給される。   An example of the prior art is disclosed in Patent Document 1. The technique of patent document 1 is a plant cultivation apparatus used when cultivating various plants in a home, and includes a water tank that accommodates cultivation water. The cultivation container which accommodates vegetation soil is provided in the upper part in an aquarium, and the water absorption body immersed in the cultivation water in an aquarium hangs down from the lower part of this cultivation container. Cultivation water is sucked up by the capillary action of the water-absorbing body and supplied to the vegetation soil.

また、従来技術の他の一例が特許文献2に開示される。特許文献2の技術は、水位調整機能を持つ貯水型土壌システムである。特許文献2の技術では、芝生舗装帯などを遮水シートにより貯水型とし、遮水シートの上に敷設した暗渠管によって、降雨や散水による水を地下浸透させずに集水する。そして、集水した水をブロック毎に水位調整機能を持つ水位調整枡に導入し、地下水位の調整を行うことによって、目的別に土壌水分の調整を行っている。
特開2002−272275号公報 [A01G 9/02] 特開平8−302800号公報 [E03F 1/00]
Another example of the prior art is disclosed in Patent Document 2. The technology of Patent Document 2 is a water storage type soil system having a water level adjustment function. In the technique of Patent Document 2, a lawn pavement or the like is made into a water storage type by a water shielding sheet, and water from rain or water spray is collected without permeating underground by a culvert pipe laid on the water shielding sheet. The collected water is introduced into a water level adjusting tub having a water level adjusting function for each block, and the soil water is adjusted for each purpose by adjusting the groundwater level.
JP 2002-272275 A [A01G 9/02] JP-A-8-302800 [E03F 1/00]

特許文献1の技術では、栽培用水中の不純物が吸水体表面に固着し、吸水体に目詰まりが生じるため、時間が経つと吸水体の浸透機能が大幅に低下してしまう。したがって、特許文献1の技術では、吸水体を洗浄したり、交換したりする必要が生じるので、維持管理に手間がかかる。また、特許文献1の技術は、草花などを家庭内で栽培するプランタ等の小規模なものに適用される技術であり、大規模な畑作などへの適用は事実上不可能である。   In the technique of Patent Document 1, impurities in cultivation water adhere to the surface of the water absorbent body, and the water absorbent body is clogged, so that the permeation function of the water absorbent body is significantly reduced over time. Therefore, in the technique of Patent Document 1, it is necessary to clean or replace the water absorbing body, which requires time and effort for maintenance. Moreover, the technique of patent document 1 is a technique applied to small things, such as a planter which grows a flower etc. in a household, and application to a large-scale field crop etc. is practically impossible.

また、特許文献2の技術では、暗渠管を用いて集水しているため、暗渠管の孔に土粒子などが集積し易く、目詰まりを起こし易い。暗渠管の孔に目詰まりが生じると、集水機能が大幅に低下するため、特許文献2の技術では、定期的に暗渠管を洗浄する必要があり、維持管理に手間がかかる。なお、暗渠管の周囲には、暗渠用フィルタ材が充填されているが、その具体的な構成が何ら記載されていないため、その効果は不明である。たとえば、暗渠用フィルタ材として砕石や砂利などを用いると、土粒子がこれらの間隙を通過して暗渠管の孔が目詰まりしてしまう。また、繊維などで形成される目の細かい暗渠用フィルタ材を用いると、暗渠用フィルタ材自体が目詰まりする可能性もある。   Moreover, in the technique of patent document 2, since water is collected using a culvert tube, soil particles and the like are easily accumulated in the hole of the culvert tube, and clogging is likely to occur. If the hole in the culvert tube is clogged, the water collecting function is greatly reduced. Therefore, in the technique of Patent Document 2, it is necessary to periodically clean the culvert tube, and maintenance is troublesome. The culvert tube is filled with a culvert filter material, but its specific configuration is not described at all, and its effect is unknown. For example, when crushed stone or gravel is used as a filter material for a culvert, soil particles pass through these gaps and the holes in the culvert tube are clogged. In addition, if a fine filter material for a culvert formed of fibers or the like is used, the culvert filter material itself may be clogged.

さらに、特許文献2の技術では、自然降雨や散水によって土壌に水を供給し、水位調整枡によって排水側で地下水位を調整している。自然降雨が不足しがちな地域などでは、散水によって土壌に水を供給することになるが、土壌への水の供給が不足すると地下水位を目的の水位に保つことができないので、特許文献2の技術では、余剰に水を供給してしまいがちになる。余剰に供給された水は、排水管に排出されるだけであり、水資源の無駄使いが生じる。   Furthermore, in the technique of Patent Document 2, water is supplied to the soil by natural rainfall or watering, and the groundwater level is adjusted on the drainage side by a water level adjuster. In areas where natural rainfall tends to be insufficient, water is supplied to the soil by watering. However, if the supply of water to the soil is insufficient, the groundwater level cannot be maintained at the target water level. Technology tends to supply excess water. Excess water supplied is only discharged to the drain pipe, resulting in wasteful use of water resources.

それゆえに、この発明の主たる目的は、新規な、地下灌漑システムおよびそれに用いる二重管ユニットを提供することである。 Therefore, the main object of the present invention is to provide a novel underground irrigation system and a double pipe unit used therefor.

この発明の他の目的は、維持管理が容易な、地下灌漑システムおよびそれに用いる二重管ユニットを提供することである。 Another object of the present invention is to provide an underground irrigation system and a double pipe unit used therefor that are easy to maintain.

この発明のさらに他の目的は、水資源を効率的に利用できる、地下灌漑システムおよびそれに用いる二重管ユニットを提供することである。 Still another object of the present invention is to provide an underground irrigation system and a double pipe unit used therefor that can efficiently use water resources.

この発明は、上記の課題を解決するために、以下の構成を採用した。なお、括弧内の参照符号および補足説明などは、この発明の理解を助けるために後述する実施の形態との対応関係を示したものであって、この発明を何ら限定するものではない。   The present invention employs the following configuration in order to solve the above problems. Note that reference numerals in parentheses and supplementary explanations indicate correspondence with embodiments described later in order to help understanding of the present invention, and do not limit the present invention.

第1の発明は、上面に開口を設けた横管状に形成され、その内部に重力水状態の土壌部を有する遮水部材、遮水部材に設けられ、開口を補強する補強部、遮水部材の内部に給水して土壌部を形成する給水手段、および土壌部の重力水の水位が設定値以上のときに給水手段による給水を停止し、土壌部の重力水の水位が設定値未満のときに給水手段による給水を行う水位管理手段を備える、地下灌漑システムである。 1st invention is formed in the horizontal tube which provided the opening in the upper surface, and the water-impervious member which has the soil part of a gravity water state in the inside, the reinforcement part which reinforces an opening provided in the water-impervious member, and a water-impervious member Water supply means to form a soil part by supplying water inside the water, and when the gravity water level of the soil part is above the set value, water supply by the water supply means is stopped, and when the gravity water level of the soil part is less than the set value It is an underground irrigation system equipped with water level management means for supplying water by means of water supply means .

第1の発明では、地下灌漑システム(10)は、遮水部材(16)を備え、耕作地(200)などに適用されて、土壌の水分量を植物の生育にとって適切な状態に保つ。遮水部材は、上側開口の容器状に形成され、貯水機能を有する。また、給水手段(12,14)は、遮水部材の内部に水を供給する。つまり、給水手段によって水が供給されると、その水は遮水部材内の土中に浸透していき、重力水となって遮水部材内に留まる。これによって、遮水部材の内部には、重力水状態の土壌部(26)が形成される。また、水位管理手段(18)は、給水手段による給水を管理することによって、重力水状態の土壌部の重力水の水位(28)を所望の水位に保つ。重力水状態の土壌部の重力水は、その上方の土壌に毛細管現象によって吸い上げられ、この上方の土壌の水分量は、重力水の水位の高低によって変動する。このため、水位管理手段を用いて重力水の水位を適切な位置に保つことにより、適切な水分量を有する毛管水状態の土壌部(30)を耕作地に形成することができる。   In the first invention, the underground irrigation system (10) includes a water-impervious member (16) and is applied to the cultivated land (200) or the like to keep the moisture content of the soil in an appropriate state for plant growth. The water shielding member is formed in a container shape having an upper opening and has a water storage function. The water supply means (12, 14) supplies water to the inside of the water shielding member. That is, when water is supplied by the water supply means, the water penetrates into the soil in the water-impervious member and becomes gravity water and remains in the water-impervious member. Thereby, the soil part (26) of a gravity water state is formed in the inside of a water-impervious member. Moreover, a water level management means (18) manages the water supply by a water supply means, and maintains the water level (28) of the gravity water of the soil part of a gravity water state to a desired water level. Gravity water in the soil portion in the gravitational water state is sucked up by the capillarity in the soil above it, and the amount of water in the soil above this varies depending on the level of gravity water. For this reason, by maintaining the water level of gravity water at an appropriate position using the water level management means, a capillary water state soil portion (30) having an appropriate amount of water can be formed on the cultivated land.

第1の発明によれば、土壌自体の浸透機能を利用するので、目詰まりによる浸透機能の低下が発生せず、維持管理が容易となる。また、給水側で重力水の水位管理を行うので、無駄な水が供給されることが無く、水資源を効率的に利用できる。   According to the first invention, since the permeation function of the soil itself is used, the permeation function is not deteriorated due to clogging, and maintenance is facilitated. Moreover, since the water level management of gravity water is performed on the water supply side, useless water is not supplied and water resources can be used efficiently.

第2の発明は、上面に開口を設けた横管状に形成され、その内部に重力水状態の土壌部を有する遮水部材、遮水部材の内部に設けられるかつ遮水部材内を通る水路を形成する管部材を有し、遮水部材の内部に給水して土壌部を形成する給水手段、遮水部材の少なくとも一方端部に設けられ、遮水部材と他の遮水部材とを接続するとともに、管部材と他の管部材とを接続する接続部材、および土壌部の重力水の水位が設定値以上のときに給水手段による給水を停止し、土壌部の重力水の水位が設定値未満のときに給水手段による給水を行う水位管理手段を備える、地下灌漑システムである。 The second invention is formed in a horizontal tubular shape having an opening on the upper surface, and has a water-impervious member having a gravitational water-state soil portion therein, a water passage provided inside the water-impervious member and passing through the water-impervious member. A water supply means having a pipe member to be formed and supplying water inside the water-impervious member to form a soil portion, provided at at least one end of the water-impervious member, and connecting the water-impervious member and another water-impervious member In addition, the connection member that connects the pipe member and other pipe members, and when the gravitational water level in the soil part is equal to or higher than the set value, water supply by the water supply means is stopped, and the gravitational water level in the soil part is less than the set value It is an underground irrigation system provided with a water level management means for supplying water by the water supply means.

第3の発明は、上面に開口を設けた横管状に形成され、その内部に重力水状態の土壌部を有する遮水部材、遮水部材の底部との間に所定の間隔を有して遮水部材と一体的に形成されるかつ遮水部材内を通る水路を形成する管部材を含み、遮水部材の内部に給水して土壌部を形成する給水手段、および土壌部の重力水の水位が設定値以上のときに給水手段による給水を停止し、土壌部の重力水の水位が設定値未満のときに給水手段による給水を行う水位管理手段を備える、地下灌漑システムである。 The third invention is formed in a horizontal tube having an opening on the upper surface, and has a predetermined interval between the water-impervious member having a gravitational water-state soil portion and the bottom of the water-impervious member. A water supply means that includes a pipe member that is integrally formed with the water member and that forms a water channel that passes through the water-impervious member, and that supplies water to the interior of the water-impervious member to form a soil portion, and the level of gravity water in the soil portion It is an underground irrigation system comprising water level management means for stopping water supply by the water supply means when the water level is equal to or higher than a set value and supplying water by the water supply means when the gravitational water level in the soil portion is less than the set value.

第4の発明は、第3の発明に従属し、管部材の周壁の一部に間隙が形成され、その間隙を介して遮水部材の内部に水が供給される。 The fourth invention is dependent on the third invention, and a gap is formed in a part of the peripheral wall of the pipe member, and water is supplied to the inside of the water shielding member through the gap.

第5の発明は、第4の発明に従属し、管部材は、遮水部材内を通る水路を形成する筒状部と、遮水部材の内部に立設し筒状部を支持する支持部とを含み、筒状部を支持部の上に形成して、筒状部と遮水部材の底部との間に所定の間隔を設けるようにした。 A fifth invention is dependent on the fourth invention, and the pipe member includes a cylindrical portion that forms a water channel that passes through the water-impervious member, and a support portion that is erected inside the water-impervious member and supports the cylindrical portion. The cylindrical portion is formed on the support portion, and a predetermined interval is provided between the cylindrical portion and the bottom portion of the water shielding member.

第6の発明は、第4の発明に従属し、管部材は、遮水部材の開口縁を内側に屈曲させることによって遮水部材の内部に形成される。 A sixth invention is dependent on the fourth invention, and the pipe member is formed inside the water shielding member by bending the opening edge of the water shielding member inward.

第7の発明は、第1ないし6のいずれかの発明の地下灌漑システムに用いられて、耕作地の地中に連設される二重管ユニットであって、上面に開口を設けた横管状に形成される遮水部材、遮水部材の内部に設けられる管部材、および遮水部材の少なくとも一方端部に設けられて、遮水部材と他の遮水部材とを接続するとともに、管部材と他の管部材とを接続する接続部材を備える、二重管ユニットである。   A seventh invention is a double pipe unit used in the underground irrigation system according to any one of the first to sixth inventions and continuously provided in the ground of the cultivated land, and has a horizontal tube having an opening on the upper surface. A water-impervious member formed in the water-impervious member, a pipe member provided inside the water-impervious member, and provided at at least one end of the water-impervious member to connect the water-impervious member and the other water-impervious member, It is a double pipe unit provided with the connection member which connects other pipe members.

第7の発明では、二重管ユニットは、地下灌漑システム(10)に用いられ、耕作地(200)の両端付近まで延びるように、当該耕作地の地中に連設される。二重管ユニットは、その上面に開口(110)を設けた横管状に形成される遮水部材(16)を備えており、この遮水部材の内部には、管部材(90,114,138)が設けられる。また、遮水部材の端部には、接続部材(110)が設けられる。接続部材は、遮水部材と他の遮水部材とを接続するとともに、管部材と他の管部材とを接続する。   In the seventh invention, the double pipe unit is used in the underground irrigation system (10), and is connected to the ground of the cultivated land so as to extend to the vicinity of both ends of the cultivated land (200). The double pipe unit includes a water shielding member (16) formed in a horizontal tubular shape having an opening (110) on an upper surface thereof, and inside the water shielding member, pipe members (90, 114, 138) are provided. ) Is provided. Moreover, the connection member (110) is provided in the edge part of a water-impervious member. The connecting member connects the water shielding member and the other water shielding member, and connects the pipe member and the other pipe member.

この発明によれば、土壌自体の浸透機能を利用するので、目詰まりによる浸透機能の低下が発生せず、維持管理が容易となる。   According to this invention, since the permeation function of the soil itself is used, the permeation function is not lowered due to clogging, and maintenance is facilitated.

また、給水側で重力水の水位管理を行うので、無駄な水が供給されることが無く、水資源を効率的に利用できる。   Moreover, since the water level management of gravity water is performed on the water supply side, useless water is not supplied and water resources can be used efficiently.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。   The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

図1を参照して、この発明の一実施例である地下灌漑システム10(以下、単に「システム10」という。)は、水タンク12、給水管14、遮水部材16および水位管理器18を備え、耕作地200などに適用され、地下から水を供給して土壌中の水分を植物の生育にとって適切な状態に保つ。   Referring to FIG. 1, an underground irrigation system 10 (hereinafter simply referred to as “system 10”) according to an embodiment of the present invention includes a water tank 12, a water supply pipe 14, a water shielding member 16, and a water level controller 18. It is applied to cultivated land 200 and the like, and water is supplied from underground to keep moisture in the soil in an appropriate state for plant growth.

水タンク12は、地上に設置されて、耕作地200に供給するための水を貯留する。水タンク12は、たとえば、農業用水配管(図示せず)などと接続されて、農業用水配管から送られてくる水をその内部に貯留する。水タンク12に貯留される水量は、耕作地200の面積などによって適宜設定され、水タンク12内には、常に一定量以上の水が貯留される。たとえば、水タンク12内の水位が一定水位を下回ると、農業用水配管から自動的に水が補給されるようにしてもよいし、手動で栓を開け閉めすること等によって水を適宜補給するようにしてもよい。   The water tank 12 is installed on the ground and stores water to be supplied to the cultivated land 200. The water tank 12 is connected to, for example, an agricultural water pipe (not shown), and stores water sent from the agricultural water pipe therein. The amount of water stored in the water tank 12 is appropriately set depending on the area of the cultivated land 200 and the like, and a certain amount or more of water is always stored in the water tank 12. For example, when the water level in the water tank 12 falls below a certain water level, water may be automatically replenished from the agricultural water pipe, or water may be replenished appropriately by manually opening and closing the plug, etc. It may be.

給水管14は、水タンク12内の水を遮水部材16の内部まで送る管路であって、水タンク12と接続される本管20、および本管20から分岐する分岐管22を含む。また、分岐管22は、本管20と接続される第1分岐管22a、および第1分岐管22aからさらに分岐して遮水部材16まで延び、遮水部材16の内部に給水する第2分岐管22bを含む。給水管14は、塩化ビニル等の合成樹脂およびSUS等の金属などによって形成され、複数の直管、可撓管および継手などを適宜連結して形成される。   The water supply pipe 14 is a pipe line that sends water in the water tank 12 to the inside of the water shielding member 16, and includes a main pipe 20 connected to the water tank 12 and a branch pipe 22 branched from the main pipe 20. The branch pipe 22 further extends from the first branch pipe 22 a connected to the main pipe 20 and the first branch pipe 22 a to the water shielding member 16 and supplies water to the inside of the water shielding member 16. Includes tube 22b. The water supply pipe 14 is formed of a synthetic resin such as vinyl chloride and a metal such as SUS, and is formed by appropriately connecting a plurality of straight pipes, flexible pipes, joints, and the like.

遮水部材16は、図2に示すように、合成樹脂および金属などの遮水性を有する材質によって、上側開口の容器状に形成され、地中に埋設される。この実施例では、遮水部材16は、有底円筒状に形成され、複数(たとえば16個)の遮水部材16が耕作地200の地中に分散配置される。遮水部材16としては、たとえば、汎用の塩化ビニル製のVU管にキャップ等で底をつけたものを用いるとよい。遮水部材16の内径は、たとえば50mm−500mmであり、その高さは、たとえば50mm−300mmである。また、遮水部材16の底面16aから地表面202までの距離は、たとえば100mm−500mmであり、各遮水部材16の間の間隔は、たとえば0.5m−2.0mである。ただし、遮水部材16の大きさ、配置個数、配置深さおよび配置間隔などは、これらの数値に限定されず、このシステム10を適用する耕作地200の面積、土壌成分および気候条件などに応じて、適宜設定される。このことは、後述する他の各実施例においても同様である。たとえば、樹木等の植え付け後に耕起する必要が無い場合には、遮水部材16を植穴の直近に浅く埋設することもできる。   As shown in FIG. 2, the water-impervious member 16 is formed in a container shape having an upper opening and embedded in the ground by a material having water-impervious properties such as synthetic resin and metal. In this embodiment, the water shielding member 16 is formed in a bottomed cylindrical shape, and a plurality of (for example, 16) water shielding members 16 are distributed and arranged in the ground of the cultivated land 200. As the water-impervious member 16, for example, a general-purpose vinyl chloride VU pipe with a bottom attached with a cap or the like may be used. The inner diameter of the water shielding member 16 is, for example, 50 mm-500 mm, and the height thereof is, for example, 50 mm-300 mm. Moreover, the distance from the bottom face 16a of the water-impervious member 16 to the ground surface 202 is, for example, 100 mm-500 mm, and the interval between the respective water-impervious members 16 is, for example, 0.5 m-2.0 m. However, the size, the number of arrangement, the arrangement depth, the arrangement interval, and the like of the water shielding member 16 are not limited to these numerical values, and depend on the area of the cultivated land 200 to which the system 10 is applied, the soil components, the climatic conditions, and the like. Is set as appropriate. This is the same in other embodiments described later. For example, when it is not necessary to plow after planting trees or the like, the water-impervious member 16 can also be buried shallowly near the planting hole.

また、遮水部材16の側面下部には、接続口24が形成され、この接続口24に第2分岐管22bが接続される。さらに、遮水部材16の内部には、周囲の土壌と同様の成分によって構成される土が充填される。詳細は後述するように、第2分岐管22bから遮水部材16の内部に水が供給されると、そこに重力水状態の土壌部26が形成される。   Further, a connection port 24 is formed in the lower part of the side surface of the water shielding member 16, and the second branch pipe 22 b is connected to the connection port 24. Further, the water shielding member 16 is filled with soil composed of the same components as the surrounding soil. As will be described in detail later, when water is supplied from the second branch pipe 22b to the inside of the water shielding member 16, a soil portion 26 in a gravity water state is formed there.

なお、上述のように、遮水部材16は上側開口の容器状に形成されるため、この場合の遮水部材16の内部とは、遮水部材16の上側に含まれる概念となる。また、遮水部材16は、地中に埋設されることによって、その上側に土壌を有することになるのはもちろんのこと、遮水部材16の内部に土が充填されることによっても、その上側に土壌を有することになる。   As described above, since the water shielding member 16 is formed in a container shape having an upper opening, the inside of the water shielding member 16 in this case is a concept included above the water shielding member 16. Moreover, the water-impervious member 16 is buried in the ground, so that it has soil on the upper side thereof, and also when the water-impervious member 16 is filled with soil, the upper side is also provided. Will have soil.

また、給水管14には、水位管理器18が設けられる。水位管理器18は、図3に示すように、貯水機能を有する縦管40、および縦管40の内部に収容される管理器本体42を含み、縦管40内の水位に応じて水の供給を調整するものである。この実施例では、水位管理器18は、本管20(つまり給水側)に設けられ、詳細は後述するように、本管20から分岐管22への水の供給を調整することによって、遮水部材16の内部に形成される重力水状態の土壌部26の重力水の水位28を管理する。   The water supply pipe 14 is provided with a water level manager 18. As shown in FIG. 3, the water level manager 18 includes a vertical pipe 40 having a water storage function, and a management body 42 accommodated in the vertical pipe 40, and supplies water according to the water level in the vertical pipe 40. Is to adjust. In this embodiment, the water level controller 18 is provided on the main pipe 20 (that is, the water supply side), and as described in detail later, by adjusting the supply of water from the main pipe 20 to the branch pipe 22, The gravity water level 28 of the soil portion 26 in the gravity water state formed inside the member 16 is managed.

縦管40は、塩化ビニルなどの合成樹脂によって、有底円筒状に形成される。縦管40の上部は開口しており、その開口から上流側の本管20が挿入されて、本管20と管理器本体42とが接続される。また、縦管40の側壁下部には管接続部44が形成され、この管接続部44に下流側の本管20が接続される。したがって、本管20は、水位管理器18の前後でその敷設高さが変わる。   The vertical tube 40 is formed in a bottomed cylindrical shape by a synthetic resin such as vinyl chloride. The upper part of the vertical pipe 40 is opened, and the main pipe 20 on the upstream side is inserted from the opening, and the main pipe 20 and the management device main body 42 are connected. In addition, a pipe connecting portion 44 is formed in the lower portion of the side wall of the vertical pipe 40, and the main pipe 20 on the downstream side is connected to the pipe connecting portion 44. Therefore, the laying height of the main pipe 20 changes before and after the water level controller 18.

管理器本体42としては、本願出願人が先に出願した特願2007−83825号において提案したものを使用することができる。   As the management device main body 42, the one proposed in Japanese Patent Application No. 2007-83825 filed earlier by the present applicant can be used.

具体的には、管理器本体42は、軸部46を含み、軸部46は、金属または合成樹脂などによって直管状に形成される。軸部46の一端部分は、上流側の本管20と管理器本体42とを接続するための接続部分である。また、軸部46の他端は、後述する弁体60を受ける弁座48として用いられ、その他端の開口は、縦管40内に水を供給する給水口50として用いられる。   Specifically, the management device main body 42 includes a shaft portion 46, and the shaft portion 46 is formed in a straight tube shape by metal or synthetic resin. One end portion of the shaft portion 46 is a connection portion for connecting the main pipe 20 on the upstream side and the management device main body 42. The other end of the shaft portion 46 is used as a valve seat 48 that receives a valve body 60 described later, and the opening at the other end is used as a water supply port 50 that supplies water into the vertical tube 40.

また、管理器本体42は、軸固定具52およびフロート54を備え、これらは軸部46の周囲に配置される。軸固定具52は、合成樹脂などによって平板状に形成されて、軸部46の上部および下部のそれぞれに取り付けられる。2つの軸固定部52は、互いが直交する方向に延びるように配置され、それらの両端部が縦管40の内面に沿うように当接することによって、軸部46が傾くことを防止する。また、上側の軸固定部52には、その長さを微調整するための長さ調整部56が設けられる。   The management device main body 42 includes a shaft fixing tool 52 and a float 54, which are arranged around the shaft portion 46. The shaft fixing member 52 is formed in a flat plate shape using a synthetic resin or the like, and is attached to each of the upper portion and the lower portion of the shaft portion 46. The two shaft fixing portions 52 are arranged so as to extend in directions orthogonal to each other, and the shaft portions 46 are prevented from being inclined by abutting both end portions thereof along the inner surface of the vertical tube 40. Further, the upper shaft fixing portion 52 is provided with a length adjusting portion 56 for finely adjusting the length thereof.

フロート54は、給水口50の上方に配置されて、縦管40内の水位変動に応じて上昇および下降する浮標であり、塩化ビニル等の合成樹脂によって中空リング状に形成される。フロート54の中心部を貫通するように形成される孔には、軸部46が挿通され、フロート54は、軸部46に沿って移動(上昇および下降)する。   The float 54 is a buoy that is arranged above the water supply port 50 and rises and falls according to the fluctuation of the water level in the vertical tube 40, and is formed in a hollow ring shape by a synthetic resin such as vinyl chloride. The shaft portion 46 is inserted into the hole formed so as to penetrate the center portion of the float 54, and the float 54 moves (ascends and descends) along the shaft portion 46.

また、フロート54には、リンク機構58を介して弁体60が連結される。弁体60は、給水口50の下方に配置されて、フロート54が上昇すると、弁座48と当接して給水口50を閉じ、フロート54が下降すると、弁座48から離れて給水口50を開く。弁体60は、金属および合成樹脂などによって円盤状に形成され、その上面は、弁座48と隙間無く当接できるように、エチレンプロピレンゴム等の弾性材によって覆われている。   In addition, a valve body 60 is connected to the float 54 via a link mechanism 58. The valve body 60 is disposed below the water supply port 50. When the float 54 rises, the valve body 60 comes into contact with the valve seat 48 to close the water supply port 50. When the float 54 descends, the valve body 60 moves away from the valve seat 48 and opens the water supply port 50. open. The valve body 60 is formed in a disc shape from a metal, a synthetic resin, or the like, and its upper surface is covered with an elastic material such as ethylene propylene rubber so that it can contact the valve seat 48 without a gap.

リンク機構58は、フロート54の動きを弁体60に伝え、フロート54の動きと、弁体60が給水口50を開閉する動きとを連動させるものである。リンク機構58は、金属および合成樹脂などによって平棒状に形成される複数のアーム等を組み合わせて形成され、てこの原理を利用して、フロート54が移動する力を増幅して弁体60に伝える。つまり、リンク機構58を用いることによって、弁体60と弁座48とを強い力で押し付けることができ、給水口50を適切に閉じることができる。   The link mechanism 58 transmits the movement of the float 54 to the valve body 60, and links the movement of the float 54 and the movement of the valve body 60 opening and closing the water supply port 50. The link mechanism 58 is formed by combining a plurality of arms formed in the shape of a flat bar made of metal, synthetic resin, etc., and utilizes the principle of lever to amplify the force that the float 54 moves and transmit it to the valve body 60. . That is, by using the link mechanism 58, the valve body 60 and the valve seat 48 can be pressed with a strong force, and the water supply port 50 can be appropriately closed.

このような水位管理器18を本管20に設けるときには、先ず、縦管40を地中に配置し、縦管40の管接続部44に下流側の本管20を接続する。次に、管理器本体42を縦管40内に入れ、管理器本体42の位置を縦管40内の所望の位置(高さ)に調整する。つまり、縦管40内の水位が所定の水位設定値になったときに、フロート54が上昇して弁体60が弁座48に当接し、給水口50が閉じられるような位置に、管理器本体42の位置を調整する。そして、その状態で、長さ調整部56を調整して上側の軸固定部52の長さを長くし、軸固定部52を縦管40の内面に突っ張らせて、軸部46を縦管40内に固定することによって、管理器本体42を縦管40内の所望の位置に固定する。また、縦管40の一端部分に上流側の本管20を接続する。   When such a water level management device 18 is provided in the main pipe 20, first, the vertical pipe 40 is disposed in the ground, and the main pipe 20 on the downstream side is connected to the pipe connection portion 44 of the vertical pipe 40. Next, the management device main body 42 is placed in the vertical tube 40, and the position of the management device main body 42 is adjusted to a desired position (height) in the vertical tube 40. That is, when the water level in the vertical pipe 40 reaches a predetermined water level set value, the float 54 rises so that the valve body 60 contacts the valve seat 48 and the water supply port 50 is closed. The position of the main body 42 is adjusted. In this state, the length adjusting portion 56 is adjusted to increase the length of the upper shaft fixing portion 52, the shaft fixing portion 52 is stretched on the inner surface of the vertical tube 40, and the shaft portion 46 is extended to the vertical tube 40. By fixing it inside, the management device main body 42 is fixed at a desired position in the vertical tube 40. Further, the upstream main pipe 20 is connected to one end portion of the vertical pipe 40.

このようなシステム10では、水タンク12内の水は、水タンク12内の水位と縦管40内の水位との水位差(たとえば、1m程度の水位差)を利用した自然流下によって、本管20および軸部46を介して、縦管40内に供給される。縦管40内に供給された水は、さらに本管20および分岐管22を介して、遮水部材16の内部に供給される。遮水部材16は、上側開口の容器状に形成される、つまり貯水機能を有するので、遮水部材16の内部に供給された水は、その内部の土中に浸透していき、重力水となって遮水部材16の内部に留まる。これによって、遮水部材16の内部には、重力水状態の土壌部26が形成される。   In such a system 10, the water in the water tank 12 flows through the main pipe by natural flow using a water level difference between the water level in the water tank 12 and the water level in the vertical pipe 40 (for example, a water level difference of about 1 m). 20 and the shaft portion 46 are supplied into the vertical tube 40. The water supplied into the vertical pipe 40 is further supplied into the water shielding member 16 through the main pipe 20 and the branch pipe 22. Since the water-impervious member 16 is formed in a container shape having an upper opening, that is, has a water storage function, the water supplied to the inside of the water-impervious member 16 permeates into the soil inside the water-impervious member 16 and the gravity water. And stays inside the water shielding member 16. As a result, a soil portion 26 in a gravity water state is formed inside the water shielding member 16.

この土壌部26の重力水の水位28、すなわち遮水部材16内の重力水の水位28は、縦管40内の水位と連動しており、重力水の水位28の上昇に伴い、縦管40内の水位も上昇する。そして、縦管40内の水位が所定の水位設定値になると、給水口50が閉じられて、軸部46から縦管40内への給水が停止される。これによって、遮水部材16内への給水が停止され、重力水の水位28は、縦管40内の水位と同じ水位、つまり所定の水位設定値で止まる。また、後述するように、遮水部材16内の重力水が上側の土壌に吸い上げられて、重力水の水位28が低下すると、縦管40内の水位も低下し、給水口50が開かれて、軸部46から縦管40内への給水が行われ、遮水部材16内への給水が行われる。   The gravitational water level 28 in the soil portion 26, that is, the gravitational water level 28 in the water shielding member 16 is linked to the water level in the vertical pipe 40, and as the gravitational water level 28 rises, the vertical pipe 40. The water level inside rises. When the water level in the vertical pipe 40 reaches a predetermined water level set value, the water supply port 50 is closed, and water supply from the shaft portion 46 into the vertical pipe 40 is stopped. Thereby, the water supply into the water shielding member 16 is stopped, and the water level 28 of the gravity water stops at the same water level as the water level in the vertical tube 40, that is, a predetermined water level set value. Further, as will be described later, when the gravity water in the water shielding member 16 is sucked up by the upper soil and the water level 28 of the gravity water is lowered, the water level in the vertical pipe 40 is also lowered and the water supply port 50 is opened. The water supply from the shaft portion 46 into the vertical pipe 40 is performed, and the water supply into the water shielding member 16 is performed.

言い換えると、水位管理器18は、遮水部材16内の重力水の水位28が設定値以上になると、給水口50を閉じて本管20から分岐管22への給水を停止し、遮水部材16内の重力水の水位28が設定値未満になると、給水口50を開いて本管20から分岐管22への給水を行う。これによって、水位管理器18は、遮水部材16内への給水を管理し、遮水部材16内の重力水の水位28を設定水位に保つ。   In other words, the water level manager 18 closes the water supply port 50 and stops the water supply from the main pipe 20 to the branch pipe 22 when the gravity water level 28 in the water shielding member 16 becomes equal to or higher than the set value. When the water level 28 of the gravity water in 16 becomes less than the set value, the water supply port 50 is opened to supply water from the main pipe 20 to the branch pipe 22. Thus, the water level manager 18 manages the water supply into the water shielding member 16 and keeps the gravity water level 28 in the water shielding member 16 at the set water level.

遮水部材16内の重力水、つまり土壌部26の水分は、その上側の土壌に毛細管現象によって吸い上げられて浸透していき、上側の土壌に毛管水状態の土壌部30を形成する(図2参照)。毛管水状態の土壌部30の水分量は、遮水部材16内の重力水の水位28の高低によって変動するため、重力水の水位28を適切な位置に保てば、毛管水状態の土壌部30の水分量を適切に保つことができる。たとえば、耕作地200で栽培する植物に合わせて、重力水の水位28を調整すれば、その植物にとって最適な水分量を有する作土層が耕作地200に形成される。   Gravity water in the water-impervious member 16, that is, moisture in the soil portion 26 is sucked and penetrated into the upper soil by capillary action to form the soil portion 30 in the capillary water state in the upper soil (FIG. 2). reference). The amount of water in the soil portion 30 in the capillary water state varies depending on the level of the gravitational water level 28 in the water shielding member 16. Therefore, if the gravitational water level 28 is maintained at an appropriate position, the soil portion in the capillary water state The water content of 30 can be kept appropriate. For example, if the water level 28 of gravity water is adjusted according to the plant cultivated on the cultivated land 200, a soil layer having an optimal amount of water for the plant is formed on the cultivated land 200.

なお、遮水部材16の上端16bと重力水の上面(つまり水位28の位置)との距離が短いと、重力水がサイフォン現象によって遮水部材16の外部に流出し続けてしまう可能性がある。本願発明者等による実験によると、毛管水状態の土壌部30の形成に遮水部材16内の重力水を有効に利用するためには、遮水部材16の上端16bと重力水の上面との距離は、3cm以上であることが望ましく、好ましくは6cm以上、より好ましくは16cm〜20cmであることが望ましい。したがって、遮水部材16の形状は、3cm〜20cmの間で自由に水位が設定できる構造が望ましい。   If the distance between the upper end 16b of the water shielding member 16 and the upper surface of the gravity water (that is, the position of the water level 28) is short, the gravity water may continue to flow out of the water shielding member 16 due to the siphon phenomenon. . According to experiments by the inventors of the present application, in order to effectively use the gravity water in the water shielding member 16 for the formation of the soil portion 30 in the capillary water state, the upper end 16b of the water shielding member 16 and the upper surface of the gravity water are The distance is desirably 3 cm or more, preferably 6 cm or more, and more preferably 16 cm to 20 cm. Therefore, the shape of the water shielding member 16 is preferably a structure in which the water level can be freely set between 3 cm and 20 cm.

この実施例では、吸水体などの浸透材を用いずに、土壌部26,30自体の浸透機能を利用して、土壌中の水分を植物の生育にとって適切な状態に保つ。土壌部26,30自体は、干ばつ等の水不足によって乾燥状態になったとしても、目詰まりするということは無いので、目詰まりによる浸透機能の低下が発生せず、遮水部材16内の土を洗浄したり、交換したりする必要が生じない。したがって、この実施例によれば、維持管理が容易となる。   In this embodiment, the water content in the soil is maintained in an appropriate state for the growth of the plant by using the permeation function of the soil portions 26 and 30 themselves without using a permeation material such as a water absorbent. Since the soil portions 26 and 30 themselves are not clogged even if they become dry due to water shortage such as drought, the permeation function does not deteriorate due to clogging, and the soil in the water shielding member 16 is not clogged. There is no need to clean or replace. Therefore, according to this embodiment, maintenance management becomes easy.

また、スプリンクラー等による一般的な散水、つまり表面灌漑によって耕作地200に水を供給すると、供給された水は、土壌表面や植物表面も潤すことになるが、これらは植物の生育には関係無く、大気中に蒸発(つまり表面蒸発)してしまうだけであるので、水の無駄遣いが生じる。また、土壌がぬかるんでしまうため作業に支障が出たり、泥跳ねや土壌表面の凝固などの不具合を招いてしまう。さらに、ハウス栽培の場合には、表面蒸発した水分によってハウス内の湿度が過剰に高くなり、植物の病気発生の原因となる場合もある。   Moreover, when water is supplied to the cultivated land 200 by general watering using a sprinkler or the like, that is, surface irrigation, the supplied water will also moisten the soil surface and the plant surface, but these are not related to the growth of the plant. Since it only evaporates in the atmosphere (that is, surface evaporation), water is wasted. Moreover, since the soil becomes muddy, the work is hindered, and problems such as mud splashing and solidification of the soil surface are caused. Furthermore, in the case of house cultivation, the humidity in the house becomes excessively high due to moisture evaporated on the surface, which may cause plant diseases.

これに対して、この実施例のように、地下から浸透させて耕作地200に水を供給すれば、つまり地下灌漑を行えば、供給した水が表面蒸発することが無いので、水の無駄遣いを低減でき、水資源を効率的に利用できる。その上、上述のような、土壌がぬかるんだり、ハウス内の湿度が過度に上昇したりする等の、表面灌漑に起因する不具合も生じない。   On the other hand, if water is supplied to the cultivated land 200 by infiltrating from the underground as in this embodiment, that is, if underground irrigation is performed, the surface of the supplied water will not evaporate. It can be reduced and water resources can be used efficiently. In addition, problems such as those described above caused by surface irrigation such as soil becoming muddy and excessive humidity in the house will not occur.

さらに、この実施例では、給水側で遮水部材16内への給水を管理し、遮水部材16内の重力水が毛細管現象によってその上層に吸い上げられて減少した分の水のみを供給するので、余剰に水が供給されることは無く、水資源をより効率的に利用できる。また、このように水資源を効率的に利用することによって、温暖化対策としても貢献できる。   Furthermore, in this embodiment, the water supply into the water shielding member 16 is managed on the water supply side, and only the amount of water that has been reduced due to the gravity water in the water shielding member 16 being sucked up by capillarity is supplied. In addition, excessive water is not supplied, and water resources can be used more efficiently. In addition, the efficient use of water resources in this way can also contribute to global warming countermeasures.

また、水位管理器18によって遮水部材16内への給水を管理し、毛細管現象によって土壌に水を供給するため、動力が不要である。また、降雨などによって耕作地200に過剰の水が供給された場合、その余剰水は地下深くに浸透していくので、余剰水を排出する設備を別途設ける必要が無い。したがって、システム10を簡素化できる。ただし、降雨などによって直ぐに冠水してしまう耕作地200にシステム10を適用する場合には、注意が必要であり、別途排水設備を設ける必要がある場合もある。   Moreover, since the water supply to the impermeable member 16 is managed by the water level manager 18 and water is supplied to the soil by capillary action, no power is required. In addition, when excess water is supplied to the cultivated land 200 due to rain or the like, the surplus water penetrates deep into the ground, so there is no need to separately provide a facility for discharging the surplus water. Therefore, the system 10 can be simplified. However, when the system 10 is applied to the cultivated land 200 that is immediately submerged due to rain or the like, care must be taken and a separate drainage facility may need to be provided.

なお、土壌が非常に乾燥している場合は、毛細管現象が生じにくいので、栽培開始時などは、土壌に十分灌水して、毛細管がつながる状態を予め作ってやるとよい。   It should be noted that when the soil is very dry, the capillary phenomenon is unlikely to occur. Therefore, at the start of cultivation, the soil should be sufficiently irrigated to create a state in which the capillaries are connected in advance.

また、給水管14および遮水部材16を敷設する際には、その敷設部分のみを掘削するだけでよいので、耕作地200全面を掘削することと比較して、掘削および埋戻しなどの土工費を低減できる。また、耕作地200全面を掘削する必要が無いので、たとえば、既に樹木の植えられた土地にこのシステム10を適用する場合には、樹木の間に給水管14および遮水部材16を敷設するようにすれば、樹木を植えかえずにそのままシステム10を導入することができ、樹木を傷つけることがない。   Further, when laying the water supply pipe 14 and the water-impervious member 16, it is only necessary to excavate only the laying portion. Can be reduced. Further, since it is not necessary to excavate the entire cultivated land 200, for example, when the system 10 is applied to land where trees are already planted, the water supply pipe 14 and the water shielding member 16 are laid between the trees. If so, the system 10 can be introduced as it is without planting trees, and the trees are not damaged.

また、植物は、背丈が高くなるに伴い、その根を深く張って安定性を保とうとするが、重力水の水位28を適宜調整することによって、その植物にとって必要な深さ(厚さ)まで毛管水状態の土壌部30を耕作地200に形成することができるので、耕作地200では様々な植物を好適に栽培することができる。   In addition, as plants become taller, they try to maintain their stability by stretching their roots deeply, but by adjusting the water level 28 of gravity water as appropriate, the depth (thickness) necessary for the plant is reached. Since the soil portion 30 in the capillary water state can be formed on the cultivated land 200, various plants can be suitably cultivated on the cultivated land 200.

また、特許文献2の技術のように、遮水シートによって地下全面を覆ってしまうと、大きな木は、根を深く張ることができず、倒木したり、その生育に悪影響を受けたりする等の問題が生じる。しかし、この実施例のように、遮水部材16を分散配置しておけば、そのような問題が解消され、根を地中深くまで張るような大きな木でも好適に栽培できる。   Moreover, if the whole underground surface is covered with a water-impervious sheet as in the technique of Patent Document 2, a large tree cannot stretch its roots deeply, and falls down or is adversely affected by its growth. Problems arise. However, if the water-impervious members 16 are arranged in a distributed manner as in this embodiment, such a problem is solved, and even a large tree whose roots are stretched deep into the ground can be cultivated suitably.

また、重力水状態の土壌部26より上側の土壌を毛管水状態に適切に保つことができるので、保水力が弱く、雨水などが直ぐに地下深くに浸透してしまう、所謂ざる田や砂地などにも好適に適用できる。また、田畑の輪換も容易に行うことができる。   Moreover, since the soil above the soil portion 26 in the gravitational water state can be appropriately maintained in the capillary water state, the water retention capacity is weak, so that rainwater or the like immediately penetrates deeply into the ground, so-called zaru rice fields or sandy land. Can also be suitably applied. In addition, it is possible to easily change the fields.

また、耕作地200の面積などに応じて、遮水部材16の大きさや設置個数などを適宜変更することによって、システム10は、個人用から大規模なものまで幅広く適用できる。たとえば、庭の花壇に用いることもできるし、ベランダや屋上などの緑化に用いることもできるし、大規模な畑作や稲作などに用いることもできる。   Further, the system 10 can be widely applied from a personal use to a large-scale one by appropriately changing the size and the number of the water shielding members 16 according to the area of the cultivated land 200 and the like. For example, it can be used for garden flower beds, can be used for greening verandas, rooftops, etc., and can also be used for large-scale field and rice farming.

なお、上述の実施例では、遮水部材16を給水管14(具体的には第2分岐管22b)に対して並列的に接続するようにしたが、図4に示すように、遮水部材16を直列的に接続することもできる。   In the above-described embodiment, the water shielding member 16 is connected in parallel to the water supply pipe 14 (specifically, the second branch pipe 22b). However, as shown in FIG. 16 can also be connected in series.

この場合の遮水部材16としては、図5に示すように、たとえば、汎用の塩化ビニル製のVU管の下端部にT型の管継手(具体的には90°Tや90°Yなど)を接続したものを用いるとよい。これによって、遮水部材16の側面下部に2つの接続口24が形成されるので、各接続口24に第2分岐管22bを接続することにより、簡単に遮水部材14を直列的に接続することができる。   As the water shielding member 16 in this case, as shown in FIG. 5, for example, a T-type pipe joint (specifically, 90 ° T, 90 ° Y, etc.) is provided at the lower end of a general-purpose vinyl chloride VU pipe. It is good to use what connected. As a result, the two connection ports 24 are formed in the lower part of the side surface of the water-impervious member 16, and thus the water-impervious member 14 is simply connected in series by connecting the second branch pipe 22 b to each connection port 24. be able to.

ただし、この遮水部材16の内部に土を充填すると、第2分岐管22b内の水の流れがそこで遮断され、後続する遮水部材16に対して適切に水を供給できない恐れがある。   However, if soil is filled in the water shielding member 16, the flow of water in the second branch pipe 22 b is blocked there, and there is a possibility that water cannot be supplied appropriately to the subsequent water shielding member 16.

そこで、図4に示す実施例では、各遮水部材16を給水管14で接続することもできるが、図5に示すように、第2分岐管22bおよび遮水部材16の内部を通る有孔管90を設けるようにすることもできる。有孔管90は、遮水部材16内を通る水路92を形成し、その内部に流れる水をその管壁に形成される多数の細孔を介して遮水部材16内に供給し、遮水部材16内に重力水状態の土壌部26を形成する。つまり、有孔管90は、遮水部材16内を通る水路92を形成するための給水部材として機能する。この際、重力水の水位28は、有孔管90の細孔より高い位置になるように管理される。   Therefore, in the embodiment shown in FIG. 4, each water shielding member 16 can be connected by the water supply pipe 14, but as shown in FIG. 5, the second branch pipe 22 b and the hole passing through the inside of the water shielding member 16. A tube 90 can also be provided. The perforated pipe 90 forms a water channel 92 that passes through the water-impervious member 16, and supplies the water flowing inside the water-impervious member 16 through a large number of pores formed in the pipe wall. A soil portion 26 in a gravity water state is formed in the member 16. That is, the perforated pipe 90 functions as a water supply member for forming the water channel 92 that passes through the water shielding member 16. At this time, the water level 28 of gravity water is managed so as to be higher than the pores of the perforated tube 90.

なお、重力水の水位28を有孔管90より上方になるように適宜管理すれば、有孔管90は常に満水状態となり、空気に触れないため、酸化鉄などが付着し難い。また、水の流れは有孔管90の内部から外部へ向かう。したがって、図5に示す実施例においては、特許文献2の技術と比較して、有孔管90が目詰まりし難い。つまり、有孔管90を用いても、維持管理の負担はあまり大きくならない。   In addition, if the water level 28 of gravity water is appropriately managed so as to be above the perforated tube 90, the perforated tube 90 is always filled with water and does not come into contact with air, so that iron oxide or the like hardly adheres. Further, the water flow goes from the inside of the perforated tube 90 to the outside. Therefore, in the embodiment shown in FIG. 5, the perforated tube 90 is less likely to be clogged as compared with the technique of Patent Document 2. That is, even if the perforated tube 90 is used, the maintenance burden is not so great.

ただし、有孔管90の上端まで水がなくても、有孔管90内に一定の水位があれば、有孔管90円周面から給水されるので、必ずしも有孔管90を満水状態にする必要はない。   However, even if there is no water up to the upper end of the perforated pipe 90, if there is a certain water level in the perforated pipe 90, water is supplied from the circumferential surface of the perforated pipe 90. do not have to.

また、図5に示す実施例では、給水部材として、有孔管90を用いたが、これに限定されない。たとえば、図6に示すように、給水部材として、有孔板94を用いることによって、遮水部材16の内部を通り、隣り合う第2分岐管22bの内部同士を連通する水路92を形成することもできる。この場合には、たとえば、VU管の下端部にT型の管継手を接続して遮水部材16を形成する際に、VU管と管継手との間に挟み込むようにして有孔板94を設けるとよい。この遮水部材16では、有孔板94の上に土が充填される。そして、水路92を流れる水が、有孔板94に形成される多数の細孔を介して遮水部材16内の土に供給されることにより、遮水部材16内に重力水状態の土壌部26が形成される。言い換えると、この場合のT型の管継手は、縦管状の遮水部材16の下端に接続される給水管14を形成する部材としても機能する。また、有孔板94は、水路92を形成するための給水部材であるとともに、縦管状の遮水部材16内に土壌部26を保持するための透水部材としても機能する。   Moreover, in the Example shown in FIG. 5, although the perforated pipe | tube 90 was used as a water supply member, it is not limited to this. For example, as shown in FIG. 6, by using a perforated plate 94 as a water supply member, a water channel 92 that passes through the inside of the water shielding member 16 and communicates with the inside of the adjacent second branch pipe 22b is formed. You can also. In this case, for example, when the T-type pipe joint is connected to the lower end portion of the VU pipe to form the water shielding member 16, the perforated plate 94 is sandwiched between the VU pipe and the pipe joint. It is good to provide. In the water shielding member 16, soil is filled on the perforated plate 94. And the water which flows through the water channel 92 is supplied to the soil in the water-impervious member 16 through a large number of pores formed in the perforated plate 94, so that the soil portion in the gravitational water state in the water-impervious member 16. 26 is formed. In other words, the T-shaped pipe joint in this case also functions as a member that forms the water supply pipe 14 connected to the lower end of the vertical tubular water shielding member 16. The perforated plate 94 is a water supply member for forming the water channel 92 and also functions as a water permeable member for holding the soil portion 26 in the vertical tubular water shielding member 16.

図6に示す実施例においても、重力水の水位28を有孔板94より上方になるように適宜管理すれば、つまり遮水部材16内に重力水状態の土壌部26が常に形成されている状態を維持すれば、図5に示す実施例と同様に、有孔板94は目詰まりし難く、維持管理の負担はあまり大きくならない。   Also in the embodiment shown in FIG. 6, if the gravity water level 28 is appropriately managed so as to be above the perforated plate 94, that is, the soil portion 26 in the gravity water state is always formed in the water shielding member 16. If the state is maintained, similarly to the embodiment shown in FIG. 5, the perforated plate 94 is not easily clogged, and the maintenance burden is not so great.

また、上述の各実施例では、1つの水位管理器18を給水管14の本管20に設けるようにし、全ての遮水部材16内の重力水の水位28を一括して管理するようにしたが、これに限定されない。たとえば、第1分岐管22aのそれぞれに水位管理器18を設けて、複数の遮水部材16ごとに、重力水の水位28を管理することもできる。各水位管理器18と各第1分岐管22aとの接続方法は、図3における本管20を、各第1分岐管22aに変えればよいだけであるので、詳しい説明は省略する。この場合には、各第1分岐管22aの敷設高さが、各水位管理器18の前後で変わり、各水位管理器18によって、それより下流側に設けられる複数の遮水部材16内の重力水の水位28が、一括して管理される。   Further, in each of the above-described embodiments, one water level manager 18 is provided in the main pipe 20 of the water supply pipe 14, and the water level 28 of gravity water in all the water shielding members 16 is collectively managed. However, it is not limited to this. For example, the water level manager 18 may be provided in each of the first branch pipes 22a, and the water level 28 of gravity water may be managed for each of the plurality of water shielding members 16. The connecting method between each water level manager 18 and each first branch pipe 22a is only required to change the main pipe 20 in FIG. 3 to each first branch pipe 22a, and thus detailed description thereof is omitted. In this case, the laying height of each first branch pipe 22a changes before and after each water level manager 18, and the gravity in a plurality of water shielding members 16 provided downstream by each water level manager 18 is obtained. The water level 28 is managed collectively.

また、図7に示すように、第2分岐管22bごとに、つまり遮水部材16ごとに水位管理器18を設け、各遮水部材16内の重力水の水位28を個別に管理することもできる。この場合には、図8および図9に示すような簡易型の水位管理器18を用いるとよい。なお、上述したことと説明が重複する部分については、説明を省略または簡略化して行う。このことは、後述する他の各実施例においても同様である。   In addition, as shown in FIG. 7, a water level manager 18 is provided for each second branch pipe 22 b, that is, for each water shielding member 16, and the water level 28 of gravity water in each water shielding member 16 can be individually managed. it can. In this case, a simple water level manager 18 as shown in FIGS. 8 and 9 may be used. In addition, about the part which overlaps with what was mentioned above, description is abbreviate | omitted or simplified. This is the same in other embodiments described later.

簡易型の水位管理器18は、縦管70を含み、給水管14(この実施例では第2分岐管22b)の端部分に設けられて、縦管70内の水位に応じて水の供給を調整するものである。縦管70は、塩化ビニルなどの合成樹脂によって両端開口の円筒状に形成され、その内径は、たとえば40mmである。縦管70としては、汎用の塩化ビニル製のVU管などを用いるとよい。また、縦管70の内部には、水位設定具72およびフロート74が設けられる。   The simplified water level management device 18 includes a vertical pipe 70 and is provided at an end portion of the water supply pipe 14 (second branch pipe 22b in this embodiment) to supply water according to the water level in the vertical pipe 70. To be adjusted. The vertical tube 70 is formed in a cylindrical shape with openings at both ends by a synthetic resin such as vinyl chloride, and its inner diameter is, for example, 40 mm. As the vertical tube 70, a general-purpose vinyl chloride VU tube may be used. Further, a water level setting tool 72 and a float 74 are provided inside the vertical pipe 70.

水位設定具72は、縦管70内に配置されて、その配置高さに基づいて縦管70内の水位設定値を規定するものである。水位設定具72は、有底円筒状に形成され、その外径は、縦管70内の所望の位置(高さ)に配置可能な程度に、縦管70の内径とほぼ同じに設定される。また、水位設定具70の底面には、貫通孔76が形成される。水位設定具72としては、汎用の塩化ビニル製のキャップを用いることができる。   The water level setting tool 72 is arranged in the vertical pipe 70 and defines the water level setting value in the vertical pipe 70 based on the arrangement height. The water level setting tool 72 is formed in a bottomed cylindrical shape, and its outer diameter is set to be substantially the same as the inner diameter of the vertical tube 70 to such an extent that it can be placed at a desired position (height) in the vertical tube 70. . A through hole 76 is formed on the bottom surface of the water level setting tool 70. As the water level setting tool 72, a general-purpose vinyl chloride cap can be used.

また、縦管70の側壁には、水位設定具72よりも高い位置において、貫通孔78が形成される。その貫通孔78から地下を通る第2分岐管22bの端部分が縦管70内に挿入され、第2分岐管22bの端部分は、さらに水位設定具72の貫通孔76に挿通されて、水位設定具72から下方に向かって突出するように固定される。第2分岐管22bの端は、後述するフロート74の上面80と当接する弁座82として機能し、その開口は、縦管70内に水を供給する給水口84となる。   Further, a through hole 78 is formed in the side wall of the vertical pipe 70 at a position higher than the water level setting tool 72. The end portion of the second branch pipe 22b passing through the underground from the through hole 78 is inserted into the vertical pipe 70, and the end portion of the second branch pipe 22b is further inserted into the through hole 76 of the water level setting tool 72 to It is fixed so as to protrude downward from the setting tool 72. The end of the second branch pipe 22 b functions as a valve seat 82 that comes into contact with the upper surface 80 of the float 74 described later, and the opening serves as a water supply port 84 for supplying water into the vertical pipe 70.

フロート74は、水位設定具72の下方に配置されて、縦管70内の水位変動に応じて上昇および下降し、その上面80は、弁座82と当接して給水口84を閉じる弁体としても機能する。フロート74は、ゴム等の弾性材および合成樹脂などによって中空円柱状に形成され、その外周面は、縦管70の内周面と若干の隙間を空けて沿う。つまり、フロート74は、給水口84(給水管14の端)より下の位置において、縦管70内に単に入れられた状態で配置され、縦管70にガイドされて動く。ただし、弁体として機能するフロートの上面80において、少なくとも弁座82と当接する部位は、ゴム等の弾性材によって形成する必要がある。これは、フロート74の上昇する力が弱い場合でも、フロート74の上面80(弁体)と第2分岐管22bの端(弁座82)とが隙間無く接触して、給水口84を適切に閉じることができるようにするためである。フロート74としては、乳酸菌飲料用のポリスチレン製の容器、或いはペットボトル等を利用することができ、その上部の開口をゴムシート等の弾性材で封止することによって、弁体として機能する上面80を形成するとよい。   The float 74 is disposed below the water level setting tool 72 and rises and falls according to the fluctuation of the water level in the vertical pipe 70, and its upper surface 80 is a valve body that abuts the valve seat 82 and closes the water supply port 84. Also works. The float 74 is formed in a hollow cylindrical shape by an elastic material such as rubber and a synthetic resin, and the outer peripheral surface thereof extends along the inner peripheral surface of the vertical tube 70 with a slight gap. That is, the float 74 is arranged in a state of being simply put in the vertical pipe 70 at a position below the water supply port 84 (the end of the water supply pipe 14), and moves while being guided by the vertical pipe 70. However, at least a portion that contacts the valve seat 82 on the upper surface 80 of the float that functions as a valve body needs to be formed of an elastic material such as rubber. This is because even when the rising force of the float 74 is weak, the upper surface 80 (valve element) of the float 74 and the end (valve seat 82) of the second branch pipe 22b are in contact with each other without gaps, so that the water supply port 84 is appropriately This is so that it can be closed. As the float 74, a polystyrene container for lactic acid bacteria beverages, a PET bottle or the like can be used, and an upper surface 80 which functions as a valve body by sealing the upper opening with an elastic material such as a rubber sheet. It is good to form.

このように、簡易型の水位管理器18は、汎用品のみを組み合わせて簡単にかつ安価に製作できる。なお、上述のように、水位設定具72の底面に形成した貫通孔76から第2分岐管22bの端を突出させて、第2分岐管22bの端自体を弁座82として機能させる代わりに、水位設定具72の底面に、その底面を連通して上方および下方に突出する両端開口の円筒状の軸部を形成しておき、その軸部の上部に第2分岐管22bの端を接続するようにしてもよい。この場合には、軸部の下端が給水管14の端に相当してフロート74の上面80と当接する弁座82として機能し、その下端開口が縦管70内に水を供給する給水口84として機能する。また、縦管70の側壁に貫通孔78を設け、そこから地下を通る第2分岐管22bを縦管70内に挿入する代わりに、第2分岐管22bを地表面202に沿わせて配置し、縦管70の上部開口から第2分岐管22bを縦管70内に挿入するようにしてもよい。さらに、縦管70の上部開口には、適宜な蓋を装着するようにしてもよい。   As described above, the simple water level manager 18 can be easily and inexpensively manufactured by combining only general-purpose products. As described above, instead of causing the end of the second branch pipe 22b to protrude from the through hole 76 formed in the bottom surface of the water level setting tool 72 and causing the end of the second branch pipe 22b itself to function as the valve seat 82, A cylindrical shaft portion having both end openings that project upward and downward is formed on the bottom surface of the water level setting tool 72, and the end of the second branch pipe 22b is connected to the upper portion of the shaft portion. You may do it. In this case, the lower end of the shaft portion corresponds to the end of the water supply pipe 14 and functions as a valve seat 82 that contacts the upper surface 80 of the float 74, and the lower end opening of the water supply port 84 supplies water into the vertical pipe 70. Function as. Further, instead of providing the through-hole 78 in the side wall of the vertical pipe 70 and inserting the second branch pipe 22b passing therethrough into the vertical pipe 70, the second branch pipe 22b is arranged along the ground surface 202. The second branch pipe 22b may be inserted into the vertical pipe 70 from the upper opening of the vertical pipe 70. Further, an appropriate lid may be attached to the upper opening of the vertical tube 70.

このような簡易型の水位管理器18を遮水部材16に設ける方法の一例について説明する。先ず、遮水部材16を地中に配置するときに、遮水部材16内の所定高さまで土を充填し、その土の上に縦管70を立て置きする。次に、縦管70内にフロート74を入れた後、水位設定具72を縦管70内の所望の位置(高さ)に固定する。つまり、縦管70内の水位が所定の水位設定値になったときに、フロート74が上昇してその上面80が弁座82に当接し、給水口84が閉じられるような位置に、水位設定具72を固定する。続いて、縦管70の貫通孔78および水位設定具72の貫通孔76に第2分岐管22bを挿通し、第2分岐管22bの端を縦管70の下方に突出させて固定する。最後に、遮水部材16の内部の残りおよびその周辺に土を充填し、縦管70を固定する。   An example of a method of providing such a simple water level manager 18 on the water shielding member 16 will be described. First, when the water-impervious member 16 is disposed in the ground, the soil is filled to a predetermined height in the water-impervious member 16, and the vertical pipe 70 is placed on the soil. Next, after putting the float 74 in the vertical tube 70, the water level setting tool 72 is fixed at a desired position (height) in the vertical tube 70. That is, when the water level in the vertical pipe 70 reaches a predetermined water level set value, the water level is set at such a position that the float 74 rises and its upper surface 80 comes into contact with the valve seat 82 and the water supply port 84 is closed. The tool 72 is fixed. Subsequently, the second branch pipe 22 b is inserted into the through hole 78 of the vertical pipe 70 and the through hole 76 of the water level setting tool 72, and the end of the second branch pipe 22 b is protruded below the vertical pipe 70 and fixed. Finally, the remainder inside the water shielding member 16 and the periphery thereof are filled with soil, and the vertical pipe 70 is fixed.

なお、設定水位は、縦管70内における水位設定具72の配置位置を変えることによって設定する代わりに、遮水部材16内における縦管70の埋設深さ(配置高さ)を変えることによって設定することもできる。たとえば、水位設定具72および給水管14の端部分(給水口84)を縦管70内の所定位置に予め固定しておき、遮水部材16内に縦管70を配置するときに、その配置高さを適宜調整することによって、設定水位を所望の位置に設定することができる。この場合には、水位設定具72を必ずしも設ける必要はなく、縦管70内の所定位置に給水口84を固定的に設けるための固定具があればよい。   The set water level is set by changing the embedment depth (arrangement height) of the vertical pipe 70 in the water shielding member 16 instead of changing the arrangement position of the water level setting tool 72 in the vertical pipe 70. You can also For example, when the water level setting tool 72 and the end portion of the water supply pipe 14 (water supply port 84) are fixed in advance in a predetermined position in the vertical pipe 70 and the vertical pipe 70 is arranged in the water shielding member 16, the arrangement is made. The set water level can be set to a desired position by appropriately adjusting the height. In this case, the water level setting tool 72 is not necessarily provided, and a fixing tool for fixing the water supply port 84 at a predetermined position in the vertical pipe 70 may be used.

このように簡易型の水位管理器18を各遮水部材16に設けると、図9(A)に示すように、第2分岐管22bを流れる水は、縦管70内に流入し、遮水部材16内に供給される。遮水部材16内に供給された水は、土中を浸透していき、重力水となって遮水部材16内に留まる。これによって、遮水部材16内に重力水状態の土壌部26が形成される。遮水部材16内の重力水の水位28と縦管70内の水位とは同じであり、重力水の水位28が設定水位に達すると、図9(B)に示すように、給水口84が閉じられて、第2分岐管22bから縦管70内への給水が停止される。また、遮水部材16内の重力水が上側の土壌に吸い上げられて、重力水の水位28が設定水位よりも低下すると、図9(A)に示すように、給水口84が開かれて、第2分岐管22bから縦管70内への給水が行われる。   When the simple water level management device 18 is provided in each water shielding member 16 as described above, the water flowing through the second branch pipe 22b flows into the vertical pipe 70 as shown in FIG. It is supplied into the member 16. The water supplied into the water-impervious member 16 permeates through the soil and becomes gravity water and remains in the water-impervious member 16. As a result, the soil portion 26 in the state of gravity water is formed in the water shielding member 16. The water level 28 in the water-impervious member 16 and the water level in the vertical pipe 70 are the same. When the water level 28 reaches the set water level, as shown in FIG. It is closed and the water supply from the second branch pipe 22b into the vertical pipe 70 is stopped. Further, when the gravity water in the water shielding member 16 is sucked up by the upper soil and the water level 28 of the gravity water is lower than the set water level, the water supply port 84 is opened as shown in FIG. Water is supplied from the second branch pipe 22b into the vertical pipe 70.

上述のように、図7に示す実施例によれば、各遮水部材16内の重力水の水位28を個別に調節することができるので、たとえば図10に示すように、遮水部材16ごと、或いは近くに配置される複数の遮水部材16ごとに、重力水の水位28を変えれば、場所ごとに水分量の異なる毛管水状態の土壌部30を耕作地200に形成することができる。したがって、同一のシステム10内で、生育に適する土壌水分量の異なる植物を、最適な状態で同時に栽培することができる。たとえば、同一システム10の耕作地200において、或る範囲ではキャベツを栽培し、他の或る範囲では大豆を栽培し、さらに他の或る範囲では樹木を栽培するというようなことができる。   As described above, according to the embodiment shown in FIG. 7, the water level 28 of the gravitational water in each of the water shielding members 16 can be individually adjusted. For example, as shown in FIG. Alternatively, if the water level 28 of gravity water is changed for each of the plurality of water shielding members 16 arranged in the vicinity, the soil portion 30 in a capillary water state having a different moisture content for each place can be formed on the cultivated land 200. Therefore, in the same system 10, plants having different soil water content suitable for growth can be cultivated simultaneously in an optimal state. For example, in the cultivated land 200 of the same system 10, cabbage is cultivated in a certain range, soybeans are cultivated in another certain range, and trees are cultivated in another certain range.

なお、図10では、簡易型の水位管理器18の水位設定具72を設ける高さを変えることによって、重力水の水位28を個別に変えてあるが、この際には、遮水部材16自体の埋設深さも変えるようにしてもよい。   In FIG. 10, the water level 28 of the gravity water is individually changed by changing the height at which the water level setting tool 72 of the simplified water level management device 18 is provided. You may make it also change the embedment depth.

また、重力水の水位28を個別に調節可能にすることによって、地表面202に起伏や傾斜などを有する耕作地200にも好適にシステム10を適用できる。たとえば、図11に示すように、地表面202と各遮水部材16内の重力水の上面との距離を、最適な距離で一定にすれば、そこで栽培する植物にとって最適な水分量を有する土壌部30を、起伏や傾斜などを有する耕作地200に形成することができる。   In addition, the system 10 can be suitably applied to the cultivated land 200 having undulations, slopes, and the like on the ground surface 202 by individually adjusting the water level 28 of the gravity water. For example, as shown in FIG. 11, if the distance between the ground surface 202 and the upper surface of the gravitational water in each water-impervious member 16 is made constant at an optimum distance, the soil having the optimum amount of water for the plants cultivated there. The part 30 can be formed on the cultivated land 200 having undulations, slopes, and the like.

また、上述の各実施例では、複数の遮水部材16を規則正しく並べて配置してあるが、遮水部材16は、不規則的な配置位置となっていてもよい。また、耕作地200全体に万遍なく遮水部材16を配置することによって、耕作地200の作土層全体を毛管水状態の土壌部30とすることもできるし、耕作地200の一部の範囲に遮水部材16を配置することによって、耕作地200の作土層の一部の範囲のみ、つまり耕作者が望む範囲のみを毛管水状態の土壌部30とすることもできる。   Further, in each of the above-described embodiments, the plurality of water shielding members 16 are regularly arranged, but the water shielding members 16 may be irregularly arranged. Further, by arranging the water shielding member 16 uniformly throughout the cultivated land 200, the entire soil layer of the cultivated land 200 can be used as the soil portion 30 in the capillary water state, or a part of the cultivated land 200 can be used. By disposing the water-impervious member 16 in the range, only a partial range of the soil layer of the cultivated land 200, that is, only a range desired by the cultivator can be set as the soil water portion 30 in the capillary water state.

さらに、地表面202まで毛管水状態の土壌部30を形成するだけでなく、地表面202は乾燥状態であるが、植物が水分を吸収する土壌深さにおいては、毛管水状態の土壌部30が形成されているというような状態にすることもできる。また、植物の成長に伴い、重力水の水位28を適宜調整することによって、その成長段階において必要な土壌深さに、毛管水状態の土壌部30が形成されているというような状態にすることもできる。   Furthermore, not only the soil surface 30 in the capillary water state is formed up to the ground surface 202, but the ground surface 202 is in the dry state, but at the soil depth where the plant absorbs moisture, the soil water portion 30 in the capillary water state is It can also be in the state of being formed. In addition, as the plant grows, the water level 28 of gravity water is appropriately adjusted so that the soil water 30 in the capillary water state is formed at the necessary soil depth in the growth stage. You can also.

また、必ずしも重力水の水位28の上下に対応して給水する必要はない。土壌の条件など、場合によっては間欠的に水を供給し、土壌部30の水分を適宜コントロールしてもよい。   Further, it is not always necessary to supply water corresponding to the upper and lower levels of the gravity water level 28. In some cases, such as soil conditions, water may be intermittently supplied to control the moisture in the soil portion 30 as appropriate.

また、遮水部材16内の土の成分を周囲(外部)の土壌成分と同じにしたが、遮水部材16内の土壌成分は、特に限定されない。たとえば、遮水部材16内の土壌成分として、周囲の土壌成分より粒子径の大きい土粒子、或いは小さい土粒子を用いてもよい。また、たとえば、下層から順に、礫層、砂層、およびシルト層を形成するというように、遮水部材16内の土壌を複層状態にすることもできる。   Moreover, although the soil component in the water-impervious member 16 is the same as the surrounding (external) soil component, the soil component in the water-impervious member 16 is not particularly limited. For example, as the soil component in the water-impervious member 16, soil particles having a particle diameter larger than or smaller than the surrounding soil components may be used. Moreover, the soil in the water-impervious member 16 can also be made into a multi-layered state, for example, forming a gravel layer, a sand layer, and a silt layer in order from the lower layer.

また、図12に示すように、遮水部材16の上側開口には、鍔状部材96をさらに設けるようにしてもよい。鍔状部材96は、合成樹脂および金属などの遮水性を有する材質によって形成され、遮水部材16の側壁から鍔状に延びるように形成される。たとえば図12(A)に示すように、鍔状部材96は、ビニルシート等を利用して、その内側面が遮水部材16の外側面に沿うリング状に形成され、遮水部材16の側壁上部に配置される。   In addition, as shown in FIG. 12, a hook-shaped member 96 may be further provided in the upper opening of the water shielding member 16. The eaves member 96 is formed of a material having a water shielding property such as a synthetic resin and a metal, and is formed so as to extend like a bowl from the side wall of the water shielding member 16. For example, as shown in FIG. 12 (A), the flange-like member 96 is formed in a ring shape whose inner side surface is along the outer side surface of the water-impervious member 16 by using a vinyl sheet or the like. Arranged at the top.

上述のように、土壌部26の水分は、その上側の土壌に毛細管現象によって吸い上げられて、遮水部材16の上部およびその周辺の土壌へと浸透していき、毛管水状態の土壌部30を形成する。ここで、遮水部材16に鍔状部材96を設けておくと、鍔状部材96はその下方の土壌への水の浸透を遮断するので、浸透水は横方向に浸透していくことになる。これによって、横方向に広範囲に広がる毛管水状態の土壌部30を形成することができる。このように、鍔状部材96を用いて下方に向かって浸透していく水の量を低減することによって、より効率的に広範囲に広がる毛管水状態の土壌部30を形成することができ、使用する水の量を低減することができる。   As described above, the moisture of the soil portion 26 is sucked up by the capillarity to the upper soil and permeates into the upper portion of the water shielding member 16 and the surrounding soil, and the soil portion 30 in the capillary water state is absorbed. Form. Here, if the hook-shaped member 96 is provided in the water-impervious member 16, the hook-shaped member 96 blocks the penetration of water into the soil below it, so that the penetrating water penetrates in the lateral direction. . Thereby, the soil part 30 of the capillary water state which spreads widely in the horizontal direction can be formed. In this way, by reducing the amount of water that permeates downward using the bowl-shaped member 96, it is possible to form a capillary water state soil portion 30 that more efficiently spreads over a wide area. The amount of water to be reduced can be reduced.

なお、鍔状部材96は、平面視で遮水部材の側壁から鍔状に延びるように設けられて、その下方の土壌への水の浸透を遮断するものであればよく、たとえば図12(B)に示すように、その外周部を立ち上げるように形成することもできる。また、たとえば図12(C)に示すように、鍔状部材96を漏斗状に形成して、遮水部材16の上部開口に差し込むようにしてもよい。また、図12においてはいずれも、鍔状部材96を遮水部材16の側壁上部に設けてあるが、鍔状部材96の配置位置(深さ)はこれに限定されず、鍔状部材96を遮水部材16の側壁中部に配置してもよいし、遮水部材16の側壁下部に配置してもよい。さらには、鍔状部材96をたとえば皿状に形成し、遮水部材16の下に配置してもよい。このように鍔状部材96の配置位置を調整ことによって、所望の深さまで毛管水状態の土壌部30を形成することができる。また、遮水部材16と鍔状部材96とは一体的に形成されていてもよい。   Note that the hook-like member 96 is only required to be provided so as to extend like a hook from the side wall of the water-impervious member in a plan view, and blocks water penetration into the soil below the hook-like member 96, for example, FIG. ), The outer peripheral portion can be formed to rise. Further, for example, as shown in FIG. 12C, the bowl-shaped member 96 may be formed in a funnel shape and inserted into the upper opening of the water shielding member 16. In FIG. 12, the hook-shaped member 96 is provided on the upper side wall of the water-blocking member 16, but the arrangement position (depth) of the hook-shaped member 96 is not limited to this. You may arrange | position in the side wall center part of the water-impervious member 16, and may arrange | position in the side wall lower part of the water-impervious member 16. Furthermore, the bowl-shaped member 96 may be formed in a dish shape, for example, and disposed below the water-impervious member 16. Thus, the soil part 30 of a capillary water state can be formed to desired depth by adjusting the arrangement position of the bowl-shaped member 96. FIG. Moreover, the water-impervious member 16 and the bowl-shaped member 96 may be integrally formed.

また、上述の各実施例では、遮水部材16を有底円筒状に形成したが、遮水部材16の形状は、これに限定される必要はない。   Moreover, in each above-mentioned Example, although the water-impervious member 16 was formed in the bottomed cylindrical shape, the shape of the water-impervious member 16 does not need to be limited to this.

たとえば、図13―図18に示すように、遮水部材16を横管状に形成することもできる。   For example, as shown in FIGS. 13 to 18, the water shielding member 16 may be formed in a horizontal tubular shape.

たとえば、図13に示す実施例では、遮水部材16は、その上面に開口98を設けた横管状に形成され、耕作地200の両端付近まで延びる遮水部材16が、所定の間隔を隔てて並ぶように分散配置される。遮水部材16は、たとえば半円状の断面形状を有する半割り管であり、半割り管としては、たとえばその内径が100mmの汎用の塩化ビニル製のVU管を、軸方向に沿って2つに切断したものを利用することができる。   For example, in the embodiment shown in FIG. 13, the water-impervious member 16 is formed in a horizontal tube shape having an opening 98 on the upper surface, and the water-impervious member 16 extending to the vicinity of both ends of the cultivated land 200 is separated by a predetermined interval. They are distributed in a line. The water shielding member 16 is, for example, a half pipe having a semicircular cross-sectional shape. As the half pipe, for example, two general-purpose vinyl chloride VU pipes having an inner diameter of 100 mm along the axial direction are provided. You can use what you cut.

このように、遮水部材16を横管状に形成しても、その内部の重力水の水位28を水位管理器18によって適切に管理することによって、毛管水状態の土壌部30を適切に形成できる。たとえば、各遮水部材16の中央付近に水位管理器18を設け、図7に示す実施例と同様に、水位管理器18を介して第2分岐管22bから遮水部材16内に水を供給して、各遮水部材16内の重力水の水位28が、所望の水位になるように個別管理するとよい。   Thus, even if the water-impervious member 16 is formed in a horizontal tubular shape, the soil water 30 in the capillary water state can be appropriately formed by appropriately managing the water level 28 of the gravity water therein by the water level manager 18. . For example, a water level management device 18 is provided near the center of each water shielding member 16, and water is supplied into the water shielding member 16 from the second branch pipe 22b via the water level management device 18 as in the embodiment shown in FIG. And it is good to manage individually so that the water level 28 of the gravity water in each water-impervious member 16 may become a desired water level.

このように各遮水部材16内の重力水の水位28を個別管理すれば、傾斜地に形成される段々畑などにも好適にシステム10を適用できる。なお、重力水の水位28は必ずしも個別管理する必要はなく、図1に示す実施例と同様に、本管20に水位管理器18を設けて全ての遮水部材16の重力水の水位28を一括管理してもよいし、第1分岐管22aに水位管理器18を設けて複数の遮水部材16ごとに重力水の水位28を管理してもよい。   Thus, if the water level 28 of the gravitational water in each water-impervious member 16 is individually managed, the system 10 can be suitably applied to terraced fields formed on slopes. It is not always necessary to individually manage the water level 28 of the gravitational water. Similar to the embodiment shown in FIG. 1, the water level manager 18 is provided in the main pipe 20 to control the water level 28 of all the water shielding members 16. The water level management device 18 may be provided in the first branch pipe 22a and the water level 28 of the gravity water may be managed for each of the plurality of water shielding members 16.

ここで、遮水部材16の形状を横方向に長くしすぎると、第2分岐管22bから供給される水が、遮水部材16内の端部まで適切に浸透せずにその上部から溢れ出してしまい、重力水状態の土壌部26を適切に形成できない可能性がある。そこで、横管状の遮水部材16を用いる場合には、遮水部材16の内部に給水部材を設け、遮水部材16の内部を通る水路92を形成するとよい。たとえば、図14および図15に示す実施例では、遮水部材16の内部に、遮水部材16の底面に沿うように軸方向に延びる有孔管90が設けられる。有孔管90は、遮水部材16の内部において第2分岐管22bと接続されて、第2分岐管22bから送られてくる水を、その管壁に形成される多数の細孔を介して遮水部材16内に供給する。このような有孔管90を用いることによって、遮水部材16を横長に形成した場合であっても、遮水部材16内の端部まで適切に水を浸透させることができ、遮水部材16内に重力水状態の土壌部26を適切に形成することができる。   Here, if the shape of the water shielding member 16 is too long in the lateral direction, the water supplied from the second branch pipe 22b does not permeate properly to the end in the water shielding member 16 and overflows from the upper part thereof. Therefore, there is a possibility that the soil part 26 in the gravity water state cannot be properly formed. Therefore, when the horizontal tubular water shielding member 16 is used, it is preferable to provide a water supply member inside the water shielding member 16 and form a water channel 92 passing through the inside of the water shielding member 16. For example, in the embodiment shown in FIG. 14 and FIG. 15, a perforated tube 90 extending in the axial direction along the bottom surface of the water shielding member 16 is provided inside the water shielding member 16. The perforated pipe 90 is connected to the second branch pipe 22b inside the water shielding member 16, and the water sent from the second branch pipe 22b is passed through a large number of pores formed in the pipe wall. The water is supplied into the water shielding member 16. By using such a perforated pipe 90, even when the water shielding member 16 is formed in a horizontally long shape, water can be appropriately permeated to the end in the water shielding member 16, and the water shielding member 16 The soil part 26 in a gravity water state can be appropriately formed therein.

また、図16に示すように、半割り管の周方向両側縁に、長方形状の側板を垂直方向に接続したものを遮水部材16として用いてもよい。   Further, as shown in FIG. 16, a water shielding member 16 may be formed by connecting rectangular side plates in the vertical direction to both side edges in the circumferential direction of the half pipe.

さらに、図17に示すように、有孔管90の代わりに、遮水部材16内の下部に有孔板94を設けることによって、遮水部材16の底部に水路92を形成してもよい。たとえば、半割り管に側板を接続して遮水部材16を形成する場合には、半割り管と側板との間に挟み込むように長方形状の有孔板94を設けるとよい。この場合にも、重力水の水位28は有孔板94より上方になるように適宜管理される。   Furthermore, as shown in FIG. 17, instead of the perforated pipe 90, a water channel 92 may be formed at the bottom of the water shielding member 16 by providing a perforated plate 94 in the lower part of the water shielding member 16. For example, when the water shielding member 16 is formed by connecting a side plate to the half pipe, a rectangular perforated plate 94 may be provided so as to be sandwiched between the half pipe and the side plate. Also in this case, the gravity water level 28 is appropriately managed so as to be above the perforated plate 94.

また、図13−図15に示す実施例では、上面に開口98を設けた横管状の遮水部材16として半割り管を利用したが、これに限定されない。たとえば、図18に示すように、遮水部材16として、汎用の塩化ビニル製のVU管の管壁上端部をその管軸方向の全長に亘って切り取って開口98を設けたものを利用することもできる。   In the embodiment shown in FIGS. 13 to 15, the half pipe is used as the horizontal tubular water shielding member 16 having the opening 98 on the upper surface, but the invention is not limited to this. For example, as shown in FIG. 18, as the water shielding member 16, use is made of a general-purpose vinyl chloride VU pipe whose upper end is cut out over the entire length in the pipe axis direction and provided with an opening 98. You can also.

なお、重力水の水位28を有孔管90より上方に維持したり、遮水部材16の上端16bと重力水の上面との距離を一定間隔以上に維持したりするためには、遮水部材16は或る程度の高さを有する必要がある。ここで、半割り管のみで形成される遮水部材16(図15参照)を用いると、遮水部材16自体の製作が容易であるという利点はあるが、その横幅は大きいものになってしまう。しかし、図16−図18に示す実施例の遮水部材16を用いれば、その横幅を抑えつつその高さを確保できる。   In order to maintain the gravity water level 28 above the perforated pipe 90 or to maintain the distance between the upper end 16b of the water shielding member 16 and the upper surface of the gravity water at a predetermined interval or more, the water shielding member 16 needs to have a certain height. Here, when the water-impervious member 16 (see FIG. 15) formed by only the half pipe is used, there is an advantage that the manufacture of the water-impervious member 16 itself is easy, but the lateral width becomes large. . However, if the water-impervious member 16 of the embodiment shown in FIGS. 16 to 18 is used, the height can be secured while suppressing the lateral width.

ところで、図13−図18に示す実施例では、遮水部材16は、上面に開口98を設けた横管状に形成されて、遮水部材16の両端は、耕作地200の両端付近まで延びたが、これに限定される必要はない。   By the way, in the embodiment shown in FIGS. 13 to 18, the water shielding member 16 is formed in a horizontal tube having an opening 98 on the upper surface, and both ends of the water shielding member 16 extend to the vicinity of both ends of the cultivated land 200. However, it need not be limited to this.

図19に示すこの発明の他の実施例では、遮水部材16の端部に接続部材110が設けられ、この接続部材110によって、遮水部材16と他の遮水部材16とが接続される。   In another embodiment of the present invention shown in FIG. 19, a connection member 110 is provided at the end of the water shielding member 16, and the water shielding member 16 and the other water shielding member 16 are connected by the connection member 110. .

図20および図21に示すように、この場合の遮水部材16としては、たとえばその内径が100mmの汎用の塩化ビニル製のVU管の管壁上端部を管軸方向の所定間隔ごとに切り取って複数の開口98を設けたものが利用される。遮水部材16の軸方向の長さは、たとえば2000mmである。遮水部材16の管壁上端部における開口98を除いた部分は、当該開口98を補強するための補強部112として機能する。換言すると、遮水部材16の管壁上端部には、所定間隔ごとに補強部112が設けられる。   As shown in FIGS. 20 and 21, as the water shielding member 16 in this case, for example, an upper end portion of a general-purpose vinyl chloride VU pipe having an inner diameter of 100 mm is cut at predetermined intervals in the pipe axis direction. A device provided with a plurality of openings 98 is used. The length of the water shielding member 16 in the axial direction is, for example, 2000 mm. A portion excluding the opening 98 at the upper end portion of the pipe wall of the water shielding member 16 functions as a reinforcing portion 112 for reinforcing the opening 98. In other words, the reinforcing portion 112 is provided at a predetermined interval on the upper end portion of the pipe wall of the water shielding member 16.

また、遮水部材16の内部には、給水部材として、管部材114が設けられる。管部材114には、たとえば汎用の塩化ビニル製のVU管の管壁下端部にのみ多数の細孔を形成したものが利用され、管部材114は、水路92の水を主として下方に供給する。管部材114の内径は、たとえば50mmであり、管部材114の軸方向の長さは、たとえば2000mmである。   In addition, a pipe member 114 is provided inside the water shielding member 16 as a water supply member. As the pipe member 114, for example, a general-purpose vinyl chloride VU pipe having a large number of pores formed only at the lower end of the pipe wall is used. The pipe member 114 mainly supplies water in the water channel 92 downward. The inner diameter of the tube member 114 is, for example, 50 mm, and the length of the tube member 114 in the axial direction is, for example, 2000 mm.

接続部材110は、2つの同形状のソケット116と1つの中継管118とを備える。図21―図23に示すように、ソケット116は、外筒部120および内筒部122を含み、外筒部120によって遮水部材16の端部を受容するとともに、内筒部122によって管部材114の端部を受容する。すなわち、接続部材110によって、遮水部材16の内部における管部材114の位置が固定的に保持される。   The connecting member 110 includes two sockets 116 having the same shape and one relay pipe 118. As shown in FIGS. 21 to 23, the socket 116 includes an outer cylinder part 120 and an inner cylinder part 122, and receives the end of the water shielding member 16 by the outer cylinder part 120, and a tube member by the inner cylinder part 122. 114 end is received. That is, the position of the pipe member 114 inside the water shielding member 16 is fixedly held by the connecting member 110.

外筒部120は、その一方開口が外筒ストッパ124によって封止された円筒状に形成され、その内径は、遮水部材16の外径に合わせて適宜設定され、たとえば115mmである。   The outer cylinder part 120 is formed in a cylindrical shape whose one opening is sealed by an outer cylinder stopper 124, and the inner diameter thereof is appropriately set according to the outer diameter of the water shielding member 16, and is 115 mm, for example.

内筒部122は、外筒ストッパ124を貫通する円筒状に形成され、その内径は、管部材114の外径に合わせて適宜設定され、たとえば60mmである。たとえば、内筒部122の周壁下端部の外周面と外筒部120の周壁下端部の内周面との間には、遮水部材16の管壁の厚みと等しいかやや大きい隙間が形成されており、この隙間に遮水部材16の端部が嵌め込まれる。また、内筒部122の内周面で、外筒ストッパ124と同一平面上には、外筒ストッパ124と略等しい幅を有する内筒ストッパ126が形成されており、この内筒ストッパ126によって、内筒部122は、外筒部120における開口面側で開口する第1開口128と、外筒部120における外筒ストッパ124側で開口する第2開口130とに仕切られる。   The inner cylinder portion 122 is formed in a cylindrical shape penetrating the outer cylinder stopper 124, and the inner diameter thereof is appropriately set according to the outer diameter of the tube member 114, and is, for example, 60 mm. For example, a gap that is equal to or slightly larger than the thickness of the pipe wall of the water shielding member 16 is formed between the outer peripheral surface of the lower end portion of the peripheral wall of the inner cylindrical portion 122 and the inner peripheral surface of the lower end portion of the peripheral wall of the outer cylindrical portion 120. The end portion of the water shielding member 16 is fitted into this gap. An inner cylinder stopper 126 having a width substantially equal to that of the outer cylinder stopper 124 is formed on the inner peripheral surface of the inner cylinder portion 122 on the same plane as the outer cylinder stopper 124. The inner cylinder part 122 is partitioned into a first opening 128 that opens on the opening surface side in the outer cylinder part 120 and a second opening 130 that opens on the outer cylinder stopper 124 side in the outer cylinder part 120.

中継管118は、管部材114と略等しい径を有しており、内筒部122の第2開口130に挿入されることによって、ソケット116同士を接続する。   The relay pipe 118 has a diameter substantially equal to that of the pipe member 114, and connects the sockets 116 by being inserted into the second opening 130 of the inner cylinder portion 122.

このような接続部材110を用いて、耕作地200の両端付近まで延びる遮水部材16を構成する方法の一例について説明する。先ず、遮水部材16の内部に管部材114を設け、それらの端部に接続部材110を装着することによって、二重管ユニットを構成する。具体的には、遮水部材16の端部をソケット116の外筒部120に挿入して、外筒ストッパ124によって係止されるまで押し込むとともに、当該遮水部材16内の管部材114の端部をソケット116の内筒部122における第1開口128に挿入して、内筒ストッパ126に係止されるまで押し込む。次に、図24に示すように、この二重管ユニットを、耕作地200の両端付近まで延びるように、耕作地200の地中に連設する。具体的には、遮水部材16の端部に設けられたソケット116の内筒部122における第2開口130と、他の遮水部材16の端部に装着されたソケット116の内筒部122における第2開口130とにまたがるように、中継管118を挿入して、それぞれのソケット116の内筒ストッパ126に係止されるまで押し込む。そして、遮水部材16が耕作地200の両端付近まで延びるまで、これを繰り返す。   An example of a method of configuring the water shielding member 16 that extends to the vicinity of both ends of the cultivated land 200 using such a connecting member 110 will be described. First, the pipe member 114 is provided inside the water-impervious member 16, and the connecting member 110 is attached to the end portions thereof to constitute a double pipe unit. Specifically, the end portion of the water shielding member 16 is inserted into the outer tube portion 120 of the socket 116 and pushed in until it is locked by the outer tube stopper 124, and the end of the tube member 114 in the water shielding member 16 is also inserted. Part is inserted into the first opening 128 in the inner cylinder part 122 of the socket 116 and pushed in until it is locked by the inner cylinder stopper 126. Next, as shown in FIG. 24, this double pipe unit is continuously provided in the ground of the cultivated land 200 so as to extend to the vicinity of both ends of the cultivated land 200. Specifically, the second opening 130 in the inner cylindrical portion 122 of the socket 116 provided at the end portion of the water shielding member 16 and the inner cylindrical portion 122 of the socket 116 attached to the end portion of the other water shielding member 16. The relay pipe 118 is inserted so as to straddle the second opening 130 and is pushed in until it is locked to the inner cylinder stopper 126 of each socket 116. This is repeated until the water shielding member 16 extends to the vicinity of both ends of the cultivated land 200.

この実施例では、遮水部材16の端部に接続部材110が設けられ、この接続部材110によって、遮水部材16やその内部に設けられる管部材114(給水部材)が適宜接続される。このため、たとえ長さ寸法の小さい遮水部材16であっても、耕作地200の形状や範囲に対応させて、耕作地200の両端付近まで延ばすことができる。したがって、長さ寸法の大きい遮水部材16を現場に移動させる場合と比較して、遮水部材16の現場への移動が容易になり、施工性に優れる。   In this embodiment, a connection member 110 is provided at the end of the water shielding member 16, and the water shielding member 16 and a pipe member 114 (water supply member) provided therein are appropriately connected by the connection member 110. For this reason, even the water shielding member 16 having a small length can be extended to the vicinity of both ends of the cultivated land 200 in correspondence with the shape and range of the cultivated land 200. Therefore, compared with the case where the impermeable member 16 having a large length is moved to the site, the immobilization member 16 can be easily moved to the site and the workability is excellent.

また、この実施例では、接続部材110によって、遮水部材16の内部における管部材114の位置が固定的に保持される。このため、たとえ管部材114として、その管壁下端部にのみ多数の細孔が形成された合成樹脂管を利用しても、管部材114の下面の細孔と遮水部材16の管底の内周面との間に隙間を形成して、水路92の水を適切に遮水部材16内に供給することができる。   Further, in this embodiment, the position of the pipe member 114 inside the water shielding member 16 is fixedly held by the connecting member 110. For this reason, even if a synthetic resin pipe in which a large number of pores are formed only at the lower end of the pipe wall is used as the pipe member 114, the pores on the lower surface of the pipe member 114 and the pipe bottom of the water shielding member 16 are used. A gap is formed between the inner circumferential surface and the water in the water channel 92 can be appropriately supplied into the water shielding member 16.

さらに、この実施例では、管部材114には、その管壁下端部にのみ多数の細孔が形成された合成樹脂管が利用され、管部材114は、水路92の水を主として下方に供給する。このため、たとえば、水の供給源に向けて延びる植物の根が水路92の水を供給するための細孔に侵入することによって、その細孔が閉塞されてしまうことがなく、水路92の水を適切に遮水部材16内に供給することができる。   Further, in this embodiment, a synthetic resin pipe having a large number of pores formed only at the lower end of the pipe wall is used as the pipe member 114, and the pipe member 114 mainly supplies water in the water channel 92 downward. . For this reason, for example, the roots of the plant extending toward the water supply source enter the pores for supplying water in the water channel 92 so that the pores are not blocked, and the water in the water channel 92 is not blocked. Can be appropriately supplied into the water shielding member 16.

さらにまた、この実施例では、遮水部材16には、開口98を補強するための補強部112が設けられる。たとえば、遮水部材16にその管壁上端部の全長に亘って開口98が設けられる場合には、遮水部材16が周囲からの土圧や自身の応力によって変形し、開口98が閉じてしまうことも考えられる。しかし、この実施例のように、遮水部材16の管壁上端部に所定間隔ごとに補強部112を設けることによって、遮水部材16は、その形状を維持することができる。したがって、遮水部材16内に重力水状態の土壌部26を適切に形成することができる。   Furthermore, in this embodiment, the water shielding member 16 is provided with a reinforcing portion 112 for reinforcing the opening 98. For example, when the opening 98 is provided in the water-impervious member 16 over the entire length of the upper end portion of the pipe wall, the water-impervious member 16 is deformed by earth pressure from its surroundings or its own stress, and the opening 98 is closed. It is also possible. However, by providing the reinforcing portions 112 at predetermined intervals on the upper end portion of the pipe wall of the water shielding member 16 as in this embodiment, the shape of the water shielding member 16 can be maintained. Therefore, the soil portion 26 in the gravity water state can be appropriately formed in the water shielding member 16.

また、この実施例では、遮水部材16や管部材114には、両端開口の円管、つまり汎用の合成樹脂製管が利用される。このように、遮水部材16や管部材114に汎用性を持たせることで、製品の種類および在庫量の削減、ならびに生産の効率化につながり、経済性に優れる。   Further, in this embodiment, a circular pipe having both ends open, that is, a general-purpose synthetic resin pipe is used for the water shielding member 16 and the pipe member 114. Thus, by providing versatility to the water-impervious member 16 and the pipe member 114, it leads to the reduction of the kind of product and the amount of inventory, and the efficiency of production, and it is excellent in economical efficiency.

なお、上述の実施例では、遮水部材16の管壁上端部を所定間隔ごとに切り取り、その開口98を除いた部分が補強部112として機能したが、これに限定される必要はなく、遮水部材16に開口98を補強するための補強部112が設けられているのであればよい。たとえば、図25および図26に示すように、管壁上端部に管軸方向の全長に亘って開口98を設けたVU管と、そのVU管に装着される別部材の補強部112とによって遮水部材16を形成することもできる。補強部112は、その周壁の一部分に窪み部132を有する略短円筒上に形成され、この窪み部132を開口98に嵌め込ませることによって、遮水部材16の形状を維持する。   In the above-described embodiment, the upper end portion of the pipe wall of the water shielding member 16 is cut out at predetermined intervals, and the portion excluding the opening 98 functions as the reinforcing portion 112. What is necessary is just to provide the reinforcement part 112 for reinforcing the opening 98 in the water member 16. For example, as shown in FIGS. 25 and 26, the upper end of the pipe wall is blocked by a VU pipe having an opening 98 extending over the entire length in the pipe axis direction, and a reinforcing member 112 of another member attached to the VU pipe. The water member 16 can also be formed. The reinforcing part 112 is formed on a substantially short cylinder having a recessed part 132 in a part of its peripheral wall, and the recessed part 132 is fitted into the opening 98 to maintain the shape of the water shielding member 16.

また、上述の実施例では、外筒部120の外筒ストッパ124と内筒部122の内筒ストッパ126とが同一平面上に位置するように形成されたソケット116を示したが、これに限定される必要はない。   Further, in the above-described embodiment, the socket 116 formed so that the outer cylinder stopper 124 of the outer cylinder portion 120 and the inner cylinder stopper 126 of the inner cylinder portion 122 are located on the same plane is shown, but the present invention is not limited thereto. There is no need to be done.

たとえば、図27および図28に示すソケット116では、外筒部120の外筒ストッパ124と内筒部122の第2開口130における開口面とが同一平面上に形成され、当該内筒部122の内筒ストッパ126は、外筒部120における開口面と外筒ストッパ124との間の範囲内に配置される。また、外筒ストッパ124には、外筒部120との軸方向に延びる抑え部134が形成される。たとえば、抑え部134と外筒部120の周壁上端部の内周面との間には、遮水部材16の管壁の厚みと等しいかやや大きい隙間が形成されており、この隙間に遮水部材16の端部が嵌め込まれる。すなわち、遮水部材16の端部は、外筒部120の内周面と内筒部122の外周面との隙間とともに、当該外筒部120の内周面と抑え部134との隙間にも嵌め込まれる。   For example, in the socket 116 shown in FIG. 27 and FIG. 28, the outer cylinder stopper 124 of the outer cylinder portion 120 and the opening surface of the second opening 130 of the inner cylinder portion 122 are formed on the same plane. The inner cylinder stopper 126 is disposed within a range between the opening surface of the outer cylinder portion 120 and the outer cylinder stopper 124. Further, the outer cylinder stopper 124 is formed with a holding portion 134 that extends in the axial direction with the outer cylinder portion 120. For example, a gap that is equal to or slightly larger than the thickness of the pipe wall of the water shielding member 16 is formed between the holding portion 134 and the inner peripheral surface of the upper end portion of the peripheral wall of the outer cylinder portion 120. The end of the member 16 is fitted. That is, the end portion of the water-impervious member 16 is not only in the gap between the inner peripheral surface of the outer cylindrical portion 120 and the outer peripheral surface of the inner cylindrical portion 122 but also in the gap between the inner peripheral surface of the outer cylindrical portion 120 and the holding portion 134. It is inserted.

ここで、管部材114の内筒部122に対する挿入量が不足している場合には、水路92が適切に形成されない恐れがあるため、少なくとも管部材114の端部を内筒ストッパ126に係止されるまで内筒部122に押し込むことが必要である。このため、外筒ストッパ124と内筒ストッパ126とが同一平面上に形成されている場合には、遮水部材16の長さ寸法が管部材114の長さ寸法と略等しくなるように調整しなければならない。   Here, when the insertion amount of the pipe member 114 with respect to the inner cylinder portion 122 is insufficient, there is a possibility that the water channel 92 may not be formed properly. Therefore, at least the end of the pipe member 114 is locked to the inner cylinder stopper 126. It is necessary to push into the inner cylinder part 122 until it is done. For this reason, when the outer cylinder stopper 124 and the inner cylinder stopper 126 are formed on the same plane, the length dimension of the water shielding member 16 is adjusted so as to be substantially equal to the length dimension of the pipe member 114. There must be.

これに対して、図27および図28に示すソケット116では、内筒部122の内筒ストッパ126は、外筒部120の開口面と外筒ストッパ124との間に配置されており、さらに、外筒部120の内周面と内筒部122の外周面との隙間、および外筒部120の内周面と抑え部134との隙間に遮水部材16の端部を嵌め込むことができる。このため、遮水部材16の外筒部120に対する挿入量の許容範囲が拡がり、少なくとも管部材114の端部を内筒ストッパ126に係止されるまで内筒部122に押し込むことができるのであれば、管部材114の長さ寸法と遮水部材16の長さ寸法とは、あまり大きな差がなければ、どちらか一方が他方より大きくても小さくてもよい。したがって、遮水部材16の長さ寸法を詳細に調整しなくてもよい。   On the other hand, in the socket 116 shown in FIGS. 27 and 28, the inner cylinder stopper 126 of the inner cylinder portion 122 is disposed between the opening surface of the outer cylinder portion 120 and the outer cylinder stopper 124. The end portion of the water shielding member 16 can be fitted into the gap between the inner peripheral surface of the outer cylindrical portion 120 and the outer peripheral surface of the inner cylindrical portion 122 and the gap between the inner peripheral surface of the outer cylindrical portion 120 and the holding portion 134. . For this reason, the allowable range of the insertion amount of the water-impervious member 16 with respect to the outer cylindrical portion 120 is expanded, and at least the end portion of the pipe member 114 can be pushed into the inner cylindrical portion 122 until the inner cylindrical stopper 126 is locked. For example, the length dimension of the pipe member 114 and the length dimension of the water-impervious member 16 may be either larger or smaller than the other as long as there is no significant difference. Therefore, it is not necessary to adjust the length dimension of the water shielding member 16 in detail.

さらに、上述の実施例では、2つの同形状のソケット116と1つの中継管118とを備える接続部材110によって、遮水部材16を接続したが、これに限定される必要はない。   Further, in the above-described embodiment, the water shielding member 16 is connected by the connection member 110 including the two sockets 116 having the same shape and the one relay pipe 118, but the water shielding member 16 is not necessarily limited thereto.

たとえば、図29および図30に示す接続部材110は、異なる形状の第1ソケット116aと第2ソケット116bとからなり、中継管118を用いることなく、遮水部材16および管部材114の各々を接続することができる。   For example, the connecting member 110 shown in FIGS. 29 and 30 includes a first socket 116a and a second socket 116b having different shapes, and connects the water shielding member 16 and the pipe member 114 without using the relay pipe 118. can do.

図29に示すように、第1ソケット116aは、図27に示すソケット116における外筒部120が取り除かれた形状を有している。第2ソケット116bは、図27に示すソケット116の外筒部120に第1ソケット116aにて取り除かれた外筒部120を一体的に形成して、さらに内筒部122には中継管118を一体的に形成した形状を有している。図30に示すように、このような接続部材110によれば、遮水部材16の端部に装着した第1ソケット116aと、他の遮水部材16の端部に装着した第2ソケット116bとを組み合わせることによって、遮水部材16および管部材114の各々を接続することができる。   As shown in FIG. 29, the first socket 116a has a shape in which the outer cylindrical portion 120 in the socket 116 shown in FIG. 27 is removed. In the second socket 116b, the outer cylindrical portion 120 removed by the first socket 116a is formed integrally with the outer cylindrical portion 120 of the socket 116 shown in FIG. It has an integrally formed shape. As shown in FIG. 30, according to such a connection member 110, the first socket 116 a attached to the end portion of the water shielding member 16 and the second socket 116 b attached to the end portion of the other water shielding member 16 are provided. By combining these, each of the water shielding member 16 and the pipe member 114 can be connected.

また、たとえば、図31および図32に示すように、1つのソケット116からなる接続部材110によって、遮水部材16を接続することもできる。   Further, for example, as shown in FIGS. 31 and 32, the water shielding member 16 can be connected by a connecting member 110 including a single socket 116.

図31および図32に示すソケット116は、外筒部120および内筒部122を含み、外筒部120によって遮水部材16の端部を受容するとともに、内筒部122によって管部材114の端部を受容する。外筒部120は、その軸方向の略中央部が外筒ストッパ124により塞がれた円筒状に形成され、たとえば、その軸方向の長さは、100mmであり、その内径は、遮水部材16の外径に合わせて適宜設定され、たとえば115mmである。内筒部122は、外筒部120における外筒ストッパ124を貫通する円筒状に形成され、その軸方向の長さは、50mmであり、その内径は、管部材114の外径に合わせて適宜設定され、たとえば60mmである。内筒部122の内周面で、外筒ストッパ124と同一平面上には、当該内筒部122の中心方向に向かって突出する内筒ストッパ126が形成される。   The socket 116 shown in FIGS. 31 and 32 includes an outer cylinder portion 120 and an inner cylinder portion 122. The outer cylinder portion 120 receives the end portion of the water shielding member 16, and the inner cylinder portion 122 allows the end of the pipe member 114 to be received. Accept the department. The outer cylinder portion 120 is formed in a cylindrical shape whose substantially central portion in the axial direction is closed by an outer cylinder stopper 124. For example, the length in the axial direction is 100 mm, and the inner diameter thereof is a water shielding member. It is set appropriately according to the outer diameter of 16, for example, 115 mm. The inner cylinder part 122 is formed in a cylindrical shape that penetrates the outer cylinder stopper 124 in the outer cylinder part 120, and its axial length is 50 mm, and its inner diameter is appropriately set according to the outer diameter of the tube member 114. For example, 60 mm. On the inner peripheral surface of the inner cylinder portion 122, an inner cylinder stopper 126 that protrudes toward the center of the inner cylinder portion 122 is formed on the same plane as the outer cylinder stopper 124.

なお、図33に示すように、ソケット116の外筒ストッパ124に、外筒部120の一方開口と他方開口とを連通する連通部136を形成することもできる。この場合には、遮水部材16の内部の水は、ソケット116(接続部材110)によって接続されて隣接している遮水部材16同士の間を、連通部136を介して移動することができる。   As shown in FIG. 33, the outer cylinder stopper 124 of the socket 116 can be formed with a communication portion 136 that allows the one opening and the other opening of the outer cylinder portion 120 to communicate with each other. In this case, the water inside the water-impervious member 16 can be moved between the adjacent water-impervious members 16 connected by the socket 116 (connecting member 110) via the communication portion 136. .

また、図34に示すように、ソケット116の外筒部120の軸方向の長さと、内筒部122の軸方向の長さとを対応させて、等しく形成してもよい。   Further, as shown in FIG. 34, the axial length of the outer cylindrical portion 120 of the socket 116 and the axial length of the inner cylindrical portion 122 may be made to correspond to each other.

さらに、図31―図34に示すソケット116では、外筒部120の外筒ストッパ124と内筒部122の内筒ストッパ126とが同一平面上に略等しい幅で形成されたが、これに限定される必要はない。たとえば、図35に示すように、内筒部122の内筒ストッパ126を軸方向に長く形成することによって、当該内筒ストッパ126における管部材114の端部を係止する部位を外筒部120の開口面と外筒ストッパ124との間に配置することもできる。この場合であっても、上述したように、遮水部材16の長さ寸法を詳細に調整しなくてもよいため、施工性に優れる。   Further, in the socket 116 shown in FIGS. 31 to 34, the outer cylinder stopper 124 of the outer cylinder portion 120 and the inner cylinder stopper 126 of the inner cylinder portion 122 are formed with substantially the same width on the same plane. There is no need to be done. For example, as shown in FIG. 35, by forming the inner cylinder stopper 126 of the inner cylinder portion 122 to be long in the axial direction, the portion of the inner cylinder stopper 126 that locks the end portion of the tube member 114 is changed to the outer cylinder portion 120. It can also be arranged between the opening surface of this and the outer cylinder stopper 124. Even in this case, as described above, it is not necessary to adjust the length dimension of the water shielding member 16 in detail, so that the workability is excellent.

また、同様に、図36に示すように、外筒部120と内筒部122との軸方向の長さが対応しているソケット116においても、内筒部122の内筒ストッパ126を軸方向に長く形成することによって、当該内筒ストッパ126における管部材114の端部を係止する部位を外筒部120の開口面と外筒ストッパ124との間に配置することができる。   Similarly, as shown in FIG. 36, in the socket 116 in which the axial lengths of the outer cylinder portion 120 and the inner cylinder portion 122 correspond, the inner cylinder stopper 126 of the inner cylinder portion 122 is axially moved. By forming the length of the inner cylinder stopper 126 long, the portion of the inner cylinder stopper 126 that locks the end of the tube member 114 can be disposed between the opening surface of the outer cylinder portion 120 and the outer cylinder stopper 124.

さらにまた、上述の実施例では、管部材114として、その管壁下端部にのみ多数の細孔を形成した合成樹脂管が利用されたが、これに限定される必要はない。   Furthermore, in the above-described embodiment, the synthetic resin pipe having a large number of pores formed only at the lower end portion of the pipe wall is used as the pipe member 114, but it is not necessary to be limited to this.

たとえば、管部材114として、上述したような、有孔管90を利用してもよい。   For example, the perforated tube 90 as described above may be used as the tube member 114.

また、たとえば、図37に示すように、管部材114として、遮水部材16と一体的に形成される導水部138を利用することもできる。導水部138は、水路92を形成する筒状部140と、筒状部140を支持する支持部142とを備えている。   For example, as shown in FIG. 37, a water guide portion 138 formed integrally with the water shielding member 16 can be used as the pipe member 114. The water guide portion 138 includes a cylindrical portion 140 that forms the water channel 92 and a support portion 142 that supports the cylindrical portion 140.

筒状部140は、たとえば、周壁の下端部に間隙144が形成された略円筒形状を有しており、この間隙144を介して水路92の水が下方に供給される。支持部142は、遮水部材16の管壁下端部から上方向に突出する板状に形成され、間隙144を介して筒状部140の内周面と遮水部材16の内周面とを繋ぎ、遮水部材16内での筒状部140の位置を固定する。   The cylindrical portion 140 has, for example, a substantially cylindrical shape in which a gap 144 is formed at the lower end portion of the peripheral wall, and the water in the water channel 92 is supplied downward through the gap 144. The support portion 142 is formed in a plate shape that protrudes upward from the lower end portion of the pipe wall of the water shielding member 16, and connects the inner peripheral surface of the cylindrical portion 140 and the inner peripheral surface of the water shielding member 16 through the gap 144. It connects and fixes the position of the cylindrical part 140 within the water-impervious member 16.

この実施例では、遮水部材16と導水部138(管部材114)とが、一体的に形成される。したがって、地下灌漑システム10における配管作業の削減ひいては施工性の向上が実現される。   In this embodiment, the water shielding member 16 and the water guiding portion 138 (pipe member 114) are integrally formed. Therefore, the piping work in the underground irrigation system 10 can be reduced and the workability can be improved.

なお、この実施例のように、遮水部材16と管部材114が一体的に形成されている場合には、図38および図39に示すように、ソケット116の内筒部122における第1開口128側の筒壁下端部に、軸方向の全長に亘って切欠部146を形成し、その切欠部146に支持部142を挿通させるとよい。   When the water shielding member 16 and the pipe member 114 are integrally formed as in this embodiment, as shown in FIGS. 38 and 39, the first opening in the inner cylindrical portion 122 of the socket 116 is used. A notch 146 may be formed at the lower end of the cylinder wall on the 128 side over the entire axial length, and the support 142 may be inserted through the notch 146.

また、導水部138における筒状部140は、周壁の下端部に間隙144が形成された略円筒状に形成されたが、これに限定される必要はなく、筒状部140によって形成した水路92の水を、間隙144を介して下方に供給することができるのであれば、導水部138の形状は特に問わない。   Moreover, although the cylindrical part 140 in the water guide part 138 was formed in the substantially cylindrical shape by which the space | gap 144 was formed in the lower end part of a surrounding wall, it is not necessary to be limited to this and the water channel 92 formed by the cylindrical part 140 As long as the water can be supplied downward through the gap 144, the shape of the water guiding portion 138 is not particularly limited.

たとえば、図40に示すように、導水部138における筒状部140を、周壁の下端部に間隙144が形成された略四角筒状に形成することもできる。   For example, as shown in FIG. 40, the tubular portion 140 in the water guide portion 138 can be formed in a substantially rectangular tubular shape in which a gap 144 is formed at the lower end portion of the peripheral wall.

また、たとえば、図41に示すように、周壁の下端部に間隙144が形成された略円筒形状を有する筒状部140を支持部142の上端に形成することによって、所謂クエスチョンマーク状に形成された導水部138を遮水部材16の内部に形成することもできる。   For example, as shown in FIG. 41, a cylindrical portion 140 having a substantially cylindrical shape with a gap 144 formed at the lower end portion of the peripheral wall is formed at the upper end of the support portion 142, thereby forming a so-called question mark shape. The water guide portion 138 can also be formed inside the water shielding member 16.

さらに、たとえば、図42に示すように、遮水部材16の管壁上端部における開口縁を内側に屈曲させることによって、当該遮水部材16の開口縁と内周面との間に間隙144を形成する導水部138を遮水部材16の内部に形成することもできる。   Furthermore, for example, as shown in FIG. 42, by bending the opening edge at the upper end portion of the pipe wall of the water shielding member 16 inward, a gap 144 is formed between the opening edge of the water shielding member 16 and the inner peripheral surface. The water guide portion 138 to be formed can also be formed inside the water shielding member 16.

さらにまた、上述の実施例では、筒状部140と支持部142とが一体的に形成されたが、これに限定される必要はない。図示は省略するが、導水部138における筒状部140と支持部142とを、別体として構成してもよい。   Furthermore, in the above-described embodiment, the cylindrical portion 140 and the support portion 142 are integrally formed, but it is not necessary to be limited to this. Although illustration is omitted, the tubular portion 140 and the support portion 142 in the water guiding portion 138 may be configured as separate bodies.

また、他の実施例として、図43および図44に示すように、ゴムおよび合成樹脂などによって形成される遮水シートを利用して遮水部材16を形成することもできる。   As another embodiment, as shown in FIGS. 43 and 44, the water shielding member 16 can be formed using a water shielding sheet formed of rubber, synthetic resin, or the like.

具体的には、図43および図44に示す実施例では、耕作地200の全面に広がるように、シート状の遮水部材16が耕作地200の地下に敷かれる。シート状の遮水部材16の端部は立ち上げられ、これによって遮水部材16は上側開口の容器状に形成される。ただし、耕作地200の周囲が別途の手段、たとえば粘土等によって不透水層となっている場合や、十分な大きさ(広さ)を有する遮水シートを用いる場合には、シート状の遮水部材16を水平方向に設けるだけでよい。水平方向の遮水部材16、つまり遮水部材16の底面の敷設深さは、たとえば300−500mmである。   Specifically, in the embodiment shown in FIGS. 43 and 44, the sheet-shaped water shielding member 16 is laid under the cultivated land 200 so as to spread over the entire surface of the cultivated land 200. The end of the sheet-like water-impervious member 16 is raised, whereby the water-impervious member 16 is formed in a container shape with an upper opening. However, when the periphery of the cultivated land 200 is a water-impermeable layer by another means, such as clay, or when a water-impervious sheet having a sufficient size (width) is used, a sheet-like water-impervious sheet is used. It is only necessary to provide the member 16 in the horizontal direction. The laying depth of the horizontal water shielding member 16, that is, the bottom surface of the water shielding member 16, is, for example, 300 to 500 mm.

このような遮水部材16の内部(或いは上側)に、水タンク12から給水管14を介して水を供給しても、そこに重力水状態の土壌部26を形成できる。そして、水位管理器18によって重力水の水位28を適切に管理することで、毛管水状態の土壌部30を適切に形成できる。図43および図44に示す実施例においても、土壌自体の浸透機能を利用するので、目詰まりによる浸透機能の低下が発生せず、維持管理が容易となる。また、給水側で重力水の水位管理を行うので、無駄な水が供給されることが無く、水資源を効率的に利用できる。   Even if water is supplied from the water tank 12 through the water supply pipe 14 to the inside (or the upper side) of the water shielding member 16, the soil portion 26 in the state of gravity water can be formed there. And the soil part 30 of a capillary water state can be formed appropriately by managing the water level 28 of gravity water appropriately by the water level management device 18. 43 and 44 also use the permeation function of the soil itself, so that the permeation function does not deteriorate due to clogging, and maintenance is easy. Moreover, since the water level management of gravity water is performed on the water supply side, useless water is not supplied and water resources can be used efficiently.

なお、シート状の遮水部材16は、必ずしも耕作地200の全面に設ける必要は無く、耕作地200の一部の範囲に形成することもできるし、図1などに示す実施例のように分散配置することもできる。ただし、遮水シートによって遮水部材16を形成する場合、遮水シートは老朽化し易いので、遮水部材16内の水が漏水してしまい、土壌部30の水分量の適切なコントロールが困難になる可能性がある。また、シート状の遮水部材16を耕作地200の全面に設ける場合には、降雨などによる余剰水分が地下深くに浸透できないので、別途排水設備を設ける必要があり、さらに、根を地中深くまで張るような大きな木を適切に栽培できない場合もある。   In addition, the sheet-like water-impervious member 16 is not necessarily provided on the entire surface of the cultivated land 200, and can be formed in a part of the cultivated land 200, or distributed as in the embodiment shown in FIG. It can also be arranged. However, when the water-impervious member 16 is formed by the water-impervious sheet, the water-impervious sheet is likely to be worn out, so that water in the water-impervious member 16 leaks, making it difficult to appropriately control the water content of the soil portion 30. There is a possibility. In addition, when the sheet-shaped water shielding member 16 is provided on the entire surface of the cultivated land 200, excess water due to rain or the like cannot penetrate deep underground, so it is necessary to provide a separate drainage facility, and further, roots are deeply underground. In some cases, it is not possible to properly cultivate large trees that stretch up to a maximum.

また、上述の各実施例では、水タンク12は、農業用水配管などと接続されて、そこから送られてくる水を貯留するようにしたが、これに限定されない。たとえば、個人用に使用する小規模なシステム10の場合には、耕作者(使用者)が、バケツ等を用いて水タンク12内に適宜水を補充するようにしてもよい。また、たとえば、水タンク12内に雨水が適宜貯留される構成にすることもできる。さらに、水タンク12は必ずしも設ける必要は無く、農業用配水管などから直接給水管14に水が供給されるようにすることもできる。   Further, in each of the above-described embodiments, the water tank 12 is connected to an agricultural water pipe or the like and stores water sent therefrom, but is not limited thereto. For example, in the case of a small-scale system 10 used for personal use, a farmer (user) may refill water in the water tank 12 as appropriate using a bucket or the like. Further, for example, a configuration in which rainwater is appropriately stored in the water tank 12 may be adopted. Furthermore, the water tank 12 is not necessarily provided, and water can be directly supplied to the water supply pipe 14 from an agricultural water distribution pipe or the like.

また、給水管14の配管構造は、遮水部材16の配置などに合わせて適宜変更され、たとえば、給水管14を本管20のみで形成するようにしてもよいし、第2分岐管22bから分岐する第3分岐管をさらに形成するようにしてもよい。   Further, the piping structure of the water supply pipe 14 is appropriately changed in accordance with the arrangement of the water shielding member 16 and the like. For example, the water supply pipe 14 may be formed only by the main pipe 20 or from the second branch pipe 22b. A third branch pipe that branches may be further formed.

また、図1に示す実施例では、図3に示すような水位管理器18を用い、図7に示す実施例では、図8に示すような簡易型の水位管理器18を用いたが、これに限定されない。図3或いは図8に示す水位管理器18は、どの実施例にも用いることができるし、図3或いは図8に示す水位管理器18以外の構成の水位管理器18を、システム10に適用することもできる。ただし、図3に示す水位管理器18と比較して、図8に示す簡易型の水位管理器18は、給水口84を閉じる力が弱いので、給水管14から送られてくる水が低圧水の場合にのみ、図8に示す簡易型の水位管理器18を用いることができる。   Further, in the embodiment shown in FIG. 1, a water level manager 18 as shown in FIG. 3 is used, and in the embodiment shown in FIG. 7, a simplified water level manager 18 as shown in FIG. 8 is used. It is not limited to. The water level management device 18 shown in FIG. 3 or FIG. 8 can be used in any embodiment, and the water level management device 18 other than the water level management device 18 shown in FIG. 3 or FIG. You can also However, compared with the water level controller 18 shown in FIG. 3, the simplified water level manager 18 shown in FIG. 8 has a weak force for closing the water supply port 84, so that the water sent from the water supply pipe 14 is low-pressure water. Only in this case, the simplified water level manager 18 shown in FIG. 8 can be used.

なお、図8に示す簡易型の水位管理器18は、簡単にかつ安価に製作できるので、小規模な耕作地200にシステム10を適用する際に用いると、最適である。たとえば、図45に示すように、屋外に配置するプランタ204にシステム10を適用する場合には、プランタ204内の耕作地200(つまりプランタ204内の土壌)に1つの遮水部材16を埋設し、その遮水部材16内に1つの簡易型の水位管理器18を設けるとよい。この水位管理器18には、水タンク12と繋がる給水管14が接続される。そして、上述の各実施例と同様に、遮水部材16内に重力水状態の土壌部26を形成し、その重力水の水位28を適切に保てば、プランタ204内の土壌の上層部に、毛管水状態の土壌部30を形成でき、適切に草花などの植物を育成できる。なお、この場合には、降雨などによってプランタ204内に余剰の水が与えられても、プランタ204の底面に予め形成されている孔206から水が抜ける。つまり、図1などに示す実施例における、地下深くに余剰水が浸透していくことと同様の作用が働く。   The simple water level manager 18 shown in FIG. 8 can be easily and inexpensively manufactured, and is optimal when used when the system 10 is applied to a small-scale cultivated land 200. For example, as shown in FIG. 45, when the system 10 is applied to a planter 204 disposed outdoors, one water shielding member 16 is embedded in the cultivated land 200 in the planter 204 (that is, soil in the planter 204). One simple water level manager 18 may be provided in the water shielding member 16. A water supply pipe 14 connected to the water tank 12 is connected to the water level manager 18. And if the soil part 26 of a gravitational water state is formed in the water-impervious member 16 and the water level 28 of the gravitational water is appropriately maintained as in the above-described embodiments, the upper part of the soil in the planter 204 is formed. The soil part 30 in a capillary water state can be formed, and plants such as flowers can be cultivated appropriately. In this case, even if surplus water is given into the planter 204 due to rain or the like, the water drains from a hole 206 formed in advance on the bottom surface of the planter 204. That is, in the embodiment shown in FIG. 1 and the like, an action similar to that of surplus water penetrating deep underground works.

また、上述の各実施例では、遮水部材16を地中(土壌中)に埋設するようにしたが、遮水部材16は、必ずしも地中に埋設される必要はない。たとえば、図46に示すように、プランタ204や鉢自体を、遮水部材16として利用し、遮水部材16内の土壌の上層部に形成される毛管水状態の土壌部30で草花などを育成するとよい。   Moreover, in each above-mentioned Example, although the water-impervious member 16 was embed | buried under the ground (in the soil), the water-impervious member 16 does not necessarily need to be embed | buried under the ground. For example, as shown in FIG. 46, the planter 204 or the pot itself is used as the water-impervious member 16, and plants and the like are cultivated in the soil portion 30 in the capillary water state formed in the upper layer portion of the soil in the water-impervious member 16 Good.

具体的には、屋内に配置するプランタ204等にシステム10を適用するとよく、この場合には、プランタ204自体が遮水部材16として機能する。ただし、プランタ204の底面に形成される孔206を、キャップ等の適宜な封止具208によって封止し、プランタ204が貯水機能を有するようにしておく必要がある。このプランタ204内、つまり遮水部材16内には、1つの水位管理器18が設けられ、図45に示す実施例と同様に、遮水部材16内に重力水状態の土壌部26が形成される。この場合には、重力水の水位28を、遮水部材16内の土壌の中程のところに保つとよく、これによって、遮水部材16内の土壌の上層部に毛管水状態の土壌部30が形成される。なお、図46に示す実施例は、屋内に配置するプランタ204に適用するものなので、降雨などによって余剰に水が供給される状態を考慮する必要はない。   Specifically, the system 10 may be applied to a planter 204 or the like disposed indoors. In this case, the planter 204 itself functions as the water shielding member 16. However, it is necessary to seal the hole 206 formed in the bottom surface of the planter 204 with an appropriate sealing tool 208 such as a cap so that the planter 204 has a water storage function. One water level manager 18 is provided in the planter 204, that is, in the water-impervious member 16, and a soil portion 26 in a gravity water state is formed in the water-impervious member 16 as in the embodiment shown in FIG. The In this case, the water level 28 of the gravitational water may be kept at the middle of the soil in the water-impervious member 16, and thereby the soil portion 30 in the capillary water state is formed on the upper layer of the soil in the water-impervious member 16. Is formed. Since the embodiment shown in FIG. 46 is applied to the planter 204 disposed indoors, it is not necessary to consider a state in which excessive water is supplied due to rainfall or the like.

また、たとえば、屋上緑化にシステム10を適用する場合には、適宜な大きさの遮水部材16を屋上に配置し、図46に示す実施例と同様に、遮水部材16内の土壌の上層部に毛管水状態の土壌部30を形成し、その土壌部30で植物を育成するとよい。ただし、屋外に適用する場合には、適宜な排水設備を別途備える必要がある。   In addition, for example, when the system 10 is applied to rooftop greening, a water shielding member 16 having an appropriate size is disposed on the roof, and the upper layer of soil in the water shielding member 16 is the same as the embodiment shown in FIG. The soil part 30 of a capillary water state is formed in a part, and it is good to grow a plant in the soil part 30. However, when applied outdoors, it is necessary to provide an appropriate drainage facility separately.

また、各実施例で示した遮水部材16を組み合わせてシステム10を構成することもできる。たとえば、図2に示す遮水部材16、図15に示す遮水部材16、図21に示す遮水部材16、さらに図37に示す遮水部材16をそれぞれ同一システム内で適用してもよい。また、たとえば、シート状の遮水部材16の上に図2に示す遮水部材16を配置して、2層の毛管水状態の土壌部30を形成するようなこともできる。   Moreover, the system 10 can also be comprised combining the water-impervious member 16 shown in each Example. For example, the water shielding member 16 shown in FIG. 2, the water shielding member 16 shown in FIG. 15, the water shielding member 16 shown in FIG. 21, and the water shielding member 16 shown in FIG. 37 may be applied in the same system. Further, for example, the water-impervious member 16 shown in FIG. 2 may be disposed on the sheet-like impermeable member 16 to form the two-layered soil water portion 30 in the capillary water state.

この発明の地下灌漑システムの一実施例を示す図解図である。It is an illustration figure which shows one Example of the underground irrigation system of this invention. 図1の地下灌漑システムの遮水部材周辺の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of the impermeable member periphery of the underground irrigation system of FIG. 図1の地下灌漑システムの水位管理器周辺の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of the water level management device periphery of the underground irrigation system of FIG. この発明の地下灌漑システムの他の実施例を示す図解図である。It is an illustration figure which shows the other Example of the underground irrigation system of this invention. 図4の地下灌漑システムの遮水部材周辺の様子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the mode of the impermeable member periphery of the underground irrigation system of FIG. 図4の地下灌漑システムの遮水部材周辺の様子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the mode of the impermeable member periphery of the underground irrigation system of FIG. この発明の地下灌漑システムのさらに他の実施例を示す図解図である。It is an illustration figure which shows the further another Example of the underground irrigation system of this invention. 図7の地下灌漑システムの遮水部材周辺の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of the water-impervious member periphery of the underground irrigation system of FIG. 図7の水位管理器の動作を示す概略断面図であり、(A)は給水口が開いた状態を示し、(B)は給水口が閉じた状態を示す。It is a schematic sectional drawing which shows operation | movement of the water level management device of FIG. 7, (A) shows the state which the water supply opening opened, (B) shows the state which the water supply opening closed. 図7の地下灌漑システムにおいて、各遮水部材ごとに重力水の水位を変えた様子を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing a state in which the water level of gravity water is changed for each water shielding member in the underground irrigation system of FIG. 7. 図7の地下灌漑システムを、起伏の多い土地に適用した様子を示す概略断面図である。It is a schematic sectional drawing which shows a mode that the underground irrigation system of FIG. 7 was applied to land with many undulations. この発明の地下灌漑システムに用いる遮水部材に鍔状部材を設けた様子を例示する概略断面図である。It is a schematic sectional drawing which illustrates a mode that a gutter-like member was provided in a water-impervious member used for an underground irrigation system of this invention. この発明の地下灌漑システムのさらに他の実施例を示す図解図である。It is an illustration figure which shows the further another Example of the underground irrigation system of this invention. この発明の地下灌漑システムのさらに他の実施例を示す図解図である。It is an illustration figure which shows the further another Example of the underground irrigation system of this invention. 図14の地下灌漑システムの遮水部材周辺の様子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the mode of the impermeable member periphery of the underground irrigation system of FIG. 図14の地下灌漑システムの遮水部材周辺の様子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the state of the impermeable member periphery of the underground irrigation system of FIG. 図14の地下灌漑システムの遮水部材周辺の様子のさらに他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the mode of the water-impervious member periphery of the underground irrigation system of FIG. 図14の地下灌漑システムの遮水部材周辺の様子のさらに他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the mode of the water-impervious member periphery of the underground irrigation system of FIG. この発明の地下灌漑システムのさらに他の実施例を示す図解図である。It is an illustration figure which shows the further another Example of the underground irrigation system of this invention. 図19の地下灌漑システムに用いる遮水部材の一例を示す斜視図である。It is a perspective view which shows an example of the water-impervious member used for the underground irrigation system of FIG. 図19の地下灌漑システムの遮水部材周辺の様子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the mode of the water-impervious member periphery of the underground irrigation system of FIG. 図19の地下灌漑システムに用いる接続部材の一例を示す断面図である。It is sectional drawing which shows an example of the connection member used for the underground irrigation system of FIG. 図22の接続部材を示す平面図である。It is a top view which shows the connection member of FIG. 図22の接続部材によって遮水部材を接続した様子を示す図解図である。It is an illustration figure which shows a mode that the water-impervious member was connected by the connection member of FIG. 図19の地下灌漑システムに用いる遮水部材の他の一例を示す斜視図である。It is a perspective view which shows another example of the water-impervious member used for the underground irrigation system of FIG. 図19の地下灌漑システムの遮水部材周辺の様子の他の一例を示す概略断面図である。FIG. 20 is a schematic cross-sectional view showing another example of a state around a water shielding member of the underground irrigation system of FIG. 19. 図19の地下灌漑システムに用いる接続部材の他の一例を示す図解図である。It is an illustration figure which shows another example of the connection member used for the underground irrigation system of FIG. 図27の接続部材によって遮水部材を接続する様子を示す断面図である。It is sectional drawing which shows a mode that a water shielding member is connected by the connection member of FIG. 図19の地下灌漑システムに用いる接続部材のさらに他の一例を示す図解図である。It is an illustration figure which shows another example of the connection member used for the underground irrigation system of FIG. 図29の接続部材によって遮水部材を接続する様子を示す断面図である。It is sectional drawing which shows a mode that a water-impervious member is connected by the connection member of FIG.


図19の地下灌漑システムに用いる接続部材のさらに他の一例を示す断面図である。It is sectional drawing which shows another example of the connection member used for the underground irrigation system of FIG. 図31の接続部材を示す平面図である。It is a top view which shows the connection member of FIG. 図19の地下灌漑システムに用いる接続部材のさらに他の一例を示す平面図である。It is a top view which shows another example of the connection member used for the underground irrigation system of FIG. 図19の地下灌漑システムに用いる接続部材のさらに他の一例を示す断面図である。It is sectional drawing which shows another example of the connection member used for the underground irrigation system of FIG. 図19の地下灌漑システムに用いる接続部材のさらに他の一例を示す断面図である。It is sectional drawing which shows another example of the connection member used for the underground irrigation system of FIG. 図19の地下灌漑システムに用いる接続部材のさらに他の一例を示す断面図である。It is sectional drawing which shows another example of the connection member used for the underground irrigation system of FIG. 図19の地下灌漑システムの遮水部材周辺の様子のさらに他の一例を示す概略断面図である。FIG. 20 is a schematic cross-sectional view showing still another example of the state around the water shielding member of the underground irrigation system in FIG. 19. 図37の遮水部材に用いる接続部材の一例を示す断面図である。It is sectional drawing which shows an example of the connection member used for the water-impervious member of FIG. 図37の遮水部材に用いる接続部材の一例を示す断面図である。It is sectional drawing which shows an example of the connection member used for the water-impervious member of FIG. 図19の地下灌漑システムの遮水部材周辺の様子のさらに他の一例を示す概略断面図である。FIG. 20 is a schematic cross-sectional view showing still another example of the state around the water shielding member of the underground irrigation system in FIG. 19. 図19の地下灌漑システムの遮水部材周辺の様子のさらに他の一例を示す概略断面図である。FIG. 20 is a schematic cross-sectional view showing still another example of the state around the water shielding member of the underground irrigation system in FIG. 19. 図19の地下灌漑システムの遮水部材周辺の様子のさらに他の一例を示す概略断面図である。FIG. 20 is a schematic cross-sectional view showing still another example of the state around the water shielding member of the underground irrigation system in FIG. 19. この発明の地下灌漑システムのさらに他の実施例を示す図解図である。It is an illustration figure which shows the further another Example of the underground irrigation system of this invention. 図43の地下灌漑システムを示す概略断面図である。It is a schematic sectional drawing which shows the underground irrigation system of FIG. この発明の地下灌漑システムのさらに他の実施例を示す概略断面図である。It is a schematic sectional drawing which shows the further another Example of the underground irrigation system of this invention. この発明の地下灌漑システムのさらに他の実施例を示す概略断面図である。It is a schematic sectional drawing which shows the further another Example of the underground irrigation system of this invention.

符号の説明Explanation of symbols

10 …地下灌漑システム
12 …水タンク
14 …給水管
16 …遮水部材
18 …水位管理器
20 …本管
22 …分岐管
26 …重力水状態の土壌部
28 …重力水の水位
30 …毛管水状態の土壌部
92 …水路
110 …接続部材
114 …管部材
116 …ソケット
138 …導水部
200 …耕作地
DESCRIPTION OF SYMBOLS 10 ... Underground irrigation system 12 ... Water tank 14 ... Water supply pipe 16 ... Water shielding member 18 ... Water level controller 20 ... Main pipe 22 ... Branch pipe 26 ... Gravity water state soil part 28 ... Gravity water level 30 ... Capillary water state Soil part 92 ... water channel 110 ... connecting member 114 ... pipe member 116 ... socket 138 ... water guide part 200 ... cultivated land

Claims (7)

上面に開口を設けた横管状に形成され、その内部に重力水状態の土壌部を有する遮水部材、A water-impervious member formed in a horizontal tube having an opening on the upper surface, and having a soil portion in a gravitational water state therein,
前記遮水部材に設けられ、前記開口を補強する補強部、A reinforcing portion provided on the water-impervious member and for reinforcing the opening;
前記遮水部材の内部に給水して前記土壌部を形成する給水手段、およびWater supply means for supplying water into the water shielding member to form the soil portion; and
前記土壌部の重力水の水位が設定値以上のときに前記給水手段による給水を停止し、前記土壌部の重力水の水位が設定値未満のときに前記給水手段による給水を行う水位管理手段を備える、地下灌漑システム。Water level management means for stopping water supply by the water supply means when the gravitational water level of the soil part is equal to or higher than a set value, and for supplying water by the water supply means when the gravitational water level of the soil part is less than a set value Equipped with an underground irrigation system.
上面に開口を設けた横管状に形成され、その内部に重力水状態の土壌部を有する遮水部材、A water-impervious member formed in a horizontal tube having an opening on the upper surface, and having a soil portion in a gravitational water state therein,
前記遮水部材の内部に設けられるかつ前記遮水部材内を通る水路を形成する管部材を有し、前記遮水部材の内部に給水して前記土壌部を形成する給水手段、A water supply means which has a pipe member which is provided inside the water-impervious member and forms a water channel passing through the water-impervious member, and supplies water into the water-impervious member to form the soil portion;
前記遮水部材の少なくとも一方端部に設けられ、前記遮水部材と他の前記遮水部材とを接続するとともに、前記管部材と他の前記管部材とを接続する接続部材、およびA connection member provided at at least one end of the water-impervious member, connecting the water-impervious member and the other water-impervious member, and connecting the pipe member and the other pipe member; and
前記土壌部の重力水の水位が設定値以上のときに前記給水手段による給水を停止し、前記土壌部の重力水の水位が設定値未満のときに前記給水手段による給水を行う水位管理手段を備える、地下灌漑システム。Water level management means for stopping water supply by the water supply means when the gravitational water level of the soil part is equal to or higher than a set value, and for supplying water by the water supply means when the gravitational water level of the soil part is less than a set value Equipped with an underground irrigation system.
上面に開口を設けた横管状に形成され、その内部に重力水状態の土壌部を有する遮水部材、A water-impervious member formed in a horizontal tube having an opening on the upper surface, and having a soil portion in a gravitational water state therein,
前記遮水部材の底部との間に所定の間隔を有して前記遮水部材と一体的に形成されるかつ前記遮水部材内を通る水路を形成する管部材を含み、前記遮水部材の内部に給水して前記土壌部を形成する給水手段、およびA pipe member formed integrally with the water shielding member and having a predetermined interval between the bottom portion of the water shielding member and forming a water channel passing through the water shielding member; Water supply means for supplying water to form the soil portion; and
前記土壌部の重力水の水位が設定値以上のときに前記給水手段による給水を停止し、前記土壌部の重力水の水位が設定値未満のときに前記給水手段による給水を行う水位管理手段を備える、地下灌漑システム。Water level management means for stopping water supply by the water supply means when the gravitational water level of the soil part is equal to or higher than a set value, and for supplying water by the water supply means when the gravitational water level of the soil part is less than a set value Equipped with an underground irrigation system.
前記管部材の周壁の一部に間隙が形成され、その間隙を介して前記遮水部材の内部に水が供給される、請求項3記載の地下灌漑システム。The underground irrigation system according to claim 3, wherein a gap is formed in a part of the peripheral wall of the pipe member, and water is supplied to the inside of the water shielding member through the gap. 前記管部材は、前記遮水部材内を通る水路を形成する筒状部と、前記遮水部材の内部に立設し前記筒状部を支持する支持部とを含み、The pipe member includes a cylindrical part that forms a water channel that passes through the water-impervious member, and a support part that stands up in the water-impervious member and supports the cylindrical part,
前記筒状部を前記支持部の上に形成して、前記筒状部と前記遮水部材の底部との間に前記所定の間隔を設けるようにした、請求項4記載の地下灌漑システム。The underground irrigation system according to claim 4, wherein the tubular portion is formed on the support portion, and the predetermined interval is provided between the tubular portion and a bottom portion of the water shielding member.
前記管部材は、前記遮水部材の開口縁を内側に屈曲させることによって前記遮水部材の内部に形成される、請求項4記載の地下灌漑システム。The underground irrigation system according to claim 4, wherein the pipe member is formed inside the water shielding member by bending an opening edge of the water shielding member inward. 請求項1ないし6のいずれかに記載の地下灌漑システムに用いられて、耕作地の地中に連設される二重管ユニットであって、
上面に開口を設けた横管状に形成される遮水部材、
前記遮水部材の内部に設けられる管部材、および
前記遮水部材の少なくとも一方端部に設けられて、前記遮水部材と他の遮水部材とを接続するとともに、前記管部材と他の管部材とを接続する接続部材を備える、二重管ユニット。
A double pipe unit that is used in the underground irrigation system according to any one of claims 1 to 6 and that is connected to the ground of a cultivated land,
A water-impervious member formed in a horizontal tubular shape having an opening on the upper surface;
A pipe member provided inside the water-impervious member; and provided at at least one end of the water-impervious member to connect the water-impervious member and the other water-impervious member; and the pipe member and the other pipe A double pipe unit comprising a connecting member for connecting the member.
JP2008192399A 2007-08-27 2008-07-25 Underground irrigation system and double pipe unit used therefor Active JP5187752B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008192399A JP5187752B2 (en) 2008-07-25 2008-07-25 Underground irrigation system and double pipe unit used therefor
EP08828334.6A EP2183962A4 (en) 2007-08-27 2008-08-25 Subirrigation system
US12/675,531 US9011041B2 (en) 2007-08-27 2008-08-25 Subirrigation system
PCT/JP2008/065623 WO2009028702A1 (en) 2007-08-27 2008-08-25 Subirrigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192399A JP5187752B2 (en) 2008-07-25 2008-07-25 Underground irrigation system and double pipe unit used therefor

Publications (2)

Publication Number Publication Date
JP2010029072A JP2010029072A (en) 2010-02-12
JP5187752B2 true JP5187752B2 (en) 2013-04-24

Family

ID=41734329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192399A Active JP5187752B2 (en) 2007-08-27 2008-07-25 Underground irrigation system and double pipe unit used therefor

Country Status (1)

Country Link
JP (1) JP5187752B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205571A (en) * 2011-03-30 2012-10-25 National Agriculture & Food Research Organization Water management system for farmland
JP6404131B2 (en) * 2015-01-21 2018-10-10 株式会社クボタケミックス Sheet end sealing member and underground irrigation system including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151121A (en) * 1985-09-12 1987-07-06 砂研株式会社 Plant culture method
JPS6336715A (en) * 1986-07-31 1988-02-17 有限会社 イデアリサ−チ Plant culture method

Also Published As

Publication number Publication date
JP2010029072A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
US5839659A (en) Capillary root zone irrigation system
JP5731791B2 (en) Irrigation system and method
US20220142065A1 (en) Liquid Containment and Focus for Subterranean Capillary Irrigation
CN104603363A (en) Plantsurface structure and modules and method for forming the same
JP6041190B2 (en) Underground irrigation system
CN101669440B (en) Indirect underground trickle irrigation system
JP2007267731A (en) Greening system
JP5970675B2 (en) Underground irrigation system
US9011041B2 (en) Subirrigation system
KR20140135441A (en) A Watering System using Air Conditioner Discharge Water
JP2004298140A (en) Roof greening system and roof greening planter
CN204733670U (en) City roof vegetables system of growing seedlings
CN106665322A (en) Three-dimensional sand culture planting system
JP4928992B2 (en) Bottom irrigation water supply panel, cultivation pot for the panel, and cultivation system using them
JP5187752B2 (en) Underground irrigation system and double pipe unit used therefor
JP2004173564A (en) Vegetation container for greening wall surface
JP2979209B2 (en) Hydroponic cultivation method and its structure
CA2016375C (en) Portable watering & drainage system & combined heating system
JP6094787B2 (en) Underground irrigation member and underground irrigation system using the same
KR102576067B1 (en) Multi-purpose farming platform
CN110249845B (en) High-steep rock slope greening and maintaining system
CN201919401U (en) Roof greening device
JP2007151529A (en) Bottom watering system having filtration draining function on bottom watering layer capable of controlling pondage
TWI568345B (en) Submarine irrigation and drainage integration system
CN111386903A (en) Environment-friendly rainwater planting container capable of recycling rainwater and planting method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250